Approximated Solutions on the Electromagnetic Field in Near Zone Generated by a Horizontal Electric Dipole on the Planar Surface of the Anisotropic Rock

Tingting Gu, Honglei Xu, and Kai Li

College of Information Science and Electronic Engineering
Zhejiang University, Hangzhou, 310027, China
ttgu@zju.edu.cn, hongleixu@zju.edu.cn, kaili@zju.edu.cn

Abstract — In this paper, the approximate formulas have been derived for ELF electromagnetic field in near zone from a horizontal electric dipole on the surface of sea water and one-dimensional anisotropic rock boundary. The computational scheme exploits the concept of quasi-static approach for ELF near-field approximations. Specifically, the integrands of Fourier-Bessel representations are approximated by adopting Maclaurin’s Expansion where the ratio of wave numbers for rock and sea approaches zero. The approximated solution is in good agreement with the available experimental data.

Index Terms — Anisotropic rock horizontal, ELF near-field, electric dipole.

I. INTRODUCTION

The electromagnetic fields generated by a vertical electric dipole or a horizontal electric dipole near the boundary between two different media like earth and air or sea water and rock have been known in terms of analytical closed-form expressions for decades [1].

In order to evaluate these formulas, extensive studies have been made by many investigators through analytical [2-15] and numerical techniques [16-21]. Among many applied frequency bands, the ELF wave (ELF: ranges from 3 Hz to 30 Hz) has been widely used in the fields, such as deep underground exploration, submarine prospection and communication evaluation. Unfortunately, most available formulas are not used in the ELF frequencies, where the integrands have divergent terms in near zone for ELF field. Additionally, difficulties to implement in the near-field region for ELF waves arise in numerical solution because of limited resolutions near the source.

Recently, this old problem was revisited by Pan [22] in Chapter 6 of the book where the ELF near-field wave propagation is investigated in its application to marine controlled-source electromagnetics (mCSEM) method. The computational scheme is developed from the approximated formulas in the book [5] by retaining fundamental terms. As an extension of these works, the approximate formulas for ELF wave have been derived to evaluate the Sommerfeld’s integrals for in near zone in the presence of half-spaces. Since it is found in some stratified rock that the conductivity is anisotropic which consists of alternating layers of dense rock and less dense rock. Specially, the conductivity transverse to the bedding surfaces is always smaller than the conductivity parallel to the surfaces [23]. This motivates us to develop the stratified prototype, where the rock layer is seen as one-dimensionally anisotropic medium.

In the present study, the approximate expressions of ELF field components due to a horizontal electric dipole is addressed near the planar surface of the anisotropic rock with analytical approximations. Specifically, the quasi-static approach is adopted for ELF waves by \(\gamma_2 \approx \tilde{\l} \) in evaluations because the permittivity of sea water can be approximated by the pure imaginary function of frequency \((\varepsilon_{\text{sea}} = i\sigma_{\text{sea}}/\omega) \) when the operating frequencies are in the range of ELF frequencies. The nature of the approximation is on basis of the asymptotic expansions of integrands of the Fourier-Bessel representations near the poles. In what follows, the near-field electromagnetic field by the conditions of \(kp \ll 1, \ zp \ll 1, \ dp \ll 1 \), the ratio of wave numbers for rock and sea \(k_2/k_1 \) (subscripts 1 and 2 represent for sea water and rock, respectively) is equivalent to an infinitesimal \(|k_2^2\gamma_1|/|k_1^2\gamma_2| \). The computational evaluations of ELF field in near zone are carried out along the planar surface of anisotropic rock with the approximated formulas. The time dependence \(e^{i\omega t} \) is suppressed throughout the analysis.

II. FORMULATIONS

A. Fourier-Bessel representations for ELF near field in the sea water along the surface of one-dimensional anisotropic rock

The relevant geometry is shown in Fig. 1, where the horizontal electric dipole in the \(\hat{z} \) direction is
located at \((0, 0, d)\). The above half space is Region 1 \((z \geq 0)\) filled with sea water, and Region 2 is the ocean floor by the permittivity \(\varepsilon_0\), permittivity \(\varepsilon_2\), and conductivity \(\sigma_2\). Then, the complex permittivities \(\varepsilon_{1}^{r}\) and \(\varepsilon_{1}^{z}\) are expressed as follows:

\[
\varepsilon_{1}^{r} = \varepsilon_0(\varepsilon_{1}^{r} - i\frac{\sigma_{in}}{\omega\varepsilon_0}),
\]

\[
\varepsilon_{1}^{z} = \varepsilon_0(\varepsilon_{1}^{z} - i\frac{\sigma_{in}}{\omega\varepsilon_0})\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right].
\]

With the time dependence \(e^{int}\), the Maxwell’s equations in the two half-spaces are represented by:

\[
\nabla \times \mathbf{E}_j = io\mathbf{B}_j, \quad j = 1, 2, \quad \nabla \times \mathbf{B}_j = \mu_s(-io\omega J_j + \partial J_j^t),
\]

where \(J_j^t = Idl\delta(\chi)\delta(y)\delta(z-d)\), representing for the volume current density in the dipole.

The Fourier transform is in the form of,

\[
\mathbf{E}(x, y, z) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{n} \mathbf{E}(\xi, \eta, z) e^{i\mathbf{n} \cdot \mathbf{r}}
\]

and similar transform for \(\mathbf{B}(x, y, z)\) are applied to Maxwell’s equation. Then, we have:

\[
J_j^t = Idl\delta(z-d).
\]

In [22], the six Fourier integrals for ELF wave components of the electromagnetic field in Region 1 in the range \(0 \leq z \leq d\) can be expressed as follows:

\[
E_{xy} = \frac{Idl}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{n} \mathbf{E}(\xi, \eta, z) e^{i\mathbf{n} \cdot \mathbf{r}}
\]

\[
\times \left\{ \left[\left(k_x^2 \gamma_x + k_y^2 \gamma_y \right) - \lambda^2 \gamma_z \right] + e^{i\eta z} \sin \gamma_z \right\},
\]

\[
E_{yz} = \frac{Idl}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{n} \mathbf{E}(\xi, \eta, z) e^{i\mathbf{n} \cdot \mathbf{r}}
\]

\[
\times \left\{ \frac{\mu_s \varepsilon_n^{\prime} \varepsilon_n^{\prime d}(z+d)}{\lambda^2 \varepsilon_n N_z} \right\} \left\{ \left(k_x^2 \gamma_x + k_y^2 \gamma_y \right) - \lambda^2 \gamma_z \right\} + e^{i\eta z} \sin \gamma_z \right\},
\]

\[
E_{xt} = \frac{Idl}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{n} \mathbf{E}(\xi, \eta, z) e^{i\mathbf{n} \cdot \mathbf{r}}
\]

\[
\times \left\{ \frac{\mu_s \varepsilon_n^{\prime} \varepsilon_n^{\prime d}(z+d)}{\lambda^2 \varepsilon_n N_z} \right\} \left(k_x^2 \gamma_x + k_y^2 \gamma_y \right),
\]

\[
B_{xt} = -\frac{\mu_s Idl}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{n} \mathbf{E}(\xi, \eta, z) e^{i\mathbf{n} \cdot \mathbf{r}}
\]

\[
\times e^{i\eta z} \left(k_x^2 \gamma_x + k_y^2 \gamma_y \right).
\]

Fig. 1. The geometry for a unit horizontal electric dipole on the boundary between sea water and one-dimensional anisotropic rock.

The wave numbers of the regions are:

\[
k_x = \omega\sqrt{\mu_0\varepsilon_0(\varepsilon_{1}^{r} - i\sigma_{in}/\omega\varepsilon_0)},
\]

\[
k_y = \omega\sqrt{\mu_0\varepsilon_0(\varepsilon_{1}^{z} - i\sigma_{in}/\omega\varepsilon_0)},
\]

\[
k_L = \omega\sqrt{\mu_0\varepsilon_0(\varepsilon_{1}^{r} - i\sigma_{in}/\omega\varepsilon_0)},
\]

respectively. With the relations,

\[
x = \rho \cos \phi, \quad y = \rho \sin \phi,
\]

\[
\xi = \lambda \cos \phi, \quad \eta = \lambda \sin \phi,
\]

and the integral representation of the Bessel function of the first kind, viz.,

\[
J_n(\lambda \rho) = \frac{\Gamma(n+1)}{2\pi \rho^n} e^{i\lambda \rho \cos \phi} e^{i\rho \phi} d\theta.
\]

Thus, the final formulas of the six components in cylindrical coordinates \((\rho, \phi, z)\) in Region 1 can be
expressed as follows:

\[
E_{\text{ip}} = -\frac{\mu_0 L d}{4\pi k_1^2} \cos \phi \\
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) - \frac{1}{2} \lambda^2 \left[J_1(\lambda \rho) - J_2(\lambda \rho) \right] \right] \right\}
\times \gamma_1 \cos \phi e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} J_0(\lambda \rho) + J_2(\lambda \rho) \right] \right\} e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda,
\]

(21)

\[
E_{\text{ip}} = -\frac{i \mu_0 L d}{4\pi k_1^2} \sin \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) - \frac{1}{2} \lambda^2 \left[J_1(\lambda \rho) + J_2(\lambda \rho) \right] \right] \right\}
\times \gamma_1 \sin \phi e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} J_0(\lambda \rho) + J_2(\lambda \rho) \right] \right\} e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda,
\]

(22)

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \sin \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

(23)

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

(24)

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

(25)

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

(26)

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

\[
B_{\text{ip}} = -\frac{\mu_0 L d}{4\pi} \cos \phi \times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\}
\times \left\{ \int_0^1 \left[k_1^2 J_0(\lambda \rho) e^{i(\gamma_1 \lambda \rho - k_1^2 \rho^2 / 2)} \lambda d \lambda \right] \right\},
\]

B. Quasi-Static field approximation

In the range of ELF frequencies, the wavelength over a hundred thousand meters and the electric propagation distance subjected to \(k\rho << 1\) make the problem a matter of ELF near-field propagation, where the integrands from equation (21) to equation (26) have divergent terms in the conventional sense. Since the operating frequency is enough low, the “quasi-static” approach is applied in similar manner addressed in [24] in order to evaluate these integrals in the near zone, with the following approximations:

(i) Considering that \(d << \rho\) and \(z << \rho\) where the dipole source height \(d\) and receiving height \(z\) are much less than the radial distance \(\rho\), and \(k\rho << 1\), where \(j = T, L\), it is assumed that:

\[
\gamma_j = \sqrt{k_j^2 - \lambda^2} = \lim_{\omega \to 0} \sqrt{\frac{\omega^2}{c^2} - \omega^2} \approx i \lambda.
\]

(27)

(ii) The ratio of wave numbers for rock and sea \(k_j / k_1\) is equivalent to an infinitesimal \(k_j^2 / k_1^2\).

(iii) High-order terms of the infinitesimals \(k_j^2 / k_1^2\) are allowed to be neglected for simplification as:

\[
\frac{k_j^2 - k_1^2}{k_j^2 + k_1^2} \approx \frac{k_j^2}{k_1^2} \approx \frac{k_j}{k_1} \sqrt{1 - \frac{1}{k_j^2}} \ll 1.
\]

(29)

It is seen that the integrands of \(F_1\) to \(F_3\) are divergent near the dipole source for what cannot be integrated directly. Consider that:

\[
A(\lambda) = \frac{\gamma_j - \gamma_i}{\gamma_j + \gamma_i} = \frac{(\gamma_j - \gamma_i)^2}{(\gamma_j + \gamma_i)(\gamma_j - \gamma_i)} = \frac{(\gamma_j - \gamma_i)^2}{k_j^2 - k_i^2}.
\]

(30)

In the near-field region,

\[
|\gamma_j - \gamma_i| k_j d_w \approx |k_j^2 - \lambda^2 - i\lambda - k_j| d_w \\
\approx \xi |k_j| d_w < 1,
\]

(31)

where \(\xi \in [-1,1]\). Equation (31) can be approximated with by,

\[
i(\gamma_j - \gamma_i) k_j d_w \approx 1 - e^{i(\gamma_j - \gamma_i) k_j d_w}.
\]

(32)

In addition, the function of \(e^{i(\gamma_j - \gamma_i) k_j d_w}\) is approximated by Maclaurin’s expansion with first two orders retained, where:

\[
e^{i(\gamma_j - \gamma_i) k_j d_w} \approx 1 + i(\gamma_j - \gamma_i) k_j d_w - \frac{(\gamma_j - \gamma_i) k_j d_w}{2}.
\]

(33)

Transpose the merger of similar items, we have:

\[
(\gamma_j - \gamma_i)^2 \approx \frac{2}{d_w^2} \frac{2e^{i(\gamma_j - \gamma_i) k_j d_w} + 2i(\gamma_j - \gamma_i) k_j d_w}{d_w^2} - k_j^2
\]

(34)

By invoking (32) and (33), it is derived that:

\[
(\gamma_j - \gamma_i)^2 \approx 2k_j - e^{i(\gamma_j - \gamma_i) k_j d_w} + k_j^2.
\]

(35)
C. Approximated formulas for ELF field in near zone on the planar surface of anisotropic rock

The six components for electromagnetic field in equation (21) to equation (26) are approximated by:

\[
E_{1 \rho} = \frac{\omega \mu_0 I_{dL} d}{4\pi k_i^2} \cos \phi \left[k_i^2 I_1(k_i, d_0) - \frac{1}{2} I_2(k_i, d_0) + \frac{k_i^2 k_i}{2} I_0(k_i, d_0) - \frac{k_i^2}{2} F_i(d_i) \right]
\]

\[
E_{1 \varphi} = \frac{\omega \mu_0 I_{dL} d}{4\pi k_i^2} \sin \phi \left[k_i^2 I_1(k_i, d_0) - \frac{1}{2} I_2(k_i, d_0) + \frac{k_i^2 k_i}{2} I_0(k_i, d_0) - \frac{k_i^2}{2} F_i(d_i) \right]
\]

\[
E_{1 z} = \frac{i \omega \mu_0 I_{dL} d}{4\pi k_i^2} \cos \phi \left[\pm I_1(k_i, d_0) \right] + \frac{k_i^2}{2} k_i I_1(k_i, d_1) \left\{ \begin{array}{l} 0 \leq z \leq d^1 \cr z > d \end{array} \right.
\]

\[
B_{1 \rho} = -\frac{\mu_0 I_{dL} d}{4\pi} \sin \phi \left[\pm I_1(k_i, d_0) + \frac{k_i^2 k_i}{2} k_i I_1(k_i, d_1) \right] - \frac{1}{2} I_3(d_1) \left\{ \begin{array}{l} 0 \leq z \leq d \cr z > d \end{array} \right.
\]

\[
B_{1 \varphi} = -\frac{\mu_0 I_{dL} d}{4\pi} \cos \phi \left[\pm I_1(k_i, d_0) + \frac{k_i^2 k_i}{2} k_i I_1(k_i, d_1) \right] - \frac{1}{2} F_i(d_1) \left\{ \begin{array}{l} 0 \leq z \leq d \cr z > d \end{array} \right.
\]

\[
B_{1 z} = \frac{i \mu_0 I_{dL} d}{4\pi} \sin \phi \left[I_1(k_i, d_0) - F_i(d_1) \right],
\]

in which the distances \(d_0, d_1\) and \(r_0, r_1\) are defined by:

\[
d_0 = |z - d|, \quad d_1 = z + d.
\]

\[
r_0 = \sqrt{d_0^2 + \rho^2}, \quad r_1 = \sqrt{d_1^2 + \rho^2}.
\]

respectively. It is noted that the integrals \(I_1\) to \(I_{10}\) have already been evaluated in [24]. The rest integrals \(F_1\) to \(F_5\) are to be evaluated, which are defined by:

\[
F_i(d_i) = \int_0^\infty \left\{ \frac{2ik_0}{\lambda} \right\} \frac{1}{2} e^{ik_0 \lambda} \frac{1}{\lambda} e^{ik_0 \rho \lambda} A(\lambda) d\lambda + J_z(\lambda \rho) \frac{e^{ik_0 \lambda}}{\lambda} d\lambda,
\]

\[
F_i(d_i) = \int_0^\infty \left\{ \frac{2ik_0}{\lambda} \right\} \frac{1}{2} e^{ik_0 \lambda} \frac{1}{\lambda} e^{ik_0 \rho \lambda} B(\lambda) d\lambda + J_z(\lambda \rho) \frac{e^{ik_0 \lambda}}{\lambda} d\lambda,
\]

\[
F_i(d_i) = \int_0^\infty \left\{ \frac{2ik_0}{\lambda} \right\} \frac{1}{2} e^{ik_0 \lambda} \frac{1}{\lambda} e^{ik_0 \rho \lambda} C(\lambda) d\lambda + J_z(\lambda \rho) \frac{e^{ik_0 \lambda}}{\lambda} d\lambda,
\]

\[
F_i(d_i) = \int_0^\infty \left\{ \frac{2ik_0}{\lambda} \right\} \frac{1}{2} e^{ik_0 \lambda} \frac{1}{\lambda} e^{ik_0 \rho \lambda} D(\lambda) d\lambda + J_z(\lambda \rho) \frac{e^{ik_0 \lambda}}{\lambda} d\lambda,
\]

\[
F_i(d_i) = \int_0^\infty \left\{ \frac{2ik_0}{\lambda} \right\} \frac{1}{2} e^{ik_0 \lambda} \frac{1}{\lambda} e^{ik_0 \rho \lambda} E(\lambda) d\lambda + J_z(\lambda \rho) \frac{e^{ik_0 \lambda}}{\lambda} d\lambda,
\]

where,

\[
A(\lambda) = \frac{\gamma_r - \gamma_i}{\gamma_r + \gamma_i}, \quad B(\lambda) = \frac{\gamma_r - \gamma_i}{\gamma_r + \gamma_i} e^{ik_0 \rho},
\]

Equation (48) is correspondingly expressed by

\[
A(\lambda) = \frac{\gamma_r - \gamma_i}{\gamma_r + \gamma_i} \left(\frac{\gamma_r - \gamma_i}{\gamma_r + \gamma_i} \right)^{\frac{1}{2}} \left(\frac{\gamma_r - \gamma_i}{\gamma_r + \gamma_i} \right)^{\frac{1}{2}} + \frac{k_i^2}{2} \frac{1}{(k_i^2 - k_i^2) d_m} + \frac{k_i^2}{2} \frac{1}{(k_i^2 - k_i^2)}.
\]

With the approximation by equation (49) and equation (50), \(F_1\) to \(F_5\) are simplified by superposition of several terms of \(I_1\) to \(I_{10}\) so that the simplified representations for ELF electromagnetic wave near the horizontal electric dipole are readily obtained, where

\[
F_i(d_m) \approx \frac{4i + 2k_1 d_m}{(k_i^2 - k_i^2)^2} \frac{e^{ik_0 d_m}}{r_m^2} - \frac{e^{ik_0 d_m}}{r_m^2}.
\]

III. COMPUTATIONS AND DISCUSSIONS

Based on equations (36) to (41), the evaluations are carried out by invoking of \(I_1\) to \(I_{10}\) in appendix and \(F_1\) to \(F_5\) by equation (51) to equation (55), respectively. To illustrate the approximated formulas, the formulas approximated are computed correspondingly in the following for electromagnetic components of ELF waves.

In Fig. 2, the electric components \(E_{20}\) and \(E_{22}\) in dB are computed at specific distance \(d = 10\) Km with the variant of observation heights \(z\) when the horizontal electric dipole source is located at the surface of anisotropic rock, as illustrated in Fig. 3. With the operating frequency at \(f = 3\) Hz, the parameters of sea water are taken by the relative permittivity \(\varepsilon_{r1} = 80\) and the conductivity \(\sigma_1 = 4\) S/m, and the relative permittivity of anisotropic rock are assumed to be \(\varepsilon_{r2} = \varepsilon_{r3} = 10\) and the conductivity \((\sigma_1, \sigma_2, \sigma_3)\) of it are chosen by different directions. In Fig. 2, the blue solid and purple dot-dashed lines represent the one-dimensional
anisotropic rock, in which the blue solid lines are for $\sigma_L < \sigma_T$ and the purple dot-dashed lines for the unavailable in physical but theoretical assumption $\sigma_L > \sigma_T$. The red dashed and green solid lines represent isotropic rock, respectively, and the red dashed lines are for the rock with lower conductivity and the green solid lines for the rock with high conductivity.

Fig. 2. Electric components of ELF field at specific distance in near zone due to a horizontal electric dipole versus the observation height on the surface of medium $f = 3$ Hz, $\varepsilon_r = 80$, $\sigma_1 = 4$ S/m (Region 1 is sea), $\varepsilon_r = 10$ (Region 2 is rock); $d = 0$ m, $\rho = 10$ Km, and $\varphi = 0, \pi/2$, respectively.

In Fig. 4, the computational results are compared with same parameters to the available experimental data addressed in [26]. The interesting experiment for detecting the subbed conductivity by the measurements of the ELF electric field on the ocean floor radiated by a horizontal antenna also on the ocean floor has been reported where the radial distance between the transmitting and receiving antennas is $\rho = 18.9$ Km, and the operating frequency is in the range of 0.25–2.5 Hz. The actually measured components E_x and E_y can be expressed in the terms of the components $E_{1\rho}(\rho, \varphi, z)$ and $E_{1\varphi}(\rho, \varphi, z)$ of the field excited by the transmitter. We write:

$$E_x = E_{1\rho}(\rho, \varphi, z)\sin \psi + E_{1\varphi}(\rho, \varphi, z)\cos \psi, \quad (56)$$

$$E_y = -E_{1\rho}(\rho, \varphi, z)\cos \psi + E_{1\varphi}(\rho, \varphi, z)\sin \psi. \quad (57)$$

In computations, we take $\psi = 0^\circ$ and $\varphi = 0^\circ$, respectively.

In Fig. 4, the components E_x and E_y vary as functions of the operating frequency. It is seen that for both the vectors E_x and E_y only the blue solid lines are well in agreement with the measured data. For E_x, the blue solid and dot-dashed lines are nearly close together and both of them agree well with the measured data.

It is seen that E_x is not sensitive to the interchange of the two anisotropic models with $\sigma_L < \sigma_T$ and $\sigma_L > \sigma_T$. This is resulted by E_x being approximately equal to $E_{2\rho}$ in the case of $\psi \sim 0$, and meanwhile the magnitudes of the terms including $e^{ik_\rho \rho}$ are approximately equal to those of the terms including $e^{ik_\varphi \rho}$ at small radial distance ($\rho = 10$ km).
Fig. 4. The comparison of the computational results by the proposed approximated formulas and ocean floor measurements by Young and Cox in 1981 [26].

Fig. 5. Projection of electric field component $|E_2(\rho, \varphi, z)|$ with spatial distributions in \hat{x} - \hat{z} plane due to a horizontal electric dipole excitation in the presence of half-space regions, at $f = 3$ Hz, $\varepsilon_1 = 80$, $\sigma_1 = 4$ S/m (Region 1 is sea), $\varepsilon_2T = \varepsilon_{2L} = 10$ (Region 2 is rock); $\rho = 10$ Km, and $\varphi = 0$, $d = 0$ m, 500m, respectively.
Following the above computations and analyses, it may be reasonably concluded that the measured data are well represented as the one-dimensional anisotropic model and the reasonable values are with $\sigma_L \sim 0.002$ to 0.0025 S/m and $\sigma_T \sim 0.004$ to 0.005 S/m.

For illustration, the observation point is chosen arbitrarily on the $\hat{x} - \hat{z}$ plane, the distributions of the six components' strength for ELF wave due to horizontal electric dipole excitation in the presence of two half-spaces are depicted in Fig. 5 and Fig. 6, where a horizontal antenna of electric dipole is buried inside in the sea water at the height of $d = 0$ m and $d = 500$ m, respectively. With the operating frequency $f = 3$ Hz, the conductivity and the relative dielectric constant of sea water being $\sigma_1 = 4$ S/m, $\varepsilon_1 = 80$, respectively, and the relative dielectric constant of rock being approximately $\varepsilon_{2T} = \varepsilon_{2L} = 10$ and the conductivity of it (σ_x, σ_y, σ_z) are chosen by different directions, the electromagnetic components vary as a function of propagating distance ρ and the height z of source. It is seen that the electromagnetic field decays dramatically due to high loss in sea water in Region 1, while it penetrates the rock floor in Region 2.

IV. CONCLUSIONS

In summary, the approximated formulas for ELF electromagnetic field have been derived in order to evaluate the ELF near field. The computational scheme exploits the concept that ELF near-field propagation can be simplified by the quasi-static approximation with $\gamma \approx i\lambda$. Accordingly, the integrands of Fourier-Bessel representations for ELF field on the surface of the anisotropic rock are approximated by adopting Maclaurin's Expansion near the poles. The approximated solution is in good agreement with the available experimental data.

APPENDIX

The integrals of I_1 to I_{10} are addressed in [22], they are rewritten as follows:
\[I_1(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} J_0(\lambda \rho)}{r_m} d\lambda = -\frac{i e^{ik_n r_m}}{r_m}, \quad (11) \]

\[I_2(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} [J_0(\lambda \rho) - J_2(\lambda \rho)]}{r_m} d\lambda = -2k_m \left[\frac{ik_m}{r_m} - \frac{2}{r_m^3} - \frac{2i}{r_m^3} \right] e^{ik_m r_m}, \quad (12) \]

\[I_3(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} J_1(\lambda \rho)}{r_m} d\lambda = -2k_m \left(\frac{1}{r_m} + i \frac{k_m}{r_m^3} \right) e^{ik_m r_m}, \quad (13) \]

\[I_4(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} [J_0(\lambda \rho) + J_2(\lambda \rho)]}{r_m} d\lambda = \frac{d_m}{r_m^2} \left(\frac{ik_m}{r_m} - \frac{1}{r_m^3} \right) e^{ik_m r_m}, \quad (14) \]

\[I_5(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} J_1(\lambda \rho)}{r_m} d\lambda = -2k_m \left[\frac{e^{ik_m r_m}}{r_m^2} + \frac{d_m}{r_m^3} \left(\frac{1}{r_m^3} - \frac{1}{r_m^3} \right) e^{ik_m r_m} \right], \quad (15) \]

\[I_6(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} [J_0(\lambda \rho) + J_2(\lambda \rho)]}{r_m} d\lambda = \frac{2}{\rho^2} \left[\frac{e^{ik_m r_m}}{r_m^2} \right], \quad (16) \]

\[I_7(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} [J_0(\lambda \rho) + J_2(\lambda \rho)]}{r_m} d\lambda = \frac{2}{\rho^2} \left[\frac{e^{ik_m r_m}}{r_m^2} \right], \quad (17) \]

\[I_8(k_n,d_m) = \int_0^\infty \frac{e^{ik_n r_m} J_1(\lambda \rho) \lambda}{r_m} d\lambda = -\rho k_m \left(\frac{1}{r_m} + i \frac{k_m}{r_m^3} \right) e^{ik_m r_m}, \quad (18) \]

\[I_9(k_n,d_m) = \int_0^\infty r_m e^{ik_n r_m} [J_0(\lambda \rho) - J_2(\lambda \rho)] d\lambda = -2k_m \left\{ \frac{e^{ik_n r_m}}{r_m^2} + \left[\frac{1}{r_m} + i \frac{k_m}{r_m^3} \right] e^{ik_m r_m} \right\}, \quad (19) \]

\[I_{10}(k_n,d_m) = \int_0^\infty r_m e^{ik_n r_m} [J_0(\lambda \rho) + J_2(\lambda \rho)] d\lambda = 2k_m \left[\frac{e^{ik_n r_m}}{r_m^2} + i \frac{e^{ik_m r_m}}{r_m^2} \left(1 + i \frac{k_m}{r_m^3} \right) \right], \quad (20) \]

where \(m = 0, 1 \) and \(n = 0, 1 \).

ACKNOWLEDGMENT

This work was supported by the [National Natural Science Foundation of China] under Grant [number 61271086, 61571389].

REFERENCES

solution to electromagnetic scattering by an impedance sphere coated with an anisotropic layer,”

Communications University (ICU), Daejeon, Republic of Korea. From January 2003 to January 2005, he was a Research Fellow with the School of Electrical and Electric Engineering, Nanyang Technological University (NTU), Singapore. Since January 2005, he has been a Professor with the Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China. His current research interests include classic electromagnetic theory and radio wave propagation.

Li is a Senior Member of the Chinese Institute of Electronics (CIE) and a Member of the Chinese Institute of Space Science (CISS).