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Abstract – The paper proposes a re-formulation of
PEEC modeling in terms of dual discretization of surface
conductors. The result is a precise formalization of the
PEEC tessellation and gives the possibility of handling
general meshes, both structured and unstructured. This
fact allows the use of triangular meshes only where neces-
sary, leaving orthogonal discretization whenever possible
and improving computational performances. The method,
referred to as dual-PEEC, is validated by solving a
structure referenced in literature and finally applied to the
computation of the input impedance of a spiral inductor.

Keywords: PEEC, unstructured mesh, and dual discretiza-
tion.

I. INTRODUCTION

Integral approaches to Maxwells equations for the
modeling of interconnects and packaging structures are
usually preferred to differential ones, because they solve
the field equation in terms of the sources of fields, located
on the metallic structures. This allows to discretize the
conducting part of the domain only, accounting rigorously
for the regularity conditions of fields at infinity.

Among other integral techniques, the Partial Element
Equivalent Circuit (PEEC) leads to the description of the
electromagnetic problems in terms of circuit parameters
which describe the magnetic and electric coupling be-
tween currents and charges of the discretized structure.
The main advantages of PEEC models are the possibility
of integrating lumped parameters into the electromagnetic
structure and the availability of both time and frequency
analysis in standard SPICE-like solvers.

The classic PEEC approach is restricted to orthogonal
discretization of the structures under study. Recently the
scheme has been extended to non-orthogonal [1, 2] and
triangular [3, 4] meshes, but the proposed techniques lack
of a systematic background for their assumptions.

The aim of this work is to generalize the PEEC
methodology by the use of the topological concept of
duality. The result is the exact formalization of the PEEC
tessellation gaining in addition the possibility of handling
general meshes, both structured and unstructured. This
fact allows the use of triangular meshes only where
necessary (i.e., curved or slanting electrodes), leaving

orthogonal discretization in regular regions, with a global
improvement of computational performances.

The paper is structured as follows: in Section II the
original PEEC scheme is briefly described; Section III
gives a general overview of dual discretization which is
used as a framework of the mathematical formulation of
Section IV. Two examples are investigated in Section V
and finally Section VI draws some conclusions.

II. ORIGINAL PEEC SCHEME

The first systematic description of the Partial Element
Equivalent Circuit, PEEC, goes back to the middle 70s, in
a work by A.E. Ruehli [5]. The original PEEC formulation
is based on the circuit interpretation of the terms of the
Mixed Potential Integral Equation (MPIE),

~J(~r, t)
σ

+
d ~A(~r, t)

dt
+∇ϕ(~r, t) = 0 (1)

~A and ϕ are the retarded magnetic vector and electric
scalar potential, respectively,

~A(~r, t) =
µ

4π

∫
Ω

~J(~r′, t′)
|~r − ~r′|

dΩ (2)

ϕ(~r, t) =
1

4πε

∫
Ω

ρ(~r′, t′)
|~r − ~r′|

dΩ, (3)

where t′ is the retardation time,

t′ = t− |~r − ~r
′|

c
.

The solution of the electromagnetic problem is
achieved by discretizing equation (1) on the system of
surface cells shown in Fig. 1(a). Current and charge
densities are expanded in terms of piecewise constant
pulse functions. The same functions are also used as test
functions in a Galerkin weighted residual scheme [6].

• Partial self and mutual inductances between nodes,
representing the magnetic field couplings;

• Resistive terms between nodes, representing the
Joule losses in the conductive material;

• Coefficients of potential at each node, representing
the electric field couplings.
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Fig. 1. (a) Standard 2D discretization of current density
(dashed cells) and charge density (gray cell), (b) dual
discretization: the couple primal edge (straight line)/dual
face (dark gray) correspond to a two terminal circuit
component.

III. DUAL DISCRETIZATION

The work of E. Tonti has shown how the formulation
of the electromagnetic field can be expressed in terms of
dual relations and how this duality can be exploited in its
numerical solution [7]. The conceptual framework of the
finite formulation of electromagnetic fields is based on
the definition of two sets of global variables: source and
configuration. In the present application source variables
are electric charge and electric current. Configuration
variables are voltage, electric potential, magnetic vec-
tor potential. The product of a source variable by a
configuration variable gives an energy variable. Physical
variables are associated to spatial elements. In [8] it is
shown that configuration variables are associated with
space elements endowed with inner orientation (i.e., the
orientation of the space element lies on the element
itself); on the contrary source variables are associated with
space elements endowed with outer orientation (i.e., the
orientation of the space element depends on the space in
which the element is embedded). The complex of cell with
inner orientation is called primal complex, whereas the
dual complex is endowed with outer orientation. Primal
and dual complexes of cells are interlinked: primal nodes
correspond to dual volumes, primal edges to dual faces,
primal faces to dual edges and primal volumes to dual
nodes. Figure 2 shows the generation of primal and
dual complex and their spatial duality, assuming primal
complex as simplicial. It is important to note that it is
possible to assume the dual complex as simplicial, when
source variables are chosen as unknowns (in this work the
latter representation is adopted).

Table 1 reports the spatial assignment of the variables
used in PEEC modeling: scalar potentials are assigned
to primal nodes, voltage drops to primal edges, cur-
rents to dual faces and charges to dual volumes. This
definition of duality relations of grids and the rigorous
assignment of physical variables to spatial entities allows
the possibility of giving a general framework of PEEC
modeling, i.e., allowing the use of unstructured and mixed
structured/unstructured complexes of cells. Besides the

primal cell

dual cell

primal node

dual node

primal edge

dual edge

Fig. 2. 2D primal and dual complex.

generality of dual discretization, in this paper only surface
discretization is investigated, leaving the generalization to
volume discretization to a further work.

Making reference to Fig. 1(b) the discretization of
conductors is made by prisms with triangular or rectan-
gular basis. This tessellation constitutes the dual complex
of cells. The primal complex is obtained by connecting the
centroids of dual volumes by piecewise segments crossing
the lateral faces of prisms.

Table 1. Variable assignment to spatial elements.

Type Variable Spatial Element

source
current, i dual face, Σ̃

charge, q dual volume, Ω̃

configuration
voltage, u primal edge, λ

potential, ϕ primal node P

IV. MATHEMATICAL FORMULATION

A. Basis Functions
When using a general approach to PEEC models, a

local interpolation inside dual volumes linking the current
density ~J in equation (1) to the global variable i through
dual faces is needed. By referring to the generic dual
volume or cell k identified by a prism of thickness δk,
and assuming a uniform ~J distribution over the electrode
thickness, facet elements basis functions ~w are chosen,

~Jk =
1
δk

NF∑
m=1

ikm ~wkm (4)

where NF is the number of dual faces in each cell (3 or
4 in our case), ikm is the current through the mth dual
face of cell k. Many choices for ~w are possible but div-
conforming basis functions must be selected for edges
belonging to triangles, rectangles or common between
them [9].

With reference to a local frame (u, v, w) (Fig. 3(a))
the following facet functions for triangles are selected
[10],

~w3
k(u, v) = Nj(u, v)∇Ni(u, v)× ~n

−Ni(u, v)∇Nj(u, v)× ~n
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Fig. 3. Plane triangle and rectangle in local frame
(u, v, w).

where the functions Ni(u, v) and Nj(u, v) are the stan-
dard nodal functions related to the extreme nodes of edge
k and ~n = ŵ is the unit vector orthogonal to the triangle
surface. The analytical expression of these shape functions
is,

~w3
1(u, v) =

u− u3

l1v3
û+

v − v3

l1v3
v̂

~w3
2(u, v) =

u

l1v3
û+

v

l1v3
v̂,

~w3
3(u, v) =

u− l1
l1v3

û+
v

l1v3
v̂.

Figure 4(a) shows the vector plot of ~w3
1 for a

particular triangle in the x, y plane. For rectangular cells,
special basis functions are built with the same properties
of the ones for triangles. ~w4

k has only the component
orthogonal to edge k and its magnitude linearly decrease
from edge k to the opposite one. The analytic expression
in the local (u, v, w) coordinate system is,

~w4
1(u, v) =

v − l2
l1l2

v̂

~w4
2(u, v) =

u

l1l2
û,

~w4
3(u, v) =

v

l1l2
v̂,

~w4
4(u, v) =

u− l1
l1l2

û.

An example of a vector plot is reported in Fig. 4(b).
It is easy to prove the continuity of the normal component
of ~w also for common edges shared by rectangles and
triangles.

These basis functions have the property of being
affine with respect to the u, v coordinates. This fact allows
the possibility of using analytical formulas to solve the
surface integrals described in the Section IV(b).

The surface charge density is expanded in terms
of piecewise constant functions on each triangu-
lar/rectangular cell.

B. Partial Element Calculation
The parameter extraction can be done by following

the same rationale of the original PEEC formulation, i.e.,
testing MPIE equation (1) with the same basis function
used to expand current and charge densities. An equiva-
lent approach is here proposed, by making reference to
energetic considerations.
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Fig. 4. Vector plot of facet element ~w1 over (a) triangles
and (b) rectangles.

1. Extraction of resistances: The Joule’s power losses
in the kth cell are,

Pk =
∫

Ωk

J2
k

σ
dΩk

=
1
δ2
kσ

∫
Ωk

( NF∑
n=1

ikn ~wkn
)
·
( NF∑
m=1

ikm ~wkm
)
dΩk.

When only surface approximations are taken into
account, the volume integral can be rearranged into a
surface one,

Pk =
1
δkσ

∫
Σk

( NF∑
n=1

ikn ~wkn
)
·
( NF∑
m=1

ikm ~wkm
)
dΣk.

The power related to the current flowing through the
generic αth dual face of cell k is,

Pkα = ikα

NF∑
m=1

ikm
δkσ

∫
Σk

~wkα · ~wkmdΣk = ikαukα

where

ukα =
NF∑
m=1

ikm
δkσ

∫
Σk

~wkα · ~wkmdΣk

=
NF∑
m=1

Rkmikm

Rkm =
1
δkσ

∫
Σk

~wkα · ~wkmdΣk.

The voltage drop over half primal edge α depends
on currents through all dual faces of cell k.
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2. Extraction of partial inductances: Resorting to
magnetic vector potential defined in equation (2), the
magnetic energy associated to kth cell is,

Wk =
1
2

∫
Ωk

~Jk · ~AdΩk

=
1
2
µ0

4π

∫
Ωk

~Jk ·
∫

Ωh

NṼ∑
h=1

~Jh
|~r − ~r′|

dΩhdΩk

where NṼ is the number of dual volumes. By using the
expansion equation (4) and extracting only the magnetic
coupling between the current α of the kth cell, and current
β of cell h, one has,

Wkα,hβ =
1
2
µ0

4π

∫
Ωk

ikα ~wkα
δk

·
∫

Ωh

ihβ ~whβ
δh |~r − ~r′|

dΩhdΩk.

Finally, when considering surface complex of cells
only, the partial inductance is,

Wkα,hβ =
1
2
Lkα,hβikαikβ

Lkα,hβ =
µ0

4π

∫
Σk

~wkα ·
∫

Σh

~whβ
|~r − ~r′|

dΣhdΣk. (5)

3. Extraction of coefficients of potential: Making
reference to equation (3), the electric energy related to
the kth cell is,

Wk =
1
2

∫
Ωk

ρkϕdΩk

=
1
2

1
4πε0

∫
Ωk

ρk

NṼ∑
h=1

∫
Ωh

ρh
|~r − ~r′|

dΩhdΩk.

With an approach similar to the one used for the
extraction of partial inductances, it is possible to evaluate
the electric energy due to the mutual coupling between
the global charge qk in cell k and qh in cell h,

Wk,h =
1
2
pk,hqkqh

where

pk,h =
1

4πε0ΣkΣh

∫
Σk

∫
Σh

1
|~r − ~r′|

dΣhdΣk. (6)

C. Equivalent Circuit
Figure 5 shows the resulting two terminal component

obtained by assembling all the previous contributions,
and it is representative of the basic topological structure
primal edge/dual face presented in Fig. 1(b). The unstruc-
tured PEEC two terminal components can be assembled to
obtain the MNA matrix to be solved by a general purpose
SPICE-like network simulator. With respect to standard
PEEC model, the use of unstructured meshes introduces
a local resistive mutual coupling. The use of dependent
current sources allows to deal with this problem without
increasing significantly the complexity of the circuit.

Figure 6 outlines the sequence of necessary steps for
the application of dual-PEEC methodology to the solution
of a full Maxwell problem. It is worth noting that the
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Fig. 5. Elementary branch of PEEC model.

mesh generator

dual mesh
pre-processor

R, L, p
parameter extraction

netlist construction

MNA solver

post-processor

geometry

lumped
parameters

desired
quantities

shape function
evaluation

PR
E-

PR
O

C
ES

SO
R

SO
LV

ER

Fig. 6. Solver structure.

added complexity of the method due to the generation of
the dual complex and the definition of basis function is
negligible with respect to standard technique.

D. Remarks
Equations (5) and (6) present a double surface in-

tegral, having the Green’s function as kernel (in some
cases multiplied by an affine combination of the (u, v)
coordinates). To speed up the effort of the partial element
computation, the inner integrals of equations (5) and (6)
are solved by analytical formulas reported in [11, 12]. The
outer integral is solved by using adaptive Gauss-Kronrod
quadrature rule. The number of quadrature points is
automatically chosen depending on the distance between
cells: the larger the distance, the smaller the number of
points needed to reach the convergence of the quadrature
rule. Moreover, the computational time for the evaluation
of inductance and coefficient of potential matrices can
be reduced by considering that these matrices must be
symmetric.

The standard PEEC formulation can be found as a
particular case of the dual formulation when both charge
and current densities are expanded in terms of piecewise
constant pulse functions.

The resulting dual-PEEC circuit is similar to the
standard PEEC model, with the exception of a local
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(a) Triangular mesh

(b) Triangular/ quadrilateral mesh

Fig. 7. Loop antenna test case: (a) triangular discretiza-
tion used as reference, (b) mixed triangular/quadrilateral
discretization available with dual-PEEC modeling.

resistive coupling due to the use of unstructured meshes.
The use of current controlled voltage sources allows to
deal with this problem with a negligible computational
effort (see Fig. 5) [13].

In frequency domain the inclusion of retardation is
straightforward and makes PEEC equivalent to a full
wave solution of Maxwell’s equations. It can be done
by multiplying the non retarded mutual inductances and
coefficients of potential by exp(−jωτhk), where τhk is
the delay time between the center coordinates of primal
edges and dual volumes, respectively.

V. EXAMPLES

A. Model Validation
The dual-PEEC is first used to solve a benchmark

loop antenna structure with known solution, already dis-
cussed in literature [14, 15]. Figure 7 shows the meshes
adopted for the comparison: the structure of Fig. 7(a) is
discretize by triangles and is solved by a FEM technique,
whereas the mixed discretization of Fig. 7(b) is solved by
the proposed procedure. Figure 8 compares the magnitude
and phase of the input impedance evaluated in a full-wave
regime. The results show a satisfactory agreement with
respect to the literature ones.
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Fig. 8. Comparison of input impedance evaluation: (a)
magnitude, (b) phase.
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Fig. 9. Spiral inductor test case: input impedance.

B. Spiral Inductor

The dual-PEEC technique is then used to solve the a
surface metallic spiral inductor above a (finite) ground
plane, ended by a lumped 100 Ω resistor. The input
impedance (real and imaginary part) is reported in Fig. 9.
Three different meshes are compared in Table 2 with
respect to their geometrical parameters and computational
time (in seconds on a Intel Centrino 1.5 GHz). The
first mesh Fig. 10(a) is made by unstructured triangles
(Mesh 1), the second one Fig. 10(b) with regular triangles
(Mesh 2), the last one Fig. 10(c) with mixed triangles and
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100 Ω

(a) Mesh 1

100 Ω

(b) Mesh 2

100 Ω

(c) Mesh 3

Fig. 10. Spiral inductor test case: (a) unstructured
triangular mesh, (b) regular triangular mesh, (c) mixed
triangular/rectangular mesh.

rectangles (Mesh 3). The three meshes share the same
average edge length.

While no significant differences are observed in the
values of impedance, the possibility of using together both
structured and unstructured complexes of cells increases
the computational efficiency of the method. In fact, given
the maximum size of cell’s edge (related to the shortest
wavelength), the parameter extraction over rectangular
dual is faster than over triangles and also the number of
unknowns is lower, as shown in Table 2.

VI. CONCLUSIONS

In this paper the generalization of PEEC modeling
under the framework of dual discretization is presented.

Table 2. Comparison of complexity of three meshes in
Fig. 10. In brackets are the numbers of non-floating
edges. Computational times are in seconds. The solution
time is intended for one frequency point.

Mesh 1 Mesh 2 Mesh 3

G
eo

m
et

ry nodes 757 646 646
faces 1222 900 539

edges
1977 1502 1141

(1689) (1198) (837)

Ti
m

e inductance 2995 768 189
coeff. pot. 884 219 68
solution 343 127 37

total time 4222 1114 294

Relations of duality are exploited for the exact assignment
of electromagnetic quantities to spatial elements. In this
way it is possible to extend standard PEEC to unstructured
and mixed structured/unstructured complexes of cells. The
proposed technique, named dual-PEEC has proved to
be computationally efficient because triangular cells are
used only where necessary (e.g. for curved or slanting
conductors). The additional computational effort due to
mutual resistances is negligible and can be easily handled
by adding a proper term in the current controlled voltage
source. Finally, dual-PEEC formulation can be improved
by using the same “tricks” already tested for standard
PEEC (fast multipole method, wavelet transform, model
order reduction, . . . ).
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