
Quasi Monte Carlo Integration Technique for Method of Moments 
Solution of EFIE in Radiation Problems   

 
M. Mishra and N. Gupta 

 
Department of Electronics and Communication Engineering 

Birla Institute of Technology, Mesra,  
Ranchi 835 215, INDIA 

mrinal.mishra@gmail.com, ngupta@bitmesra.ac.in 
 
 
Abstract −  In this work, a Quasi Monte Carlo Integration 
(QMCI) Technique using Halton Sequence is proposed 
for the Method of Moments (MoM) solution of the 
Electric Field Integral Equation (EFIE) in radiation 
problem. It is found that this scheme is capable of 
handling the singularity issue in the EFIE automatically 
and at the same time provides solution to the radiation 
problems very efficiently. 
 

I. INTRODUCTION 
 

Multidimensional numerical quadratures are of great 
importance in many practical areas, ranging from 
radiation/scattering problems in computational 
electromagnetics to atomic physics. The EFIE in solution 
of MoM for scattering problems involves 
multidimensional integrals especially when the 
Galerkin’s technique for solution is employed. It is well 
known that a D dimensional scattering problem using 
Galerkin’s technique involves solution of 2D dimensional 
integral equation. Gaussian quadrature methods, on the 
one hand, yield precise results with relatively few 
integrand evaluations, but they are not too robust and 
work best for very smooth functions and the time 
complexity in numerical quadrature methods increases as 
the dimension of the problem increases.  Monte Carlo 
methods [1-3], on the other hand, impose few 
requirements on the integrand, but are known to converge 
slowly. It is an integration approach that is well suited for 
irregular or singular integrands and requires no analytic 
knowledge about the form of the integrand. The 
conventional Monte Carlo integration (MCI) method is 
independent of the dimension of the integral, and that is 
why MCI is the only practical method for many high-
dimensional problems. 

QMCI methods are based on the idea that random 
Monte Carlo techniques can often be improved by 
replacing the underlying source of random numbers with 
a more uniformly distributed deterministic sequence. The 
fundamental feature underlying all QMCIs, however, is 
the use of a quasi-random number (QRN) sequences in 

place of the usual pseudorandom numbers which often 
improves the convergence of the numerical integration.  

One of the key issues in the solution of the EFIE 
using Galerkin’s technique is the singularity appearing 
the Green’s function kernel of the Integral Equation. The 
type of the singularity is weak in nature. Several 
techniques [4-7] have been used in the past to deal with 
the issue of singularity in order to solve the problem. The 
conventional MCI takes care of the singularity aspect 
without employing any analytical techniques such as 
singularity subtraction/removal, polar co-ordinate 
transformation, etc. and implements the idea just by 
avoiding the random points to fall in the singular region. 
This happens by including a simple statement in the 
program code used for the simulation purpose. However, 
the proposed Halton sequence in QMCI takes care of the 
singularity issue automatically without even modification 
or inclusion of any condition in the program code and 
provides solution to the problem much faster than the 
conventional MCI with randomly generated point 
sequences. The inherent nature of the Halton sequences 
automatically avoids inclusion of singular points in the 
integration. 

 
II. MATHEMATICAL CONCEPT 

 
The idea of Monte Carlo integration is to evaluate an 

integral using random sampling of points for function 
evaluation. In this method, if I is a D dimensional 
integral, 
 

∫
Ω

= DD dxdxdxxxxfI ...),...,,( 2121             (1) 

 
where ),...,,( 21 Dxxxf  is the integrand function and 
Ω  is domain of integration in D dimensional            
space. The Monte Carlo integration is                         
done by independently sampling N random points 
{ }),...,(),...,,...,,(),,...,,( 212222111211 NDNNDD xxxxxxxxx
 in Ω , according to some convenient probability density 
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function ),...,,( 21 iDii xxxp , and then computing the 
estimate,  
 

∑
=

Ω
=

N

i iDii

iDii
N xxxp

xxxf
N

F
1 21

21

),...,,(
),...,,(

.               (2) 

 
Here the notation FN is used rather than I to 

emphasize that the result is approximate, and that its 
properties depend on how many sample points are 
chosen. If  ),...,,( 21 iDii xxxp  is the uniform probability 
density, then the integral is simply, 
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Unlike the conventional Monte Carlo integration that 

uses sampling of random points in Ω , the Quasi Monte 
Carlo Integration methods use the sampling points with 
uniform probability distribution that are more evenly 
distributed than the random points over the domain Ω . 
The classical QMCI method replaces the independent 
random points used in MCI by a deterministic set of 
distinct points. The problem of clustering of random 
numbers in the domain can be removed by the use of 
Halton numbers. The use of quasi random sequences in 
place of the usual pseudorandom numbers often improves 
the convergence of the numerical integration.  

There are several well-known constructions for QRN 
sequences.  In the one dimensional case, it is achieved, 
for example, by the Van der Corput sequence [3]. This 
construction uses a prime number as base for generation 
of numbers between 0 and 1, obtained by reversing the 
digits in the representation of some sequence of integers 
in a given base. To obtain a QRN sequence in several 
dimensions, we use a different radical inverse sequence in 
each dimension. 

The classic example of this construction in several 
dimensions is the Halton sequence [8]. In one dimension 
for a prime base pn, the nth number in the sequence 
corresponding to the digit n is obtained by the following 
steps [1].  

For each n:  
1. n is written as a number in base np . Thus if np  

= 3 and n = 22, then 22 in base 3 is written as 22 
= 2 * 32 + 1 * 31 + 1 * 30 = 211. 

2. The digits are reversed and a radix point (i.e., a 
decimal point base np ) is put in front of the 
sequence (in the example, we get 0.112 base 3).  

3. The sequence for one dimension is obtained by 
application of the above process for different 
values of n. 

Every time the number of digits in n increases by one 
place, n’s digit-reserved fraction becomes a factor of p 
finer-meshed. So, at each step as n increases points of 
Halton sequence are better and better filling Cartesian 
grids. The Halton numbers generated for first three 
dimensions using 2, 3, and 5 as the prime numbers for 
bases, respectively, for n ranging from 1 to 8 are shown 
in Table 1. 

 
Table 1. Halton sequences for first 3 dimensions. 
 

n Dim 1 
p=2 

Dim 2 
p=3 

Dim 3 
p=5 

n=1 1/2 1/3 1/5 
n=2 1/4 2/3 2/5 
n=3 3/4 1/9 3/5 
n=4 1/8 4/9 4/5 
n=5 5/8 7/9 1/25 
n=6 3/8 2/9 6/25 
n=7 7/8 5/9 11/25 
n=8 1/16 8/9 16/25 

 
The samplings of two dimensional space [0,1]2 with 

500 points are shown for both Monte Carlo using random 
sequences in both dimensions; and Quasi Monte Carlo 
sampling using Halton sequences with pn = 2 and pn = 3 
respectively in two dimensions are shown in Fig. 1. It is 
clear from the figure that the Halton sequence points 
sample the region more uniformly than the random 
sequences. The problem of clustering of points in Monte 
Carlo sampling is significantly reduced in Quasi Monte 
Carlo sampling. 

 

 
Fig. 1. Sampling of the two dimensional space using 
random and Halton sequences, respectively. 
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Another very important aspect of the Halton 
sequences, as is clear from table 1, is that the sequences 
in any two different dimensions are not the same, i.e., the 
sample points in a quasi-random sequence are, in a 
precise sense, “maximally avoiding” of each other. This 
property has been utilized in the Galerkin approach for 
the MoM solution of the radiation from wire antenna with 
the exact form of the kernel. The two dimensional 
problem in this approach leads to integration of four 
dimensional singular functions in which the integrands 
have line singularities. This problem of singularity can be 
removed automatically by the QMCI using Halton 
sequences with different bases for each dimension.  

 
III. FORMULATION OF THE PROBLEM 

 
The numerical modeling of a wire dipole antenna [9-

14] is taken up as a test problem A dipole wire antenna of 
finite radius a, and length l is shown in Fig. 2. The wire 
has a finite thickness, but it is considered thin as a << λ.  
For a thin antenna, the unknown current varies on the 
surface only along the z axis and variation along the 
coordinate φ is negligible. Figure 2 shows a center fed 
dipole wire antenna of radius a, and length l. Both source 
and observation points are on the surface of the antenna 
characterized by both axial and circumferential 
coordinates. The wire antenna is usually formulated using 
two approaches, depending on whether the exact (full) 
kernel (EK) or the approximate (reduced) kernel (AK) of 
the integral equation is used. In the exact kernel 
formulation [15], where the kernel is singular, several 
singularity extraction and correction techniques have 
been used that require analytical methods. 

 

 
Fig. 2. A center fed dipole wire antenna of radius a, and 
length l.  

Thus, the evaluation of matrix elements requires 
analytical pre processing of the kernel, before numerical 
integration, making the entire procedure very 
complicated.  

The need to get rid of the singularity has resulted in 
the approximated or the reduced form of the kernel by 
Richmond [16]. The corresponding EFIE is,  
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where 22 )'( zzaR −+=  and Ω= 3370Z , the free 
space impedance. 

It is clear from equation (4) that both the 
observation and the source points are not on the surface, 
but the source coordinates are along the z-axis. The 
exclusion of the φ coordinates from the kernel is a very 
crude approximation of it, and therefore the reduced 
kernel formulation results in loss of one dimension of 
the problem. 

In the exact kernel formulation, on the surface of the 
antenna, the EFIE takes the form, 
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A. MoM Formulation  
The unknown current on the surface of the antenna is 

expanded as, 
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where nα ; n = 1, 2, . . .,M; are unknown amplitudes to 
be determined.  

The point matching technique leads to the matrix 
equation of the form, 
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with    
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And the Galerkin’s technique leads to the matrix 
equation of the form, 
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B. MCI and QMCI Technique Implementation 

The fact that the kernel of the EFIE is singular is 
evident from equation (5). For the point matching 
technique, the local correction technique is applied to 
deal with the singularity arising in the integration of 
equation (8) where the integrand diverges at the points 
where mφφ ='  and mzz =' . Both the MCI and QMCI 
can be utilized for treating this singularity. This technique 
can be implemented by excluding small regions about the 
points of singularity mφ  and mz  when the random points 

are generated for the variables 'φ  and 'z  respectively by 
embedding the required condition directly in the program 
code employed for the purpose in simulation.  

For Galerkin’s technique, in the problem under 
investigation, QMCI is applied to remove the singularity 
arising in the integration of equation (10). This is a four 
dimensional integration in variables φ , 'φ , z  and 'z , 
where the integrand shows line singularity at the points 
where 'φφ =  and 'zz = . This problem of line 
singularity can be is done by generating quasi random 
Halton sequences with different bases for the variables 
φ , 'φ , z  and 'z , since no two Halton sequences with 
different bases are same, the singularity in the kernel is 
taken care off   automatically.  

 IV. NUMERICAL EXAMPLES 
 

As a test example for the proposed technique, a half 
wavelength wire dipole antenna, fed at its center by a 
signal generator of frequency 850 MHz is considered. 
The corresponding wavelength is λ = 0.3529 m. The 
radius is a = 0.001λ.  The two ends of the antenna       
have the coordinates 4 0.088235Az λ= − = − m; 

4 0.088235Bz λ= = m.  
Three cases for the problem have been studied: 

Case I: The proposed exact kernel with the sinusoidal 
incident field modeling and implementation of MCI 
with sub domain pulse basis functions. The entire 
length of the antenna is divided into equal length 
segments and each segment is at least  λ /10 in length. 
Further, the number of segments is odd, so that the 
feed gap is modeled as a single segment. Taking these 
two factors into consideration, the antenna is divided 
into 21 equal length segments and the point matching 
technique with mid points of each segment as the 
observation points is adopted. In this modeling, the 
diagonal terms of the matrix are from equation (8). 
The incident electric field is, 

 
 ))(sin()( A

inc
z zzkzE −= .                  (11) 

 
The total number of random points taken for the MCI 
is N = 5000. 

 
Case II: The proposed exact kernel with the sinusoidal 

incident field in equation (11) and implementation of 
MCI with entire domain polynomial basis functions. 
Since the incident field is parallel to the z axis, from 
the geometry of the antenna, the z directed current will 
be zero at the edges perpendicular to z axis, i.e., at 

Azz =  and Bzz = . The entire domain basis function 
employed is the polynomial, 
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M

neven
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The simulation is carried out for M = 4, making 
number of terms in the expansion is equal to 2. It is 
observed that the results convergence for M > 4. The 
total number of random points taken for the MCI is   
N = 10000. 

 
Case III: The reduced kernel with conventional 

quadrature integration and the delta gap source 
modeling with sub domain pulse basis functions. The 
antenna is divided into 21 equal length segments, with 
mid points of each segment as the observation points, 
as in case I. The simulation results of the normalized 
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current distribution over the length of the wire 
antenna, obtained for the three cases mentioned above 
is plotted in Fig. 3. As is evident from the figure, all 
the three results are in excellent agreement, which 
justifies the effectiveness of the proposed method. The 
efficiency of the MCI techniques adopted for 
integration of the singular function used with the 
entire domain polynomial basis functions given by 
equation (9) is evident from Table 2. As can be seen, 
this combination results in reduction in storage 
requirements by more than 100 times, making the 
proposed technique very efficient.  
 
Next, the efficiency of the QMCI technique is tested 

on two problems. First, a half wavelength wire dipole 
antenna, fed at its center by a signal generator of 
frequency 300 MHz is considered. The corresponding 
wavelength is λ = 1 m. The radius is a = 0.001λ.  The two 
ends of the antenna have the coordinates zA = -0.25m and 
zB = 0.25m. 

The results are obtained by QMCI implementation 
and sub domain pulse basis function with 21 segments 
using N = 500 for both point matching and Galerkin’s 
approach and plotted in Fig. 4. The results are in very 
good agreement.  

 

 
Fig. 3. The normalized current distribution on the wire 
dipole antenna (l= λ /2) for the three cases. 

 

 
Table 2. A comparison of matrix size. 

kernel Basis function Integration 
technique Matrix Size 

Exact Sub sectional 
pulse 

MCI 
N = 5000 21 x 21 

Exact 
Poly nomial, 
given by (12) 
with M = 4 

MCI 
N = 10000 2 x 2 

Reduced Sub sectional 
pulse Conventional 21 x 21 

Secondly, a one wavelength wire dipole center fed 
antenna, of frequency 600 MHz is considered. The 
corresponding wavelength is λ = 0.5 m. The radius is a = 
0.001λ.  The two ends of the antenna have the coordinates 
zA = -0.25m and zB = 0.25m. The results are obtained by 
QMCI implementation and sub domain pulse basis 
function with 21 segments.  

Figure 5 compares the both point matching and 
Galerkin’s methods for QMCI implementation using N = 
500 for one wavelength dipole which again shows a very 
good agreement between the two results. It is seen that 
QMCI is very efficient as is gives the desired results in 
only 500 quasi random points. 

 

 
Fig. 4. The normalized current distribution on the wire 
dipole antenna (l= λ /2) using QMCI technique, f = 300 
MHz. 

 
Fig. 5.  The normalized current distribution on the wire 
dipole antenna (l= λ) using QMCI technique, f = 600 
MHz. 
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V. CONCLUSION 
 

The QMCI technique using Halton sequence is 
proposed in the MoM solution of the EFIE for some 
radiation problems.  As an example, radiation from a 
simple wire antenna is investigated. It is found that the 
proposed technique not only solves the radiation problem 
efficiently but also takes care of the singularity problem 
appearing in the kernel of the integrand due to the 
inherent property of the Halton sequence. 
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