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Abstract─ This paper presents an innovative 
procedure that allow for the Method of Moments 
(MoM) analysis of electrically large objects 
composed of flat faces, i.e. open or closed 
polyhedrons with or without attached plates. The 
method is framed within the category of iteration-
free, compressive basis function approaches. Two 
kinds of diffraction-like basis functions are 
introduced to achieve drastic memory requirement 
compression; relevant results compared with those 
obtained employing standard RWG basis functions 
are presented. 
  
Index Terms─ Method of Moment (MoM), large 
structures, Synthetic Functions (SFX), scattering. 
 

I. INTRODUCTION 
The Integral Equation (IE) approach combined 

with the Method of the Moment (MoM) 
discretization scheme is widely used in the 
prediction of the electromagnetic scattering from a 
large complex objects. The conventional MoM 
formulations have well-known limits to the 
problem size, because they lead to large, dense and 
sometimes ill-conditioned matrices, with a 
consequent huge memory occupation and CPU 
time consumption. In order to overcome these 
problems, different schemes have been presented 
in literature. Among these schemes, we mention 
the Fast Multipole Method (FMM), the Adaptive 
Integral Method (AIM), and the multilevel matrix 
decomposition algorithm. 

An alternative route is taken in a family of 
methods that employ an “iteration free” approach 
[1], where standard (e.g. RWG) basis functions are 

aggregated into larger functions. This notably 
includes the Synthetic Function expansion (SFX) 
[2] and the Characteristic Basis Function (CBF) 
[3] methods. These aggregate basis functions are 
defined from the solution of smaller-size 
numerically-tractable problems, excited by 
appropriate sources, and then used in the MoM 
solution of the large problem. This allows one to 
incorporate the intermediate and macro-scale 
features of the structure, while maintaining a 
reduced number of unknowns. Thousand of 
wavelength structures can be treated with memory 
and CPU cost provided by a standard personal 
computer. Within this scheme, we proposed here a 
method to treat large portions of PEC planar 
objects containing edges; special cases include 
geometries with large polyhedral sub-surfaces, as 
frequently encountered in ships and especially in 
satellites. We will show that this appears a quite 
useful addition to the general framework of the 
iteration free methods. 

The core of the proposed method is centered 
around the construction of the basis functions that 
describe the edge diffraction effects. As usual in 
compressive methods, the large-support basis 
functions derive from the (exact or approximate) 
solution of the EM problem on portions of the 
overall structure, for a set of suitable excitations. 
A key issue investigated here is the excitation 
mechanism employed to generate these basis 
functions. Two different approaches are 
investigated, and the relevant results critically 
compared: 1) spherical wave generated diffraction 
basis functions  where the generating dipoles are 
located slightly displaced from the edge; 2) 
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grazing plane-wave generated  BF with different 
propagation directions. 

The paper is structured as follows: in Section II, 
the iteration free synthetic function method is 
summarized to frame the present approach; the 
particular case of flat metallic portions and of the 
object within the Physical Optics interpretation is 
discussed. In Section III, the appropriate 
definitions of the two types of generating sources 
for defining the basis functions is presented. 
Section IV shows the procedure to select and 
construct the synthetic basis functions on the basis 
of the singular value decomposition, and the 
subsequent followed Section V illustrate the MoM 
spectral domain solution, with focus on the 
calculation of the impedance matrix entries. 
Numerical results are presented in Section VI. 
 

II. THE SFX METHOD 
In the following, we will start from the baseline 

SFX method.  The first step is a geometrical 
domain-decomposition, that breaks down the 
conductor surface into portions, that we called 
surface blocks (s-blocks) iS , whose collection 
reconstruct the entire surface S  on which EFIE is 
applied. Each s-block is bounded by a boundary 
line iS∂ . On each s-block iS , one generates basis 
functions with support on the entire s-block, that 
are subsequently used as synthetic basis functions 
(SBF) for the analysis of the entire structure. Since 
the number of SBF functions is significantly 
smaller than those used in a conventional 
description [4], the overall number of unknowns is 
drastically reduced with a consequent gain in 
terms of memory and solution time.   These basis 
functions defined over the entire domain  iS  are 
called “Synthetic Functions” (SF), they are 
generated from the numerical solution of the 
electromagnetic problem for the block in isolation, 
under excitation by suitably defined “generating” 
sources. The synthetic functions are obtained from 
a linear combination of  the responses to all 
sources via a procedure based on the Singular-
Value Decomposition (SVD). Because of the 
strong reduction of the global number of 
unknowns, one can store the MoM matrix and 
afford a direct solution. In this sense, the method 
can be viewed as an ”iteration-free” alternative to 
so-called fast methods (like the Fast Multiple 
Method) that are based on iterative solvers for the 

MoM linear system, and on special techniques to 
avoid the storage of the full MoM matrix. The 
method is kernel-free, and can be implemented on 
top of existing MoM codes. 

 
A. Flat Perfectly Conducting Portions of 
Complex Objects  

Let us assume as an s-block a flat perfectly 
conducting portion of surface. If the geometrical 
decomposition conforms to the mesh of the entire 
structure the boundary line S∂  may result in zigzag 
lines to conform to the mesh edges (see surface iS  
in Fig. 1).  The way to treat interaction among 
blocks with non-straight contour S∂ mesh is 
described in [4] and will not be repeated here. For 
the sake of simplicity, we will assume here that the 
boundary line S∂  is composed by straight 
segments (see surface Si in Fig. 1); this is not a 
restriction, except on the meshing algorithm (the 
meshing should follow the block subdivision and 
not vice-versa). As described for the general 
scheme [4], the s-block (flat polygonal face) is 
isolated from the rest of the structure by a (virtual) 
closed surface eqS (bounding box), via the 
Equivalence Theorem. On this separation surface 
one then allows an equivalent current distribution 
that accounts for the external world. This 
equivalent current distribution may be defined by 
using several kinds of wave objects, like plane 
waves [3], point sources [4], or complex point 
sources. The SFX formulation does not use the 
coefficient of these wave objects as unknowns of 
the problem. Rather it use these sources as 
generating sources for the basis functions to be 
defined on for the s-block, called Synthetic 
Functions (SF). The set of EM responses to the 
generating sources constitutes the starting point for 
the generation of the SF set, in which a SVD is 
employed to orthogonalize and discriminate 
among the totality of the responses that might have 
scarce linear independence.  

As mentioned before the choice of the 
generating sources is largely arbitrary [4], and 
different sets of (synthetic) basis functions arise 
from different choices of generating sources. The 
efficiency of each scheme, i.e. the number of 
necessary SF to represent the solution to the 
complete problem is actually associated to the 
ability of the generating sources to produce 
responses that well reconstruct the solution space, 
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the latter being defined as the (sub) space spanned 
by all the possible solutions for the entire problem 
localized to the considered s-block. 
 
B. Physical Optics SF 

When addressing the internal part of the 
equivalence problem for the s-block, the 
(arbitrary) medium that can fill the external part is 
chosen in order to simplify as much as possible the 
Green’s function of the internal region. The 
conventional choice is to fill the external region by 
a free-space medium. In this case, the SF basis 
functions fn are derived by a MoM solution of a 
problem of the dimension of the surface block in 
isolation. Taking advantage from the fact that our 
s-block is a flat surface, the region  external to eqS  
is filled with the infinite continuation of the flat 
portion, to recover an infinite flat plate (see Fig. 
1). This allows the construction of the SF fi  in 
exact closed form for each generating source, 
simply applying the image principle. The 
responses so obtained will be called “PO 
functions” in the following. Because of the 
simplicity of dealing with analytical expressions of 
PO functions, in the following we will use the PO 
functions as starting point for the generation of  SF 
on flat polygonal plates. The usual SVD process 
[4] will be used on them to generate the actual SF. 

 

 
Fig. 1.  Flat surface blocks on complex object. The 
surface block iS  is bounded by true edges; part of the 
contour of the surface block jS  matches the mesh 
edges. The surface blocks are isolated by equivalent 
surface eq

iS ; the exterior of this surface is filled by the 
infinite continuation of the flat surface to simplify the 
internal region. 

As generating sources we will use and compare 
both grazing plane waves and point sources 
(dipoles); this is addressed in the next sections. 

In order to avoid confusion, in the following we 
will always deal with a block subdivision in which 
the edges of the s-block correspond to actual edges 
in the overall structure. This is the sensible choice 
for this approach, but it is obviously different from 
the setting in [4], where large plates could be 
“torn” into smaller pieces to reduce the associated 
computational effort. The singular behavior of the 
field at these edges is therefore not an artifact of 
the procedure in this case.  
 

III. GENERATING SOURCES AND 
THEIR SPACE AND SPECTRAL 

RESPONSES 

 
(a) 

 

 
(b) 

Fig. 2.  Different schemes for generating PO synthetic 
basis functions. (a) Homogeneous plane waves plus 
nearly evanescent plane waves, (b) homogeneous plane 
waves plus spherical wave sources. 
 

The choice of the generating sources is a key 
point for the correct reconstruction of the solution 
space. Let us subdivide conceptually the current 
solution J  on the s-block in the sum of two 
contributions 0 fJ J+ , where fJ  are the “fringe” 
currents associated to the diffraction process at the 
true edge of the S-block, and 0J  is the remainder. 
Two schemes will be investigated here. 
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In a first scheme the solution space associated 
to the fringe currents fJ  will be spanned by 
synthetic functions generated by elementary 
dipoles distributed close to the edges of the S-
block. The synthetic functions to describe the 
remainder contribution 0J  are instead generated 
by homogeneous plane waves . In a second 
scheme, the contribution 0J  is still represented by 
SFs generated by homogeneous plane waves, 
while the fringe contributions are generated by 
nearly-evanescent (near grazing) plane waves. 
The two schemes differ in the way to describe the 
fringe contributions. We have set our focus on the 
diffraction effects, and therefore we limit our 
investigation here on the contribution fJ  
described by the two mentioned alternatives. 

 
A. Spherical Wave Generation of Po Basis 
Functions 

As prescribed in the framework of high 
frequency diffraction theory, the diffraction 
process may be described by equivalent spherical 
wave incremental contributions arising from the 
edge [5, 6]. Following this guideline, it seems 
adequate the use of (elementary) dipoles 
distributed close to the edge as generating sources 
of fringe currents. To this end, let us introduce a 
local reference system with the τ -axis along the 
considered edge of the surface, the η -axis 
orthogonal to the edge oriented toward the surface 
and z -axis normal to the surface, that lies at 0z =  
(see Fig. 3).  

The generating electric dipoles are centered at a 
generic position 'τ and displaced of /10λ  from the 
edge along both τ  and η  in order to avoid 
inappropriate singularities at the edge. To cover 
the two polarizations, pairs of dipoles parallel and 
orthogonal to the edge are used. The PO induced 
currents normalized with respect to the maximum 
values can be well approximated by the following 
expressions: 
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, (m=1,.. N)mv  are the position 

vectors of the s-block surface vertexes, α  is the 
normalization constant that is taken to have 
maximum amplitude equal to unity,  and ( , )x yχ  
is the characteristic function of the s-block, that is 
unity inside the s-block and zero elsewhere. The 
basis functions are normalized in such a way that 
the maximum value of the amplitude (obtained for 

0η = , and 'τ τ= ) is equal to unity. The 
generating sources are placed along the polygonal 
contour of the surface with uniform steps, thus 
constructing a sequence of type: 
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where:   ˆ ˆˆ ,m m m=ξ τ η  

               2 2 2( ) ( /10) ( /10)nr nτ δ η λ λ= − + − + . 
Since the currents are devoted to reconstruct 
diffraction effects, these functions are herein after 
denoted as Spherical wave generated-PO 
functions (SWG-POF) . The step δ  between 
contiguous generating sources will be chosen 
according to the SVD scheme presented in the 
subsequent section. 

 
Fig. 3.  Geometry for defining SWG-POF.  
 

It is interesting to look at the Fourier transform 
             , ,( , ) [ ( , )]n x y nk k FT x yξ ξ=F f�             (3)     

of the two types of PO-functions. Note that the 
spectrum is not available in closed form due to the 
presence of the truncation function ( , )x yχ ; 
therefore an FFT has been used to calculate it. The 
typical spectral domain behavior of , ( , )n x yk kξF�  
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for the case of a flat metallic square s-block is 
shown in Fig. 4, while the space domain response 
is strongly concentrated in the area close to the 
generating dipole, the spectral amplitude is 
concentrated close in an angular spectral sector 
around the circular periphery of the visible region 
(Fig. 4). Note that the extension of the significant 
spectral region is different when the source is near 
a corner and when it is near a fault edge. These 
spectra can be simply explained (at least inside the 
visible region) by invoking the direct relationship 
between the far field radiated by each basis 
function and the spectrum of the same basis 
function. It is indeed evident that the PO field 
scattered by a metallic plate illuminated by a 
coplanar dipole is concentrated in the paraxial 
region, with an angular spread which is dictated by 
the metallic sector seen by the generating source in 
its actual position; it is also useful to recall that the 
boundary of the visible region in ( , )x yk k  
corresponds to grazing directions. For instance, if 
the dipole is placed on a corner of the first 
quadrant of a square plate, the far field radiation 
density (spectrum amplitude) is concentrated in 
the opposite direction (third quadrant of the 
spectral plane) close to grazing aspect (boundary 
of the visible region) and along an angular range 
of 90°. If the source is placed at the center of the 
edge, the radiation is concentrated along an 
angular range of 180° in the opposite directions. 
The spectral density concentration will be used to 
derive a criterion to select the right number of 
generating sources to be placed around the s-block 
periphery (see Section IV). 
 

 
 

Fig. 4.  Spectrum amplitude of the diffraction basis 
functions for a given position of the spherical wave 
generating sources. 

B. Nearly Grazing Plane Wave Generation of 
PO Basis Functions 

An alternative description of the diffraction 
contribution can be given in terms of basis 
functions generated by propagating nearly grazing 
plane waves. As a generating source we take TE or 
TM polarized plane waves characterized by the 

wave-vector ( ) ( )2 2' ' '' t x yk k k= + − −k k z , where 
' ˆ ˆ' 't x yk k= +k x y  is the transverse to z part of 'k , 

and k is the free-space wave-number. The 
transverse wave-vectors '

tk  associated to the 
generating plane waves are chosen so that 

( ) ( )2 22 ' '
x yk k k< +��  (near grazing incidence) with a 

constant angular step; namely  
              ( ) ( )( )' ˆ ˆsin costn k n nφ φ= Δ + Δk x y ,      (4) 

where the step φΔ  between contiguous wave-
numbers will be chosen according to the SVD 
scheme presented in the next section and in a 
similar way as done for the selection of the 
spherical wave basis functions. The normalized 
PO currents associated to the above plane waves 
are given by  
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where χ  is the above-defined characteristic 
function of the polygonal surface. We note that in 
order to interpret the TE component in (5) as a 
normalized grazing wave PO current for TE 
polarization, we should apply a process to the limit 
for near grazing of the normalized currents. We 
note indeed that the non-normalized TE PO 
currents are zero for exact grazing incidence, but 
the TE component are essential to the 
completeness of the description. The spectrum of 
the above functions can be evaluated in a closed 
form for arbitrary polygonal flat surface with 
vertexes located at the position vectors 

(m=1,.. N)mv , as 
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where 
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The spectrum of each plane wave generated PO 
functions (PWG-POF) is concentrated along the 
boundary of the visible region and rotates at each 
angular increment φΔ  in the direction of 
incidence of an equal spectral azimuthally step. 
Figure 5 illustrates the same case of a square plate 
used in for the spherical wave generation (Fig. 4). 
At difference with SWG-POF, here the spectral 
spot is azimuthally narrow, being the spectral 
density in both directions inversely proportional to 
the size of the domain in the corresponding spatial 
direction. This is well evident in case of a 
rectangular plate, because of the associated 
separable sinc spectral functions, and it holds in 
general. 
     Compared to the spherical wave functions, the 
present basis functions appear to be spectrally 
localized, while the previous functions were 
spatially localized; they are therefore 
complementary. 

 

 
 

Fig. 5.  Amplitude of the spectrum of the PO basis 
functions for a given direction of incidence of the plane 
wave generating sources for a four wavelength square 
plate. The associated plane wave direction is 
symbolically depicted in each same diagram. 
 

IV. SINGULAR VALUE 
DECOMPOSITION (SVD) PROCESS 

 
A. Selection of the Number of Generating 
Functions through SVD 

The optimal number of basis functions is 
determined by evaluating the degree of 
independence of the entire domain functions both 
generated by near-edge dipoles and by near-
grazing plane-waves via an iterated SVD-based 
procedure analogous to the one described in [4]. 

In the proposed procedure, we start with a given 
discretization in both schemes, i.e. with a given 
spatial (δ ) or spectral ( φΔ ) source density; the 
responses to the source sets are computed as 
indicated above, and processed by SVD as 
described in [4]. The number of the generating 
sources is incremented  by reducing increasingly 
the parameter δ  or φΔ  with a linear law, and the 
SVD repeated. The process is stopped when the 
N most relevant SV do not change beyond a fixed 
ratio between the minimum and the maximum 
singular value, the latter can’t be too small to 
avoid ill-conditioning. 

At a difference with the procedure in [4], we 
adopt here a specialized implementation of the 
SVD generation process, that is very convenient 
for the present case. The procedure in [4] operates 
on the coefficients of the solution represented in 
terms of elemental, spatially localized functions 
(e.g. RWG), i.e. with spatial samples of the 
responses to the set of defining sources; in that 
case, the number of spatial samples is simply 
dictated by the mesh initially chosen to discretize 
the problem. In the present case, the (PO) 
responses are not subjected to an inherent spatial 
discretization, which is however a necessity when 
dealing with numerical operations. In the first 
place, then, we will choose a discretization for the 
PO responses to dipoles and plane waves; we will 
use 2 sN  samples, being only constrained to be 
able to correctly represent the functions. In 
addition, we observe that in the present case it is 
meaningful and feasible to employ spectral 
samples instead of spatial samples of the 
responses. Indeed, the natural space sampling of 
the PO responses is not suitable since the s-block 
surface may extend over several wavelengths, thus 
leading to very large matrices. Furthermore, it has 
been shown in section III that both the spherical- 
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and the plane-wave generation processes produce 
responses with spectral concentration around the 
boundary of the visible region. This suggest a 
spectral sampling of the PO response spectra in 

sN  equal-spaced points on the spectral 
circumference of radius k (Fig.6).  

 

 
Fig. 6.  Example of spectral samples for SVD 
computation. 
 

We call N  the number of employed sources, 
and we assemble the 2 sN  samples ( sN samples 
for each polarization) of the ensuing N  PO 
functions into the columns of the 
2 sN N× response matrix R . This matrix 
represents the operator that maps the (N-
dimensional) source spanned by linear 
combinations of the generating sources into the 
corresponding PO currents. 
     For spherical wave generating functions (dipole 
sources) the entries of the response matrix 
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where: , ( , )n x yk kξF�  is defined in (3), 

( )0 cossxk k s η= Δ , ( )0 sinsyk k s η= Δ , 2 / sNη πΔ =  
and 1, , ss N= … . 

For near-grazing plane-wave sources they are 
given by: 
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where ,n TEF�  and ,n TMF� are defined in (6). Note that 
this scheme strongly reduces number of samples 
with respect to those needed in a space domain 
sampling. The number of samples sN  has to be 
greater than N and sufficiently large to respect the 
Shannon sampling condition  (correct 
representation of the spectral current functions); 
namely 02 / 2sN k Bπ≥ ⎢ ⎥⎣ ⎦ , where B  is the larger 
extension of the total surface.  

Applying to the matrix R  the SVD process 
yields the decomposition 
                                 ,H= ΣR U V                      (11) 
where U and V are unitary matrix and Σ  is the 
diagonal matrix containing the singular values 

1 2 Nσ σ σ≥ ≥ ≥" . The shape of this 
decomposition is visualized below for 
convenience of the reader 

 
 

 
 

 
The square matrices { } 1,2

1,2
s
s

i Nij
j N

u =
=

=U  and 

{ } 1,
1,

n Nnm
m N

v =
=

=V  have dimensions 2 sN  and N , 

respectively, and the matrix Σ  has and the same 
dimensions 2 sN N×  as R . The matrix 

{ }*
1,
1,

H
n Nmn
m N

v =
=

=V is the transpose conjugate of V . 

The singular value sequence }{ iσ  typically 
presents a decay beyond a certain value [7].  
     As indicated in [4], the normalized SV 
sequence 1/rσ σ  indicates the relative 
independence of the rth singular vector respect to 
the preceding subset, is a good indicator to select 
the necessary number of synthetic functions, upon 
the establishment of a threshold. For a given N , 
we increase iteratively the number of the 
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generating sources, recomputing the SVD and 
stopping the process when the SV within the 
thresholding set of min max/σ σ  do not change 
anymore appreciably. A systematic 
implementation is based on the following iterative 
steps. One first fix an a priori value of  min max/σ σ  
on the basis of the conditioning number one can 
accept (let us say 410− ). Next, one fix an initial 
number of generating sources 0N N=  on the basis 
of an initial guess for 0δ (for SWG-BF) or 0φΔ  
(for PWG-POF). (for SWG-POF, 0 0/N P δ=  
where P is the surface perimeter, for PWG-POF 

0 0360 /N φ= ° Δ ). As initial guess of the process 
we suggest 0 2δ λ=  and 0 30φΔ = ° . 
Successively, the corresponding SV are 
determined trough (11). At the ith iterative step the 
number of sources is increased to 12i iN N −=  
( 1 / 2i iδ δ −=  or 1 / 2i iφ φ −Δ = Δ ) and the process is 
restarted obtaining a new SV sequence that is in 
general slightly different from that obtained at the 
previous step. The procedure is stopped when the 
SV sequence inside the fixed threshold min max/σ σ  
does not change appreciably anymore. We note 
that to stabilize the process we need a number of 
generating sources IN  (with I  number of 
iterations) which is higher than the number N  to 
which the sequence meets the threshold.  
Examples of stabilized SV sequences for PWG 
and SWG basis functions are shown in Fig. 7 and 
Fig. 8, respectively. The sequences are relevant to 
the problem of a square flat metallic plate of side 
0.9λ . The horizontal axis presents the index 
number of singular values and the vertical axis the 
relevant normalized SV’s. Fig. 7(a) are obtained 
sampling both TE- and TM-polarized waves at the 
same spectral locations. In Fig.7(b) only TE waves 
have been considered, with the evident outcome to 
reduce by a factor 2 the number of independent 
functions. Analogously, Fig. 8 are relevant to 
spherical generating dipoles both orthogonal and 
tangent to the edge (a) and only tangent to the 
edge (b). Again, the number of independent 
functions is reduced of a factor two in the second 
case. The final outcome of this analysis is that 60 
PWG-POF are required to stabilized a sequence of 
26 SV’s in the range 4

min max/ 10σ σ −= , while in 

the same range, the required SWG-POF are 40 to 
stabilize a sequence of 34 SV’s. 

 
   (a) 

 
(b) 

Fig. 7.  Singular value sequences for PWG-POF defined 
over a square metallic plate of side length 0.9λ . The 
results are obtained using both polarization TE and TM 
(a) or using just the TE polarization (b). The spectral 
step φΔ is decreased till when each sequence is 

stabilized in the range 4
max/ 10σ σ −= . The final step 

φΔ  obtained is 12φΔ = ° . 
 
B. Generation of the Synthetic Functions 

The final SVD obtained at the end of the 
iterative process contains information of an 
“orthogonal” set of synthetic functions in spectral 
(in the { } 1,2

1,2
s
s

i Nij
j N

u =
=

=U ) and spatial (in the 

matrix { } 1,
1,

n Nnm
m N

v =
=

=V ) domain, where N  is the 

number of generating sources used to stabilized 
the sequence. 
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(a) 

 

 
(b) 

Fig. 8.  Singular value sequences for SWG-POF defined 
over a squared metallic plate of side length 0.9λ  
obtained using both polarized dipoles as generating 
sources (a) or using only dipoles alignment to the edge  
(b). The space step δ is decreased till when each 
sequence is stabilized in the range 4

max/ 10σ σ −= . The 
finale δ -step obtained is 0.18λ . 

 
In particular, the coefficients of the nth column 

of V  constitutes the coefficients of the PO-type 
functions that synthesize orthonormal plane-wave 
generated synthetic basis functions (PWG-SFX) or 
spherical-wave generated synthetic basis functions 
(SWG-SFX) in spatial domain: 
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The number of synthetic functions N  
corresponds to the number of singular value inside 
the dynamic range (e.g. 26N = for PWG-SBF, 
and 35N =  for SWG-SBF in case of Figs. 7 and 
8). The spectrum of the selected synthetic 
functions can be easily obtained by linearity from 
the  spectrum of the generating sources:  

    

( ) ( )

( )
1

2

/ 2
1

, (2 ' 1), ',
' 1

2 ', ',

, ,

                                 ,

1, , .

m

N

m x y n m n x y
n

n m n x y

k k v k k

v k k

m N

ζ ζσ

ζ

−
=

=

+

=

∑D F

F

� �

�

…

   (13)  

We note that sampling the above equality on the 
boundary of the visible spectral region in the same 
Ns spectral points used for the SVD in (11) 
reconstructs the relation = ΣRV U  obtained by 
multiplying both sides of (11) by V (note 
that 1 H− =V V ). We note that the spherical wave 
generation approach requires in general less 
number of sources to reach a stable value of the 
SV sequence wrt the plane wave generation , the 
latter really finally gives a lower number of SV’s 
within the same threshold, after stabilization of the 
sequence. 
 

V. MOM SOLUTION 
The basis function selected by the SVD process 

are now used in a MoM-Galerkin solution scheme. 
Since the synthetic functions are extended over 
domains that could be electrically large, it is 
convenient the use of the inverse spectral-domain 
transform of the MoM matrix entries. Our 
investigation is limited here to coplanar basis 
functions, but the process should be easily 
extended to non coplanar surfaces [8, 9]. For a pair 
of two spectral synthetic functions ,p ζD�  and 

,q ηD� the Galerkin MoM matrix entry is obtained as 
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where ˆ ˆ ˆx y zk x k y k z= + +k  in which 
2 2 2    z x yk k k k= − − is the wave-vector and ς  is 

the characteristic impedance of the medium. Using 
(13), (14) can be expressed as a  function of the 
mutual impedances ,PO

pqZ ζη of  the PO-type basis 
functions via 

           ,1 1
'

1 ' 1
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p q

N N
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pq n q np pq
n n

Z v v Zζσ ζσ
σ σ

= =

= ∑∑            (15) 
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We stress that the integrand in (16) is calculated 
in a closed form for the plane wave generation 
approach and by FFT for the spherical wave 
generation approach. 

 
 

VI. NUMERICAL RESULTS 
As an example of application we consider a 

square flat plate of dimension 0.9L λ=  
illuminated by an electric dipole at a distance of a 
wavelength as shown in Fig. 9. The plate will be 
considered as a unique block in the iteration-free 
procedure. The SVD sequences associated to this 
block for both type of basis function introduced in 
this paper are those shown in Figs. 7 and 8. 
 

 
Fig. 9.  Electric dipole radiating over a squared flat 
metallic plate. 
 

The simulations have been carried out by using 
alternatively 26 PWG synthetic functions and 35 
SWG synthetic basis functions, according to the 
sequence in Figs. 7a and 8a, respectively, and 
adding as a basis function a part the PO currents. 
The results compared with those provided by a 
commercial standard MoM (FEKO™) using 648 
RWG basis functions. Figure 10 shows the 

amplitude of the induced currents on the plate in 
the E and H cut-planes. A reasonable good 
agreement has been seen except very close to the 
edge, where the SWG-SFX looks like more 
appropriate than PWG-SFX to represent the edge 
effect for the intrinsic space high resolution 
capability of the SWG-POF space functions.  

 

      
                                    (a) 
 

       
                                    (b) 

Fig. 10.  Square plate, 0.9L λ= ; comparison of the 
induced currents on (a) E-plane and (b)H-plane cuts.  
 
     Figure 11 shows the comparison between the 
far field in E-plane (Fig. 11a) and H-plane (Fig. 
11b); the agreement is satisfactory for both SWG-
DBF and PWG-DBF.  
     We observe that the present procedure 
increases accuracy for increasing the plate 
dimensions. Let us consider the same scattering 
problem as shown in Fig. 9 for a plate side 4L λ= . 
The simulations have been done by using 98 
SWG-SFX and 80 PWG-SFX stabilized by using 
120 SWG-POF and 100 PWG-POF, respectively; 
the relative SV sequences are shown in Fig. 12.  
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Figeurs13 and 14 shows the comparison of the far 
field and the induced current with a standard MoM 
(FEKO™) using 12800 RWG basis functions, as 
we can see using just respectively 98 SWG-SFX 
and 80 PWG-SFX it is possible to obtain a very 
good agreement between the results. 

      
                                    (a) 

      
                                    (b) 

Fig. 11.  Square plate, 0.9L λ= ; far  field comparison 
on (a) E-plane and (b) H-plane.  
 

       
                                    (a) 

 
                                    (b) 

Fig. 12.  SV stabilized sequences for a flat squared 
metallic plat with side length 4λ  (a) Spherical-wave 
generation (final step 0.26δ λ= )  (b) Plane-wave 
generation (final step 7.2φΔ = ° ). 
 

VII. CONCLUDING REMARKS 
     We have presented a method to reduce the 
computational cost of the MoM analysis of large 
and complex structures that exhibits a large 
portion of flat metallic surfaces with edges. While 
the overall framework is the one presented in [1] 
the method is based on breaking down the overall 
structures into smaller parts, called “blocks,” and 
constructing entire-domain “synthetic” basis 
functions over these blocks making use of PO 
functions to span the solution space. The PO 
functions are generated by two alternative 
processes, namely, by using edge located spherical 
wave sources, or near grazing propagating plane 
waves. The most evident computational gain 
consists on a reduction of the MoM matrix size, 
that have a dimension proportional to the 
perimeter and not to the area of the plate (it is 
obvious that this property refers to the description 
of the edge mechanisms only, and leaves out of 
consideration the generating sources used for 
describing the external environment).  

Comparison of the two different generating 
processes shows that the spherical wave 
generation approach is more accurate while the 
plane wave generation approach exhibits 
advantages of closed form spectral domain entries, 
with favourable capability in treating large 
structures in terms of wavelengths. 
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         (a) 

 

 
          (b) 

Fig.13. Square plate, 4L λ= ; far  field comparison on 
E-plane (a) and H-plane (b). 
 
 

 
   (a) 

 
 
 
 
 
 
 

 
   (b) 

Fig. 14.  Square plate, 4L λ= ; induced currents 
comparison on E-plane (a) and H-plane cut (b). 
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