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Abstract─ A fast method-of-moments approach is 
proposed for the solution of finite arrays of 
complex identical elements, involving both metal 
and finite dielectric parts. The method is based on 
the use of Macro Basis Functions (MBF), also 
named “Characteristic” Basis Functions, among 
which interactions are computed very fast with the 
help of a Multipole approach. Fast evaluation of 
array patterns or embedded element patterns is 
obtained through decomposition into a finite series 
of pattern multiplication problems. Examples are 
provided for finite arrays of bowtie antennas 
embedded in dielectric boxes. For periodic arrays, 
results are compared with infinite-array solutions. 
The method is also extended to non-periodic 
structures, for which the Multipole approach 
appears very useful for interactions outside the 
near-field region. We show that interactions in the 
near-field region can benefit from an interpolation 
procedure. 
 
Index Terms─ antenna arrays, method of 
moments, multipoles, macro basis functions. 
 

I. INTRODUCTION 
     The numerical simulation of large finite arrays 
of antennas remains a challenge when the 
elements are of complex shapes and involve finite 
dielectric components and metallic parts.  
Examples of such radiators are ultra-wideband 
antennas embedded in finite dielectric boxes, 
which serve for instance as supporting material or 
as material allowing to reduce the size of the 
radiating elements. When dealing with piecewise 
homogeneous media, as is generally the case in 
antenna technology, integral-equation approaches, 
like the Method of Moments make sense, since 
unknowns can be limited to the interfaces between 
media. However, for the geometries referred to 
above, the description of currents or equivalent 

currents may anyway require several hundreds, 
and sometimes thousands, of coefficients per 
antenna, even if the latter is smaller than the 
wavelength. 
     Several efficient methods have already been 
developed for periodic structures; however, for the 
configurations of interest, they suffer from several 
drawbacks. When the total number of unknowns is 
larger than a few thousands, iterative methods that 
rely on fast matrix-vector multiplications can be 
used, they are based either on multipole 
decompositions [1], on Fast Fourier Transforms 
[2] or on QR decompositions [3]. In those cases, 
when based on Krylov subspace methods, 
convergence is theoretically guaranteed; however, 
the number of iterations is difficult to predict and 
relatively fast convergence generally requires 
preconditioners, whose performances are also 
difficult to predict. Besides this, some cases of 
divergence, generally attributed to effects of 
numerical round-off, are sometimes observed. 
     This is mainly why several authors have been 
trying to circumvent these difficulties by devising 
non-iterative methods in which elementary 
decomposition functions are aggregated into 
Macro Basis Functions (MBF’s), which would 
make sense from a physical point of view (they are 
then named Characteristic) [4]-[7]. The 
determination of the MBFs themselves is a 
research sub-topic on its own and will not be 
studied here. Besides the references above, a 
method is proposed in [8], where aggregations 
similar to the MBF approach are exploited in an 
iterative scheme based on multipole 
decompositions. For the challenging case of 
electrically connected antennas, specific schemes 
are presented in [9], [10] and [11]. In the latter, the 
Array Scanning Method [12], based on 
infinitearray solutions, is exploited to generate 
theMBFs.  
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     In this paper, we will concentrate on the 
computation of fast interactions between Macro 
Basis Functions (MBF), for the case of complex 
antennas fully embedded in dielectric blocks, 
assuming that all the elements of the array are 
identical, and with an extension to non-periodic 
arrays. The proposed method relies on a technique 
initially presented in [13] for the case of radiation 
by arrays made of metallic elements and in [14] 
for the case of scattering by finite arrays of 
homogeneous dielectric objects. The method is 
based on a combination of the Macro Basis 
Function (MBF) approach and of the Multipole 
method. In [15], this method has been extended by 
placing metallic elements inside finite dielectric 
objects. Examples were shown in [15] for dipoles 
embedded in dielectric quasi-spheres. In this 
paper, further results are shown for wideband 
bowtie elements embedded in dielectric boxes. It 
will also be recalled that, in the framework of the 
MBF approach, the array pattern can strictly be 
written as a series of pattern multiplication 
problems, for which the FFT can be exploited. The 
method will then be extended to the case of non-
periodic arrays, for which the acceleration of 
interactions is even more crucial. Finally, we will 
also show that the FFT still can be exploited for 
pattern evaluation of irrergular arrays, provided 
that a specific interpolation procedure be applied.  
     This paper is organized as follows. In Section 
2, the mathematical formulation is provided. In 
Section 3, simulation results are shown for bowtie 
antennas embedded in dielectric volumes. First for 
the case of a small 2×2 array, for comparison with 
a brute-force solution; then for a 10×10 array, with 
a comparison with the infinite-array solution. 
Finally, in Section 4, the methodology is extended 
to non-regular arrays. Conclusions are drawn in 
Section 5. 
 

II. FORMULATION 
     Besides the currents jm on the metallic part of 
the antenna, unknown equivalent electric and 
magnetic currents, js and ms, are considered on the 
surface Sd of the dielectric objects. Hence, in this 
Method-of-Moments (MoM) formulation, the 
metallic part of the antenna couples with the 
exterior medium and with other antennas only 
through the equivalent currents on the surface Sd. 
Following the MBF (also called Characteristic 
Basis Function) methodology, the current 

distribution on a given cell is obtained as the linear 
superposition of distributions obtained while 
solving small problems: 
 
                    ,  (1) 
 
where o

x,pj and o
x,pm are the vectors of coefficients 

describing macro basis function p, and Cp is a 
constant to be determined. Here, these small 
problems are made either of an isolated 
transmitting cell (primary MBF), or of a receiving 
cell (secondary MBF, [6]), illuminated by the 
fields radiated by the transmitting cell. The 
interactions between MBFs are computed as the 
discretized approximation of: 
             ( )* *. .t s t sI J E M H dS= +∫∫ ,                   (2) 

where tJ and tM currents can be either on the 
metallic or dielectric surfaces, while sE and sH are 
the fields radiated by a given macro basis function 
in the region of interest. The (*) superscript stands 
for complex conjugation, while the t index refers 
to testing functions. For MBFs associated with the 
same antenna or with neighboring antennas, 
interaction I can be computed with the help of the 
block of the MoM impedance matrix standing for 
interaction between those antennas [6]. When 
pairs of antennas located further away are 
considered, the computation of interaction I can be 
carried out much more efficiently, with the help of 
a multipole formulation. Using the plane-wave 
expansion of the free-space scalar Green’s 
function, which can be found in [16], we obtain: 

       
( )

( ) ( )2
ˆ, ,

4
e h mn

kI P P T k r u dU
π

= +∫∫ ,         (3) 

where T is the Multipoles translation function [16], 
û is a unit vector in the direction of integration, 
and Pe and Ph are specific products of patterns of 
macro basis functions and of their divergences: 

                                                 
 
                                              

      ,                 (4) 
 
 
                                               

       ,                (5) 
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where the b index denotes the basis functions. In 
the following, to avoid too heavy notations, the b 
and t indices will be omitted. 
 

           (6) 
 
           
           (7) 
 
            
           (8) 
 
            
           (9) 
 

where nF is the pattern of the nth subsectional basis 

function nf : 

( ) .jku r
n nF f r e dS= ∫∫ ,                          (10) 

and DFn is the pattern of its divergence. In the 
formulas above, k is the free-space wavenumber, 
ω is the radian frequency and ε and μ are the 
permittivity and permeability of free space. The 
formulas above can be delineated from [13] and 
from the well-known expressions of MoM-matrix 
entries for dielectric materials [17]. Detailed 
developments, along with slight variations on the 
formulation, will be given in [18]. 
     The radiation patterns of the finite structure can 
be obtained very fast by decomposing the problem 
into a finite series of pattern multiplication 
problems. In this series, the contribution from a 
given MBF can be written as ( ) ( ), ˆ ˆp x pF u A u , where 

( ), ˆp xF u is the element pattern of the current 
distribution described by the pth macro basis 
function, computed with the help of the equivalent 
currents o

s,pj and o
s,pm on Sd, and which have already 

been obtained in the course of the MBF+Multipole 
computations. The index x stands for the 
polarization of the computed fields. The factor Ap 
corresponds to the array factor resulting from the 
array excited with the coefficients associated with 
the pth macro basis function. Hence, we have: 

  ,
1

ˆ ˆ ˆ( ) ( ) ( )
p P

x p p x
p

F u A u F u
=

=

= ∑ ,                    (11) 

with 

( )ˆ( ) x yjk u m a u nb
p mnp

mn

A u C e +
=∑               (12) 

( )( )IFFT2 1 m n
mnpj M N Cωμ += − −       (13) 

  ( ), ,pA r s=             (14) 
where ux and uy are the horizontal projections of 
the unit vector û  which indicates the direction of 
observation: 
  ( ) ( )/ 1/ 2 /xu r a r Mλ= − + ,                (15) 
  ( ) ( )/ 1/ 2 /yu r b s Nλ= − + ,                 (16) 
with (M, N) the dimension of the two-dimensional 
inverse FFT, 0 r N≤ ≤ and 0 s M≤ ≤ , while a and 
b are the array spacings along x and y. 
     In [15], the method has been validated by 
comparison with a brute-force solution for a 5×5 
array of broadband dipoles embedded in dielectric 
quasispheres and by comparison with infinite-
array results for very large arrays. In the 
following, results will be shown for bowtie 
antennas inside dielectric blocks and an extension 
to non-regular arrays will be provided. 
 

III. NUMERICAL EXAMPLES 
     The unit cell is sketched in Fig. 1. It is made of 
a bowtie antenna embedded in a parallelipipedic 
volume with relative permittivity equal to 4, 
represented here with 268 RWG-type [19] basis 
functions. The bowtie antenna is meshed with the 
help of 112 RWG and one rooftop basis functions. 
The antennas are terminated with a 100 Ohm load. 
The size of the box is 1.2 cm and the spacing 
between elements is 1.25 cm. The array 
configuration is shown in Fig. 2. 
 

 
 
Fig. 1. Mesh of bowtie antenna embedded in dielectric 
volume. 
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Fig. 2. Array geometry and element numbering. 
 
Table 1. Coupling coefficients (amplitude and phase) in 
2×2 array terminated with 100 Ohm loads, expressed in 
terms of induced currents, normalized w.r.t. excited 
element (1,1). Wavelength: 5 cm. 

Index (1,1) (1,2) (2,1) (2,2) 
B.F.(dB) 0.0 -14.944 -11.986 -27.370 
MBF(dB) 0.0 -14.922 -12.002 -27.477 
B.F.(rad) 0.0 1.351 -2.756 0.241 
MBF(rad) 0.0 1.357 -2.754 0.255 

 
 
      Simulations have first been carried out at the 
element level, for a wavelength of 5 cm. We 
verified that, for lossless dielectrics, the power 
delivered to the antenna corresponds to the 
radiated power. This verification does not provide 
ultimate validation but appears as a useful check. 
Correspondence has been achieved within 0.1 
percent of relative error. The array computations 
have been carried out while considering one 
primary MBF, corresponding to an isolated 
excited element and eight secondary MBFs, 
obtained as the field induced on the eight 
surrounding elements, due to the incident field 
radiated by the primary (this way of choosing 
MBFs was first proposed in [6]). First, still for a 5 
cm wavelength, a very small array, made of 2×2 
elements has been simulated, in order to see to 
what extent the MBF approach (so far without the 
Multipole acceleration) compares with the brute-
force solution. In this case, the comparison is 
provided in terms of coupling coefficients and in 
terms of embedded element patterns. The coupling 
coefficients are provided as the currents induced 
on the 100 Ohm loads of the antennas when one of 
them is excited with a unit voltage and a 100 Ohm 

series impedance. Table 1 provides those coupling 
coefficients in the 2×2 array, expressed in dB with 
respect to the currents on the series impedance of 
element (1,1), which is excited. As for the 
magnitude, the first line stands for the brute-force 
(B.f.) solution, while the second line stands for the 
MBF solution. As for the phase, corresponding 
results are provided in third and fourth lines. It can 
be seen that the error levels are very low. 

        
 
Fig. 3. E-plane cut in embedded element pattern for 
element (1,1) excited in 2×2 array, compared with 
pattern of isolated antenna. Wavelength: 5 cm. 
 

   
Fig. 4. Active input impedances in 10×10 array and in 
infinite array (horizontal lines) for broadside scan. 
Wavelength: 5 cm. Rows are along y in Fig. 2. 
 
     A major advantage of the MBF approach is 
that, once the reduced MoM impedance matrix is 
inverted, solutions are readily obtained for all 
possible excitations. Characteristics of major 
interest are the embedded element patterns, 
obtained with one element excited and all other 
elements passively terminated. On receive for 
instance, such a pattern fully describes the 
sensitivity at a given port of the array. For the 2×2 
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array referred to above, an E-plane cut of the 
embedded element pattern of element (1,1) is 
compared in Fig. 3 with the pattern obtained for an 
isolated element, as well as with the embedded 
element pattern obtained in the brute-force case. It 
can be seen that the MBF approach allows us to 
estimate with high accuracy the strong effects of 
mutual coupling on the embedded element 
patterns. In this case, in view of the very small size 
of the array, multipoles have not been used to 
compute the interactions between MBFs. 
     Other simulations have been carried out for a 
10×10 array, with uniform excitations. This leads 
to (113+ 2×268)×100 = 64.900 surface unknowns 
on the finite- array structure. 900 unknowns are 
obtained in the reduced system of equations. The 
total computation time is of the order of 230 
seconds on a 1.6 GHz laptop computer, 100 of 
which are dedicated to the computation of the 
MBFs themselves, 90 for computation of 
interactions in the near-field and 40 for all far-field 
interactions. The multipole approach has been 
used for interactions between MBFs as soon as the 
distance between antennas on which they are 
residing is larger than a wavelength. Once the 
reduced impedance matrix is obtained, all 
coupling coefficients, as well as all embedded 
element patterns can be computed almost instantly 
(a few seconds). Examples are provided here for 
uniform excitation. Fig. 4 shows results obtained 
for active input impedances on several rows 
along x̂ . The horizontal lines stand for the active 
input impedance obtained with the infinite-array 
approximation. The latter has been computed with 
the help of the Method of Moments [20], 
exploiting a rapidly converging scheme for the 
periodic Green’s function and its gradient (the 
latter is necessary for the treatment of the 
dielectric material). It can be seen that, near the 
middle of the array, active impedances start 
resembling the infinite-array solution. However, in 
view of the relatively small size of the array (each 
array side is 2.5 wavelengths only), and given the 
oscillatory effects of array truncation on port 
currents, the infinite-array solution is a relatively 
poor approximation [21], such that the elements in 
the middle of the array are not necessarily the 
closest to the infinite-array solution. 
     Figure 5 shows the array pattern in the E-plane, 
obtained with the help of the FFT approach. To 
emphasize the effects of mutual coupling, we also 

show the array pattern obtained as a product 
between the array factor for uniform excitation 
and the element pattern obtained from the currents 
corresponding to the infinite-array solution for 
broadside scan. A 0.5 dB error appears at 
broadside and the error increases rapidly for 
successive side-lobes. 
 

     
 
Fig. 5. Array pattern in E-plane, obtained with 
MBF+Multipole+FFT approach for 10×10 array and 
broadside scan, compared with solution assuming 
infinite-array currents. Wavelength: 5 cm. 
 
 

IV. EXTENSION TO IRREGULAR 
ARRAYS 

     The method referred to above has been 
extended to irregular arrays. If N is the number of 
surface unknowns on the dielectric-air interface, 
the multipole approach presented above allows us 
to compute the interactions between macro basis 
and testing functions with complexity of the order 
of N instead of N2, at least if the spacings between 
elements is larger than about one wavelength. If M 
is the number of antennas, for regular arrays, the 
number of different spacings to be considered for 
the interaction between a given pair of macro basis 
and testing functions is of the order of 4M, thanks 
to redundance in the periodic structure. However, 
in general, for the irregular array, this number of 
interactions is again of the order of M2, which 
underscores the importance of computing the 
interactions very fast. Besides this, for the array 
pattern (or embedded element pattern) evaluation, 
the FFT approach presented in Section 2 cannot be 
used directly. This point will be treated further 
below. 
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Fig. 6. Interaction factor I between two primary MBFs 
versus distance along y. 
 
 
     The Multipole approach has been applied for 
all pairs of elements separated by at least one 
wavelength, while an approach based on MoM 
impedance matrix calculations [6] has been used 
for elements placed closer to each other. For 
irregular arrays, this still may concern a large 
fraction of the pairs to be considered. Such 
interactions concern almost about a fourth of the 
interactions in the array considered below and take 
20 seconds each, which is prohibitive. However, it 
is interesting to note that the interactions between 
MBFs on different antennas are a smooth function 
of the distance between antennas. This is 
illustrated in Fig. 6 for the interaction between two 
primaries at increasing distances along ŷ . It can be 
seen that this function is particularly smooth, 
which opens important perspectives for further 
acceleration of near-field interactions. A method 
fully exploiting this smooth behavior of near-field 
interactions versus distance has been initiated in 
[22] for the case of metallic antennas, and a more 
advanced version of this technique will be 
described in a separate publication. Active input 
impedances for the array configuration depicted in 
Fig. 7 have been computed for broadside scan at 6 
GHz; results are shown in Fig. 8. The horizontal 
lines again stand for the infinite-array solution 
with 1.25 cm spacings. 
 
 

 
 

 

 
(a) 

 
(b) 

Fig. 7. Positions of elements in irregular array, and 
underlying finer grid used for NFFT-based pattern 
computations. 
 

 
 
Fig. 8. Active impedances in 10×10 irregular array 
scanned at broadside. Horizontal lines stand for infinite-
array solution. Wavelength: 5 cm. Rows are along y in 
Fig. 2. 
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Fig. 9. Pattern of the 10×10 irregular array scanned at 
broadside, computed with brute-force approach and 
with the help of NFFT approach. The lower curve 
shows the errors incurred by use of NFFT with λ/8 grid 
and second order separable interpolation rule. 
 
     As for the pattern computations, we try to 
describe an equivalent uniform array for the 
irregular problem, such that the FFT approach still 
can be used in a straightforward manner. This 
approach can be connected to NFFT methods also 
applied to radar processing and medical imaging 
[24]. Here, a simple interpretation, inspired from 
interpolation methods, will be used. The phase 
factor associated with each element in the array 
factor expression depends on the element’s 
position. In the following, it will be estimated as a 
linear combination, described with weights uij, of 
its value at a few points located around the 
antenna, on a regular grid. Hence, this problem is 
similar to a standard interpolation technique. The 
method amounts to distributing, for each element 
in the array, the MBFs coefficients onto a set of 
auxiliary neighbor elements located on a regular 
grid, as shown in Fig. 7(b), where 9 neighboring 
elements are considered. The distribution rule 
simply corresponds to the set of weights uij. The 
procedure to obtain the weights on the auxiliary 
elements with the help of a 1-D quadratic 
interpolation technique is illustrated in Fig. 7(b). 
The weight uij can be expressed as a product         
uij = vi wj. The weights vi(δx) are computed as       

( )0 0
1 1 / 2x xv δ δ− = − , 

( )20
0 1 xv δ= − , 

 and 1v = ( )0 01 / 2x xδ δ+ ; similar expressions are 

used to define ωj(δy). In those formulas, 
0 /x x Aδ δ δ=  and 0 /y y Bδ δ δ= are incremental 

positions on the regular grid, normalized w.r.t. the 
grid spacings. More sophisticated techniques may 
be employed to perform the aforementioned 
distribution [23], [25] but their evaluation is 
outside the scope of this paper. 
     Once the new coefficients and the regular grid 
are obtained, expression (14) can be employed 
again for the pattern computation. Performing the 
IFFT over for the auxiliary grid implies a higher 
computational cost, in view of the use of a finer 
grid: the 2logN N complexity now becomes 

2logCN CN , with C the ratio between the number 
of points in the fine grid and the number of 
antennas. However, for large arrays, this will 
remain competitive with the brute-force approach 
with complexity of the order of N2. The proposed 
technique has been applied to the 10×10 array of 
Fig. 7(a), considering a fine grid with spacing λ/8. 
Results are shown in Fig. 9, together with the error 
incurred by the interpolation. For this example, the 
bruteforce solution applied to the pre-calculated 
MBF patterns takes 12.44 s, while the NFFT 
approach takes 2.23 s. Much larger time savings 
are expected for larger arrays. 
 

V. CONCLUSION 
     A fast numerical approach, combining Macro 
Basis Functions and Multipole approaches, has 
been presented for arrays comprising dielectric 
elements that contain metallic parts. Once the 
macro basis functions have been computed, the 
complexity of the method no longer depends on 
the number of unknowns in the unit cell. The 
accuracy of the method has been demonstrated by 
comparison with a full-wave approach for a very 
small array. Besides this, we explained how the 
FFT can be exploited for the very fast estimation 
of radiation patterns (array patterns or embedded 
element patterns). This is possible thanks to the 
fact that the MBF approach allows us to 
decompose the full array pattern into a finite 
superposition of pattern multiplication problems. 
Finally, we showed that the method can be 
extended to the analysis of irregular arrays. In this 
case, more interactions need to be computed and 
we underscored the possibility of further 
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acceleration by illustrating the smoothness of such 
interactions versus inter-element distance; we also 
illustrated the effectiveness of the NFFT for the 
fast pattern computation in the case of irregular 
arrays. 
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