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A Review of Perfectly Matched Absorbers for the
Finite-Volume Time-Domain Method

T. Kaufmann, K. Sankaran, C. Fumeaux, and R. Vahldieck

Laboratory for Electromagnetic Fields and Microwave Electronics - IFH, ETH Zurich
Zurich, CH-8092, Switzerland, Email: thomas.kaufmann@ifh.ee.ethz.ch

Abstract – Different implementations of planar per-
fectly matched absorbers are studied under the unified
framework of the Finite-Volume Time-Domain (FVTD)
method. This comparative analysis allows to discuss the
similarities existing between the theoretical models and
explores the differences in their practical implementation
and numerical performance in the framework of the
FVTD method. Numerical experiments for performance
analysis of the different PML models are conducted
in terms of discretization and angle of incidence using
waveguide models. The results are compared to theoreti-
cally expected values and to the first-order Silver Müller
absorbing boundary condition.

I. INTRODUCTION

One of the biggest challenges in computational elec-
tromagnetics is to find domain truncation techniques
which can accurately simulate an infinite space in a
finite computational domain. The perfectly matched layer
(PML) technique was introduced in [1] and it improved
the accuracy of the numerical simulations by many orders
of magnitude compared to previously applied traditional
absorbing boundary conditions. Different implementa-
tions of the PML technique were reported in the liter-
ature giving rise to two general classes, namely non-
Maxwellian (split) and Maxwellian (unsplit) absorbers.
The implementation of the PML technique in conformal
methods were limited to the Finite-Element Frequency-
Domain or Time-Domain methods [2, 3]. A vertex-
centered Finite-Volume Time-Domain (FVTD) model
(variational approach) of the Bérenger PML (B-PML)
was reported in [4] for scattering problems. Recently the
authors introduced the cell-centered FVTD implementa-
tion of B-PML and modified Lorentz material-based PML
(M-PML) techniques in [5, 6]. The generalized theory
based perfectly matched layer (GT-PML) [7] and the
complex frequency shifted perfectly matched layer (CFS-
PML) [8, 9] were introduced for the FVTD method in
[10]. The present paper extends the discussion on the
unsplit perfectly matched layer (U-PML) model [11] and
provides a more thorough performance evaluation. The
theory of five different PML techniques, namely B-PML,
M-PML, U-PML, GT-PML and CFS-PML, is studied
under the unified FVTD framework and the numerical
performance of the different PMLs is compared. The

abbreviations are summarized in Table 1.
The paper is arranged as follows. In Sec. II some

fundamentals on the FVTD method are given in a notation
that will be used throughout this paper. Sec. III focuses
on both the split and unsplit PML models. Derivations of
the different PML models are summarized with respect
to the FVTD implementation and analytical relations
between the PML models are given. The computational
cost is compared in Sec. IV. Numerical experiments
are presented in Sec. V for the different PML models,
including an investigation of evanescent wave absorption.
The conclusion in Sec.VI summarizes the findings and
emphasizes the practical application range for the differ-
ent PML models.

Table 1. List of abbreviations of the different PML
models used in this publication.

Bérenger PML B-PML

Modified Lorentz Material-based PML M-PML

Unsplit anisotropic PML U-PML

Generalized Theory based PML GT-PML

Complex Frequency Shifted PML CFS-PML

II. FUNDAMENTALS OF THE FVTD METHOD

The FVTD method belongs to the general class
of conformal time-domain methods. For the spatial dis-
cretization, the FVTD method employs unstructured poly-
gons (typically tetrahedrons in 3D and triangles in 2D)
which can model complex geometries using highly in-
homogeneous meshes. Furthermore, curved boundaries
can be modeled with high accuracy because stair-casing
errors are avoided. Although this flexibility in spatial
discretization is common to all conformal methods, the
advantage of the FVTD method lies in the combination
of an unstructured spatial discretization with an explicit
time update. The method applied in this paper uses a
cell-centered approach, hence field values at cell centers
are updated by summing up the incoming and outgoing
fluxes through each cell face. The update equation can be
formulated as follows,

∂tU i = − 1
|Ai|

f∑
k=1

|Sk|α−1
i FU∗

k
· nk −Li (1)
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where U i denotes the cell-center field values at the ith
cell, |Ai| is the cell-volume, |Sk| the area of the kth face
and FU∗

k
· nk the sum of the incoming and outgoing

flux with the normal vector nk perpendicular to the face
[12]. The ‘*’ in the subscript indicates that the com-
puted flux-function across each face depends on the field
quantities at the edge-center. A second-order accurate
MUSCL algorithm is employed for spatial discretization.
The field values at the face-center are approximated with
the help of corresponding cell-center field values. For
more information on the FVTD method, the reader is
referred to [12]. Material properties of the cells are given
in the diagonal matrix αi and a loss term Li allows to
include material losses. The latter term will be used in
the present work to incorporate the PML models into the
FVTD method.

In order to simplify the investigation, the setup in
this paper relies on a formulation using a two-dimensional
(2D) transverse electric (TE) form of the Maxwell sys-
tem. The magnetic fields are assumed to be in the xy-plane
and the electric-field is directed along the z-axis transverse
with respect to the plane of propagation (xy-plane). Thus
the field vector U i and the material parameter αi inside
the ith cell become,

U i =

 Hxi

Hyi

Ezi

 and αi =

 µi 0 0
0 µi 0
0 0 εi

 . (2)

For the time discretization, a second-order accurate
explicit Lax-Wendroff scheme is employed which is based
on a Predictor-Corrector algorithm [12]. There are other
possibilities of time-stepping schemes such as the higher-
order Runge-Kutta that can be employed within the pre-
sented framework. Although a 2D formulation is used
here, the results can be generalized to 3D.

III. PERFECTLY MATCHED LAYERS

PMLs were first introduced for the Finite-Difference
Time-Domain (FDTD) method by Bérenger in [13] using
a non-Maxwellian split-field formulation. Later another
class of approaches using a Maxwellian unsplit formula-
tion was developed which includes M-PML [14], U-PML
[11], GT-PML [7] and CFS-PML [8]. All variations were
implemented in the FDTD method.

In the framework of the FVTD method the first-order
Silver-Müller absorbing boundary condition (SM-ABC) is
commonly used. However, the PML technique promises
improved performance for off-normal incidence on the
truncating boundary.

The theoretical discussions presented in this paper as-
sume (without loss of generality) that all PML models are
used to truncate the computational domain with a planar
absorber along the y-direction and to absorb uniaxially
along the x-axis (see Fig. 1). In future work these planar
PMLs will serve as basis for generalization to conformal
geometries such as cylinders [6] or spheres. Thus, corner
regions are not considered in this publication.

Hx ΓEz

δPMLPEC or PMC

PEC or PMC

Po
rt

PE
C

PM
LHy

z

y

x

Fig. 1. Configuration of the uniaxial PML models
in x-direction for the two-dimensional TE setup. The
boundaries along the x-direction depend on the numerical
experiment and are either PEC (rectangular waveguide) or
PMC (parallel-plate waveguide).

A. Split PML
The Bérenger PML (also called the split-field PML)

involves unphysical field splitting inside the PML domain
which results in an increased number of update equations.
For a complete theoretical treatment of the FVTD formu-
lation of B-PML, refer to [5]. Due to the field splitting,
an additional field component Ezy is introduced thus, ex-
panding the field vector to U i = [Hxi, Hyi, Ezi, Ezyi]T .

It is worth mentioning that in the above update
equations, the fourth field equation for Ezy constitutes
the non-hyperbolic part of the system and requires special
treatment for its update. By employing the Rankine-
Hugoniot jump relation discussed in [5], the field values
of Ezy can be updated in a stable manner using the
following flux term,

FEzy · nk =
ny
2

(Hxl +Hxr)−
n2
y

2
(crεrEzr − clεlEzl) .

(3)
The loss vector Li used in the FVTD update equa-

tions for perfectly matched absorption is written as,

Li =


0

(σx/εi)Hyi

(σx/εi)(Ezi − Ezyi)
0

 . (4)

B. Unsplit PML
In order to avoid the unphysical additional field

component, unsplit PML models have been developed
based on anisotropic material properties. Those models
still satisfy the Maxwell equations. For achieving uniaxial
absorption in x-direction, the permittivity and permeabil-
ity tensors are written as follows,

ε = ε [Λ], µ = µ [Λ] with [Λ] =

 1/a 0 0
0 a 0
0 0 a

 .

(5)
This form is derived under the condition of perfect

matching as described in [7, 11, 14]. The four unsplit
PML models presented in the following interpret this
anisotropy matrix in different ways. In the case of
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M-PML, the tensor describes a time-derivative Lorentz
material model. In the case of U-PML the parameters
are understood as physical material parameters which are
included by explicitly using the magnetic and/or electric
flux density. For GT-PML and CFS-PML, the matrix
is interpreted as a complex coordinate stretching in
frequency-domain which leads to integral or convolution
terms in time-domain. In the following, update equations
for the FVTD method are derived and compared
theoretically.

1) Modified Lorentz Material-based PML - (M-
PML): The idea of a modified Lorentz material-based
absorber was introduced for the FDTD method in [14].
The anisotropy parameter a in this case is defined as
a = 1 + χmω , with,

χmω =
ω2

0 [χα − j(ω/ω0)χβ ]
ω2

0 − ω2 − jΓω
. (6)

The parameters χα, χβ , Γ and ω0 are chosen so
that the material acts as a broadband absorber. The final
system of update equations for the M-PML model can be
written as,

∂tHx = − 1
µ
∂yEz + ζHx −Gx (7)

∂tHy =
1
µ
∂xEz − ζHy, (8)

∂tEz =
1
ε

(∂xHy − ∂yHx)− ζEz, (9)

∂tGx = −ζGx + ζ2Hx, (10)

where ζ is the material loss-parameter inside the ab-
sorbing layer. The fourth equation (10) is an ordinary
differential equation in time and hence requires no spe-
cial flux computation. Also the inherent structure of the
Maxwellian system with three field components, namely
Hx, Hy and Ez is preserved and there is only an auxiliary
equation for the field component Gx which causes no
significant computational overhead, in contrast to the
B-PML model discussed in the previous section. The
above system of equations is expressed in the FVTD
method in notation (1) by defining the field vector as
U i = [Hxi, Hyi, Ezi, Gxi]T and the corresponding PML
loss vector Li as,

Li =


Gxi − ζHxi

ζHyi

ζEzi
ζGxi − ζ2Hxi

 . (11)

The FVTD implementation of the M-PML adapted
for unstructured grid is discussed in more detail in [6].

2) Unsplit anisotropic PML - (U-PML): Another
approach to model unsplit PML based on the anisotropic
material properties was introduced for the FDTD method
in [11]. Using this model the component a in equation

(5) is defined as

a = 1 +
σx
jωε

(12)

where σx represents the loss term and ε denotes the per-
mittivity. In order to include this lossy frequency-domain
parameter into the conformal time-domain update scheme,
the physical magnetic flux density B is introduced (and/or
the electric flux density D, depending on the propagation
mode). In the two-dimensional TE mode, the component
of B in the anisotropy direction takes the form,

Bx =
µ

1 + σx
jωε

Hx (13)

and needs to be explicitly included in the equation set
because of its nonlinear frequency-dependence.

Based on [11], the following update equations can be
derived,

∂tHx = − 1
µ
∂yEz +

σx
µε
Bx (14)

∂tHy =
1
µ
∂xEz −

σx
ε
Hy, (15)

∂tEz =
1
ε

(∂xHy − ∂yHx)− σx
ε
Ez, (16)

∂tBx = −∂yEz . (17)

In the FVTD formulation (1), the field vector U i =
[Hxi, Hyi, Ezi, Bxi]T is then used. This leads to the
following formulation for the FVTD method. The fourth
flux term for the Bx field is identical to the flux of the
Hx field (FBx = FHx ) and hence, the PML loss vector
becomes,

Li =


− σx
µiεi

Bzi
σx
εi
Hyi

σx
εi
Ezi
0

 . (18)

3) Generalized Theory based PML - (GT-PML):
As opposed to the two previous approaches where the
anisotropy tensor [Λ] described a material property, the
GT-PML model considers [Λ] as a geometrical stretching
operator ensuring perfect matching. In [7], the following
complex frequency-dependant stretching factor is defined,

a = 1 +
ω′′x
jω

(19)

where ω′′x describes the rate at which the field is attenuated
within the PML. In the two-dimensional TE case, this
leads to the usual lossy formulation for the electric field
and the y-component for the magnetic field. In frequency-
domain the x-component of the magnetic field becomes,

jωµHx = −∂yEz · a = −∂yEz −
ω′′x
jω
∂yEz . (20)

Transforming this frequency-domain formulation into
time-domain yields an integral term for the Hx-
component and that results in the following GT-PML
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update equations,

∂tHx = − 1
µ
∂yEz −

ω′′x
µ

∫ t

0

(∂yEz)dt (21)

∂tHy =
1
µ
∂xEz − ω′′xHy, (22)

∂tEz =
1
ε

(∂xHy − ∂yHx)− ω′′xEz . (23)

In the notation of equation (1), the field vector for
GT-PML is given as U i = [Hxi, Hyi, Ezi]T and the
corresponding lossy PML vector for the FVTD method
is,

Li =

 −ω
′′
x

µi

∫ t
0
(
∑f
k=1 |Sk|FH∗xk · nk)dt
ω′′xHyi

ω′′xEzi

 . (24)

4) Complex Frequency Shifted PML - (CFS-PML):
The theory of CFS-PML was first introduced in [8]
based on complex frequency shifted PML parameters.
This shifting is a more general form of the factor used in
the previous section, namely,

a = κx +
σx

αx + jωε
(25)

where κx represents the real geometrical stretching, αx is
used to control the absorption for evanescent waves and
σx is the physical loss.

This approach is of particular interest for damping
evanescent waves since all the conventional PML mod-
els described in the previous sections exhibit a perfor-
mance degradation in the evanescent regime. The complex
stretching factor described in [15] can be implemented in
two ways. The first approach is using an auxiliary differ-
ential equation method and the second approach involves
a time-domain convolution. For the present FVTD version
of CFS-PML, the second approach is utilized. As shown
in [9] this results in the following update equations,

∂tHx = − 1
µ
∂yEzκx + ΨHx (26)

∂tHy =
1
µ

∂xEz
κx
− σx
εκx

Hy + ΨHy , (27)

∂tEz =
1
µκx

(∂xHy)− σx
εκx

Ez + ΨEz . (28)

Apart from the standard Maxwellian fields (Hx, Hy

and Ez) and the material parameters (µ = µrµ0, ε = εrε0
and σx), two new factors, namely αx and κx are intro-
duced. These factors give additional degrees of freedom in
controlling the perfectly matched damping behavior inside
the PML. The terms ΨHx , ΨHy and ΨEz in equations
(26) to (28) represent the convolution operation in time
for each field value and they can be written for the FVTD

method as,

ΨHxi = − σx
µiεi

e
−αxεi ·t ∗

f∑
k=1

(FH∗
xk
· nk)|Sk| (29)

ΨHyi =
αxσx
κxε2i

e
−αxεi ·t ∗Hyi, (30)

ΨEzi =
αxσx
κxε2i

e
−αxεi ·t ∗ Ezi . (31)

This describes the continuous-time formulation of
the convolutions which would be highly inefficient to
implement in a discrete-time scheme since a sum over
all time needs to be calculated at each time step. Thus,
the iterative method proposed in [9] can be applied to
simplify the convolution to one addition per time step.

This formulation eventually allows to express a loss
term using the field vector U i = [Hxi, Hyi, Ezi]T in
equation (1) as,

Li =

 −ΨHxi
σx
εiκx

Hyi −ΨHyi
σx
εiκx

Ezi −ΨEzi

 . (32)

These convolution operations eventually make the
CFS-PML highly efficient for the absorption of evanes-
cent waves, however, at the cost of a somewhat increased
computational effort.

Guidelines to choose the parameters are given in [16],
where derivations show that the PML mainly absorbs
propagating modes if the term σx

αx+jωε
in equation (25)

is mainly complex. In contrast, evanescent waves are best
absorbed if the fraction is mainly real. Thus in the case
of a waveguide the value for αx has to be chosen so that
the switching frequency,

fα =
αx
2πε

(33)

corresponds to the cutoff frequency. The factor κx
stretches the coordinate system, which in practice affects
the accuracy of the simulation. In the presented work κx
is fixed at κx = 1 in order to avoid stretched coordinate
discretization errors.

C. Relationships between PML models

1) Unsplit PML models: Comparing the formula-
tions of M-PML, U-PML and GT-PML suggests a close
similarity even though the approaches differ in their
physical interpretations. M-PML and U-PML both use
one additional field term and GT-PML incorporates an ad-
ditional integral term. When rewriting the set of equations
for M-PML (7) to (10) by inserting the additional field
term Gx = Kx+ζHx into equation (7), the following set
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emerges,

∂tHx = − 1
µ
∂yEz −Kx (34)

∂tHy =
1
µ
∂xEz − ζHy, (35)

∂tEz =
1
ε

(∂xHy − ∂yHx)− ζEz, (36)

∂tKx =
ζ

µ
∂yEz, (37)

where Kx represents the magnetic polarization current.
Comparing the rewritten system in equations (34) to (37)
of M-PML with that of U-PML in equations (14) to
(17), their mathematical equivalence becomes apparent,
although different physical quantities are considered (Kx

and Bx).
Applying a similar reformulation of GT-PML, the

integral term can be written as a separate update equation
identical to the one of U-PML. This rewriting is re-
quired anyhow before numerical implementation to allow
for the iterative integration. In the present formulation,
the Lax-Wendroff time stepping is applied. This allows
for sophisticated integration methods. In this case the
Simpson rule is used because it fits perfectly into the
two step updating scheme. Therefore the final numerical
FVTD implementations of the three PML models differ
slightly, albeit they are analytically equivalent. Hence, for
the numerical implementation of the scheme only minor
differences in the range of the numerical precision are
expected.

The relationship between the absorption parameters
used in the different formulations can be expressed as
follows,

ζ = ω′′x =
σx
ε
. (38)

2) Split vs. Unsplit PML: Considering further the
relation between split and unsplit models, a close con-
nection can be found between B-PML and U-PML, as
pointed out in [11, 17]. Splitting the U-PML formulation,
the formulation for B-PML can be retrieved, or vice-versa.
Hence, numerically identical results are expected here as
well.

3) CFS-PML to GT-PML: Finally it has to be
pointed out that, as CFS-PML is a generalization of GT-
PML, the convolutions of equations (29) to (31) should
reduce to the integral term of GT-PML if αx → 0 and
κx = 1. In fact it can be verified that,

lim
αx→0,κx=1

ΨHxi = − σx
µiεi

∗
f∑
k=1

(FH∗
xk
· nk)|Sk| (39)

lim
αx→0,κx=1

ΨHyi = 0, (40)

lim
αx→0,κx=1

ΨEzi = 0 . (41)

The convolution in equation (39) is a simple integra-
tion over time, and thus yields exactly the same term as
in GT-PML. This also applies to the discrete formulation
obtained by the method of [9]. Figure 2 summarizes the
relationship between all the investigated PML models.

B−PML

split PML

CFS−PML

M−PML U−PML

GT−PML

unsplit PML

α→ 0 κ = 1

(u
n)

sp
lit

tin
g

Fig. 2. Analytical relationship between the investigated
PML models.

IV. CONSIDERATIONS ON COMPUTATIONAL
EFFORT

It is shown in the previous section that the analytical
formulations of B-PML, M-PML, U-PML and GT-PML
are analytically equivalent. Nevertheless, the discrete
models vary because of the different required operations.
The numerical implementations include an additional flux
term for B-PML, additional update equations for M-PML
and U-PML and an integral term for GT-PML.

Table 2 shows the number of variables necessary for
the investigated PML models in 2D. In free space only
three field variables are updated using three flux terms.
In the case of B-PML, the fourth split field requires the
calculation of an additional flux term at each time step.
This is not necessary for M-PML. Due to the nature of
the fourth differential equation, no flux needs to be cal-
culated, but one additional update equation is necessary.
The fourth field in U-PML requires calculation of an
additional flux. But since this flux is identical to the flux
of the Hx field, that does not increase the computational
cost. The formulation of GT-PML requires no additional
update equation, and thus has only three field variables.
In the numerical implementation however, the update
formulation of the integral term leads to an additional
variable, hence making the formulation identical to U-
PML. Nevertheless the computational effort for GT-PML
might increase depending on the sophistication of the

Table 2. Computational effort for two-dimensional
models. K is the number of field update variables, M the
number of flux variables and N the number of additional
update variables.

Model K M N Auxiliary operation

free space 3 3 0 -

B-PML 4 4 0 flux

M-PML 4 3 0 ODE

U-PML 4 3 0 PDE

GT-PML 3 3 1 integral

CFS-PML 3 3 3 convolutions
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integration method. Finally, CFS-PML adds a convolution
operation to each field term, thus adding three additional
operations and variables per cell in the two-dimensional
TE case.

To summarize the computational effort necessary for
all PML models, B-PML is slightly more costly than
the basic unsplit PML models due to the calculation
of the additional flux. CFS-PML significantly increases
the computational costs as it requires one additional
convolution operation for each field variable. In this case
increased absorption for evanescent waves is achieved at
the cost of increased memory and computation time.

V. NUMERICAL PERFORMANCE
COMPARISON

To validate the theoretical findings of the previous
section, numerical measurements are performed using first
a plane wave problem and second a waveguide problem.
These particular setups were chosen to measure the in-
fluence of discretization and to investigate the reflection
at off-normal angles of incidence. As the implementation
of U-PML and GT-PML are identical in FVTD, U-PML
results are not displayed explicitly.

A. Plane Wave at Normal Incidence

At normal incidence the broadband performance of
all the PML models is compared to that of the first-order
SM-ABC. Broadband analysis provides information on
the influence of the spatial discretization and the thickness
of the absorbing layer in terms of the wavelength. A plane
wave is simulated using a parallel-plate waveguide setup
in Fig. 1 (with PMC boundaries). The scattering parameter
extraction as discussed in [18] is used to retrieve the
reflection coefficient S11 of the PML models. The results
are shown in Fig. 3 with the PML parameters set to
achieve a theoretical reflection [13] of R = −80 dB. The
model is fed with a sine-modulated Gaussian broadband
pulse with effective bandwidth stretching from 1 GHz to
50 GHz. It is observed that the PML performance over
the whole bandwidth remains close to the theoretically
expected value, with a degradation at higher frequencies
due to coarse spatial discretization. In the investigated
problem, the overall performance of the SM-ABC is infe-
rior to that of the PML models over most of the frequency
range. At low frequencies (fine spatial discretization) the
influence of discretization errors diminishes. It is noticed
that the performance of SM-ABC at normal incidence
numerically converges towards perfect absorption.

It is observed that all the investigated PML models
perform identically, as expected from the discussion in
the previous sections. In particular in the present config-
uration CFS-PML becomes numerically and theoretically
identical to GT-PML. This is due to the fact that the paral-
lel plate waveguide exhibits a cutoff frequency fc = 0 and
thus, according to equation (33) αx = 0. Consequently the
CFS-PML model becomes identical to GT-PML.

Fig. 3. Numerical results at normal incidence. The spatial
discretization is shown in the upper scale.

B. Off-Normal Incidence and Evanescent Waves

In the second example, a waveguide model (Fig. 1
with PEC boundaries) excited with a TE10 mode is used
to compute the reflection coefficient of the investigated
PML models at a range of incident angles. In addition this
model permits evaluation of absorption below the cutoff
frequency of the waveguide, i.e., for evanescent waves. To
measure the reflection of evanescent waves, the technique
introduced by Gwarek et al. in [19, 20] is applied here
to extract the S11-parameter. This technique uses the
tangential fields (Ez and Hy) and gives information on
the physical reflection of the fields, even for evanescent
waves. This stands in contrast to the traditional definition
of scattering parameters based on the energy flow, where
evanescent waves are understood to be totally reflected.

The investigated model has a cutoff frequency of
6.56 GHz for its fundamental TE10 mode and is fed
with a modulated Gaussian broadband pulse with band-
width stretching from 4 GHz to 20 GHz which spans
both the evanescent and propagation regions. The spatial
discretization employed for the model corresponds to a
range of λ/20 to λ/100 (free-space wavelength) at the
highest and lowest frequency components of the input
signal, respectively. Simulated PML models are B-PML,
M-PML, GT-PML and CFS-PML which are compared to
the performance of the SM-ABC.

The results obtained are plotted in Fig. 4 with a theo-
retical reflection coefficient set to R = −80 dB at normal
incidence. Depending on the frequency, evanescent waves
naturally decay inside the finite thickness of the PML.
This influence is included in the depicted theoretical
absorption below cutoff. Because the field pattern within
a waveguide can be understood as a superposition of two
plane waves travelling with a certain off-normal angle,
the influence of the angle of incidence is also addressed
in this experiment. The cutoff frequency corresponds to
grazing incidence and at higher frequencies, the angle of
incidence converges towards normal incidence. This angle
is also given in the upper scale of Fig. 4 for illustration.
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Fig. 4. Numerical results for off-normal incidence and
evanescent waves in a waveguide model with thickness
a = 22.86 mm. The upper scale shows the spatial
discretization and the angle of incidence.

It is clearly noticed that above cutoff, all PML models
perform very close to the theoretically expected value.
Additionally it should be noted that the B-PML, M-
PML and GT-PML models perform identically, as it was
expected from their theoretical identity. Below cutoff, all
ABCs except CFS-PML do not absorb and therefore only
the natural decay is measured. In contrast, in the case
of CFS-PML, the coordinate system stretching elongates
the layer and hence the decay of evanescent waves is
increased. This leads to an additional absorption of up
to 30 dB in this case.

VI. CONCLUSION

In the present study different PML techniques were
modeled in the unified framework of the FVTD method.
The theoretical equivalence of M-PML, U-PML and GT-
PML was discussed. Conditions were given that simplify
CFS-PML to GT-PML. Numerical performances of all
the PML models were found to be nearly identical for
propagating modes. As expected, the performance of the
CFS-PML was substantially better in the evanescent wave
region compared to other PML models.

The improvement for CFS-PML compared to the
other PML models arises for the absorption of evanescent
waves and is achieved at the cost of an increased computa-
tional load. Therefore a practical application for the more
costly model is only reasonable when strong evanescent
waves have to be absorbed close to a source. Nevertheless
the more efficient unsplit maxwellian PML models, such
as the U-PML, are sufficient for most applications in
conformal time-domain methods.

Although the results presented here were obtained
employing planar perfectly matched layers, this study
represents a first step towards the extension of PML
techniques for non-planar surfaces in the FVTD method.
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Abstract – A new stability criterion applicable to explicit
upwind FVTD schemes for solving Maxwell’s equations
on unstructured meshes is derived. This criterion is
based on L2-norm estimates of specially constructed
matrices Gi for each finite volume i. Each such matrix is
constructed using the scalar product of the eigenvectors
corresponding to the unity eigenvalues of the fluxsplitting
operators associated with the facets of volume i. The
new stability criterion is obtained numerically once the
grid is constructed using these matrices over the mesh
and is therefore mesh dependent. The new criterion gives
a time-step that is larger than the time-step calculated
using previously published stability criteria. On structured
meshes the new criterion gives the same time-step limit
as the von Neumann analysis. The method incurs a small
computational expense at the beginning of each run of
the algorithm. The method is generalizable but the extent
to which it can be generalized to other time-evolving
physical phenomenon is not considered in this paper.

Keywords: Finite-volume time-domain, unstructured
mesh, Maxwell’s equations, and stability criterion.

I. INTRODUCTION

One of the classical drawbacks of using explicit time-
stepping numerical schemes is that a stringent timestep
limit must be adhered to for stability. For structured
meshes this time-step limit can usually be obtained using
von Neumann analysis, but it is not possible to use
von Neumann analysis with unstructured meshes. Thus,
several authors have used analyses based on the energ-
ynorm in the mesh to obtain estimates for the time-step
bound. Previously published maximum time-step bounds
have been sufficient to ensure stability but not tight
bounds: they generally restrict the time-step to a value
that is smaller than necessary. Obviously, using a smaller
than necessary time-step increases execution time for any
particular problem, but in addition, a timestep that is too
small compared to the necessary limit may also result
in poorer solution accuracy. A sufficient maximum time-
step criterion for FVTD upwind schemes for Maxwell’s
equations was presented in [1, 2]. The time-step limit

given in [2] is,

∆t = mini
Vi

cAi
(1)

for an unstructured mesh, where ci is the speed of light
in element i, 1 ≤ i ≤ N is a number identifying the
elements in the unstructured mesh (with N elements),
Vi and Ai are the volume and total facet area for the
i-th element, respectively. On the other hand, in [1] the
timestep limit for an unstructured mesh is given as,

∆t = mini
2Vi

cAi
(2)

twice that of equation (1) reported in [2]. Unfortunately,
as was stated in [1], the bound given by equation (1) is
merely a sufficient condition and not necessary: a larger
time-step is possible.

For a structured cubical mesh with the edge-size of
the elements h and the same speed of light c on all
elements with von Newman analysis in [2] was derived,

∆t =
h

2c
(3)

which is necessary condition and 1.5 times large then
criterion equation (2) applied to the cubical elements
on structured mesh. Note that a structured cubical mesh
is a special case of an unstructured mesh in which all
elements have the same cubical shape. But, criterion
equation (2) does not reduce to equation (3) when applied
to a structured cubical mesh and therefore equation (2)
cannot be the necessary stability condition.

In this paper we derive the necessary stability crite-
rion for the first-order Euler explicit scheme which can
then be easily extended for higher-order time integration
schemes [3]. As in [1], the derivation is based on the
natural physical constraint that in a mesh that is free of
sources of energy the total energy in the mesh should
not increase with time. The electromagnetic energy in a
particular region, Ω ⊂ R3, gives rise to the mathematical
concept of an energy-norm which can be calculated as,

‖u‖ =

√√√√1
2

N∑
i=1

Vi(εiEi ·Ei + µiHi ·Hi) . (4)

193

1054-4887 © 2008 ACES

ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



The key difference in the derivation that allows
us to obtain the necessary criterion is that we express
the summation of fluxes over facets as a single matrix
operator for which the norm can be determined numer-
ically. Therefore, once an arbitrary mesh is generated,
the necessary time-step limit is obtained by computing
a simple formula over each element in the mesh at the
beginning of each FVTD run.

II. THE TIME-STEP CRITERION IN TERMS
OF ENERGY

Suppose we have a domain Ω ⊂ R3 upon which
is specified an unstructured mesh ω =

⋃N
i=1 Ωi, where

Ωi are the elements of the mesh each having a volume
Vi. Here we suppose that the electromagnetic material
parameters εi and µi are constants on each element Ωi.
The finite-volume time-domain method is formulated in
terms of a generalized solution vector containing the
electric and magnetic field vectors

u(x) = [ET (x)HT (x)]T ,

and solved for the averaged values

ui =
1
Vi

∫
Ωi

u(x)dv,

on each element. An equivalent discrete energy-norm over
the domain Ω can be written as,

‖u‖ =

√√√√1
2

N∑
i=1

Vi(εiEi ·Ei + µiHi ·Hi) (5)

where Ei represents the averaged value of the electric
field over the element i, and similarly for the magnetic
field vector Hi.

Consider now the Euler approximation for the time-
dependent Maxwell’s equations cast as a conservation law
(see [4]). It can be written concisely as,

un+1 = un −∆tLun (6)

where L represents the discretization of the spatial deriva-
tives. More specifically, for the case of the FVTD method,
L represents the integration of the fluxes over the facets
of each element. We are interested in the maximum value
of δt that keeps the scheme stable.

A numerical scheme is L2-stable if the energy doesn’t
grow in time; that is, if the following is true,

‖un+1‖2 ≤ ‖un‖2. (7)

We can define an inner-product in the mesh for
Maxwell’s equations as (u,w) =

∑N
i=1 Viu

T
i αiwi,

where

αi =
(
εi 0
0 µi

)
,

and εi, µi are permittivity and permeability matrices for
volume i.

The energy-norm is obtained as ‖u‖ =
√

(u,u). It
can be easily verified, that (u,w) satisfies the mathemat-
ical properties of an inner product.

Taking the inner product of equation (6) with un we
get (un+1,un)− (un,un) = −∆t(Lun,un), and using
the property that,

(un+1,un) = 1
2 (un+1,un+1) + 1

2 (un,un)−
1
2 (un+1 − un,un+1 − un) (8)

we can rewrite this as

(un+1,un+1) + (un,un)−
(un+1 − un,un+1 − un) = −2∆t(Lun,un).

This last equation together with,

(un+1 − un,un+1 − un) = (∆tLun,∆tLun)

and the energy constraint of equation (7) gives

(un+1,un+1)− (un,un) =
∆t2(Lun, Lun)− 2∆t(Lun,un).

This gives us a condition for the maximum time-step,
based on the non-increasing energy stability criterion for
the Euler scheme, that depends on any spatial discretiza-
tion L,

∆t(Lun, Lun) ≤ 2(Lun,un). (9)

III. FVTD SOLUTION OF MAXWELL’S
EQUATIONS

A. The FVTD scheme for Maxwell’s equations
We can write the FVTD scheme for Maxwell’s equa-

tions with Euler explicit time integration and first order
spatial upwinding, as [1, 2],

un+1
i = un

i −∆t 1
Vi

mi∑
j=1

Ai(j)×(
T+

i (j)B+
i (j)un

i + T−i (j)B−
i (j)un

ij

) (10)

where mi is the number of facets defining finite-volume
Ωi, and Ai(j) is the area of the jth facet of the ith

volume. The subscript ij denotes the element neighboring
facet j. The transmission operators are given as

T±i (j) = α−1
i

 2Y ∓
i (j)

Y +
i (j)+Y −

i (j)
I 0

0 2Z∓i (j)

Z+
i (j)+Z−i (j)

I

 ,

for facets between dielectrics, where

Y +
i (j) = 1

Z+
i (j)

=
√
εi

µi
,

Y −
i (j) = 1

Z−i (j)
=
√
εij

µij

.

For facets located on a perfect electric conductor
(PEC) these become

T+
i (j) = α−1

i

(
2I 0
0 0

)
, T−i (j) = 0,
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or equivalently, using the image principle [4], we have
the same T±i (j) and B±

i (j) operators as for facets
between dielectrics, but un

i = [(En
i )T (Hn

i )T ]T and
un

ij
= [−(En

i )T (Hn
i )T ]T . This equivalent formulation

allows us to extend the stability criterion results for
meshes with PEC facets more easily. For a facet at the
external boundary of the mesh, we consider the first-order
absorbing boundary condition (ABC)

T+
i (j) = α−1

i

(
I 0
0 I

)
, T−i (j) = 0.

The flux splitting operators are given as,
Bi(j)+ = 1

2

(
−S2

i (j) −Si(j)
Si(j) −S2

i (j)

)
Bi(j)− = 1

2

(
S2

i (j) −Si(j)
Si(j) S2

i (j)

) (11)

where the matrix operator Si(j) applied to an arbitrary
vector a produces the cross-product of the outward nor-
mal n̂i(j), the normal to the j-th facet of element i, with
a, that is, Si(j)a = n̂i(j)× a.

B. Expressing (Lu,u) and (Lu, Lu) for FVTD

For simplicity, we now consider only the case when
we have the same ε and µ for all elements. For the case
when we have non-uniform ε and µ the time-step will be
changed in the same way as in [1] according to the speed
of light in the element (ci = (εiµi)−1/2). We write,

(Lu,u) = 1
2

N∑
i=1

mi∑
k=1

Ai(k)×[
T+

i (k)B+
i (k)ui + T−i (k)B−

i (k)uik

]
· ui

(12)

(Lu, Lu) = 1
2

N∑
i=1

c
Vi
·{

mi∑
k=1

Ai(k)
(
T+

i (k)B+
i (k)ui+

T−i (k)B−
i (k)uik

)
·

mi∑
j=1

Ai(j)
(
T+

i (j)B+
i (j)ui+

T−i (j)B−
i (j)uij

)}
.

(13)

The flux-splitting operators, B+
i (k) and B−

i (k),
when applied to the field value at the center of an element
give the flux at facet k which when summed over all facets
of the element give zero [2]. Thus, we have

mi∑
k=1

Ai(k)T+
i (k)B+

i (k)ui +Ai(k)T−i (k)B−
i (k)ui = 0,

which can be written as,

mi∑
k=1

Ai(k)B+
i (k)ui = −

mi∑
k=1

Ai(k)B−
i (k)ui (14)

Combining equation (13) with equation (14) allows us to
write

(Lu, Lu) = 1
2

N∑
i=1

c
Vi[

mi∑
k=1

Ai(k)B−
i (k)(uik

− ui)
]
·[

mi∑
j=1

Ai(j)B−
i (j)(uij

− ui)

]
,

whereas combining equation (12) with equation (14) gives

(Lu,u) =
1
2

N∑
i=1

ui ·
mi∑
k=1

Ai(k)
(
B−

i (k)(uik
− ui)

)
.

For our case, because S = −ST , we have B = BT

we can write

Ba · b =
1
2
Bb · b+

1
2
Ba · a− 1

2
B(b− a) · (b− a),

and therefore

ui ·
mi∑
k=1

Ai(k)
(
B−

i (k)(uik
− ui)

)
=

1
2

mi∑
k=1

Ai(k)
[
uik
·B−

i (k)uik
− ui ·B−

i (k)ui−

(uik
− ui) ·B−

i (k)(uik
− ui)

]
.

C. Expressions for the maximum energy criterion
Introducing the expressions for (Lu,u) and

(Lu, Lu) in to formula (9) we get,

∆t
N∑

i=1

c
Vi

[
mi∑
k=1

Ai(k)B−
i (k)(uik

− ui)
]
·[

mi∑
j=1

Ai(j)B−
i (j)(uij

− ui)

]
≤

N∑
i=1

mi∑
k=1

Ai(k)
[
uik
·B−

i (k)uik
−

ui ·B−
i (k)ui − (uik

− ui)·
B−

i (k)(uik
− ui)

]
.

(15)

It is also easy to check that the following is true,
N∑

i=1

mi∑
k=1

Ai(k)
[
uik
·B−

i (k)uik
−

ui ·B−
i (k)ui

]
=

−
Nb∑
i=1

ms
i∑

k=1

Ai(k)ui ·B−
i (k)ui ≥ 0

(16)

where Nb is the number of elements with facets on the
domain boundary, and ms

i is the number of facets of i-th
element on that boundary. In the case if k-th facet of i-th
element is PEC facet, we can write the terms in the sum
on the left side of formula (16) as,

uik
·B−

i (k)uik
− ui ·B−

i (k)ui =

=
[
En

i

Hn
i

]
1
2

(
S2

i (j) −Si(j)
Si(j) S2

i (j)

)[
En

i

Hn
i

]
−[

−En
i

Hn
i

]
1
2

(
S2

i (j) −Si(j)
Si(j) S2

i (j)

)[
−En

i

Hn
i

]
= 0.

(17)
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Therefore, in equation (16) the PEC facets interior
to the mesh do not contribute to the inequality and the
inequality remains the same. Thus, using equation (16),
we can rewrite equation (15) as a non-tight bound,

N∑
i=1

c∆t
Vi

[
mi∑
k=1

Ai(k)B−
i (k)(uik

− ui)
]
·[

mi∑
j=1

Ai(j)B−
i (j)(uij

− ui)

]
≤

−
N∑

i=1

mi∑
k=1

Ai(k)(uik
− ui)·

B−
i (k)(uik

− ui) ≤ 2(Lu,u).

(18)

This is the fundamental global inequality that im-
poses the stability constraint on ∆t. If not for the ABC
facets this would be a tight bound which implies that the
inequality (18) defines the necessary condition on ∆t for
the FVTD algorithm on an infinite domain or inside a
PEC enclosure.

It is not a simple task to derive a global constraint on
∆t based on this formula. Therefore, we have to make due
with imposing this inequality locally on a finite-volume by
finite-volume basis. This removes the summation over all
finite-volumes, but leaves the inner summations. Note that
on a uniform mesh dealing only with the inner summation
keeps the inequality (18) exact.

In order to get a manageable constraint for ∆t, even
limiting ourselves to a local constraint, requires that we
somehow remove the inner summations over facets while
keeping the formula exact. We proceed by first construct-
ing a block-diagonal matrix Zi = diag{−B−

i (k)}mi

k=1

as well as a block-row vector of mi identity matrices
W = {I, ..., I}, where the dimension of W is 6 × 6mi

and I is the 6 × 6 identity matrix. We also construct a
column vector made up of the solution vector differences
across each facet,

x = vector{uik
− ui}mi

k=1

which is a vector of length 6mi. Hence a new local
inequality, based on inequality (18), can be written con-
cisely using these constructions as,

c∆t
Vi

(WZix,WZix) ≤ (Zix,x), ∀i. (19)

D. Efficient computation of stability criterion
Using the property B−

i (k)T = B−
i (k), we have also

Zi = ZT
i . Hence the square-root of Zi can be expressed

as

Zi = QT ΛiQ = QT
√

ΛiQ QT
√

ΛiQ =
√
Zi

√
Zi,

where Λi = diag{λj}6mi
j=1 is the diagonal matrix of

eigenvalues of Zi, and√
Λi = diag{

√
λj}6mi

j=1 .

Now defining the new variable y =
√
Zix, which

means that
√
Ziy = x and therefore y /∈ Ker(

√
Zi), we

have equation (19) rewritten as

c∆t
Vi

(W
√
Ziy,W

√
Ziy) ≤ (y,y),

or
Vi

c∆t
≥ (W

√
Ziy,W

√
Ziy)

(y,y)
, ∀i.

Finally, this last inequality can be written in terms of
the original summations over the facets as, ∀i

Vi

c∆t ≥
(

mi∑
k=1

(yk,yk)
)−1

×[
mi∑
k=1

√
Ai(k)

√
−B−

i (k)yk

]
·[

mi∑
j=1

√
Ai(j)

√
−B−

i (j)yj

]
.

(20)

From the above equation we can evaluate the max-
imum ∆t for stability by numerically evaluating the
right hand side over all elements. This calculation can
be simplified considerably if we use the property that
S3

i (k) = −Si(k) and notice that

[−B−
i (k)]2 =

1
4

(
S2

i (k) −Si(k)
Si(k) S2

i (k)

)
×
(
S2

i (k) −Si(k)
Si(k) S2

i (k)

)
=

1
2

(
−S2

i (k) Si(k)
−Si(k) −S2

i (k)

)
= −B−

i (k),

hence
√
−B−

i (k) = −B−
i (k). This means that the

eigenvalues of the operator −B−
i (k) are only 1, with mul-

tiplicity 2, and 0, with multiplicity 4. Now the eigenvector
êk of −B−

i (k) which corresponds to the eigenvalue 1 can
be written (without facet index k) as(
â

b̂

)
=

1
2

(
−S2 S
−S −S2

)(
â

b̂

)
,

2â = −S2â+ Sb̂

Sâ = −2b̂− S2b̂
.

This is satisfied for any â = Sb̂ = n̂ × b̂.
Normalizing the eigenvector for any facet k we have

êk =
√

2
−1
(
n̂k × b̂k, b̂k

)T

, where we choose b̂k as
an arbitrary vector in the plane of the k-th facet (i.e.,
n̂k · b̂k = 0). If we choose two orthogonal vectors b̂

1

k and
b̂

2

k on the facet using the formula b̂
2

k = n̂k × b̂
1

k we can
write two eigenvectors for the facet as

ê1
k =

1√
2

(
n̂k × b̂k, b̂k

)T

,

ê2
k =

1√
2

(
−b̂k, n̂k × b̂k

)T

.

The four eigenvectors corresponding to the zero
eigenvalue of −B−

i (k) can be written as

ê3,4
k =

1√
2

(n̂k,±n̂k)T
,

ê5,6
k =

1√
2

(
−n̂k × b̂

1,2

k , b̂
1,2

k

)T

.
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Thus, with the single vector b̂k in the plane of the
kth facet we can define all eigenvectors of the operator√
−B−

i (k).
To efficiently evaluate formula (20) as in [2] we can

decompose each yk as a sum of eigenvectors, with the
only ones taking part being the ones corresponding to
non-zero eigenvalues

√
λi(k) = 1 of

√
−B−

i (k)

yk =
2∑

s=1

ws
kê

s
k.

The value of b̂
1

k can be chosen arbitrarily, for example
the edge of the facet. Substituting this decomposition into
the inequality (20) we get the formula

Vi

c∆t ≥
(

mi∑
k=1

2∑
s=1

(ws
k)2

)−1

×[
mi∑
k=1

√
Ai(k)

2∑
s=1

ws
kê

s
k

]
·

[
mi∑
j=1

√
Ai(j)

2∑
s=1

ws
j ê

s
j

]
,

simplifying we get the formula which is used to obtain
the time-step limit

Vi

c∆t
≥

mi∑
k=1

mi∑
j=1

√
Ai(k)Ai(j)

2∑
s1=1

2∑
s2=1

ês1
j · ê

s2
j w

s1
j w

s2
j

mi∑
k=1

2∑
s=1

(ws
k)2

.

This can be written concisely as,

Vi

c∆t
≥ (Giw, Giw)

(w,w)
(21)

where the elements of the matrix Gi ∈ R2mi×2mi are
written as

Gi =
[
gi

jg
i
kê

j · êk
]2mi

j,k=1
, gi

2k−1 = gi
2k =

√
Ai(k),

ê2k = ê2
k, ê

2k−1 = ê1
k; k = 1..mi.

Using this notation the stability criterion becomes

∆t ≤ min
i

Vi

c‖Gi‖
. (22)

As in [1] this can be generalized concisely for ele-
ments with an individual εi and µi as

∆t ≤ min
i

Vi

ci‖Gi‖
, (23)

where ci = (εiµi)=0.5.
The norm of matrix Gi can be computed relatively

quickly because 4 ≤ mi ≤ 6 for a cell-centered FVTD
mesh which contains tetrahedrons, prisms, pyramids and
hexahedrons.

IV. NUMERICAL EXPERIMENTS

To test the increase in the allowed time-step due
to our new limit we conducted a wide set of numerical
experiments on our cell-centered FVTD code [4]. These
were conducted for both unstructured as well as structured
meshes. For unstructured tetrahedral mesh we had a 5-
15% increase in the allowable time-step over the time-step
limit given by formula (2) from [1]. For a structured cubi-
cal mesh of equation (23) gives the same result as the von
Neumann method applied to the FVTD approximation of
Maxwell’s equations [2],

∆t ≤ h

2c
.

This is a 1.5 times larger time-step that allowed by
(2) when it is applied to a structured cubical mesh (h
taken as the cubical element edge size).

V. SCATTERING FROM A PEC SPHERE

We present the FVTD results for scattering from a
perfectly electrical conducting (PEC) sphere as an exact
series solution is available in the frequency domain [5],
and a time domain solution may be easily obtained
using the inverse Fourier transform. The geometry of the
problem is shown in Fig. 1. The radius of sphere is 3
meters. This problem was selected as a benchmark for
the FVTD engine as the irregular surface of the sphere
coincides with one of the primary reasons for developing
finite-volume methods on irregular grids: eliminating the
need for stair-stepping at arbitrarily shaped boundaries.
The average edge-length of the tetrahedrons for the results
shown in the figure set to 0.75 m.

An x-polarized electric-field plane-wave transient
pulse E = g(t)x̂ incident in the z-direction and varying
as the derivative of a Gaussian was selected where, for
t ≥ 0,

g(t) = −2A(t− t0)b−2exp(−b−2(t− t0)2) (24)

with A = 1, b = 1.14 × 10−8s, t0 = 4.0 × 10−8. These
give a shortest free-space wavelength of about 3 meters
resulting in significant energy in the resonance region of
the sphere.

The results in the right side of the figure were
computed using the second-order MUSCL-type scheme
for two scattering locations: side-scatter and back-scatter
(see Fig. 1). These are compared to the analytic solution
for these same two points. The FVTD results shown were
computed for the time-step given by equation (2), but
almost identical results were obtained when the time-step
was set to that of equations (1) and (23). Note that all
the time-step criteria discussed in this paper are for the
firstorder upwind schemes, but we have found that using
any of these criteria for the higher-order schemes gives
stable results. This was also reported by Piperno [1]. Table
1. shows the relative error of computational results for
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Fig. 1. Scattering from a sphere. (a) Geometry of the problem, (b) Side-scattered electric field Ex, and (c) back-scattered
electric field Ex. Time-step used was that of equation (23). Analytic results are also shown.

Table 1. Comparison of PEC sphere back-scattering and side-scattering results on time interval (0,1.4× 107).
Side Scatter Back Scatter

Time step
algorithm

# of time steps
(acceleration factor)

L2 Error of Ex L∞ Error of Ex L2 Error of Ex L∞ Error of Ex

Eq. (1) 1497 (1.0) 4.15% 4.49% 4.37% 4.21%

Eq. (2) 749 (2.0) 4.52% 4.19% 4.23% 3.99%

Eq. (21) 704 (2.13) 4.63% 4.47% 4.25% 4.50%

the x-component of the scattered field at the back-scatter
location (0, 0, -7), as well as at the side-scatter location (-
7, 0, 0) for the three different time-step criteria: equations
(1), (2) and (23). For both test locations, the analytic
solution is compared to solutions obtained using the
MUSCL finite-volume methods computed on a mesh with
an average cell edge length of 0.75 m. All results shown
use the second-order predictor-corrector time-integration
scheme.

VI. CONCLUSION

The derivation we have provided gives a new time-
step limit for the explicit upwinding finite-volume time-
domain approximation scheme on arbitrary unstructured
meshes for Maxwell’s equations. On uniform meshes the

new criterion is necessary for stability. In fact, the time-
step limit provided by the formula given herein gives the
same time-step limit on structured meshes as the standard
von Neumann analysis. On mixed structured and unstruc-
tured meshes, the new criterion provides the maximum
time-step allowable for retaining stability. The derivation
can be easily extended to other FVTD approximations
of partial differential equations on unstructured meshes;
which is a subject of future work.
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Abstract – The paper proposes a re-formulation of
PEEC modeling in terms of dual discretization of surface
conductors. The result is a precise formalization of the
PEEC tessellation and gives the possibility of handling
general meshes, both structured and unstructured. This
fact allows the use of triangular meshes only where neces-
sary, leaving orthogonal discretization whenever possible
and improving computational performances. The method,
referred to as dual-PEEC, is validated by solving a
structure referenced in literature and finally applied to the
computation of the input impedance of a spiral inductor.

Keywords: PEEC, unstructured mesh, and dual discretiza-
tion.

I. INTRODUCTION

Integral approaches to Maxwells equations for the
modeling of interconnects and packaging structures are
usually preferred to differential ones, because they solve
the field equation in terms of the sources of fields, located
on the metallic structures. This allows to discretize the
conducting part of the domain only, accounting rigorously
for the regularity conditions of fields at infinity.

Among other integral techniques, the Partial Element
Equivalent Circuit (PEEC) leads to the description of the
electromagnetic problems in terms of circuit parameters
which describe the magnetic and electric coupling be-
tween currents and charges of the discretized structure.
The main advantages of PEEC models are the possibility
of integrating lumped parameters into the electromagnetic
structure and the availability of both time and frequency
analysis in standard SPICE-like solvers.

The classic PEEC approach is restricted to orthogonal
discretization of the structures under study. Recently the
scheme has been extended to non-orthogonal [1, 2] and
triangular [3, 4] meshes, but the proposed techniques lack
of a systematic background for their assumptions.

The aim of this work is to generalize the PEEC
methodology by the use of the topological concept of
duality. The result is the exact formalization of the PEEC
tessellation gaining in addition the possibility of handling
general meshes, both structured and unstructured. This
fact allows the use of triangular meshes only where
necessary (i.e., curved or slanting electrodes), leaving

orthogonal discretization in regular regions, with a global
improvement of computational performances.

The paper is structured as follows: in Section II the
original PEEC scheme is briefly described; Section III
gives a general overview of dual discretization which is
used as a framework of the mathematical formulation of
Section IV. Two examples are investigated in Section V
and finally Section VI draws some conclusions.

II. ORIGINAL PEEC SCHEME

The first systematic description of the Partial Element
Equivalent Circuit, PEEC, goes back to the middle 70s, in
a work by A.E. Ruehli [5]. The original PEEC formulation
is based on the circuit interpretation of the terms of the
Mixed Potential Integral Equation (MPIE),

~J(~r, t)
σ

+
d ~A(~r, t)

dt
+∇ϕ(~r, t) = 0 (1)

~A and ϕ are the retarded magnetic vector and electric
scalar potential, respectively,

~A(~r, t) =
µ

4π

∫
Ω

~J(~r′, t′)
|~r − ~r′|

dΩ (2)

ϕ(~r, t) =
1

4πε

∫
Ω

ρ(~r′, t′)
|~r − ~r′|

dΩ, (3)

where t′ is the retardation time,

t′ = t− |~r − ~r
′|

c
.

The solution of the electromagnetic problem is
achieved by discretizing equation (1) on the system of
surface cells shown in Fig. 1(a). Current and charge
densities are expanded in terms of piecewise constant
pulse functions. The same functions are also used as test
functions in a Galerkin weighted residual scheme [6].

• Partial self and mutual inductances between nodes,
representing the magnetic field couplings;

• Resistive terms between nodes, representing the
Joule losses in the conductive material;

• Coefficients of potential at each node, representing
the electric field couplings.

200

1054-4887 © 2008 ACES

ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



Jx

Jy

x

y

q

(a) Standard PEEC

k

h
)(h

lλ
)(k

lλ

)()( k
l

h
ll λ∪λ=λ

lS~

(b) Dual PEEC

Fig. 1. (a) Standard 2D discretization of current density
(dashed cells) and charge density (gray cell), (b) dual
discretization: the couple primal edge (straight line)/dual
face (dark gray) correspond to a two terminal circuit
component.

III. DUAL DISCRETIZATION

The work of E. Tonti has shown how the formulation
of the electromagnetic field can be expressed in terms of
dual relations and how this duality can be exploited in its
numerical solution [7]. The conceptual framework of the
finite formulation of electromagnetic fields is based on
the definition of two sets of global variables: source and
configuration. In the present application source variables
are electric charge and electric current. Configuration
variables are voltage, electric potential, magnetic vec-
tor potential. The product of a source variable by a
configuration variable gives an energy variable. Physical
variables are associated to spatial elements. In [8] it is
shown that configuration variables are associated with
space elements endowed with inner orientation (i.e., the
orientation of the space element lies on the element
itself); on the contrary source variables are associated with
space elements endowed with outer orientation (i.e., the
orientation of the space element depends on the space in
which the element is embedded). The complex of cell with
inner orientation is called primal complex, whereas the
dual complex is endowed with outer orientation. Primal
and dual complexes of cells are interlinked: primal nodes
correspond to dual volumes, primal edges to dual faces,
primal faces to dual edges and primal volumes to dual
nodes. Figure 2 shows the generation of primal and
dual complex and their spatial duality, assuming primal
complex as simplicial. It is important to note that it is
possible to assume the dual complex as simplicial, when
source variables are chosen as unknowns (in this work the
latter representation is adopted).

Table 1 reports the spatial assignment of the variables
used in PEEC modeling: scalar potentials are assigned
to primal nodes, voltage drops to primal edges, cur-
rents to dual faces and charges to dual volumes. This
definition of duality relations of grids and the rigorous
assignment of physical variables to spatial entities allows
the possibility of giving a general framework of PEEC
modeling, i.e., allowing the use of unstructured and mixed
structured/unstructured complexes of cells. Besides the

primal cell

dual cell

primal node

dual node

primal edge

dual edge

Fig. 2. 2D primal and dual complex.

generality of dual discretization, in this paper only surface
discretization is investigated, leaving the generalization to
volume discretization to a further work.

Making reference to Fig. 1(b) the discretization of
conductors is made by prisms with triangular or rectan-
gular basis. This tessellation constitutes the dual complex
of cells. The primal complex is obtained by connecting the
centroids of dual volumes by piecewise segments crossing
the lateral faces of prisms.

Table 1. Variable assignment to spatial elements.

Type Variable Spatial Element

source
current, i dual face, Σ̃

charge, q dual volume, Ω̃

configuration
voltage, u primal edge, λ

potential, ϕ primal node P

IV. MATHEMATICAL FORMULATION

A. Basis Functions
When using a general approach to PEEC models, a

local interpolation inside dual volumes linking the current
density ~J in equation (1) to the global variable i through
dual faces is needed. By referring to the generic dual
volume or cell k identified by a prism of thickness δk,
and assuming a uniform ~J distribution over the electrode
thickness, facet elements basis functions ~w are chosen,

~Jk =
1
δk

NF∑
m=1

ikm ~wkm (4)

where NF is the number of dual faces in each cell (3 or
4 in our case), ikm is the current through the mth dual
face of cell k. Many choices for ~w are possible but div-
conforming basis functions must be selected for edges
belonging to triangles, rectangles or common between
them [9].

With reference to a local frame (u, v, w) (Fig. 3(a))
the following facet functions for triangles are selected
[10],

~w3
k(u, v) = Nj(u, v)∇Ni(u, v)× ~n

−Ni(u, v)∇Nj(u, v)× ~n
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Fig. 3. Plane triangle and rectangle in local frame
(u, v, w).

where the functions Ni(u, v) and Nj(u, v) are the stan-
dard nodal functions related to the extreme nodes of edge
k and ~n = ŵ is the unit vector orthogonal to the triangle
surface. The analytical expression of these shape functions
is,

~w3
1(u, v) =

u− u3

l1v3
û+

v − v3

l1v3
v̂

~w3
2(u, v) =

u

l1v3
û+

v

l1v3
v̂,

~w3
3(u, v) =

u− l1
l1v3

û+
v

l1v3
v̂.

Figure 4(a) shows the vector plot of ~w3
1 for a

particular triangle in the x, y plane. For rectangular cells,
special basis functions are built with the same properties
of the ones for triangles. ~w4

k has only the component
orthogonal to edge k and its magnitude linearly decrease
from edge k to the opposite one. The analytic expression
in the local (u, v, w) coordinate system is,

~w4
1(u, v) =

v − l2
l1l2

v̂

~w4
2(u, v) =

u

l1l2
û,

~w4
3(u, v) =

v

l1l2
v̂,

~w4
4(u, v) =

u− l1
l1l2

û.

An example of a vector plot is reported in Fig. 4(b).
It is easy to prove the continuity of the normal component
of ~w also for common edges shared by rectangles and
triangles.

These basis functions have the property of being
affine with respect to the u, v coordinates. This fact allows
the possibility of using analytical formulas to solve the
surface integrals described in the Section IV(b).

The surface charge density is expanded in terms
of piecewise constant functions on each triangu-
lar/rectangular cell.

B. Partial Element Calculation
The parameter extraction can be done by following

the same rationale of the original PEEC formulation, i.e.,
testing MPIE equation (1) with the same basis function
used to expand current and charge densities. An equiva-
lent approach is here proposed, by making reference to
energetic considerations.
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(a) Triangle of vertices (0, 0), (3, 0), (1, 2)
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(b) Rectangle of vertices (0, 0), (3, 0),
(3, 2), (0, 2)

Fig. 4. Vector plot of facet element ~w1 over (a) triangles
and (b) rectangles.

1. Extraction of resistances: The Joule’s power losses
in the kth cell are,

Pk =
∫

Ωk

J2
k

σ
dΩk

=
1
δ2
kσ

∫
Ωk

( NF∑
n=1

ikn ~wkn
)
·
( NF∑
m=1

ikm ~wkm
)
dΩk.

When only surface approximations are taken into
account, the volume integral can be rearranged into a
surface one,

Pk =
1
δkσ

∫
Σk

( NF∑
n=1

ikn ~wkn
)
·
( NF∑
m=1

ikm ~wkm
)
dΣk.

The power related to the current flowing through the
generic αth dual face of cell k is,

Pkα = ikα

NF∑
m=1

ikm
δkσ

∫
Σk

~wkα · ~wkmdΣk = ikαukα

where

ukα =
NF∑
m=1

ikm
δkσ

∫
Σk

~wkα · ~wkmdΣk

=
NF∑
m=1

Rkmikm

Rkm =
1
δkσ

∫
Σk

~wkα · ~wkmdΣk.

The voltage drop over half primal edge α depends
on currents through all dual faces of cell k.
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2. Extraction of partial inductances: Resorting to
magnetic vector potential defined in equation (2), the
magnetic energy associated to kth cell is,

Wk =
1
2

∫
Ωk

~Jk · ~AdΩk

=
1
2
µ0

4π

∫
Ωk

~Jk ·
∫

Ωh

NṼ∑
h=1

~Jh
|~r − ~r′|

dΩhdΩk

where NṼ is the number of dual volumes. By using the
expansion equation (4) and extracting only the magnetic
coupling between the current α of the kth cell, and current
β of cell h, one has,

Wkα,hβ =
1
2
µ0

4π

∫
Ωk

ikα ~wkα
δk

·
∫

Ωh

ihβ ~whβ
δh |~r − ~r′|

dΩhdΩk.

Finally, when considering surface complex of cells
only, the partial inductance is,

Wkα,hβ =
1
2
Lkα,hβikαikβ

Lkα,hβ =
µ0

4π

∫
Σk

~wkα ·
∫

Σh

~whβ
|~r − ~r′|

dΣhdΣk. (5)

3. Extraction of coefficients of potential: Making
reference to equation (3), the electric energy related to
the kth cell is,

Wk =
1
2

∫
Ωk

ρkϕdΩk

=
1
2

1
4πε0

∫
Ωk

ρk

NṼ∑
h=1

∫
Ωh

ρh
|~r − ~r′|

dΩhdΩk.

With an approach similar to the one used for the
extraction of partial inductances, it is possible to evaluate
the electric energy due to the mutual coupling between
the global charge qk in cell k and qh in cell h,

Wk,h =
1
2
pk,hqkqh

where

pk,h =
1

4πε0ΣkΣh

∫
Σk

∫
Σh

1
|~r − ~r′|

dΣhdΣk. (6)

C. Equivalent Circuit
Figure 5 shows the resulting two terminal component

obtained by assembling all the previous contributions,
and it is representative of the basic topological structure
primal edge/dual face presented in Fig. 1(b). The unstruc-
tured PEEC two terminal components can be assembled to
obtain the MNA matrix to be solved by a general purpose
SPICE-like network simulator. With respect to standard
PEEC model, the use of unstructured meshes introduces
a local resistive mutual coupling. The use of dependent
current sources allows to deal with this problem without
increasing significantly the complexity of the circuit.

Figure 6 outlines the sequence of necessary steps for
the application of dual-PEEC methodology to the solution
of a full Maxwell problem. It is worth noting that the
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Fig. 5. Elementary branch of PEEC model.
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Fig. 6. Solver structure.

added complexity of the method due to the generation of
the dual complex and the definition of basis function is
negligible with respect to standard technique.

D. Remarks
Equations (5) and (6) present a double surface in-

tegral, having the Green’s function as kernel (in some
cases multiplied by an affine combination of the (u, v)
coordinates). To speed up the effort of the partial element
computation, the inner integrals of equations (5) and (6)
are solved by analytical formulas reported in [11, 12]. The
outer integral is solved by using adaptive Gauss-Kronrod
quadrature rule. The number of quadrature points is
automatically chosen depending on the distance between
cells: the larger the distance, the smaller the number of
points needed to reach the convergence of the quadrature
rule. Moreover, the computational time for the evaluation
of inductance and coefficient of potential matrices can
be reduced by considering that these matrices must be
symmetric.

The standard PEEC formulation can be found as a
particular case of the dual formulation when both charge
and current densities are expanded in terms of piecewise
constant pulse functions.

The resulting dual-PEEC circuit is similar to the
standard PEEC model, with the exception of a local
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(a) Triangular mesh

(b) Triangular/ quadrilateral mesh

Fig. 7. Loop antenna test case: (a) triangular discretiza-
tion used as reference, (b) mixed triangular/quadrilateral
discretization available with dual-PEEC modeling.

resistive coupling due to the use of unstructured meshes.
The use of current controlled voltage sources allows to
deal with this problem with a negligible computational
effort (see Fig. 5) [13].

In frequency domain the inclusion of retardation is
straightforward and makes PEEC equivalent to a full
wave solution of Maxwell’s equations. It can be done
by multiplying the non retarded mutual inductances and
coefficients of potential by exp(−jωτhk), where τhk is
the delay time between the center coordinates of primal
edges and dual volumes, respectively.

V. EXAMPLES

A. Model Validation
The dual-PEEC is first used to solve a benchmark

loop antenna structure with known solution, already dis-
cussed in literature [14, 15]. Figure 7 shows the meshes
adopted for the comparison: the structure of Fig. 7(a) is
discretize by triangles and is solved by a FEM technique,
whereas the mixed discretization of Fig. 7(b) is solved by
the proposed procedure. Figure 8 compares the magnitude
and phase of the input impedance evaluated in a full-wave
regime. The results show a satisfactory agreement with
respect to the literature ones.
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Fig. 8. Comparison of input impedance evaluation: (a)
magnitude, (b) phase.
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Fig. 9. Spiral inductor test case: input impedance.

B. Spiral Inductor

The dual-PEEC technique is then used to solve the a
surface metallic spiral inductor above a (finite) ground
plane, ended by a lumped 100 Ω resistor. The input
impedance (real and imaginary part) is reported in Fig. 9.
Three different meshes are compared in Table 2 with
respect to their geometrical parameters and computational
time (in seconds on a Intel Centrino 1.5 GHz). The
first mesh Fig. 10(a) is made by unstructured triangles
(Mesh 1), the second one Fig. 10(b) with regular triangles
(Mesh 2), the last one Fig. 10(c) with mixed triangles and
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100 Ω

(a) Mesh 1

100 Ω

(b) Mesh 2

100 Ω

(c) Mesh 3

Fig. 10. Spiral inductor test case: (a) unstructured
triangular mesh, (b) regular triangular mesh, (c) mixed
triangular/rectangular mesh.

rectangles (Mesh 3). The three meshes share the same
average edge length.

While no significant differences are observed in the
values of impedance, the possibility of using together both
structured and unstructured complexes of cells increases
the computational efficiency of the method. In fact, given
the maximum size of cell’s edge (related to the shortest
wavelength), the parameter extraction over rectangular
dual is faster than over triangles and also the number of
unknowns is lower, as shown in Table 2.

VI. CONCLUSIONS

In this paper the generalization of PEEC modeling
under the framework of dual discretization is presented.

Table 2. Comparison of complexity of three meshes in
Fig. 10. In brackets are the numbers of non-floating
edges. Computational times are in seconds. The solution
time is intended for one frequency point.

Mesh 1 Mesh 2 Mesh 3

G
eo

m
et

ry nodes 757 646 646
faces 1222 900 539

edges
1977 1502 1141

(1689) (1198) (837)

Ti
m

e inductance 2995 768 189
coeff. pot. 884 219 68
solution 343 127 37

total time 4222 1114 294

Relations of duality are exploited for the exact assignment
of electromagnetic quantities to spatial elements. In this
way it is possible to extend standard PEEC to unstructured
and mixed structured/unstructured complexes of cells. The
proposed technique, named dual-PEEC has proved to
be computationally efficient because triangular cells are
used only where necessary (e.g. for curved or slanting
conductors). The additional computational effort due to
mutual resistances is negligible and can be easily handled
by adding a proper term in the current controlled voltage
source. Finally, dual-PEEC formulation can be improved
by using the same “tricks” already tested for standard
PEEC (fast multipole method, wavelet transform, model
order reduction, . . . ).
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Abstract—A new method of choosing the regularization
parameter, originally developed for a general class of
discrete ill-posed problems, is investigated for
electromagnetic inverse scattering problems that are
formulated using a penalty method. This so-called
normalized cumulative periodogram (NCP) parameter-
choice method uses more information available in the
residual vector, as opposed to just its norm, and attempts
to choose the largest regularization parameter that makes
the residual resemble white noise. This is done by
calculating the NCP of the residual for each choice of the
regularization parameter, starting from large values and
stopping at the first parameter which puts the NCP inside
the Kolmogorov-Smirnov limits. The main advantage of
this method, as compared, for example, to the L-curve
and Generalized Cross-Validation (GCV) techniques, is
that it is computationally inexpensive and therefore
makes it an appropriate technique for large-scale
problems arising in inverse imaging. In this paper, we
apply this technique to the general-form Tikhonov-
regularized functional arising in the 2-D/TM inverse
electromagnetic problem, which is formulated via an
integral equation and solved using the Born Iterative
Method (BIM).

Keywords; Electromagnetic inverse scattering, general-
form Tikhonov regularization, normalized cumulative
periodogram, Born iterative method.

I. INTRODUCTION

It is well-known that the inverse scattering problem
is ill-posed; the solution to the mathematical problem is
not unique and does not depend continuously on the
measured data. Therefore, we usually attempt to find a
solution to the ill-posed operator by adding some
constraints and additional information to the system.
Three general classes of handling an ill-posed system of
equations are the penalty methods, various projection
methods, and hybrid combinations of these (see [1, 2]).
The Tikhonov method is the best-known penalty method

approach to regularizing an ill-posed system of
equations. The main idea behind the standard-form
Tikhonov regularization is that a regularized solution
with a small norm and sufficiently small residual norm
can be considered a good approximation to the desired
unknown solution to the ill-posed system. The second
approach, i.e., projection methods, try to project the
problem onto a subspace with a good basis for the
solution. The most famous projection method is the so-
called truncated singular value decomposition (TSVD)
[3], but usually projection is achieved using iterative
methods such as the conjugate gradient method,
GMRES, or other Krylov subspace methods [4]. The last
class of approaches are the hybrid methods [5], which are
based on regularizing the projected problem. This is
done because quite often the projection approach, which
casts the problem in a smaller subspace, does not
regularize the problem sufficiently.

The regularization in each of these methods usually
requires the computationally expensive step of choosing
an optimum regularization parameter. This is because the
resulting solution can be very sensitive to the choice of
regularization parameter. In the Tikhonov method, the
regularization parameter controls the weight of the
penalty term, while in the projection methods, the
dimension of the subspace is considered as the
regularization parameter, and therefore in the hybrid
methods we need two regularization parameters: one for
the dimension of the subspace and the other for
regularizing the projected problem. Many regularization
parameter-choice methods have been proposed in the
literature, for example, the discrepancy principle,
Generalized Cross-Validation (GCV), and the L-curve
have been widely used. The discrepancy principle [6]
uses the idea that the norm of the residual vector should
not be smaller than the norm of the noise in the measured
data, but is difficult to apply to electromagnetic inverse
problems. Generalized cross-validation [7] is a statistical
tool for choosing the regularization parameter by
minimizing a specialized functional and does not require
any knowledge about the noise variance in the data. The
other major parameter-choice method is the L-curve
1054-4887 © 2008 ACES
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method which tries to balance the (semi) norm of the
solution and the corresponding residual [8] by choosing
the regularization parameter that puts one on the corner
of the L-curve. All of the aforementioned parameter-
choice methods are based on the norm of the residual
vector. They are also computationally expensive for
inverse methods, such as the Born Iterative Method
(BIM), where the optimal regularization parameter must
be chosen from an unknown wide range of possible
values at each iteration.

In this paper, we use a new parameter-choice
method for solving the inverse scattering problem which
is based on the Normalized Cumulative Periodogram
(NCP) of the residual vector, as opposed to just using the
norm of the residual; more of the available information is
used. This approach is called the NCP parameter-choice
method and was recently introduced by Hansen et. al.
[9]. The underlying idea of this method can be explained
as follows: we can model the measured data, contained
in a vector as the sum of a signal component and a white
noise component but, due to the smoothing effect of the
scattering operator, the power spectrum of the signal
component will be dominated by low frequencies
whereas the power spectrum of the white noise
component will have the same expectation at all
frequencies. Therefore, the spectral behavior of the
signal component is different from the spectral behavior
of the white noise and this difference can be used to find
a good regularization parameter for our ill-posed
problems [9]. As presented in this paper, this algorithm
can be used when the residual vector of the discrete ill-
posed system of equations looks statistically more like
white noise as we decrease the regularization parameter.
An extension of this inversion method to get around this
restriction has been developed (the details are provided
in [10]).

II. FORMULATION OF THE PROBLEM

The nonlinear integral equation that encapsulates
the 2-D time-harmonic, scalar inverse scattering problem
for transverse magnetic (TM) fields is written as

(1)

where  represents the observation point
in the Cartesian coordinate system, 
represents the wavevector, the wavenumber  is related
to the wavevector by .  is the z-
component of the scattered electric field defined as the
difference between the total field and the incident field.
In  equ a t ion  (1 ) ,  fo r  a  non-magn e t i c  med i a ,

 is the contrast profile which must be
recovered. The two-dimensional free-space Green’s
function, assuming an  time dependence, is given
as,

(2)

where  is the zeroth-order Hankel function of
the first kind.

For the results given in this paper, we assume that
data collection is done by a set of receivers which are
located on a circle around the object and that the object
is illuminated by TM plane-waves impinging on the
object from different incidence angles. The geometrical
configuration is the same as that described in [11]. For
obtaining a solution for the contrast in equation (1), we
use the Born iterative method [11]. This method
proceeds by first using the Born approximation [12] to
linearize the nonlinear integral equation which is then
solved for the unknown contrast using an inverse solver
(below we describe our inverse solver that is based on the
general-form Tikhonov regularization in conjunction
with the NCP parameter-choice method). The total-field
inside the imaging domain, corresponding to this
contrast, is then computed using a moment-method
forward solver (we use Richmond’s method [13]). The
newly updated total-field is then used in the subsequent
iteration for linearizing the integral equation and the
inverse solver is again used for obtaining a new
approximation to the contrast. This procedure continues
until a termination condition is satisfied: when the
change in the relative norm of the solution is less than a
specified value.

III. THE GENERAL-FORM TIKHONOV 
REGULARIZATION INVERSE SOLVER

After discretizing the linearized integral equation,
we obtain a system of linear equations , where

,  and  is to be found. The matrix
 is a discrete representation of the linearized kernel,

while  and  are column-wise stacked representations
of the 2-D discrete contrast function, , and
measured scattered field, , respectively. The
pseudo-inverse of  is unbounded due to ill-posedness
of the inverse problem. Therefore, for solving this matrix
equat ion ,  we  use  the  genera l - form Tikhonov
regularization method, which effectively produces a
regularized pseudo-inverse operator that is bounded, in
conjunction with a parameter-choice method based on
NCP that keeps the regularized solution as close as
possible to the exact solution. The general-form
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Tikhonov regularization method can be represented
concisely as producing a solution  given as,

(3)

where  is the regularization parameter, and 
is called the regularization matrix which can be any
matrix whose nullspace does not intersect with the
nullspace of  [14]. The vector  is generally taken as
a guess of the solution, and in our case we take it to be
the most recent value of the contrast (at the previous
iteration). We take  to be either the identity matrix or
the Laplacian operator with zero boundary conditions for
the unknown contrast profile. In these two cases, the
nullspace of  is trivial and will not intersect with the
numerical nullspace of the ill-posed operator, making the
solution to equation (3) unique.

IV. THE NCP PARAMETER-CHOICE 
METHOD

Consider the measured data, i.e., the scattered
electric field, as a matrix  where  denotes
the number of different angles at which the TM plane
wave illuminates the object and  denotes the angle at
which the qth receiver is located (on a circle around the
object). As mentioned previously, the measured values
in the matrix  consist of signal and noise components
and therefore this matrix can be represented as a signal
component matrix  and a white noise component
matrix : .

For simplicity of discussion assume that in equation
(3),  where  is the identity matrix and ,
then the residual vector of Tikhonov solution can be
written as,

(4)

where  and  is the matrix of
left singular vectors, , of the matrix , with each 
corresponding to , a singular value. The vectors  and

 are obtained by stacking the columns of  and  into
a vector of length . For the case where , the
singular values will be substituted by generalized
singular values of the pair  and  will be the
orthonormal matrix in the decomposition of  using the
generalized singular value decomposition of 
[15].

The diagonal components  look like
a high-pass filter when plotted against the index ,
because the singular values decrease rapidly for ill-posed

problems. The regularization parameter  determines
the “cut-off” index k of this highpass characteristic; the
smaller the value of , the larger the cut-off index. This
means that as we decrease the regularization parameter

, the first term in the residual,  will have little
contribution from these initial vectors since it can be
written as,

. (5)

It has been argued by Hansen et al. [9] that  has
few significant (i.e., non-zero) components in the
S ingu la r  Va lue  De compos i t i on  (SVD)  bas i s
corresponding to the first few left singular vectors of 
and the remaining components are almost zero. That is
why the smaller the  (i.e., the larger the cut-off index),
the less contribution from the first term in the residual
vector (in equation (4)). Thus, using a cut-off index that
suppresses all of the significant components of  in the
residual means that we have used as much information as
possible in the solution, and choosing the smallest such
index ensures a stable solution (giving an acceptable
trade-off between the regularization and perturbation
errors). The regularization parameter corresponding to
this cut-off index can be considered as the optimum
regularization parameter because it singles out the most
stable solution whose residual does not have any
important component of . The residual vector for this
optimum regularization parameter will be dominated by

, but  behaves statistically like white
noise for ill-posed problems because,

(6)

where  is the standard deviation of the additive white
noise and  is the identity matrix with the first 
diagonal elements set to zero. For ill-posed problems k is
very small and this covariance will be very similar to the
covariance of white noise. Therefore, the optimum
regularization parameter can be considered as the largest

 which makes the residual vector behaves statistically
like white noise.

The metric that is used to see if the residual “looks”
like white noise is the NCP of the residual [16]. So the
regularization procedure that we follow is to start with a
large , which is usually less than one, in which case the
NCP of the residual vector will look like that of the
data—meaning that we have a lot of the data information
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left in the residual. We then decrease  until the NCP of
the residual first becomes like that of white noise (i.e., a
curve between the Kolmogorov-Smirnov (KS) limits for
white noise, which are bounds around a straight line).
Once this happens, we can be sure that all the important
information available in  has been used in calculating

. Notice that if we decrease  further, the residual is
still white noise (or slightly highpass filtered white
noise) but the solution is more likely to be unstable due
to perturbation errors.

One note regarding our use of the NCP parameter-
choice method is that NCP is usually defined for real
vectors—because it is generally used as a statistical time-
series analysis tool [16]—but here we use the same
definition for the NCP of a complex vector. For finding
the NCP of the vector , we first find the power
spectrum of this vector as,

(7)

where  denotes the Hadamard product (i.e., element-
wise multiplication) and  denotes complex conjugate.
The components of the NCP vector, , can be
calculated as

, . (8)

In our case, the Kolmogorov-Smirnov (KS) limit
lines as a function of index  are given as 
where, for a significance level of 5 percent, we set

.

As was mentioned above, , and consequently ,
have only a few components that are significant in the
SVD basis of the ill-posed operator. Due to the similarity
of the SVD basis and the Fourier basis [9],  will also
have only a few significant components in the Fourier
basis. At the index location where these significant
components occur there will also occur step changes in
the NCP of . This means that the NCP of  will look
like a staircase plot where the step-locations correspond
to the location of the significant components of  in its
Fourier basis. In [9], a permutation matrix, , has been
introduced to reorder the elements of the power spectrum
of  such that all the significant information inside the
NCP of , i.e., the steps in the original NCP plot, are
moved to the first elements of the NCP vector. We’ve
observed that using this permutation matrix has no effect
on choosing the optimum regularization parameter.

V. NUMERICAL RESULTS

We present the results for two cases: a sinusoidal
contrast with an amplitude of  and also two
spatially separated sinusoidal contrasts of amplitudes

 and . Figures 1 and 2 show the true contrast
function for the first and second test cases respectively.
The synthetic data was produced by an MoM solver with
triangular meshes — 3448 meshes over the imaging
domain — and then white noise was added such that the
signal to noise ratio  was 8 in the first
case and 2 in the second case. In the different iterations
of the BIM, the forward solution was obtained by
Richmond’s method [13] using a pulse basis over the
imaging domain (the number of pulses over the imaging
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domain is ). The resulting reconstructions for
both test cases using the identity and the Laplacian
operator as the regularization matrices are shown in
Figures 3 to 6. It seems that choosing  as the Laplacian
operator with zero boundary conditions allows the
reconstruction of the peak contrast of both test cases
better than setting  to the identity matrix. On the other
hand, using the identity operator as the regularization
matrix makes the computations faster because we can
use the multishift conjugate gradient least squares
(CGLS) method for solving equation (3) [17]. In Fig. 7,
the NCP of the synthetic data, , is shown. The NCP of
some residual vectors corresponding to six different
regularization parameters are shown for the Born
approximation of the first test case in Fig. 8. As seen in
Fig. 8, for large values of  the NCP of the residual
looks like the NCP of , showing that we have not used

all of the available information in reconstructing the
profile. As we decrease the , we include less
information in the residual and more for the solution. The
first NCP which fits the Kolmogorov-Smirnov limits is
the NCP corresponding to . As a comparison,
we’ve solved these two problems using the L-curve
parameter-choice method and it seems that L-curve
chooses a smaller  regularizat ion parameter  in
comparison with the NCP method. For example, in the
Born approximation of the first test case, the L-curve
chooses  as the optimum regularization
parameter (as compared to the NCP’s ). This
simply reflects the fact that there is no unique solution to
the inverse problem. The L-curve for the Born
approximation of the first case is shown in Fig. 9 using
100 different .

60 60×

 0.1
 0.05

0
0.05

0.1

 0.1
 0.05

0
0.05

0.1
0

0.5

1

1.5

2

2.5

x

The Real Part of the True Contrast (Second Test Case)

y
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 0.1
 0.05

0
0.05

0.1

 0.1
 0.05

0
0.05

0.1
0

0.2

0.4

0.6

0.8

1

x

The Imaginary Part of the True Contrast (Second Test Case)

y
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2.  True contrast function for the second test case
(a) real part (b) imaginary part.

(a)

(b)

L

L

b

λ
b

 0.1
 0.05

0
0.05

0.1

 0.1
 0.05

0
0.05

0.1
0

0.5

1

1.5

2

2.5

x

The Real Part of the Reconstructed Contrast Using Identity Regularizer
(First Test Case) 

y
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 0.1
 0.05

0
0.05

0.1

 0.1
 0.05

0
0.05

0.1
0

0.2

0.4

0.6

0.8

1

x

The Imaginary Part of the Reconstructed Contrast Using Identity Regularizer
(First Test Case)

y
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3.  Reconstructed contrast of the first test case using
the identity regularizer ( ) (a) real part (b)
imaginary part.

SNR 8=

(a)

(b)

λ

λ 0.0039=

λ 0.0028=
λ 0.0039=

λ's



212MOJABI, LOVETRI: INVESTIGATION OF NCP PARAMETER-CHOICE METHOD USING BIM
VI. CONCLUSION

We’ve shown that the NCP parameter-choice
method can be very useful in large-scale inverse
problems because it is based on the Fast Fourier
Transform (FFT), and the SVD of the matrix does not
need to be computed. The main advantage of the NCP
method is that more than just the norm of the residual is
used to determine the optimum regularization parameter.
Also, the implementation of the NCP algorithm is much
easier than the L-curve and GCV parameter-choice
methods because finding the corner of the L-curve and
the minimum of the GCV functional is difficult. We’ve
also found that using the Laplacian operator as the
regularization matrix seems to result in a better
reconstruction compared to the identity operator;

although, using the identity operator as the regularization
matrix makes the computations faster because this
allows the use of the multishift CGLS algorithm for
solving equation (3).

The NCP method, as presented here, is only
applicable when the residual tends to behave like white
noise as we decrease the regularization parameter. This
requirement can be checked by finding the Tikhonov
solution for a very small regularization parameter, say

, and checking the NCP of the corresponding
residual. If it satisfies the NCP criteria, then this method
should work well. On the other hand, if it does not satisfy
the NCP criteria for such a small , then the method
must  be modified.  The detai ls  of  the required
modifications are provided in [10].
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Abstract − In this paper, coupling characteristics of dual-
core photonic crystal fiber (PCF) are studied extensively 
using vector finite element method, which has the 
potential to realize wavelength selective MUX-DEMUX 
for wavelength division multiplexing (WDM) 
application. Dispersion characteristic is also reported and 
demonstrates the wavelength region where it can support 
short duration soliton like pulses. 
 
Keyword: Photonic Crystal, Waveguide, and FEM. 
 

I. INTRODUCTION 
 

Photonic crystal fiber (PCF) has recently attracted a 
considerable amount of attention, because of their unique 
properties that are not present in conventional optical 
fibers. A PCF has a central region of pure silica (core) 
surrounded by air holes. It is a regular morphological 
microstructure incorporated into the material to radically 
alter its optical properties [1]. Here a wavelength 
dependant effective volume average index difference 
between the defect regions will form the core, and the 
surrounding region, which contains air holes will be 
acting as the cladding. This effective-index guidance does 
not depend on having a periodic array of holes. Even 
other arrangements could serve a similar function [1, 2]. 
Index-guiding PCF guides light by total internal 
reflection between a solid core and a cladding region with 
multiple air-holes [1]. On the other hand, a perfectly 
periodic structure exhibiting a photonic band gap (PBG) 
effect at the operating wavelength to guide light in a low 
index core-region [1]. In this paper, we will focus on 
index-guiding PCFs, also called holey fibers (HFs). 

HF possess numerous unusual properties such as 
wide single-mode wavelength, bend-loss edge at short 
wavelength, controlled effective-core-area at single-mode 
region, and anomalous group-velocity dispersion at 
visible and near-infrared wavelengths [2, 3]. It has been 
shown that the PCF with two adjacent defect area (served 
as two core), can be used as an optical fiber coupler [4-6]. 
These PCF couplers have the possibility of realizing a 
multiplexer-demultiplexer (MUX-DEMUX). In this 
paper, wavelength dependent coupling characteristics of 
dual-core PCF couplers are evaluated by using a vector 
finite element method (FEM) [7, 8]. This gives 

understanding of the PCF based MUX-DEMUX for 
wavelength selective application such as WDM. 

 
II. FINITE ELEMENT FORMULATION FOR 

GUIDED MODE 
 

The vector finite element method is used to compute 
the mode spectrum of an electromagnetic waveguide with 
arbitrary cross section [9, 10]. It eliminates the 
disadvantages of the scalar finite element approach of 
having undesired spurious modes or non-physical 
solutions and is characterized by easy implementation of 
boundary conditions at material interfaces [9].  Recent 
study shows that some double curl finite element 
formulations are not immune to spurious modes even 
though they are not observed frequently. It is due to the 
fact that the initial conditions (forcing term) 
corresponding to the physical situation eliminates 
frequent observation of spurious modes [9,10]. We 
discretized the continuous spectrum by enclosing the 
structure with an electrical wall as shown in Fig. 1. We 
have studied dual core PCF and evaluate coupling 
characteristics using vector FEM. Figure 1 shows the dual 
core PCF geometry. Some dimension of PCF geometry 
such as air hole diameter d, pitch between two adjacent 
holes Λ and core separation C were adjusted to obtain the 
desired values for coupling length and dispersion.  

 

Electric Boundary 

d
Λ

c 
 

 
Fig. 1. Arbitrary shaped waveguide with electrical wall. 

 
The vector finite element formulation can be 

illustrated by using either the E or H field; here we 
explain the case for the E field, which is the same for the 
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H field. The vector wave equation for the E field is given 
by,   
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where µr and εr  are, respectively, the permeability and 
permittivity of the material in the waveguide. k0 is the 
free space wave number. The transverse and longitudinal 
components are separated and are written as, 
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Since the vector Helmholtz equation is divided into 

two parts, equations (2) and (3), vector-based tangential 
edge elements, shown in Fig. 2 (a), can be used to 
approximate the transverse fields, and nodal-based 
elements, shown in Fig. 2 (b), can be used to approximate 
the longitudinal component. 

 

 
 
Fig. 2. Configurations of (a) tangential edge elements and 
(b) node elements. 

 
For a single triangular element shown in Fig. 2, the 

transverse electric field can be expressed as a 
superposition of edge elements. The edge elements 
permit a constant tangential component of the basis 
function along one triangular edge while simultaneously 
allowing a zero tangential component along the other two 
edges [9]. Three such functions overlapping each 
triangular element provide the complete expansion, that 
is, 
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where m indicates the m-th edge of the triangle and Wtm 
is the edge element for edge m given by,    
                                

             ( )itjjtitmtm L αααα ∇−∇=W                 (5) 

Ltm is the length of edge m connecting nodes i and j and αi 
is the first-order shape function associated with nodes 1, 
2, and 3. The longitudinal component is written as,   
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After simple manipulations the integral equation for each 
elements can be written in matrix form as, 
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These element matrices are assembled over all the 

triangular elements in the cross section of the structure to 
obtain a global eigenvalue equation [9, 10]. Solving the 
above equation yields the eigenvalues or the longitudinal 
propagation constants kz, from which the effective 
refractive index ne is obtained by using the relation, 
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III. CHARACTERISTICS OF DUAL-CORE PCF  

 
In brief signal power is exchanged between the 

coupled cores due to weak overlap of adjacent electric 
field. Here light confined into one of the PCF core moves 
to the other waveguide after propagating a distance 
known as coupling length Lc due to the different 
propagation constants of the even and odd modes of the 
coupler [11]. Coupling length Lc is determined by the 
following equation, 
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π
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Here βe is the dispersion coefficient for even mode; 

βo is the dispersion coefficient for odd mode. Figure 3 
shows the coupling length Lc with the hole pitch for d/Λ 
=0.7. It is shown from numerical results that it is possible 
to realize significantly shorter MUX-DEMUX PCFs, 
compared to conventional optical fiber couplers. In the 
conventional fiber coupler with core spacing and core 
radius ratio of 3 we found that the coupling length of is 
1cm. If the spacing between the cores increases then the 
coupling length will also increase [12]. On the other hand 
PCF coupler with d/Λ =0.7 has coupling length of few 
mm (at 1.50 um it is between 2-4 mm). The advantage of 
having short coupling length is that the device becomes 
more miniaturized. 

Figure 4 shows the wavelength dependency of Lc. It 
is observed that the coupling length decreases sharply at 
shorter wavelength up to 0.5 um then the slope decreases 
up to 2 um then it get almost constant at higher 
wavelength which comparable to the pitch (in this case 
2.5 um). This is because of the sharp change of material 
dispersion of silica glass at the short wavelength 
contributes in a higher extent in evaluation of even and 
odd wave number. The difference between these two 
wave numbers varies rapidly at short wavelength but at 
higher wavelength this remains fairly constant.  
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Fig. 3. Coupling lengths of PCF couplers with d/Λ =0.7 
at 1500 nm. 
 

It is also possible to significantly change the 
coupling length by altering the cladding geometry as well 
as the core separation. For the similar dual core PCF with 
d=0.8 um and d/Λ=0.4, as shown in Fig. 5, Lc shows 
similar characteristics with the wavelength but this time it 
is longer than the one of the PCF with d/Λ=0.7 shown in 
Fig. 4.  For a constant d/Λ ratio we can vary Lc by 

varying d. Figure 6 shows that the Lc can be increased by 
increasing d.  
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Fig. 4. Coupling lengths of PCF couplers (d=0.8 um and 
d/Λ =0.7). 
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Fig. 5. Coupling length of dual core PCF coupler 
(d=0.8um and d/Λ=0.4). 
 

 
 

Fig. 6. Coupling length comparison for dual core PCF 
coupler (C=4 Λ, d/Λ=0.4). 
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IV. WAVEGUIDE DISPERSION 
 
When electromagnetic wave interacts with the bound 

electron of the dielectric materials the medium response 
is frequency dependant and this manifests itself through 
the change of refractive index n(ω). It is due to the 
characteristic resonance frequency at which the bound 
electron oscillation of the dielectric medium absorbs the 
electromagnetic radiation [2, 13]. It is the dispersion of 
optical waveguide which is the most critical for short 
pulse propagation because the different spectral 
component associated with the pulse travels at different 
speed c/n(ω). The parameter D which is commonly used 
in optical fiber literature is called the group velocity 
dispersion and can be expressed as, 

  

22
2)1( β
λ
π

λ
β c

d
d

D −==                        (15) 

 
were β1 and β2 are the first and second derivative of wave 
number β with respect to ω . Fig 6 shows the dispersion 
profile for the same coupler. There is a sign change 
around 1.0 µm. These wavelength, when the group 
velocity dispersion shifts from normal (D is +ve) to 
anomalous (D is -ve), is called the zero dispersion 
wavelength and treated as a very important design 
parameter for device supporting short pulse propagation. 
Soliton pulse propagation through this optical waveguide 
is dependant on the delicate balance between nonlinearity 
and the dispersion. Nonlinear phase modulation tries to 
compress the pulses and the dispersion causes pulse 
broadening. If the power and dispersion is properly 
balanced then input pulse can propagates without any 
distortion. In order to support soliton pulses the 
dispersion has to be in the anomalous region [13, 14]. 
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Fig. 7. Dispersion characteristics of dual core PCF (d=0.8 
and d/Λ =0.7). 

 
From the dispersion results shown in Fig. 7 we found 

that the wavelengths beyond 1.0 um have anomalous 
dispersion. At those wavelengths the waveguide is able to 

support soliton pulses. Therefore Lc along with the 
dispersion parameters determines the waveform while it 
propagates. 

V. CONCLUSION 
 

We have numerically demonstrated the coupling and 
dispersion characteristics of dual core PCF which have a 
potential application in the wavelength selective system. 
With short coupling length compared to regular fiber 
coupler the device can be used as a MUX-DEMUX or 
power coupler in the WDM system. Dispersion profile 
demonstrates the wavelength region where it can support 
short duration soliton like pulses. 
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Abstract – A highly parallelizable numerical method
for time dependent high frequency acoustic scattering
problems involving realistic smart obstacles is proposed.
A scatterer becomes smart when hit by an incoming wave
reacts circulating on its boundary a pressure current to
pursue a given goal. A pressure current is a quantity
whose physical dimension is pressure divided by time. In
particular in this paper we consider obstacles that when
hit by an incoming acoustic wave try to generate a virtual
image of themselves in a location in space different from
their actual location. The virtual image of the obstacle
(i.e.: the ghost obstacle) is seen outside a given set con-
taining the obstacle and its virtual image in the apparent
location. We call this problem ghost obstacle scattering
problem. We model this acoustic scattering problem and
several other acoustic scattering problems concerning
other types of smart obstacles as optimal control problems
for the wave equation. Using the Pontryagin maximum
principle the first order optimality conditions associated
to these control problems are formulated. The numerical
method proposed to solve these optimality conditions is
a variation of the operator expansion method and reduces
the solution of the optimal control problem to the solution
of a sequence of systems of integral equations. These
systems of integral equations are solved using suitable
wavelet bases to represent the unknowns, the data and
the integral kernels. These wavelet bases are made of
piecewise polynomial functions and have the property
that the matrices that represent the integral operators on
these wavelet bases can be approximated satisfactorily
with very sparse matrices. This property of the wavelet
bases makes possible to approximate the optimal control
problems considered with linear systems of equations
with hundreds of thousands or millions of unknowns
and equations that can be stored and solved with afford-
able computing resources, that is it makes possible to
solve satisfactorily problems with realistic obstacles hit
by waves of small wavelength. We validate the method
proposed solving some test problems, these problems are
optimal control problems involving a “smart” simplified
version of the NASA space shuttle hit by incoming
waves with small wavelengths compared to its charac-
teristic dimension. We consider test problems with ratio
between the characteristic dimension of the obstacle and
the wavelength of the time harmonic component of the
incoming wave up to approximately sixty. The numer-

ical results obtained are very satisfactory. The website:
http://www.econ.univpm.it/recchioni/scattering/w16 con-
tains stereographic and virtual reality applications show-
ing some numerical experiments relative to the prob-
lems studied in this paper. A more general reference
to the work in acoustic and electromagnetic scattering
of the authors and of their coauthors is the website:
http://www.econ.univpm.it/recchioni/scattering.

Keywords: Acoustic obstacle scattering, smart obsta-
cles, open loop control, operator expansion method, and
wavelet expansion.

I. INTRODUCTION

In this paper we propose a highly performing parallel
numerical method to solve an acoustic time dependent
scattering problem involving a realistic smart obstacle.
The smart obstacle considered is an obstacle that when
hit by an incoming acoustic wave and reacts circulating
on its boundary a pressure current (i.e., a field that
is dimensionally pressure divided by time) in order to
generate a virtual image of a possibly different obstacle
(i.e., a ghost obstacle) in a location in space different
from its actual one. That is, this kind of smart obstacle
when hit by an incoming wave generates a scattered field
that, outside a suitable set containing the smart obstacle
and the ghost obstacle in the apparent location, resembles
to the field scattered in the same circumstances by the
ghost obstacle located in the apparent location that is
in a position in space different from the position of the
obstacle.

Let IR be the set of real numbers and IR 3 be the
three dimensional real Euclidean space, the acoustic time
dependent direct scattering problem involving the smart
obstacle that we want to solve can be stated as follows:

Given an incoming acoustic field propagating in
IR 3, an obstacle Ω ⊂ IR 3 non empty characterized by
an acoustic boundary impedance χ, a ghost obstacle
ΩG ⊂ IR 3 non empty characterized by an acoustic
boundary impedance χG such that Ω ∩ ΩG = ∅ and a
set Ωε ⊂ IR 3, such that Ω, ΩG ⊂ Ωε, find a pressure
current circulating on the boundary of Ω such that the
field scattered by Ω when hit by the incoming acoustic
field appears, outside Ωε, “as similar as possible” to the
field scattered in the same circumstances by ΩG.
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For simplicity in the numerical examples presented
in Section IV we limit our attention to the case when
ΩG is the set Ω translated in space and χ = χG is a
constant. We denote with ∂Ω, ∂ΩG the boundary of Ω
and ΩG respectively. This is the formulation of the ghost
obstacle scattering problem considered in the numerical
examples and it is a simplified version of a more general
formulation of the problem that is given in Section II.
Indeed, in the numerical examples we solve the ghost
obstacle scattering problem in this simplified formulation
since we consider problems that are already difficult
for other reasons. In fact we consider problems that
involve obstacles with complex geometry, that is realistic
obstacles, and incoming waves of small wavelengths.

We formulate the ghost obstacle scattering problem
as an optimal control problem for the wave equation
and, under suitable assumptions, applying the Pontryagin
maximum principle, we derive the first order neces-
sary optimality condition relative to the optimal control
problem considered. This condition is formulated as an
exterior value problem for two coupled wave equations.
Assuming that the incoming and the scattered fields and
some auxiliary variables can be represented as superpo-
sition of time harmonic waves, we reduce the solution
of this exterior problem to the solution of a set of
exterior problems for two coupled Helmholtz equations.
Finally using a perturbation expansion known as operator
expansion method (see for example [1, 2]) we reduce the
solution of this set of exterior problems for two coupled
Helmholtz equations to the solution of a set of systems
of first kind integral equations. This approach has been
used to solve several direct acoustic and electromagnetic
scattering problems involving several kinds of smart ob-
stacles (i.e., undetectable obstacles [2], masked obstacles
[3, 4, 5], ghost obstacles [6, 7]). Moreover some attempts
to solve inverse acoustic scattering problems involving
smart obstacles with ad hoc methods have been made with
promising results (i.e.: for furtive and masked obstacles
[8, 9] and for ghost obstacles [10, 11]).

A common feature of the work contained in the
papers mentioned previously is that the numerical meth-
ods proposed assume implicitly that the smart obstacles
considered must have simple geometries. In particular
they assume that their shape must be not too far from
being the shape of a sphere and that the incoming waves
used to illuminate the obstacles must be a superposition of
time harmonic waves with wavelengths not too small, let
us say approximately not smaller than the characteristic
length of the obstacles. These assumptions are due to
the following facts: the “special” surfaces used in the
development of the operator expansion method are chosen
to be surfaces of spheres and the set of coupled integral
equations coming from the first order optimality condition
is solved projecting the systems of integral equations on a
vector space generated by a finite subset of the spherical
harmonic functions (see [12], p. 77). The use of spherical
surfaces as “special” surfaces of the operator expansion

method and of the spherical harmonic functions as func-
tion basis to approximate the integral equations makes
the corresponding computational method very efficient.
If fact this method reduces the solution of the integral
equations to the solution of diagonal systems of linear
equations. However, it has some disadvantages, one of
them is that in practical computations only the first few
hundreds spherical harmonic functions can be used so that
only linear systems involving few hundreds equations and
unknowns can be considered. That is in the scattering
problems that can be solved satisfactorily using spherical
surfaces as “special” surfaces and the spherical harmonic
functions as function basis, the obstacles must have a
shape not too far from being the shape of a sphere and the
ratios between the characteristic length of the obstacles
and the wavelengths present in the Fourier decomposition
of the incoming field considered must be at most of a few
units.

Moreover, the first order necessary optimality con-
dition given in [6, 7] for the direct ghost scattering
problem is derived assuming that Ω and Ωε are star-like
obstacles with respect to the same point and that the set
Ωε is a “magnification” of the obstacle Ω itself. This
last assumption in [6, 7] is used to make an expansion
involving the surface ∂Ωε, boundary of Ωε, using as “base
point” the surface ∂Ω to get a set of integral equations on
∂Ω. These assumptions restrict the choice of the shape of
the smart obstacles and the choice of the distance between
the smart and the ghost obstacle that can be considered.
In fact, only when the distance between the smart and
the ghost obstacle is sufficiently small we have that the
expansion involving the surface ∂Ωε mentioned above is
convergent.

In this paper we overcome these restrictions giving
a new formulation of the first order necessary optimality
condition. In particular we remove the assumptions that
the set Ω and the set Ωε are starlike with respect to the
same point and that Ωε is a magnification of Ω. Moreover
we remove the assumptions that the “special” surfaces
of the operator expansion method are spherical surfaces
and that Ω is starlike. As a consequence are removed the
restrictions that the smart obstacles considered must have
a shape not too far from being the shape of a sphere
and that the wavelengths of the time harmonic waves
contained in the Fourier decomposition of the incoming
field are at least of the same order of magnitude of the
characteristic length of the obstacles. A first attempt of
removing the restrictions on the shape of the scatterer and
on the wavelengths of the time harmonic waves contained
in the incoming field in the case of smart obstacles that
pursue the goal of being undetectable has been made
in [13]. In particular in [13] the set of the coupled
integral equations coming from the first order necessary
optimality condition of the control problem associated to
the furtivity problem is derived and is solved discretizing
the integral equations using a wavelet basis introduced
in [10]. The use of this wavelet basis makes possible
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to solve with affordable computing resources scattering
problems involving realistic obstacles when the ratio
between the characteristic dimension of the obstacle
and the wavelength of the incoming wave goes up to
(approximately) sixty at the price of solving non diagonal
sparse linear systems having a condition number that
increases when the number of unknowns increases. These
sparse linear systems contain hundreds of thousands or
millions of unknowns and equations. The ghost scattering
problem considered in this paper is more difficult than
the furtivity problem studied in [13]. In fact it requires a
reformulation of the optimal control problem and the use
of wavelet bases with improved sparsification properties
able to approximate the integral operators involved
in the integral equations coming from the first order
necessary optimality condition with very sparse matrices.
Hence, in this paper, a new wavelet basis, introduced in
[14], is used to approximate the set of coupled integral
equations coming from the new formulation of the
first order optimality condition for the acoustic ghost
obstacle scattering problem. This new wavelet basis is
made of piecewise constant functions, and generalizes
the Haar’s basis. Furthermore, the computation of
the matrix elements of the matrices that approximate
the integral operators consists in the computation of
four dimensional integrals independent one from the
other. This type of computation is very well suited for
parallel computing or even for distributed computing.
The computation of these matrix elements is by far the
dominant part of the computation in the solution of
the ghost obstacle scattering problem when the integral
equations that translate the optimal control problem must
be approximated in high dimensional vector spaces.
Concluding we can say that we have developed an
efficient computational method that reduces the solution
of the direct ghost obstacle scattering problem involving
realistic obstacles and small wavelengths (see Section IV
where a simplified version of the NASA space shuttle is
considered as obstacle) to the solution of a set of sparse
linear systems of equations with hundreds of thousands
or millions of unknowns and equations that can be stored
and solved using affordable computing resources. The
computational method takes care of the ill-conditioning
of the sparse linear systems obtained solving them with
an iterative procedure that uses suitably chosen starting
points. Thank to the use of a parallel implementation
of the computational method based on FORTRAN 77
as programming language, on MPI as message passing
library, to the use of the SP5 IBM machine with 168
processors (144 processors dedicated to batch running) of
CASPUR (Roma, Italy) computing center and to the use
of stereographic and virtual reality animations to represent
the numerical results obtained, we can solve efficiently
very difficult scattering problems and we can represent
satisfactorily the results obtained. Some stereographic
and virtual reality applications relative to numerical
experiments on test problems can be found in the website

http://www.econ.univpm.it/recchioni/scattering/w16.
A more general reference to the work in
acoustic and electromagnetic scattering of the
authors and of their coauthors is the website:
http://wwww.econ.univpm.it/recchioni/scattering.

In Section II we formulate the time dependent ghost
obstacle scattering problem as an optimal control problem
for the wave equation and we derive the corresponding
first order optimality condition using the Pontryagin max-
imum principle (see [7]). In Section III, under suitable
assumptions, we reduce the first order optimality condi-
tion derived in Section II first to a set of time harmonic
problems for a system of two coupled Helmholtz equa-
tions and later to a set of systems of integral equations.
Moreover we describe the algorithm developed to solve
the systems of integral equations using a wavelet basis
introduced in [14]. Finally, in Section IV starting from
synthetic data the algorithm discussed in Section III is
used to solve numerically in some test cases the ghost
obstacle scattering problem.

II. THE TIME DEPENDENT GHOST
OBSTACLE DIRECT SCATTERING PROBLEM

Let IC be the set of complex numbers, for η ∈ IC
let |η|, η denote the modulus and the complex conjugate
of η respectively. Let x = (x, y, z)T ∈ IR 3 be a generic
vector where the superscript T means transposed, (·, ·)
be the Euclidean scalar product in IR 3 and ‖ · ‖ be the
corresponding Euclidean vector norm. In the following
with abuse of notation occasionally we will use the real
Euclidean scalar product of complex vectors.

Let us formulate the scattering problem that we want
to study. Let Ω ⊂ IR 3, ΩG ⊂ IR 3 be two bounded simply
connected open sets with locally Lipschitz boundaries ∂Ω,
∂ΩG, and let Ω and ΩG be their closures. Furthermore,
let Ω, ΩG be such that: Ω 6= ∅, ΩG 6= ∅ and Ω∩ΩG = ∅.
We denote with n(x) = (n1(x), n2(x), n3(x))T ∈ IR 3,
x ∈ ∂Ω, the outward unit normal vector to ∂Ω in x ∈ ∂Ω.
Since Ω has a locally Lipschitz boundary n(x), x ∈ ∂Ω,
exists almost everywhere (see [15] Lemma 2.42 p. 88);
similar statements hold for the outward unit normal vector
to ∂ΩG.

We assume that Ω and ΩG are characterized by con-
stant acoustic boundary impedances χ ≥ 0 and χG ≥ 0
respectively. The case χ = +∞ and/or χG = +∞ (i.e.:
the case of acoustically hard obstacles) can be treated with
simple modifications of the formulae that follow. We refer
to (Ω;χ) as to the obstacle, and to (ΩG;χG) as to the
ghost obstacle. Without loss of generality, we can assume
that the origin of the coordinate system lies in Ω.

We consider an acoustic incident wave ui(x, t),
(x, t) ∈ IR 3×IR , propagating in a homogeneous isotropic
medium in equilibrium, with no source terms present,
satisfying the wave equation in IR 3 × IR with wave
propagation velocity c > 0. We denote with us(x, t),
(x, t) ∈ (IR 3 \ Ω) × IR , and with usG(x, t), (x, t) ∈
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(IR 3 \ ΩG) × IR , the waves scattered, respectively, by
the obstacle (Ω;χ) and by the ghost obstacle (ΩG;χG)
when hit by ui(x, t), (x, t) ∈ IR 3 × IR .

The scattered acoustic field us(x, t), (x, t) ∈ (IR 3 \
Ω) × IR , when the obstacle Ω is not smart (i.e. is
an obstacle that does not react to the incident wave
circulating a pressure current on its boundary to pursue a
goal) is defined as the solution of the following exterior
problem for the wave equation (see [1]),

4us(x, t)− 1
c2
∂2us

∂t2
(x, t) = 0, (x, t) ∈ (IR 3 \ Ω)× IR

(1)
with the boundary condition (see [12] p. 66),

−∂u
s

∂t
(x, t)+cχ

∂us

∂n(x)
= g(x, t), (x, t) ∈ ∂Ω×IR (2)

where g(x, t) is given by,

g(x, t) =
∂ui

∂t
(x, t)− cχ ∂ui

∂n(x)
(x, t), (x, t) ∈ ∂Ω× IR

(3)
the condition at infinity,

us(x, t) = O(
1
r

), r → +∞, t ∈ IR (4)

and the radiation condition,

∂us

∂r
(x, t)+

1
c

∂us

∂t
(x, t) = o(

1
r

), r → +∞, t ∈ IR (5)

where r = ‖x‖, x ∈ IR 3, 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is
the Laplace operator and O(·) and o(·) are the Landau
symbols. We note that g(x, t), (x, t) ∈ ∂Ω×IR , is defined
almost everywhere, and that the boundary condition of
equation (2) can be adapted to deal with the limit case of
acoustically hard obstacles, i.e. obstacles such that χ =
+∞ (see [1, 2]). The obstacle (Ω;χ) that scatters the
field us solution of equations (1), (2), (4), and(5) is called
passive obstacle. The field usG(x, t), (x, t) ∈ (IR 3\ΩG)×
IR , scattered by the (passive) ghost obstacle is defined
as the solution of equations (1), (2), (4), and(5) when
we replace Ω with ΩG and χ with χG. Note that we
always consider the ghost obstacle (ΩG;χG) as a passive
obstacle.

Remember that in the ghost obstacle problem the
smart obstacle (Ω;χ) when hit by an incoming wave tries
to generate a scattered wave that resembles, outside a
given set containing Ω and ΩG, to the wave scattered by
(ΩG;χG) in the same circumstances. Our goal is to model
the ghost obstacle problem as an optimal control problem
for the wave equation introducing a control variable
ψ(x, t), (x, t) ∈ ∂Ω× IR , acting on the boundary of the
obstacle. This is done replacing the boundary condition
of equation (2) with the following boundary condition,

−∂u
s

∂t
(x, t) + cχ

∂us

∂n(x)
= g(x, t) + (1 + χ)ψ(x, t),

(x, t) ∈ ∂Ω× IR . (6)

We note that the physical dimension of the control
function ψ is pressure divided by time, so that we call ψ
“pressure current”.

Let Ωε be a bounded simply connected open set
containing Ω and ΩG with locally Lipschitz boundary ∂Ωε
and let ds∂Ωε , ds∂Ω be the surface measures on ∂Ωε and
∂Ω (see [15] Lemma 1.1 p. 119-120), respectively.

As done in [7, 6] we define the cost functional,

Fλ,µ,ε(ψ) =
∫

IR
dt{∫

∂Ωε

(1 + χ)λ c [us(x, t)− usG(x, t)]2 ds∂Ωε(x)+∫
∂Ω

(1 + χ)µςψ2(x, t)ds∂Ω(x)
}

(7)

where λ ≥ 0, µ ≥ 0 are dimensionless constants such
that λ + µ = 1, and ς is a nonzero positive dimensional
constant. Note that in the first addendum of equation (7)
we have introduced as a factor the propagation velocity c
that does not appear in the functional used in [6, 7], the
presence of this factor simplifies some of the formulae
that follow. We model the direct ghost obstacle scattering
problem via the following optimal control problem,

minψ∈CFλ,µ,ε(ψ). (8)

Subject to the constraints of equations (1), (4), (5),
and (6). The set C is the space of the admissible controls
and is a vector space that we leave unspecified in this
paper (see [7] for further details). The obstacle (Ω;χ)
that generates the scattered field us solution of equations
(8), (1), (4), (5), and (6) is a smart (or active) obstacle
that we call of ghost obstacle type.

As shown in [2, 7] the cases µ = 0 and µ = 1 are
trivial. The choice of the cost functional of equation (7)
is motivated by the fact that when 0 < µ < 1 we have
λ > 0, that is, when 0 < µ < 1 the minimization of
Fλ,µ,ε makes small on ∂Ωε for all times the difference
between the field scattered by the smart obstacle and the
field scattered by the ghost obstacle and makes small on
∂Ω for all times the control function used to achieve
this goal. Note that forcing the two scattered fields to
be similar on ∂Ωε for all times implies that they remain
similar in IR 3\Ωε for all times. So that an observer located
in IR 3 \ Ωε that observes the scattered field is induced
to believe that the obstacle generating the scattered field
is the ghost obstacle (ΩG;χG) instead than the obstacle
(Ω;χ). From now on we restrict our attention to the case
0 < µ < 1.

We note that the functional of equation (7) is defined
via two integrals, one integral on the boundary of Ω and
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the other integral on the boundary of Ωε. This fact makes
difficult to write conveniently the first order optimality
condition associated to the optimal control problem of
equations (8), (1), (4), (5), and (6). In reference [7] this
difficulty has been solved assuming that the boundary of
Ω is a star like surface and that the boundary of Ωε is
obtained by a simple transformation of the boundary of Ω
that previously we have called magnification. In this paper
we modify this assumption since we deal with obstacles
(see Fig. 3(b)) whose boundaries are not starlike surfaces
with respect to a point in their interior.

The numerical experiments presented in this paper
are done using cylindrical coordinates since the simplified
NASA space shuttle (Fig. 3(b)), that is the obstacle
considered in Section IV, can be described conveniently
using these coordinates. So that, for simplicity, we use
cylindrical coordinates also in this section and in Section
III in the exposition of the solution method. When neces-
sary more general curvilinear coordinate systems can be
considered as shown, for example, in [16].

Let us introduce the canonical cylindrical coordi-
nate system in IR 3, that is (r1, φ, z), with origin in a
point in the interior of the smart obstacle that will be
specified later and let φ̂ = (cosφ, sinφ, 0)T ∈ IR 3,
φ ∈ [0, 2π) and ẑ = (0, 0, z)T = ze3 ∈ IR 3, z ∈ IR ,
e3 = (0, 0, 1)T ∈ IR 3. Note that with abuse of notation, in
order to keep the exposition simple in formulae equations
(9)-(34) we have used the coordinates (r1, φ, z) to de-
note several cylindrical coordinate systems obtained one
from the others with suitable translations, in the specific
contexts considered the coordinate systems used will be
understandable. We assume that:

(a) The obstacle (Ω;χ) is given by,

Ω = {x = (r1 cosφ, r1 sinφ, z)T (9)

= r1φ̂+ ze3 ∈ IR 3 | 0 ≤ r1 < ξ(φ, z),
φ ∈ [0, 2π), z ∈ [zi, zf ] }, (10)

where zi, zf are two real numbers such that zi < zf
and ξ(φ, z) > 0, φ ∈ [0, 2π), z ∈ (zi, zf ) is a
single valued function defined in [0, 2π) × [zi, zf ]
sufficiently regular to make sense out for the manip-
ulations that follow. As a consequence of equation
(9) we have,

∂Ω = {x=(r1 cosφ, r1 sinφ, z)T =
ξ(φ, z)φ̂+ ze3∈ IR 3, φ ∈ [0, 2π), z ∈ [zi, zf ]}.

(11)

(b) The sets ΩG and ∂ΩG are given by,

ΩG = {x = p
G

+ (r1 cosφ, r1 sinφ, sG(z))T =
p
G

+ r1φ̂+ sG(z)e3 ∈ IR 3 |, 0 ≤ r1 < ξG(φ, sG(z)),
φ ∈ [0, 2π), z ∈ [zi, zf ] },

(12)

and

∂ΩG = {x = p
G

+ (r1 cosφ, r1 sinφ, sG(z))T =
p
G

+ ξG(φ, sG(z))φ̂+ sG(z)e3 ∈ IR 3,

φ ∈ [0, 2π), z ∈ [zi, zf ] },
(13)

where sG(z) = zGi +(z−zi)(zGf −zGi )/(zf−zi) is a
linear function of z, zGi , zGf are constants such that
zGi < zGf , ξG(φ, sG(z)), φ ∈ [0, 2π), z ∈ [zi, zf ] is
a single valued function and p

G
∈ IR 3 is a suitable

vector (see Fig. 1).
(c) The sets Ωε and ∂Ωε are given by,

Ωε = {x = p+ (r1 cosφ, r1 sinφ, s(z))T =
p+ r1φ̂+ s(z)e3 ∈ IR 3, 0 ≤ r1 < ξε(φ, s(z)),

φ ∈ [0, 2π), z ∈ [zi, zf ] },
(14)

and

∂Ωε = {x = p+ (r1 cosφ, r1 sinφ, s(z))T =
p+ ξε(φ, s(z))φ̂+ s(z)e3 ∈ IR 3,
φ ∈ [0, 2π), z ∈ [zi, zf ] },

(15)

where s(z) = z∗i + (z− zi)(z∗f − z∗i )/(zf − zi) is a
linear function of z and z∗i , z∗f are constants such
that z∗i < z∗f . Finally, p ∈ IR 3 is a suitable vector
(see Fig. 1) and ξε is a single valued function such
that Ω ⊂ Ωε and ΩG ⊂ Ωε.

Figure 1 shows an example of the ghost obstacle experi-
ment in a simple situation where Ω is a sphere of center
the origin and ΩG is a translation of Ω. Note that only
for simplicity we have chosen the origin of the cylindrical
coordinate system in the center of mass of the smart
obstacle.

Fig. 1. The ghost obstacle experiment: Ω obstacle, ΩG
ghost obstacle, Ωε auxiliary set, O point contained in Ω
and origin of the coordinate system, OG point contained
in ΩG, Oε point contained in Ωε.

Note that in a suitable cylindrical coordinate system
with origin in the point OG of the set ΩG or in the
point Oε of the set Ωε we have respectively the following
representation formulae for ΩG and Ωε,

ΩG = {x = (r1 cosφ, r1 sinφ, z)T =
r1φ̂+ ze3 ∈ IR 3 | 0 ≤ r1 < ξG(φ, z),

φ ∈ [0, 2π), z ∈ [zGi , z
G
f ] },

(16)
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and
Ωε = {x = (r1 cosφ, r1 sinφ, z)T =
r1φ̂+ ze3 ∈ IR 3 | 0 ≤ r1 < ξε(φ, z),

φ ∈ [0, 2π), z ∈ [z∗i , z
∗
f ] }.

(17)

Remember that as already said with abuse of nota-
tion in the previous formulae, (r1, φ, z) denotes several
cylindrical coordinate systems and that given Ω, ΩG such
that Ω 6= ∅, ΩG 6= ∅ and Ω ∩ ΩG = ∅, we must choose
Ωε such that Ω ⊂ Ωε and ΩG ⊂ Ωε.

Under assumptions (a) and (b) and other technical
assumptions (see [2, 7]) applying the Pontryagin maxi-
mum principle, we find that the optimal scattered field
ũs(x, t), (x, t) ∈ (IR 3 \ Ω) × IR , and the corresponding
adjoint variable ϕ̃(x, t), (x, t) ∈ (IR 3\Ω)×IR , satisfy the
first-order necessary optimality condition associated to the
optimal control problem of equations (8), (1), (4), (5), and
(6). That is, they are the solution of the following exterior
problem for a system of two coupled wave equations,

4ũs(x, t)− 1
c2
∂2ũs

∂t2
(x, t) = 0, (x, t) ∈ (IR 3 \ Ω)× IR

(18)

ũs(x, t) = O(
1
r

), r → +∞, t ∈ IR , (19)

∂ũs

∂r
(x, t) +

1
c

∂ũs

∂t
(x, t) = o(

1
r

), r → +∞, t ∈ IR ,
(20)

−∂ũ
s

∂t
(x, t) + cχ

∂ũs

∂n(x)
(x) = g(x, t)− (1 + χ)

ς
ϕ̃(x, t),

(x, t) ∈ ∂Ω× IR , (21)

4ϕ̃(x, t)− 1
c2
∂2ϕ̃

∂t2
(x, t) = 0, (x, t) ∈ (IR 3 \ Ω)× IR ,

(22)

ϕ̃(x, t) = O(
1
r

), r → +∞, t ∈ IR , (23)

∂ϕ̃

∂r
(x, t)− 1

c

∂ϕ̃

∂t
(x, t) = o(

1
r

), r → +∞, t ∈ IR , (24)

−µ∂ϕ̃
∂t

(x, t)− cχµ ∂ϕ̃

∂n(x)
(x) =

−λ c(1 + χ)fε(x)(ũs(p
ε
(x), t)− usG(p

ε
(x), t)),

(x, t) ∈ ∂Ω× IR , (25)

lim
t→−∞

ũs(x, t) = 0, x ∈ IR 3 \ Ω, (26)

lim
t→+∞

ϕ̃(x, t) = 0, x ∈ IR 3 \ Ω, (27)

where p
ε
(x) is a point belonging to ∂Ωε given by,

p
ε
(x) =

ξε(φ, s(z))
ξ(φ, z)

[x− (x, e3)e3] + s((x, e3))e3,

x = ξφ̂+ ze3 ∈ ∂Ω (28)

where s(z) = z∗i +(z−zi)(z∗f−z∗i )/(zf−zi), z ∈ [zi, zf ],
and fε(x), x ∈ ∂Ω, is the function defined by,

fε(x(φ, z)) =
vε(φ, z)
v(φ, z)

, x = ξ(φ, z)φ̂+ ze3 ∈ ∂Ω,

φ ∈ [0, 2π), z ∈ [zi, zf ] (29)

with

v(θ, φ) =[
ξ2(φ, z) +

(
∂ξ

∂φ

)2

(φ, z) + ξ2(φ, z)
(
∂ξ

∂z

)2

(φ, z)
] 1

2

,

φ ∈ [0, 2π), z ∈ [zi, zf ] , (30)

vε(θ, φ) =
(z∗f − z∗i )
(zf − zi)

·
[
ξ2
ε (φ, s(z)) +(

∂ξε
∂φ

)2

(φ, s(z)) + ξ2
ε (φ, s(z))

(
∂ξε
∂s(z)

)2

(φ, s(z))
] 1

2

,

φ ∈ [0, 2π), z ∈ [zi, zf ] . (31)

The relation between ϕ̃ solution of equations (18)-
(27) and the optimal control ψ̃ solution of problem of
equations (8), (1), (4), (5), and (6) is the following one,

ψ̃(x, t) = −1
ς
ϕ̃(x, t), (x, t) ∈ ∂Ω× IR . (32)

For future convenience, we point out that,

ds∂Ω = v(φ, z)dφ d z, φ ∈ [0, 2π), z ∈ [zi, zf ] (33)

and

ds∂Ωε = vε(φ, z)dφ d z, φ ∈ [0, 2π), z ∈ [zi, zf ] . (34)

Note that in order to guarantee conditions of equa-
tions (26) and (27) we must choose the incoming field in
a suitable class of functions (see [2]). This will be done
in Section III. We note that the boundary conditions of
equations (21) and (25) can be slightly modified to deal
with the limit case χ = +∞.

III. THE NUMERICAL SOLUTION OF THE
FIRST ORDER OPTIMALITY CONDITION

Let B = {x ∈ IR 3 | ‖x‖ < 1 } and ∂B be the
boundary of B. We assume that ui, ũs, usG and ϕ̃ can
be approximated in a compact subset of the time axis by
finite sums of time harmonic waves, that is,

ui(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ıωiteıωi(x,αj)/c
]

(x, t) ∈ IR 3 × IR , (35)
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ũs(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ıωitusωi,αj (x)
]
,

(x, t) ∈ (IR 3 \ Ω)× IR , (36)

usG(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ıωitusG,ωi,αj (x)
]
,

(x, t) ∈ (IR 3 \ Ω)× IR , (37)

ϕ̃(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ı ωi tϕωi,αj (x)
]
,

(x, t) ∈ (IR 3 \ Ω)× IR , (38)

where ı ∈ IC is the imaginary unit, N1, N2 are positive
integers, ai,j ∈ IR , ωi ∈ IR , αj ∈ ∂B, i = 1, 2, . . . , N1,
j = 1, 2, . . . , N2 are suitable quantities, usG,ωi,αj , i =
1, 2, . . . , N1, j = 1, 2, . . . , N2 are suitable functions and
usωi,αj (x), ϕωi,αj (x), x ∈ IR 3 \ Ω, i = 1, 2, . . . N1, j =
1, 2, . . . , N2, are functions to be determined. Substituting
the right hand side of equations(35)-(38) into equations
(18)-(27) and defining ς̃ = c ς we obtain that the space
dependent part usω,α(x), x ∈ IR 3\Ω, of the time harmonic
components of ũs, and the space dependent part ϕω,α(x),
x ∈ IR 3 \ Ω, of the time harmonic components of ϕ̃,
(ω, α) = (ωi, αj), i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, are
solutions of the following set of systems of Helmholtz: for
i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, and (ω, α) = (ωi, αj),
we have, (

4usω,α +
ω2

c2
usω,α

)
(x) = 0 (39)

(
4ϕω,α +

ω2

c2
ϕω,α

)
(x) = 0, x ∈ IR 3 \ Ω, (40)

ıωusω,α(x) + cχ
∂usω,α
∂n(x)

(x) + c
(1 + χ)

ς̃
ϕω,α(x) =

bω,α(x), x ∈ ∂Ω, (41)

ıωµϕω,α(x)− cµχ
∂ϕω,α
∂n(x)

(x) + cλ(1 + χ) ·(
usω,α(p

ε
(x))− usG,ω,α(p

ε
(x))

)
= 0, x ∈ ∂Ω, (42)

with the conditions at infinity,

∂usω,α(x)
∂r

− ıω
c
usω,α(x) = o(

1
r

), r → +∞, (43)

∂ϕω,α(x)
∂r

+ ı
ω

c
ϕω,α(x) = o(

1
r

), r → +∞, (44)

where bω,α(x) = −ı ω eı ω(x,α)/c(1 + χ(n(x), α)), x ∈
∂Ω. We remind that p

ε
has been defined in (28).

Using equations (32) and (38) the relation of the ad-
joint variables ϕωi,αj , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2,
with the optimal control variable ψ̃ can be expressed as
follows,

ψ̃(x, t) ≈ −c
ς̃

N1∑
i=1

N2∑
j=1

ai,je
−ı ωi tϕωi,αj (x),

(x, t) ∈ ∂Ω× IR , 0 < µ < 1 . (45)

We propose a variation of the operator expansion method

presented in [17] to solve, using affordable computing
resources, equations (39)-(44) when (Ω;χ) has a complex
geometry and at least some of the wavelengths contained
in the incoming wave packet of equation (35) (i.e.,
some of the quantities |2π/(ωi/c)|, i = 1, 2, . . . , N1)
are small compared with the characteristic dimension
of the obstacle. In the numerical experiments presented
in Section IV we consider problems where the ratio
between the characteristic dimension of the obstacle and
the wavelength of the time harmonic component of the
incident waves goes up to approximately sixty.

As done in equation (35) let us consider acoustic
incoming time harmonic plane waves whose space de-
pendent part is given by,

uiω,α(x) = eı ω(x,α)/c, x ∈ IR 3 (46)

where c > 0 is the wave propagation velocity, ω 6= 0 is the
frequency of the wave, α ∈ ∂B is the wave propagation
direction. Let us define the wave number k as k = ω/c,
we remind that and 2π/|k| is the wavelength of the plane
wave of equation (46). Later we will choose ω = ωi,
i = 1, 2, . . . , N1, and α = αj , j = 1, 2, . . . , N2.

Let us describe briefly the basic steps of the operator
expansion method (see [2, 16, 17] for more details). Let
(r1, φ, z) be the canonical cylindrical coordinate system
introduced in Section II and let us assume that ∂Ω is
given by formula (11). The use of the operator expansion
method to solve equations (39)-(44) is based on the
following assumptions:

(a1) there exists a bounded simply connected open set
Ωc such that Ωc ⊂ Ω with locally Lipschitz bound-
ary ∂Ωc, given by,

∂Ωc = {x = (r1 cosφ, r1 sinφ, z)T ∈ IR 3 |
r1 = ξc(φ, z), φ ∈ [0, 2π), z ∈ [z̃i, z̃f ]} (47)

where z̃i, z̃f are two given real numbers such that
z̃i < z̃f , [z̃i, z̃f ] ⊂ (zi, zf ) and ξc is a single valued
function sufficiently regular to make sense out of
the formulae that follow. Note that we have: 0 <
ξc(φ, z) < ξ(φ, z), φ ∈ [0, 2π), z ∈ (z̃i, z̃f ),

(b1) for (ω, α)=(ωi, αj), i = 1, 2, . . . , N1, j =
1, 2, . . . , N2, the functions usω,α, ϕω,α that solve
the exterior problem (39)-(44) can be written as
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single layer potentials with density functions (to be
determined) supported on ∂Ωc, that is,

usω,α(x) =
∫
∂Ωc

ds∂Ωc(y)Φω
c

(x,y)cω,α(y),

x ∈ IR 3 \ Ω (48)

ϕω,α(x) =
∫
∂Ωc

ds∂Ωc(y)Φω
c

(x,y)fω,α(y),

x ∈ IR 3 \ Ω, (49)

where ds∂Ωc is the surface measure defined on ∂Ωc
that we assume to be given by:ds∂Ωc(y(φ, z)) =
gc(φ, z)dφ dz, (φ, z) ∈ U ′ = (0, 2π) × (z̃i, z̃f ),
where gc is a sufficiently regular positive function,
Φω
c

(x,y) = ei
ω
c
‖x−y‖

4π‖x−y‖ , x, y ∈ IR 3, x 6= y, is
the fundamental solution of the Helmholtz operator
on IR 3 satisfying the radiation condition (43) and
finally cω,α(y), fω,α(y), y ∈ ∂Ωc are the density
functions to be determined mentioned previously.
We note that Φω

c
, the complex conjugate of Φω

c
,

satisfies the radiation condition (44);
(c1) there exists a surface ∂Ωr boundary of a bounded

simply connected open set Ωr representable with a
formula analogous to formula (11) when we replace
the function ξ with a suitable single valued function
ξr such that Ωc ⊂ Ωr and such that the statements
contained in (d1) hold. We refer to the surface ∂Ωr
as “reference surface”;

(d1) letyξc(υ
′) = (ξc(υ′) cos(φ′), ξc(υ′) sin(φ′), z′)T ,

υ′ = (φ′, z′)T ∈ U ′ denote a (generic) point of
∂Ωc, we assume that the following perturbative
expansions of usω,α and ϕω,α hold,

usω,α(x) =
∫
U ′
dυ′gc(υ′)

(
Φω
c

(x,yξc(υ
′))·

+∞∑
s=0

c̃k,α,s(υ′)(ξ(υ′)− ξr(υ′))s
)
,

x ∈ IR 3 \ Ω (50)

ϕω,α(x) =
∫
U ′
dυ′gc(υ′)

(
Φω
c

(x,yξc(υ′))·

+∞∑
s=0

f̃k,α,s(υ′)(ξ(υ′)− ξr(υ′))s
)
,

x ∈ IR 3 \ Ω , (51)

where dυ′ = dφ′ dz′ is the usual Lebesgue measure
on U ′. With abuse of notation we require that
c̃k,α,s(ξ − ξr)s = O((ξ − ξr)s), f̃k,α,s(ξ − ξr)s =
O((ξ − ξr)s) as ξ → ξr, s = 0, 1, 2, . . ..

Note that the surfaces ∂Ωc and ∂Ωr introduced
here have been called “special” surfaces of the operator
expansion method in Section I. We note that usω,α,
ϕω,α given by equations (48) and (49) satisfy the

Helmholtz equations (39) and (40) and the “radiation”
conditions at infinity of equations (43) and (44) for
any choice of the density functions cω,α and fω,α that
make possible differentiation under the integral sign.
Using assumptions (a1)-(d1), substituting equations (50)
and (51) into the boundary conditions (41), (42) and
imposing the boundary conditions (41), (42) order by
order in perturbation theory we obtain a sequence of
systems of integral equations, that is a system made of
two integral equations at each order in the expansion
in powers of (ξ − ξr). In fact remind that k = ω/c
is the wave number of the incoming plane wave and
let U = (0, 2π) × (zi, zf ), xξr (υ), υ ∈ U , be a
(generic) point belonging to ∂Ωr, ∇x be the gradient
operator with respect to x ∈ IR 3, for ν = 0, 1, . . .
let φ

k
(υ) = (1/ık)χn(xξ(υ)), υ ∈ U , Qν(υ,y) =

∂ν

∂rν1
∇xΦk

(
(r1 cosφ, r1 sinφ, z)T ,y

) ∣∣
r1=ξr(υ)

, and
Lν(υ,y) = ∂ν

∂rν1
Φk
(
(r1 cosφ, r1 sinφ, z)T ,y

) ∣∣
r1=ξr(υ)

,
υ ∈ U , y ∈ IR 3, y /∈ ∂Ωr, arguing as in [16] it
can be shown that the solution of problem (39)-(44)
can be reduced to the solution of the following set
of systems of integral equations in the unknowns
ck,α,s(υ′) = gc(υ′)c̃k,α,s(υ′)(ξ(υ′) − ξr(υ′))s, υ′ ∈ U ′,
fk,α,s(υ′) = gc(υ′)f̃k,α,s(υ′)(ξ(υ′) − ξr(υ′))s, υ′ ∈ U ′,
s = 0, 1, 2, . . .,

∫
U ′
dυ′Kξr,ξc(υ, υ

′)ck,α,s(υ′) +

(1 + χ)
ς̃ k

∫
U ′
dυ′ ıΦk(xξr (υ), y

ξc
(υ′))fk,α,s(υ′) =

d1,k,α,s(υ), υ = (υ1, υ2)T ∈ U, s = 0, 1, 2, . . . (52)

−λ(1 + χ)
k

f̂ε(υ)
∫
U ′
dυ′[ı ck,α,s(υ′) ·

Φk(p+ ξε(υ1, s(υ2))φ̂(υ1) + ẑ(υ2), y
ξc

(υ′))]

+µ
∫
U ′
dυ′Kξr,ξc(υ, υ′)fk,α,s(υ

′) = d2,k,α,s(υ),

υ = (υ1, υ2)T ∈ U, s = 0, 1, 2, . . . , (53)

where Kξr,ξc is given by,

Kξr,ξc(υ, υ
′)=

[
Φk(xξr (υ), y

ξc
(υ′)) +(

φ
k
(υ), (∇xΦk)(xξr (υ), y

ξc
(υ′))

)]
,υ ∈ U, υ′ ∈ U ′ (54)

and f̂ε(υ) = vε(υ)/v(υ) (see formulae (30) and (31)),
moreover we have,

d1,k,α,0(υ) = −eı k(xξ(υ),α)
[
1 + χ

(
n(xξ(υ)), α

)]
(55)

d2,k,α,0(υ) = −ı(1 + χ)
λ

k
f̂ε(υ) ·

usG,ω,α(p+ ξε(υ1 + s(υ2))φ̂(υ1) + ẑ(υ2)),

υ = (υ1, υ2)T ∈ U , (56)
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and for s = 1, 2, . . . , we have,

d1,k,α,s(υ) =−
s−1∑
ν=0

(ξ(υ)− ξr(υ))s−ν

(s− ν)!

∫
U ′
dυ′ ·{[(

φ
k
(υ), Qs−ν(υ, y

ξc
(υ′))

)
+ Ls−ν(υ, y

ξc
(υ′))

]
·

ck,α,ν(υ′) +
(1 + χ)
ς̃ k

ıLs−ν(υ, y
ξc

(υ′))fk,α,s(υ′)
}

υ ∈ U, (57)

d2,k,α,s(υ) = −µ
s−1∑
ν=0

(ξ(υ)− ξr(υ))s−ν

(s− ν)!{[(
φ
k
(υ), Qs−ν(υ, y

ξc
(υ′))

)
+Ls−ν(υ, y

ξc
(υ′))

]
·

fk,α,ν(υ′)
}
, υ ∈ U. (58)

Figure 2 shows an example of the relation between
the sets Ω, Ωr, Ωc.

Roughly speaking assumptions (a1), (b1) say that the
spatial parts of the time harmonic components of the scat-
tered field and of the auxiliary variable can be represented
as single layer potentials generated by suitable densities
defined on a surface ∂Ωc contained in the interior of the
smart obstacle (Ω;χ). Assumptions (c1), (d1) say that
the smart obstacle is not far from being a more regular
obstacle (Ωr;χ) and that the density functions of the
single layer potentials of equations (48) and (49) can be
expressed as a power series of the “distance” between the
boundary of Ω and the boundary of Ωr. Assumptions (a1),
(b1) make possible to formulate the boundary conditions
(41), (42) as Fredholm integral equations of the first kind
avoiding singular kernels even when ∂Ω is only Lipschitz
continuous. These integral equations are ill posed so that
to solve them numerically we try to take care of their
ill-posedness using the perturbation series of equations
(50) and (51) whose convergence is assumed in (c1),
(d1). Note that thank to these last assumptions, we have
reduced the solution of the optimal control problem to
the solution of a set of systems of integral equations of
the first kind whose ill-posedness is controlled via the
perturbation approach.

Since we want to solve these systems of integral
equations when the smart obstacle has complex geom-
etry and the wavelength of the incoming wave is small
compared to the characteristic dimension of the obstacle

Fig. 2. An example of the relation between Ω, Ωr, Ωc.

we need to discretize the integral equations using finite
dimensional vector spaces of high dimension. The use
of suitable wavelet bases to represent the unknown den-
sities, the data and the integral kernels of the integral
equations (52) and (53) allows us to approximate the
integral equations in finite-dimensional vector spaces of
high dimension with sparse systems of linear equations
that can be solved with affordable computing resources
even when they involve hundreds of thousands or millions
of unknowns and equations. This is due to the “sparsifying
properties” of the wavelet basis used.

Let us introduce the wavelet basis used in the ex-
periments of Section IV. Let L2(U ′) and L2(U) be the
Hilbert spaces of square integrable real functions with
respect to the Lebesgue measure defined on U ′ and on
U respectively. As shown in [14], we generate a wavelet
basis of L2(U ′) and of L2(U) using the tensor product
and a suitable affine transformation of a wavelet basis of
L2((0, 1)). The wavelet basis of L2((0, 1)) used in the nu-
merical experiments presented in Section IV is generated
via the multi-resolution analysis [18, 14] starting from the
following orthonormal piecewise polynomial functions of
L2((0, 1)). Let us define three functions that are known as
wavelet “mother” functions. Let c1 = 0.44721359549996,
c2 = 1.3416407864998 and let V be the real matrix given
by,

V = ((vi,j)i=1,2,3, j=1,2,3,4) =

 1 −1 −1 1
−c1 c2 −c2 c1
−c2 −c1 c1 c2


(59)

we define the following piecewise polynomial functions
defined in the interval (0, 1),

Ψi(z) =


vi,1, 0 < x < 1/4,
vi,2, 1/4 ≤ x < 1/2,
vi,3, 1/2 ≤ x < 3/4,
vi,4, 3/4 ≤ x < 1,

i = 1, 2, 3, (60)

and let ψi,m,ν(z), z ∈ (0, 1), i = 1, 2, 3, m = 0, 1, . . .,
ν = 0, 1, 2, . . . , 4m − 1 be the function defined by,

ψi,m,ν(z) =
{
4m/2ψi(4mz − ν), z ∈ (ν4−m, (ν + 1)4−m),
0, z ∈ (0, 1) \ (ν4−m, (ν + 1)4−m).

(61)
As shown in [14] the set Wa,b defined as follows,

Wa,b=
{
ψ̂j,m,ν(y)=

1√
b− a

ψj,m,ν

(
y − a

(b− a)

)
, y∈(a, b),

j = 1, 2, 3 , m = 0, 1, . . . , ν = 0, 1, 2 . . . , 4m − 1 }

∪
{
L0(y) =

1√
b− a

, y ∈ (a, b)
}

(62)

is an orthonormal basis of L2((a, b)), a < b, a, b ∈ IR .
We note that in equation (62) we have used the announced
affine transformation to go from L2((0, 1)) to L2((a, b))
and that the wavelet mother functions Ψ1 and Ψ2 of
L2((0, 1)) defined in equation (60) have two vanishing
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moments, that is:
∫ 1

0
dxxmΨi(x) = 0, m = 0, 1, i = 1, 2

while the wavelet mother function Ψ3 of L2((0, 1)) has
only one vanishing moment, that is

∫ 1

0
dxΨ3(x) = 0 and

we have
∫ 1

0
dxxΨ3(x) 6= 0.

Starting from this wavelet basis and using the tensor
product the integral equations (52) and (53) can be
reduced to a system of infinitely many linear equations
whose unknowns are the coefficients of the representation
on the wavelet basis of the density functions ck,α,s,
fk,α,s, s = 0, 1, . . .. Truncating the wavelet expansions
we reduce the approximate solution of the integral equa-
tions (52) and (53) to the solution of (eventually high
dimensional) linear systems. These linear systems are
approximated with sparse linear systems using a simple
procedure that consists in setting to zero the elements
of the matrices representing the integral kernels smaller
in absolute value than a given threshold, in this way we
obtain very sparse matrices. In fact, thank to the sparsi-
fying properties of the wavelet basis introduced above,
the kernels of the integral equations are approximated
satisfactorily by the sparse matrices obtained with the
procedure described above. Using these sparse matrices
as coefficient matrices of linear systems that approximate
those considered above we obtain sparse linear systems
that approximate the integral equations (52) and (53).
Finally, these sparse linear systems are solved with a
suitable parallelization of the conjugate gradient method
(see [16, 17]).

IV. NUMERICAL EXPERIENCE

In this Section we assume that the smart obstacle
(Ω;χ) and the ghost obstacle (ΩG;χG) have boundary
acoustic impedance equal to infinity, i.e.: χ = χG = +∞,
that is the smart obstacle and the ghost obstacle are acous-
tically hard obstacles. This implies that the equations
written in the previous Sections must be slightly changed
to be adapted to deal with hard obstacles.

In the numerical experiments we consider as incom-
ing acoustic fields time harmonic plane waves whose
space dependent part is given by equation (46) or wave
packets of the form,

ui(x, t) = e−[(γ,x)−ct]2/4ζ2 , (x, t) ∈ IR 3 × IR (63)

where γ ∈ ∂B and ζ ∈ IR , ζ 6= 0. The obstacle
Ω in all the experiments is given by a smart simplified
model of the NASA space shuttle. The original model
of the NASA space shuttle (see Fig. 3(a)) has been
modified obtaining the simplified NASA space shuttle
(see Fig. 3(b)) in order to have an obstacle whose bound-
ary can be represented with a single valued function
in a suitable cylindrical coordinate system, that is in
order to have the representation of equation (11) of the
boundary of the obstacle for a suitable choice of the
cylindrical coordinate system and of the function ξ. The
data relative to the original obstacle (see Fig. 3(a)) are

Fig. 3. (a) The NASA space shuttle, and (b) Simplified
version of the NASA space shuttle.

available in the website http://avalon.viewpoint.com/. The
physical dimensions of the shuttle are expressed in units
where 1unit=56.14/14meters. The maximum length of
the shuttle in the direction of the symmetry axis of its
main body corresponds to 14units. The space shuttle
is an acoustically hard obstacle, this justifies the choice
χ = +∞ made previously and the sound speed in the
air at sea level is 331.45meters/seconds so that we
choose c = 331.45meters/seconds that corresponds
to c ' 82.65units/seconds. Note that the z-axis of
the cylindrical coordinate system used to represent the
obstacle is chosen to be the “symmetry” axis of the main
body of the simplified NASA space shuttle (see Fig. 4).
In the following the lengths are expressed in units.

We choose p = (0, 7.5, 1.5)T ∈ IR 3, zi = zGi = −7,
zf = zGf = 7, z∗i = −16, z∗f = 16, s(z) = z∗i +
(z∗f − z∗i )(z − zi)/(zf − zi), z ∈ [zi, zf ], ξε(φ, s(z)) =√

(1− s(z)2/d2)/(cos2 φ/a2 + sin2 φ/b2) where a = 8,
b = 13, d = 16 and the ghost ΩG is the translation
of p

G
= (0, 15, 2)T ∈ IR 3 of Ω. In Fig. 4 we show

the setting of the ghost obstacle experiment studied here
and the coordinate axes. The surfaces ξr, ξc have been
chosen such that the kernels Kξr,ξc and Φ(xξr ,yξc)
defined in Section III are continuous with their first partial
derivatives and we use always the first two terms of the
operator expansion series given in formulae (50) and (51).

We remind that the website:
http://www.econ.univpm.it/recchioni/scattering/w16 con-
tains some auxiliary material that helps the understanding
of the numerical experiments discussed here including
stereographic and virtual reality applications.

The first experiment shows the effect due to the
smart character of the obstacle for different incident time
harmonic plane waves given in equation (46) and several
values of the parameter λ, 0 ≤ λ ≤ 1. We remind that
we are assuming λ ≥ 0, µ ≥ 0, µ + λ = 1, ς = 1
and that the smart obstacle reproduces exactly the field
generated by the ghost obstacle on ∂Ωε when µ = 0,
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λ = 1. The L2 norm of the space dependent part of the
pressure current Ψ̃ employed to obtain the ghost effect can
be considered as a measure of the price payed in order to
have the smart behaviour of the obstacle. We note that the
quantity nλψ,k defined in (equation (66)) is proportional to
the L2 norm of the space dependent part of the pressure
current mentioned above.

Let us introduce the following quantities,

dλs,G,ω =

√√√√∫∂Ωε
|usω,α(x)− usG,ω,α(x)|2ds∂Ωε(x)∫
∂Ωε
|usG,ω,α(x)|2ds∂Ωε(x)

(64)

dp,G,ω =

√√√√∫∂Ωε
|usp,ω,α(x)− usG,ω,α(x)|2ds∂Ωε(x)∫
∂Ωε
|usG,ω,α(x)|2ds∂Ωε(x)

,

(65)

nλψ,ω =

√∫
∂Ω

|ϕω,α(x)|2ds∂Ω(x) , (66)

eλω =
dλs,G,ω
dp,G,ω

, (67)

where usp,ω,α is the field scattered by (Ω;χ) as a passive
obstacle, and nλψ,ω , as said above, is the quantity that
measures the “size” of the pressure current required to
get the smart effect.

Table 1 shows the ghost effect obtained. In fact
from left to right Table 1 shows the value of µ

λ , ω/c,
RT , dp,G,ω , dλs,G,ω , eλω and nλψ,ω, where RT is defined
as the ratio between the characteristic dimension of the
obstacle and the wavelength of the incident time harmonic
plane wave. The propagation direction of the incident
plane wave in the coordinate system shown in Fig. 4 is
α = (sin(π/4) cos(π/4), sin(π/4) sin(π/4), cos(π/4))T .

Fig. 4. The ghost obstacle experiment: the sets Ω (smart
obstacle), ΩG (ghost obstacle), Ωε (auxiliary set) and the
coordinate system.

Note that when the ratio µ
λ goes to zero, i.e., when

λ goes to 1, the ghost effect increases, in fact dλs,G,ω
decreases to zero and the price paid to obtain the ghost
effect increases that is nλψ,ω increases. Moreover, the
column eλω of Table 1 shows that when the wave number,
ω
c , increases the smart effect slightly deteriorates. In this
experiment to solve the ghost obstacle scattering problem

Table 1. The ghost effect.
µ
λ

ω
c RT dp,G,ω dλs,G,ω eλω nλψ,ω

0.1 10π 60 2.2791 0.5150 0.2259 31.632

0.001 10π 60 2.2791 1.872e-02 8.2112e-03 333.04

0.1 2π 14 0.5325 0.1003 0.1883 48.464

0.001 2π 14 0.5325 2.9671e-03 5.5718e-03 88.168

0.1 1 7
π 1.9351 0.2068 0.1068 28.290

0.001 1 7
π 1.9351 3.2942e-03 1.7036e-03 35.841

we have used 262144 real variables when RT = 60,
16384 real variables when RT = 14 and 1024 real
variables when RT = 7/π, that is we have solved linear
systems of 262144, 16384, 1024 equations and unknowns
when RT is equal to 60, 14, 7/π respectively. The CPU
time required to compute the field scattered by the smart
obstacle when RT = 60 is about 800 hours on the SP5
machine of the CASPUR center. This execution time
includes the computation of the field scattered by the
ghost obstacle as passive obstacle. Note that using a
parallel implementation of the numerical code the clock
time needed to compute the field scattered by the smart
obstacle reduces to about six hours when we use 128
processors. We note that due to their condition number
the linear systems used in this experiment must be solved
with some care.

The second experiment shows the scattering from a
time dependent incoming wave of equation (63) where
γ = (sin(π/4) cos(π/4), sin(π/4) sin(π/4), cos(π/2))T

(in the coordinate system of Fig. 4, and ζ = 1/(2π)).
In formulae (35), (36), (37), and (38) we have used the
Gauss-Hermite quadrature rule with 400 nodes to approx-
imate the Fourier transforms in the conjugate variable of
time ω that give ui, ũs, usG, ϕ̃ respectively. Indeed with
the choice ζ = 1/(2π) to get a satisfactory approximation
of the incoming wave of equation (63) on an adequate
compact set of the time axis only 30 wave numbers are
needed. In order to compute the time harmonic compo-
nents of the scattered waves of equations (36) and (37)
we have used 1024, 4096, 16384 real variables to solve
the time harmonic problems according with the value of
RT considered. We have chosen µ

λ = 10−10, µ = 1− λ,
ς = 1. We note that a rough estimate of the CPU time
required to carry out this experiment is 5000 hours on the
SP5 machine of the CASPUR center.

Let ∂D be the boundary of the sphere D having
center in Oε = O + p (see Figs. 1 and 4) and radius
15.

Note that D contains Ω, ΩG. Using the canonical
spherical coordinate system (r, θ, ρ) we have,

∂D = {x = p+ (15 sin θ cos ρ,
15 sin θ sin ρ, 15 cos θ)T ∈ IR 3 ,
θ ∈ [0, π] , ρ ∈ [0, 2π) } .

(68)

Figure 5 shows the field scattered by the passive
obstacle usp(x, t), by the smart obstacle us(x, t) and by
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the ghost obstacle usG(x, t) when x ∈ ∂D, for three time
values: t = t1 = −0.08,t2 = 0.03,t3 = 0.24.

Figure 6 shows the value of the incoming field when
x ∈ ∂D and t = t1, t = t2, t = t3.

We note that in Fig. 5 the second and third columns
are very similar, that is, the field scattered by the smart
obstacle (second column) behaves as the field scattered
by the ghost obstacle (third column). Furthermore, when
the incoming acoustic field goes through D we can see
that the passive and the ghost obstacle reacts in a different
way when t = t1 and t = t3 and in a similar way when
t = t2. This effect is due to the fact that D is sphere with
center in Oε = O+ p that is in a point lying between the
passive and ghost obstacles. So that, when t = t1 the front
of the incoming acoustic field (see Fig. 6 first column) is
on the side where the passive obstacle is (φ ∈ [π/4, π])
and when t = t3 (see Fig. (6) third column) the incoming
acoustic field is on the side where the ghost obstacle is
(φ ∈ [3π/2, 2π]).

Fig. 5. The ghost effect on the surface of a sphere.

Fig. 6. The effect of the incoming field on the surface of
a sphere.
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Abstract − This paper presents analysis of a broadband 
circularly polarized electromagnetically coupled patch 
antenna (EMCP) fed thorough a coaxial probe. The 
bandwidth of the antenna is investigated numerically and 
through experiment. The 12% bandwidth of the measured 
return loss implies broadband behavior considering the 
operating frequency and the inherent bandwidth 
limitations of the microstrip antenna structure. The 
changes in circular polarization bandwidth were 
investigated using finite-element-method (FEM) software 
and the results suggest that the increase in separation 
between the patches causes a decrease of 3dB bandwidth 
and the degradation of the minimum value of axial ratio. 
An axial ratio bandwidth of 2% is achieved in the 
reported EMCP structure. In addition, we have applied a 
modal analysis using finite-difference time-domain 
(FDTD) simulation to reveal the simultaneous excitation 
of TM01 and TM10 modes at around 1.3GHz. These 
results help explain the broadband and circular 
polarization characteristics of the EMCP structure under 
investigation. 
 
Keywords: EMCP antenna, bandwidth, return loss, axial 
ratio, and modal analysis. 
 

I. INTRODUCTION 
 

Achieving circular polarization is a challenge in 
microstrip antennas. Various single-layer microstrip 
structures have been tested for this purpose. In general, 
these can be categorized into two groups: multiple-feed 
(e.g. dual-feed) and single-feed structures (with modified 
patches, e.g. corner truncated structures). The noted 
configurations share the same principle for obtaining the 
circular polarization: the dimensions are modified in 
order to provide propagation of two orthogonal modes 
with close resonant frequencies. Then, the antenna is 
excited at a frequency between the two resonant 
frequencies to ensure approximately equal amplitude for 
both modes. The location of the feed point is chosen 
strategically to result in a phase difference of 90° 
between the two modes [1]. 

It has been shown [1] that, in the case of dual-feed 
microstrip structures, the trade-off for the wide axial ratio 
(AR) bandwidth is the narrow bandwidth in the return 
loss. Further, the feeding structure would increase the 

complexity and overall size of the antenna. On the other 
hand, in the single-feed structures, such as corner 
truncated configurations, the AR bandwidth is narrow (on 
the order of 1%) [1]. The noted antennas, therefore, 
cannot be considered as desirable structures with 
optimized characteristics for applications that necessitate 
circular polarization. 

Electromagnetically coupled patch (EMCP) antenna 
was first introduced in 1983 [2] for broadband 
applications. Further investigations revealed its circularly 
polarized characteristics [3-5] and the possibility of an 
EMCP design with acceptable AR and return loss 
bandwidth. Most of the previously tested EMCP 
structures are based on the dual-feed excitation, truncated 
corner patches or the circular patch. A recent work [3] 
reports a systematic design procedure that results in the 
return loss bandwidth of 43% and the AR bandwidth of 
8% in C-band. The reported procedure is based on 
optimizing the dimensions of a corner truncated square 
patch microstrip antenna. 

In this paper, we analyze and report on a singly-fed 
coaxially fed EMCP antenna for circular polarization 
applications. Unlike the structure discussed in [3], the 
patches are not corner truncated and the feed is a coaxial 
probe placed off the patch diagonal. The bandwidth of the 
antenna has been measured and compared with the 
simulation results. The axial ratio has been calculated 
with finite-element tool (HFSS, Ansoft Co.). Our 
parametric study reports on the variation of the return 
loss and axial ratio with the change is separation between 
two antenna patches.  Finally, a modal analysis using 
finite-difference time-domain (FDTD) simulation 
explains the broadband and the polarization 
characteristics of the antenna by revealing the 
simultaneous excitation of standing modes on the patches 
around 1.3GHz. 
 

II. THE ANTENNA STRUCTURE 
 

Three-dimensional view of the antenna is shown in 
Fig. 1. The antenna consists of two patches separated by a 
foam spacer of thickness d and εr=1. The patches are 
etched on a substrate with relative permittivity εr=3.38, 
loss tangent tan δ = 0.0027, and thickness of 0.81mm. 
Another substrate of identical specifications is stacked to 
the fed-patch. These two substrates for the fed-patch are 

233

1054-4887 © 2008 ACES

ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



glued together to result in total thickness of 1.74 mm. We 
assume a 0.12 mm thick air gap between the two glued 
substrates. The dimensions of interest are as follows: fed-
patch 64mm×68mm, upper patch 72 mm × 72 mm, and 
the finite ground plane 100mm×100mm. The coaxial 
probe feed, modeled according to work reported in [6, 7], 
is placed at x=10mm and y=4mm from the lower left 
hand corner of the lower patch as shown in Fig. 2. To 
reduce the computational burden, in both the FDTD and 
the FEM simulations, an infinite ground plane was 
considered. 

 

 
 

Fig. 1. Three-dimensional view of the 
electromagnetically coupled patch antenna. 
 

 
 
Fig. 2. Lower patch of antenna in Fig. 1, with indicated 
coordinates of the feed point. 

 
III. RETURN LOSS 

 
The measured and simulated results of input return 

loss (S11) are shown in Figs. 3 and 4 for d = 22 mm and 
d=18mm. The center frequency of the -10dB return loss 
in simulation and experimental results is close to 1.3GHz 
and varies slightly with the change in d.  

Figure 5 shows the percentage of -10dB bandwidth 
versus d both for simulation and measurement. Figure 5 
demonstrates that the measured bandwidth of the antenna 
linearly increases with d, with the maximum measured 
bandwidth of 12% for d=30mm.  

As it can be observed in Figs. 3, 4, and 5, around 
1.25 GHz and for the foam spacer less than 24 mm, 
which is the focus of this paper, there is a good 
agreement between the simulated and the measured 
results. A discrepancy between the measurement and 
simulation can be noted around 1.8 GHz, and we suspect 

that it was caused by several approximations of the 
simulation model. First, we assume εr=1 for the foam 
layer. Second, we neglect the electromagnetic properties 
of the glue. Finally, the scattering effects of the finite 
ground plane in the constructed antenna (not modeled in 
the simulations to reduce the computational burden) also 
represent a possible source of error. As discussed in [8], 
by considering the finite ground plane it is possible to 
obtain better simulated results around 1.8 GHz. 

 
Fig. 3. Return loss for the separation between the lower 
and upper patch (foam spacer) d=18 mm. 

 
Fig.  4. Return loss for the separation between the lower 
and upper patch (foam spacer) d=22mm. 
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Fig. 5. Percentage of bandwidth for different values of 
the separation between the lower and upper patch 
(thickness of the foam spacer), d. 
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IV. AXIAL RATIO 
 

Figure 6 shows the axial ratio computed with the 
finite-element software (HFSS) for different values of d. 
The minimum value of the axial ratio (0.7dB) occurs at 
d=20mm at the center frequency of 1.24 GHz. 
Considering the frequency shift between the 
measurements and simulations noted in Figs. 3 and 4, we 
can anticipate the minimum axial ratio value in the 
measurement at approximately 1.3GHz – the center 
frequency of the -10dB bandwidth. The maximum 3dB 
bandwidth of axial ratio (2.2 %) is observed for d=16mm 
at the center frequency of 1.23GHz. We note that the 
increase in d results in a reduction of the axial ratio 
bandwidth. As can be seen in Fig. 6, for d > 22 mm, the 
3dB bandwidth of axial ratio is negligible. 

Figure 7 shows the variation of axial ratio at φ=0°(x-
z plane) versus θ at 1.24 GHz and for different values d. 
Again, it can be observed that, as d increases, the 
beamwidth of the 3-dB axial ratio decreases. For 
d>22mm, the beamwidth is zero. At d = 20 mm the 3-dB 
beamwidth of axial ratio is around 90°. 
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Fig. 6. Axial ratio vs. frequency for different values of d. 
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Fig. 7. Axial ratio at φ=0° vs. θ for different values of d 
at 1.24 GHz. 

V. MODAL ANALYSIS 
 

In order to explain the broadband behavior and the 
circular polarization of the antenna, we simulate the 
antenna using finite-difference time domain (FDTD) 
method and extract the current distribution on the patches 
at different frequencies.  

In order to obtain the current distribution (Jx and Jy) 
we calculate and save the current distribution at each time 
step at the late simulation time to ensure the higher order 
modes have diminished and only dominant modes exist 
on the patches. We then apply the Fourier transform on 
these current distributions to obtain the current 
distributions in frequency domain. As depicted in Fig. 8, 
the current distribution at 1.3 GHz corresponds to TM01 
and TM10 modes with approximately the same amplitude. 
The simultaneous excitation of these two modes matches 
with the broadband behavior obtained at around 1.3GHz. 
Further, since the modes are spatially orthogonal this 
explains the circular polarization when the appropriate 
phase conditions are met for certain values of the 
separation between the upper and lower patch (d). 
 
 

 
(a) 

 
 

                                
(b) 
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(c) 

 

 
 (d) 

 
Fig. 8. Current distribution at 1.3GHz on the patches, 
illustrating the simultaneous excitation of TM01 and TM10 
modes. a) Jx  on lower patch, b) Jy on lower patch, c) Jx 
on upper patch, and d) Jy on upper patch. 

 
VI. CONCLUSION 

 
A broadband circularly polarized electromagnetically 

coupled patch antenna has been analyzed through 
simulation and experiment. The measured bandwidth 
increases linearly with the separation between the lower 
and upper antenna patch d and the maximum bandwidth 
of 12% around 1.33 GHz (L-band) occurs for d=30mm. 
Through FEM simulations, we observed that the 3-dB 
bandwidth of axial ratio degrades as the separation of the 
patches d increases. A modal analysis on the current 
distributions obtained by FDTD has been performed and 
the current distribution at 1.3GHz clearly shows the 
simultaneous excitation of TM01 and TM10 modes with 
nearly equal amplitudes on the lower and upper patches. 
This can explain the broadband and circular polarization 
characteristics of the antenna. 
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Abstract  − The paper describes an efficient technique for 
optimizing the shape of the patch of a multi-band antenna 
by means of Genetic Algorithms and the hybrid FEM–
RBCI method, for the analysis of open-boundary 
scattering and radiation electromagnetic field problems. 
The admissible rectangular patch area is logically and 
regularly subdivided into rectangular sub-areas, 
coinciding with the trace of the tetrahedral edge element 
mesh on the patch surface. In this way the relevant 
matrices of the finite element algebraic system, computed 
at the beginning of the optimization, remain unchanged, 
even if the patch is changed by inserting some metallic 
sub-areas. Moreover, in order to reduce the computing 
time of the iterative solver, the solution of a similar patch 
configuration is used as the initial guess for the solver. 

 
Keywords: finite element method, genetic algorithms, 
micro-strip antennas, and optimization methods. 

 
I. INTRODUCTION 

 
Antenna design is a topic of great importance in 

electromagnetics. It involves the selection of physical 
parameters to achieve optimal gain, pattern performance, 
bandwidth, and so on, subject to some specified 
constraints. If a trial and error process is used for antenna 
design, the designer is required to have great experience 
and intuition; so innovative design methods are required 
[1,2]. In addition to producing results with excellent 
performance, this also gives unconventional and non-
intuitive physical realizations. 

For personal communications, multi-band antennas 
are of particular interest. In this paper, we consider a 
dual-band antenna design using a single patch, and an 
efficient technique is described for optimizing the shape 
of the patch by means of Genetic Algorithms (GA) [3,4] 
and the hybrid FEM/RBCI (Finite Element Method – 
Robin Boundary Condition Iteration) method, for the 
analysis of open-boundary electromagnetic scattering [5] 
and radiation [6] problems. 

In Section 2 the FEM/RBCI method for the micro-
strip antenna is briefly recalled. In Section 3 the 

optimization procedure is outlined. Results are shown in 
Section 4 and our conclusions follow in Section 5. 

 
II. THE FEM-RBCI METHOD FOR A 

MICROSTRIP ANTENNA 
 

Consider a patch antenna recessed in a perfectly 
conducting (PEC) plane; the cavity is filled with a 
homogeneous lossless material with relative dielectric 
permittivity εr and relative magnetic permeability µr. The 
original microstrip antenna is a rectangle of size wa × la, 
residing on top of a parallelepipedal cavity the 
dimensions of which are wc × lc and depth h (see Fig.1).  

A relevant application is to design a patch that 
operates at the two frequencies of the Global Positioning 
System (GPS): 1227 and 1572 MHz. 

 

wc

lc

y

xX13   X14   X15   X16

X7    X8    X9    X10     X11     X12

X1    X2    X3    X4    X5    X6

wa

la

 
 

Fig. 1.  Top view of cavity and patch. 
 

In order to make the antenna work in this frequency 
range, the following values are selected: wa=5.36 cm, 
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la=7.02 cm, wc=2wa, lc=2la, h=0.48 cm, εr=4.4, µr=1. The 
same device was optimized in [2]. The antenna is 
powered by a coaxial cable and irradiates in an 
unbounded vacuum medium.  

To apply FEM-RBCI, the vacuum region is 
truncated, at a distance of d=5 cm from the cavity, to a 
bounded one by means of a fictitious boundary BF, which 
encloses the antenna aperture and the patch (see Fig.2). In 
the bounded domain thus obtained, the vector Helmholtz 
equation holds for the electric field, 

 
 ( ) 0EεkEµ r

2
0

1
r =−×∇×∇ −     (1) 

 
where µr and εr are the relative magnetic permeability and 
electrical permittivity, respectively, and k0 is the free-
space wave number, given by 00

22
0k µεω= , with ω being 

the angular frequency and µ0 and ε0 the free-space 
permeability and permittivity, respectively. 
Homogeneous Dirichlet ( )0En̂ =×  conditions hold on 
the PEC surfaces of the cavity, the PEC plane, and the 
patch surface. 

A Robin (mixed) boundary condition is assumed on 
BF, 
 

 U)En̂(n̂jkEn̂ 0 =××+×∇×  (2) 
 

where n is the outward normal to BF and U  is an 
unknown vector tangent to BF. 

The internal conductor of the coaxial cable is 
assumed to carry an impressed density current Jint which 
represents the known source of the antenna. Since the 
source is electrically short and small, it can be modeled 
as a current filament [7]. The source can be expressed as, 
 

 ( ) ( ) ẑy-yδx-xδIJ ffintint =  (3) 
 

where xf=wa/3 and yf=0 specifies the feed position, Iint 
denotes the electric current magnitude, and δ(x) is the 
Dirac delta function. 
 

wa

d

d dwc

h

BF

BM

 
 

Fig. 2.  Cross section of the FEM domain at plane y=0. 
 

Discretizing the domain by tetrahedral edge 
elements, the FEM leads to the matrix equation, 

 BUBAE += 0  (4) 
 
where A is a complex and symmetric matrix, B0 is due to 
the source, B is a rectangular matrix, whose entries are 
the Kronecker delta, and links the vector U  with the right 
hand side of the FEM system, E is the array of the 
expansion coefficients for the electric field and U is the 
array whose generic entry is given by, 
 

 ∫ ⋅=
FB jj dSwUU  (5) 

 
in which jw  is the generic edge form function. Since U 

is unknown, system of equation (4) cannot be solved. 
Let us now consider another surface, BM, lying 

between the antenna and the fictitious boundary (see Fig. 
2). At minimum, BM can be selected as coinciding with 
the antenna aperture itself. The total field outside BM can 
be expressed as [8], 

 

 
( )[
( )]ds')'r(E'n̂)'r,r(G

)'r(E''n̂)'r,r(G)r(E
MB

×⋅×∇+

+×∇×⋅= ∫  (6) 

 
where the dyadic Green’s function, which takes account 
of the presence of the ground plane, is given by [8], 
 

 
)"r,r(gẑẑ2

)"r,r(G)'r,r(G)'r,r(G

0

00

+
+−=  (7) 

 
where "r  is the symmetrical of 'r  with respect to the 
ground plane and, 

 
 ( ) )'r,r(gkI)'r,r(G 0

2
00 ∇∇+= −  (8) 

 
 'rrjk

0
0e

'rr4
1)'r,r(g −−

−π
= . (9) 

 
A similar expression for E×∇  is easily obtained 

from equation (6), so that an integral equation is derived 
which links U  to E  [5]. Note that, since BM and BF do 
not intersect with each other, singularities are avoided in 
this integral equation. The discrete form of the equation 
reads [5], 

 MEU =  (10) 
 

where M is a rectangular matrix in which null columns 
appear for the internal edges not involved in the 
computation.  
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Equations (4) and (10) together form the global 
algebraic system of the FEM-RBCI method, which can 
be conveniently solved by an iterative scheme as follows:  

1) Select an arbitrary first guess for U; 2) solve 
equation (4) for E, by means of a standard conjugate 
gradient solver (COCG); 3) obtain an improved guess for 
U by means of equation (10); 4) if the procedure has 
converged, i.e. a user-selected end iteration tolerance τ is 
satisfied, stop; otherwise go to 2). This scheme can be 
seen as a two-block Gauss-Seidel iterative method, 
 

 
(n)1)(n

(n)11(n)

MEU

BUABAE 0

=

+=
+

−−
. (11) 

 
In this way the symmetry of matrix A  is fully 

exploited. Moreover, since this procedure converges in a 
few iterations, it also minimizes the number of 
multiplications of the dense matrix M  by a vector. 

 
III. OPTIMIZATION OF THE ANTENNA 

 
The admissible rectangular patch surface is regularly 

subdivided into rectangular sub-areas, which coincide 
with the trace of the tetrahedral finite element mesh on 
the patch itself (see Fig. 1). The optimal antenna is 
designed by making these sub-areas metallic or not, 
although the four sub-areas at the middle-right part of the 
patch are always filled with metal in order to fix the feed 
point.  

Only the lower half of the domain is considered, in 
order to exploit the symmetry of the problem. We can 
therefore operate on 16 sub areas, the design variables x1, 
x2, …, x16, each of which can assume the value 1 (filled) 
or 0 (empty): they form the GA chromosome, giving a 
total of 216 different configurations. 

The objective function to minimize is chosen as [2], 
 

 
311211111 1.0 SSSf ++=  (12) 

 
where |S11|k, for k=1, 2, 3, refers to the return loss at the 
three frequency points: 1227, 1400 and 1572 MHz, 
respectively.  The return loss is defined as, 
 

 
0

0
11 ZZ

ZZS
in

in

+
−

=  (13) 

 
where Zin is the input impedance at the feed and Z0=50Ω. 
After the electric field E along the source edges has been 
obtained, by means of the FEM/RBCI, the voltage drop 
along the current filament can be calculated. Thus, the 
input impedance Zin can be obtained.  

 

We point out that the objective function f as given in 
equation (12) will not guarantee pattern integrity for the 
shaped patch: the objective function can be combined 
with a penalization criterion to drive the GA search 
towards topologies for which pattern connectivity is 
maintained [9]. However, at this point our focus will only 
be on optimization of the return loss. 

During the optimization procedure, the mesh remains 
unchanged, hence the domain discretization is only 
performed once at the beginning of the optimization.  
Moreover, before starting the evaluation of |S11|k for a GA 
population, a structure in which all the sub-areas are non-
metallic, except for those near the source current filament 
(dark gray areas in Fig.1), is selected. For this first patch 
configuration, corresponding to the null chromosome, the 
FEM/RBCI matrices A, B and M are computed and 
stored. Adding a sub-area of metal to the patch is 
equivalent to forcing a homogeneous Dirichlet boundary 
condition for the electric field on the edges lying on that 
sub-area. This, in turn, is equivalent to dropping the 
corresponding rows and columns in matrix A. Matrices B 
and M remain unchanged for a fixed k. In this way, the 
whole preprocessing phase consists of modifying some 
Dirichlet boundary conditions, and the FEM matrices are 
recomputed only three times, once for each frequency in 
equation (12), during the fitness evaluation of a GA 
population, thus saving a great amount of computing 
time. 

Moreover, before evaluating the objective functions, 
the GA population is ordered, taking into account the 
Hamming distance between the chromosomes, starting 
from the chromosome with more bits equal to 0, in such a 
way that configurations having similar patch shapes will 
be contiguously ordered. Then, by using solution E for 
the electric field of the previous configuration as the 
initial guess for the iterative conjugate gradient solver 
(COCG) in the FEM/RBCI analysis of the next 
configuration, the number of iterations, of both the solver 
and the FEM/RBCI, is reduced and a further saving in the 
overall computing time is obtained. 

Fig.3 is a flowchart of the whole optimization 
procedure as described above. 
 

IV. RESULTS  
 

The formulation described in Section 2 was 
implemented in ELFIN [10], a finite element code 
developed by the authors for electromagnetic CAD 
research, which employs zero-order tetrahedral edge 
elements to solve three-dimensional electromagnetic 
scattering and radiation problems. 
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Fig. 3.  A flowchart of the whole optimization procedure. 

 
The finite element mesh used was made up of 10133 

elements with 12661 edges. The feed source was 
discretized with four edges. 

The COCG solver [11] with diagonal 
preconditioning was used for the solution of the various 
FEM complex symmetric systems of equation (4); the 
stopping criterion used for COCG was that described as 
criterion 2 in [12], with an end-iteration tolerance of 

δ=0.05%. The RBCI end-iteration tolerance was set to τ 
= 1% and convergence was reached, on average, in about 
five iterations. 

In order to calculate the return loss, for a fixed 
configuration and a single frequency, the following 
computing times are required: a time Tp for the 
preprocessing phase, a time Tc for the construction of the 
FEM/RBCI system, i.e. for the computation of matrices 
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A, B and M, and a time Ts for the solution of the global 
algebraic system, equations (4) and (10). The whole 
computing time T for a single evaluation of |S11| is thus, 

 
 scp TTTT ++=  (14) 

 
with the above data, Tp is about 35% of T, Tc is about 
10% of T and Ts is about 55% of T. Solving the problem 
on a 3.2 GHz Pentium IV workstation with 4Gb RAM, T 
is about 50 s. 

In optimization by GAs, the population size was set 
to P=30 individuals: each individual is a 16-bit 
chromosome relating to a patch configuration. The 
reproduction process, which randomly creates a new 
generation from the old one, was chosen by tournament 
selection with a shuffling technique, to choose random 
pairs for mating, and elitism was also used. The crossover 
process, by means of which individuals exchange 
portions of chromosomes from one generation to the 
other, was 2-point crossover with a probability pc varying 
from 0.3 to 0.7 as the optimization proceeds. The 
mutation process, by means of which some random flips 
in the chromosomes of an individual are made, was 
employed with a probability pm varying from 0.05 to 0.01 
as the optimization proceeds. This choice of GA 
parameters is the same as discussed in [4]. The evolution 
was halted after N=30 generations.  

The whole computing time TCPU to find the optimum 
for a standard optimization procedure is therefore, 
 

 T3PNTCPU ×××=  (15) 
 

Using the strategy described in Section 3, the 
preprocessor is called only once at the start of the 
optimization so Tp is added just once. Moreover, the 
computation of matrices A, B and M, occurs only three 
times for each GA generation. Finally, using the solution 
of the previous configuration as the initial guess for the 
iterative conjugate gradient solver (COCG) in the 
FEM/RBCI analysis, the time Ts is, on average, reduced 
by about 7% (about 15% when the new configuration is 
very similar to the previous one). Hence the whole 
computing time Tcpu is reduced to, 
 

 scpCPU T0.933PNT3NTT ××××+××+=  (16) 

 
Further computing time is saved when an individual 

has a null Hamming distance from the previous one: in 
this case, in fact, the fitness is not recalculated but is 
simply allotted the same value as its twin. 

Implementing all these tricks, the time required to 
carry out the optimization, TCPU , is reduced from 1.35 
105 s to 0.6 105 s. 

The optimum configuration for the patch antenna 
was that with sub areas x1, x7, x8, x10, x11 empty and all 
the others filled with metal (light gray areas in Fig. 1). 
The objective function value calculated for the optimal 
configuration is fmin = 0.94.  The return loss of the 
optimized patch is shown in Fig. 4, as per design; the 
resonant frequencies occur at 1.23 and 1.57 GHz. The 
best (minimum) and average values of the objective 
function f, through the various generations, are plotted in 
Fig. 5. The history of GA optimization shows a good 
convergence by the algorithm. 
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Fig. 4.  Return loss of the optimal patch. 
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Fig. 5.  Best (solid) and average (dotted) objective 
function f  over GA generations. 
 

V. CONCLUSIONS 
 

In this paper optimization of a microstrip antenna has 
been performed by means of Genetic Algorithms and a 
hybrid Finite Element – Robin Boundary Condition 
Iteration method. The goal was to design a patch antenna 
for personal communications that operates at the two 
GPS frequencies. 

A strategy to make the optimization procedure more 
efficient has been outlined. The optimum was reached in 
about half the time required by the standard procedure. 
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The optimized patch performs well in the design 
frequency bandwidth and has an unconventional and non-
intuitive shape. 
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Abstract − This paper presents a novel design of a curve 
tapered leaky-wave antenna (LWA). An FDTD code was 
used to extract the propagation constant of a microstrip 
LWA and to run a simple algorithm to design its layout. 
A physical grounding structure along the length of the 
antenna allows the adoption of a simple feeding planar 
line and the reduction of sidelobes. Moreover, the 
proposed design of LWA has interesting performance 
both for its bandwidth, (up to 33% for VSWR< 2) and for 
its gain (more than 12 dBi peak power gain at 10.5 GHz), 
compared with conventional planar microstrip LWAs 
which work in the same frequency range but with 
narrower bandwidth (20% VSWR< 2) and peak power 
gain less than 10 dBi. A prototype of a LWA proposed, 
was made showing a good agreement between 
experimental and theoretical results. 

 
Keywords: Leaky wave, broadband antennas, FDTD, and 
tapered antenna. 

 
I. INTRODUCTION 

 
Substantial enhancements were achieved since 

pioneering studies [1,2] on microstrip leaky-wave 
antennas (LWA), and they are now very popular and 
widely used in applications thanks to their advantages of 
low-profile, easy matching, narrow beamwidth, 
fabrication simplicity, and frequency/electrically 
scanning capability. In some applications the mainbeam 
variation of LWA should be as low possible. In these 
cases it is possible to use a tapered microstrip LWA in 
which each section of the antenna, irradiates in specific 
ranges of frequency, obtaining therefore a fixed 
mainbeam. It’s equivalent to a broadband antenna.  

Unfortunately in these structures the impedance 
mismatch between the different sections of LWA, and the 
fundamental mode perturbation, that is a bound mode, 
reduce the bandwidth of LWA.  Slots in the microstrip 
conductor are possible solutions to eliminate the 
fundamental mode [1]. Suitable metal walls down the 
centerline connecting the conductor strip and the ground 
plane can be considered alternatively, as shown in Fig. 1 
determining the possibility to reduce the width of the 
antenna simplifying its feeding structure [3]. 

We have studied and designed a broadband tapered 
LWA, with a simple algorithm, as discussed in the 

following sections, showing the experimental results of a 
LWA prototype made using the proposed design, which 
is in a good agreement with theoretical results. 

 

 
 

Fig. 1. Travelling half antennas. 
 

II. CHARACTERISTICS OF MICROSTRIP LWA  
 
The radiation mechanism of higher order modes on 

microstrip LWA is attributed to a traveling wave instead 
of the standing wave as in patch antennas and above 
cutoff frequency, where the phase constant equals the 
attenuation constant ( cα = cβ ), it is possible to observe 
three different range of propagation: bound wave, surface 
wave and leaky wave. While at low frequency, below the 
cutoff frequency, we have the reactive region due to 
evanescent property of LWA. We can explain the 
character of microstrip LWA trough the complex 
propagation constant αβ jk −= , where β  is the phase 
constant of the first higher mode, andα  is the leakage 
constant of the guided mode. 

The main-beam radiation angle of LWA can be 
approximated by, 

 

 1

0
cos

K
βθ − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                        (1) 

 
where θ  is the angle measured from the endfire direction 
and 0K  is the free space wavenumber.  

From equation (1) we can observe that the leaky 
mode leaks away in the form of space wave 
when 0K<β , therefore we can define the radiation leaky 
region from the cutoff frequency to the frequency at 
which the phase constant equals the free-space 
wavenumber )( 0K=β . For )( 0K>β we have the bound 
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mode region and for sKK << β0 , exists a narrow 
frequency range in which we can have surface-wave 
leakage. 

 
II. DESIGN OF BROADBAND LWA 

 
The dispersion equation is the main instrument of 

analysis to determine the range of propagation of the 
antenna. Generally the solution of that equation can be 
obtained through a full-wave analysis such as spectral 
domain analysis (SDA) [4], or with a transverse 
resonance approximation according to [5]. Recently an 
FDTD code which uses a PML boundary condition has 
been introduced in [3] to extract the propagation constant 
of a microstrip LWA. Using this code we can obtain in a 
simple way the radiation leaky region for a different 
geometry of LWAs. Moreover, the idea to replace slots 
with a physical grounding structure along the length of 
the antenna connecting the conductor strip and the ground 
plate, allow using only half of the structure due to image 
theory, strongly reducing the computational costs to run a 
FDTD code.  

A transverse electric field zE  was used in 3D FDTD 
code, to excite the antenna using a sinusoidal source with 
a cubic ramp over the first three periods according to [3], 
located inside the substrate. A PEC was used to modeled 
ground plane and all conductors, while PML were applied 
to all other boundaries directly in contact with the 
antenna to suppress the reflection of travelling wave. A 
recursive least-squares procedure was used to determine 
the constants α  and β  by matching a known 
exponential curve to the transverse electric field 
amplitude, retrieved from 3D FDTD data (see Fig. 2), 
along the length of the antenna. The symbol α  was found 
from the peak values, whileβ  was found from the zero 
crossings, as shown in Fig. 3. The dispersion 
characteristics curve of Fig. 4, obtained by FDTD code, 
shows a good agreement with transverse resonance 
approximation derived by Kuestner [5].  

 

 
Fig. 2.  A transverse electric field zE  data retrieved by 
FDTD code. 

 
Fig. 3. The logarithmic curve of transverse electric field 

zE  data used to determine the propagation constant. 
 

0

0,2

0,4

0,6

0,8

1

1,2

5,5 5,9 6,5 6,9 7,5 7,9

Frequency [GHz]

Theoretical FDTD  
 
Fig. 4. Theoretical and FDTD dispersion characteristics 
of leaky wave first high mode.  
 

Moreover, to validate the FDTD code we have 
calculated and plotted the relationship between the 
relative permittivity of the substrate and the propagation 
constant, and the relationship between the thickness of 
the substrate and the propagation constant. The good 
agreement of these curves, with the theoretical transverse 
resonance approximation [5], as shown in Figs. 5 and 6, 
confirms the validity of the numerical FDTD code used.  
 

 
 

Fig. 5. Theoretical and FDTD dependence between the 
relative permittivity of the substrate and the propagation 
constant at f= 6.7 GHz, w = 15mm, h = 0.787 mm. 
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Fig. 6. Theoretical and FDTD dependence between the 
thickness of the substrate and the propagation constant at 
f= 6.7 GHz, rε = 2.32, h = 0.787 mm. 

 
Through the dispersion characteristic equation, 

evaluated with FDTD code, we can obtain the radiation 
region of the leaky waves indicated in the more useful 
way for the design of our antenna, 
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.                (2) 

 
From equation (2) we can observe that the cutoff 

frequency increases when the width of the antenna 
decrease, shift toward high frequencies, the beginning of 
the radiation region as shown in Fig. 7. Therefore it is 
possible to design a multisection microstrip antenna [as 
Type I antenna in Fig. 4], in which each section able to 
radiate at a desired frequency range, can be 
superimposed, obtaining an antenna with the bandwidth 
more than an uniform microstrip antenna. In this way 
every section should be into bound region, radiation 
region or reactive region, permitting the power, to 
uniformly radiated at different frequencies.  
 

 
 

Fig. 7. Cutoff freq. of multisections microstrip LWA . 
 
Using the same start width and substrate of Menzel 

travelling microstrip antenna (TMA) [1], and total length 
of 120 mm, we have started the iterative procedure 
mentioned in [6] to obtain the number, the width and the 

length of each microstrip section. From Menzel TMA 
width, we have calculated the fSTART (onset cutoff 
frequency) of the curve tapered LWA, than, choosing the 
survival power ratio ( 2 Li ie ατ −= ) opportunely, at the end 
of the first section, we have obtained the length of this 
section. The cutoff frequency of subsequent section (fi), 
was determined by FDTD code, while the length of this 
section was determined, repeating the process described 
previously. This iterative procedure was repeated, until 
the upper cutoff frequency of the last microstrip section. 

The presence of ripples in return loss curve and the 
presence of spurious sidelobes shows the impedance 
mismatch and discontinuity effect of this multisection 
LWA that reduce the bandwidth. A simple way to reduce 
these effects is to design a tapered antenna in which the 
beginning and the ending, respectively, of the first and 
the last sections are linearly connected together (as the 
Type II antenna in Fig. 8). 

Alternatively, this idea was to design a LWA using a 
physical grounding structure along the length of the 
antenna, with the same contour of the cutoff phase 
constant or attenuation constant curve ( cα = cβ ), obtained 
varying the frequency, for different width and length of 
each microstrip section as shown in Fig. 3, employing the 
following simple equation (3), 

 
       32

2
1 cfcfcc ++=β                      (3) 

 
obtained from linear polynomials interpolation, where 1c  
= 0.0016, 2c = 0.03,  3c = -15.56. 

The antenna layout (as the Type III antenna in Fig. 
8), was optimized through a 3D electromagnetic 
simulator, and the return loss and the radiation pattern 
was compared with Type I antenna and Type II antenna.  

 
III. SIMULATION RESULTS 

 
An asymmetrical planar 50 Ω feeding line was used 

to excite the first higher-order mode while a metal wall 
down the centerline connecting the conductor strip and 
the ground plate was used to suppress the dominant mode 
for Type I - III. The chosen substrate had a dielectric 
constant of 2.32 and a thickness of 0.787 mm, while the 
total length of the leaky wave antenna was chosen to be 
120 mm.  

The leaky multisection tapered antenna Type I was 
open-circuited, with a 15 mm start width, and 8.9 mm of 
final width obtained according to [6]. For LWA layout 
Type I, we used four microstrip steps, for layout Type II 
we tapered the steps linearly, while the curve contour of 
the LWA layout Type III, was designed through equation 
(3). 

Figure 9 shows the simulated return loss of three 
layouts. We can see that the return loss (S11) of Type I is 

βα =  
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below -5 dB from 6 to 10.3 GHz, but only three short-
range frequencies are below -10 dB.  S11 of Type II is 
below -5 dB from 6.1 to 9.1 GHz, and below -10 dB from 
6.8 to 8.6 GHz. At last, S11 of Type III is below -5 dB 
from 6.8 to 11.8 GHz, and below -10 dB from 8.0 to 11.2 
GHz.  In Fig. 10 are shows the mainlobe direction at 9.5 
GHz for the different Type I to Type III. We can see a 
reduction of sidelobe and only few degrees of mainlobe 
variation between Types I to III. Moreover, in Fig. 11 is 
shown the variation of mainlobe of antenna Type III, for 
different frequency, while in Fig. 12 is shown the trend of 
gain versus frequency of the same antenna. It is clear that, 
the peak power gain is more than 12 dBi, which is almost 
3 dBi higher than uniform LWAs. 

 

 
(a) Type I 

 
 

 
(b) Type II 

 
 

 
(c) Type III 

 
 

Fig. 8. Layout of leaky wave antennas types I-III. A 
physical grounding structure was used to connect the 
conductor strip and the ground plane. 

 
Finally, the simulated VSWR is less than 2 and 

between 8.01 and 11.17 GHz (33%), yielding an 
interesting relative bandwidth of 1.39:1, as shown in Fig. 
13, compared with uniform microstrip LWAs (20% for 
VSWR < 2) as mentioned in [7].  

These results indicate a high performance of Type III 
LWA: high efficiency excitation of the leaky mode, 
increases of the bandwidth, improves the return loss and 
reduction of 19% of metallic surface with respect to 
uniform LWA. Moreover, these results are in a good 

agreement whit the experimental results of return loss and 
radiation pattern of a prototype (shown in Fig. 14) made 
using a RT/Duroid 5880 substrate with thickness of 0.787 
mm and relative dielectric constant of 2.32, as shown in 
Figs.15 and 16.  

 
(a) Type I 

 

 
(b) Type II 

 

 
(c) Type III 

 
Fig. 9. Simulated return loss of types I-III LWA. 
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(a) Type I 

 

 
(b) Type II 

 

 
(c) Type III 

 
Fig. 10. Radiation patterns of electric field (H plane) of 
types I-III, LWA at 9.5 GHz. 
 

 
Fig. 11.  Simulated radiation patterns of E field of LWA 
type III for different frequencies.  

0
2
4
6
8

10
12
14

6 6,7 7,2 8 8,2 9 9,5 10,5
Frequency [GHz]

G
ai

n 
[d

B
i]

Gain LWA Type III  
Fig. 12.  The gain versus frequency of the LWA type III.  
 

 
Fig. 13.  Simulated radiation patterns of E field of LWA 
type III for different frequency.  
 

 
 
Fig. 14.  A prototype of tapered LWA with holes made in 
the center line of the antenna. 
 

 
Fig. 15. Experimental and simulated return loss of LWA 
type III. 
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Fig. 16.  Measured and simulated radiation patterns of E 
field of LWA type III (at 8 GHz on the right).  
 

IV. CONCLUSIONS 
 

A novel technique which provides broadband tapered 
microstrip leaky-wave antennas with high added value 
has been introduced in this study, from 8 to 11 GHz. The 
propagation constant evaluated with FDTD code was 
used to design the layout, with the same contour obtained 
from the interpolation of the cutoff frequency points, for 
different widths and lengths of each microstrip section, 
and with a physical grounding structure along the length 
of the antenna.  

The experimental and simulation results shown the 
good performance of a curve tapered microstrip leaky 
wave antenna, with reference to conventional uniform 
microstrip LWAs (wider band and higher gain), and 
indicate that this structure is attractive for the design of 
high performance microstrip leaky-wave antennas for 
microwave and millimeter wave applications. 
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Abstract – This paper reports on a computational study
of a 2-element cross-polarized antenna array for breast
cancer detection. The “Dark Eyes” antenna is used in
a T-arrangement to form the array. The antenna return
loss is below -10dB in the range 2.3-10.3 GHz and the
cross-polarized mutual coupling is less than -30dB for
frequencies over 2.4 GHz. Using the finite-difference
time-domain (FDTD) method, an ultra-wideband (UWB)
pulse is transmitted in the numerical breast phantom
and the co- and cross-polarized back-scatter response is
recorded from tumors at different locations. The breast
phantom was modeled as a simple layered medium of
skin and fat. The dispersive properties of layers were
introduced through a Debye model. Simulation results
for a spherical and a cylindrical tumor of different
orientations are presented and discussed.

Keywords: Resistively loaded antennas, microwave
imaging, cross-polarized array, breast cancer detection.

I. INTRODUCTION

Microwave imaging techniques are currently being
studied as an effective low-cost screening tool for breast
cancer detection systems [1, 2]. Furthermore, polarimetric
radar-base imaging is thought to improve the imaging
technique. For this application, several antennas have been
suggested [3, 4]. However, most of these antennas are
either large or nonplanar and thus difficult for use in an
antenna array.

In a previous work, we have proposed an ultra-
wideband (UWB) compact planar antenna design [5] that
is easily fabricated using the standard printed circuit board
(PCB) process with embedded resistive technology. The
antenna can be manufactured on Rogers Duroid 6010
high frequency substrates [6] laminated with a resistive
conductive material (RCM) available from Ohmega Tech-
nologies [7]. The key advantage of this antenna is its
forward-region radiation pattern. This makes the antenna a
perfect candidate for a cross-polarized card-array arrange-
ment as suggested in [8]. In our work presented here, we
extend our study [9] of the T-arrangement to be used as a

sub-array unit for radar-based polarimetric breast cancer
detection system.

The paper is organized as follows. Section II focuses
on the geometry and characterization of T-arrangement
for two “Dark Eyes” antennas in a homogeneous lossless
medium. In Section III, we present a layered tissue model
to assess near-field radiation characteristics of the antenna
arrangement of Section II. Section IV offers a detailed
study on the tumor detection levels as a function of the
tumor shape and orientation (spherical, cylindrical − ori-
ented in the cross- or co-polarized manner) and discusses
the reported results. Finally, we make the concluding
remarks and comment on our near-future work in Section
V.

II. GEOMETRY AND CHARACTERIZATION
OF THE TWO-ANTENNA T-ARRANGEMENT

Figure 1(a) shows the miniaturized “Dark Eyes”
antenna reported in [5]. Figure 1(b) illustrates the pro-
posed T-arrangement of two of these antennas in a cross-
polarized configuration [8]. As the antenna is aimed to
serve for microwave breast cancer detection, in our study,
it is immersed in a lossless medium of relative permittivity
εr = 10.2 which is dielectrically close to that of the
fatty breast tissue at the center of the frequency range
under investigation [10]. The structure was simulated with
SEMCAD [11] (three-dimensional finite-difference time-
domain (FDTD) solver). The return loss S11 and mutual
coupling S12 results were also verified with HFSS [12]
(three-dimensional finite-element (FEM) solver).

We here report on the return loss and mutual cou-
pling of the T-arrangement unit. The structure exhibits
asymmetry and should be described by all three S-
parameter values − S11, S12, and S22, where the indices
correlate with antenna numeration indicated in Fig. 1(b).
Figure 2(a) shows that the Antenna-1 return loss S11 in
the 2.3-10.3GHz range and does not exceed -10dB. Nearly
identical results (not shown here) are obtained for S22

(Antenna-2 return loss). Another important parameter for
array design is the mutual coupling. This is quantified
by the S12 parameter graphed in Fig. 2(b). As can be
observed, although the antennas were placed with only
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(a)

(b)
Fig. 1. (a) Geometry of the microstrip-fed resistively
loaded ”Dark Eyes” antenna. L = 20 mm, W = 25 mm,
and t = 0.65 mm. Full description and analysis of
the antenna can be found in [5]. (b) Proposed cross-
polarized T-arrangement of the microwave sensing array
unit, with “Dark Eyes” antenna from Fig. 1(a) as its main
element [8].

11mm center-to-center spacing, the S12 is less than -30dB
in the 2.4-11GHz range. These results suggest broadband
behavior (low return loss and negligible mutual coupling)
of the T-arrangement unit within the microwave range of
interest for the intended application.

III. LAYERED TISSUE MODEL AND
NEAR-FIELD RADIATION OF THE

T-ARRANGEMENT

Figure 3 presents the simple layered tissue model of
the breast. It consists of a matching medium, a 1-mm skin
layer, and a fat medium. The T-arrangement is immersed
in the matching medium which has a dielectric constant
of εr = 10.2. The skin, fat, and tumor tissue are modeled
with a single-pole Debye dispersive medium defined as
follows, [13]

ε∗r(w) = ε
′

r(w)− jε
′′

r (w) = ε∞ +
εs − ε∞
1 + jwτ

− j σs

wε0
(1)

where ε∞ is the relative permittivity at infinite frequency,
εs is the static relative permittivity, σs is the static
conductivity, and τ is the relaxation time constant. Spe-
cific material properties for each tissue are presented in
Table 1 [14]. These values are slightly higher than the

(a)

(b)
Fig. 2. Simulated S-parameters for the T-arrangement
of Fig. 1(b). (a) Input return loss characteristic S11. (b)
Mutual coupling S12. Results are shown for SEMCAD
(FDTD-based) and HFSS (FEM-based) simulation tools
for comparison and verification.

measured data for the high percentage adipose tissue
recently reported in [15, 16].

Figure 3 shows 9 of the 25 simulated tumor locations
alphabetically labeled ’a’, ’b’, ... ’i’. These locations, in
addition to the other 16 not shown in the sketch, are
evenly distributed on the portion of the sphere centered
at Antenna-1 apex. Therefore, the 25 points find them-
selves distributed along a “bowl-like” surface beneath
Antenna-1. The choice of sampling field points over such
a surface (as opposed to, e.g., a plane) was motivated
by the fact that we are investigating near-field radiation,

Table 1. Material properties of the Debye dispersive
model.

Tissue
Parameters

ε∞ εs σs(S/m) τ (ps)

Skin 4.00 37.00 1.10 7.23

Tumor 3.99 54.00 0.70 7.0

Fat 7.00 10.00 0.15 7.0
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Fig. 3. Layered model of the breast showing the T-
arrangement, the matching medium, skin layer, fat, and
9 of the 25 simulated tumor locations.

where the wave has not yet acquired the plane-front of
propagation. In all the simulations, the distance between
the antenna apex and the skin is 5 mm. The tumor
locations are also measured radially from the antenna apex
with a radial distance of 3 cm.

Figure 4 shows near-field plots on the portion of the
sphere inside the layered model. The plots are computed
with HFSS and shown for three frequencies: (a) 3 GHz,
(b) 6 GHz, and (c) 9 GHz. In these simulations, both
antennas are present, however, only Antenna-1 is active,
while Antenna-2 is passive. As we can see from the plots,
the maximum intensity of the radiated electric field shifts
toward the left side as the frequency increases. However,
the range of the field magnitudes at all three frequencies
is similar, approximately (2.5-5.5 V/m). This is important
to the detection process as the antenna is supposed to
radiate the energy uniformly in the intended direction.

IV. TUMOR RESPONSE STUDY OF THE
T-ARRANGEMENT

In this section, the antenna array is used to study
the co-polarized and cross-polarized response of differ-
ent tumor shapes and orientations at various locations,
summarized in Table 2. The antenna array was simulated
using SEMCAD X [11]. The tumor was considered to be
either a sphere of diameter D = 5 mm or a cylinder with
a base diameter D = 2.75 mm and height H = 5.5 mm.
The chosen cylinder has its height equal to twice of its
diameter (H = 2D), and it has the same volume as
the chosen sphere. Finally, the cylinder is either oriented
in parallel with Antenna-1, when we refer to it as Co-
Cylinder, or it is oriented in parallel with Antenna-2,
when it is called X-Cylinder. In this study, a tumor is

(a)

(b)

(c)
Fig. 4. Electric field magnitude at a radial distance of 30
mm from the antenna apex in the layered model of Fig. 3
at: (a) 3 GHz, (b) 6 GHz, (c) 9 GHz. In the simulations,
the parameters of the fat layer containing the points for
which the field is plotted are as follows: εr(3GHz) = 9.95
and σ(3GHz) = 0.21S/m, εr(6GHz) = 9.8 and σ(6GHz)
= 0.4S/m, εr(9GHz) = 9.6 and σ(9GHz) = 0.66S/m.

placed in the layered model at one of the 25 locations
evenly distributed on the portion of a sphere shown in
Fig. 3, and SEMCAD is used to compute the tumor
response. Antenna-1 is excited with a Gaussian modulated
sinusoidal pulse described by,

V(t) = sin[2πf0(t− t0)] exp
[
− (t− t0)2

2τ2

]
, (2)

with f0 = 6GHz, τ = 80ps, and t0 = 5τ , while
Antenna-2 is kept passive. To compute the tumor response
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for each tumor location, two simulations are performed
to obtain the voltage at the antenna feed: one with, and
one without the tumor. By subtracting one simulated
response from the other, skin reflection and early-time
artifacts could be removed, providing the response of the
tumor only. This is done for both antennas, Antenna-1
and Antenna-2, to compute the co-polarized and cross-
polarized tumor response, respectively.

Figure 5 shows the co-polarized and cross-polarized
tumor response for the different tumor shapes and orien-
tations considered within the spherical surface defined in
Fig. 3. The presented results are the linear interpolation of
the computed tumor response at the 25 simulated locations
for each case. First, from Fig. 5 (a) and the computed
data, we can see that the co-polarized tumor response for
the sphere ranges from -88.6dB to -81.5dB (7.1dB). Our
study confirms that the tumor response plot in this specific
case correlates with the near-field radiation pattern of the
“Dark Eyes” antenna. For the Co-Cylinder case shown in
Fig. 5 (c), the co-polarized tumor response ranges from
-90.2dB to -83.2dB (7.0dB), while for the X-Cylinder
case shown in Fig. 5 (e), the co-polarized tumor response
ranges from -94.8dB to -86.5dB (8.3dB).

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 5. The co-polarized and cross-polarized tumor re-
sponse (dB) for the different tumor shapes/orientations.
The cylinder is either oriented in parallel with Antenna-1,
when we refer to it as Co-Cylinder, or it is oriented in
parallel with Antenna-2, when it is called X-Cylinder.
Results for: (a) and (b) Sphere, (c) and (d) Co-Cylinder,
and (e) and (f) X-Cylinder.

We note that the co-polarized tumor response spatial
variation is approximately 7dB to 8dB for all three cases,
however, the co-polarized tumor response for the Sphere
and the Co-Cylinder is approximately 4dB higher than
that of the co-polarized X-Cylinder tumor response.

Second, Figs. 5 (b), (d), and (f) show the cross-
polarized tumor response for all three of the previously
noted cases. Figure 5 (b) shows the cross-polarized tu-
mor response for the Sphere, ranging from -105.0dB
to -88.7dB (16.3dB). Then, for the Co-Cylinder case
shown in Fig. 5 (d), the cross-polarized tumor response
ranges from -104.0dB to -91.8dB (12.2dB). Finally, the
X-Cylinder case is shown in Fig. 5 (f) with its cross-
polarized tumor response ranging from -101.3dB to
-89.3dB (12.0dB).

When we compare results in graphs Figs. 5 (b), (d),
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Table 2. Tumor response summary.

Tumor shape and orientation Size (mm) Co-pol response Cross-pol response

range (dB) range (dB)

Sphere

Diameter D = 5

max = −81.5 max = −88.7

min = −88.6 min = −105.0

delta = 7.1 delta = 16.3

Co-cylinder

Base Diameter D = 2.75 max = −83.2 max = −91.8

Height H = 5.5 min = −90.2 min = −104.0

delta = 7.0 delta = 12.2

Cross-cylinder

Base Diameter D = 2.75 max = −86.5 max = −89.3

Height H = 5.5 min = −94.8 min = −101.3

delta = 8.3 delta = 12.0

and (f) with Figs. 5 (a), (c), and (e), we can note that the
co-polarized tumor response is always higher than that
of the cross-polarized tumor response for the case of the
Sphere and the Co-Cylinder. However, this is not the case
for the X-Cylinder where the approximate 5.5dB overlap
in the range of the co-polarized tumor response [-94.8dB
to -86.5dB] and that of the cross-polarized tumor response
[-101.3dB to -89.3dB] implies that having both co- and
cross-polarization measurement may be advantageous for
the overall detection process. This overlap in the co-
polarized and cross-polarized tumor response is mainly
attributed to the polarimetric signatures of the cylinder.
Table 2 presents a summary of the tumor response study
for all three cases under investigation.

V. CONCLUSIONS

This work presented an array arrangement of the
“Dark Eyes” antenna for breast cancer detection. The
antennas are arranged in a cross-polarized card array and
exhibit low return loss (-10dB from 2.3GHz to 10.3GHz)
and low mutual coupling (-30dB from 2.4GHz to 11GHz)
even when placed in the very proximity of each other.
The near-field radiation patterns at 3GHz, 6GHz, and
9GHz were also presented and the results show that the
radiated energy is better directed to the forward region
of the antenna at the lower frequency range. Further, a
computational study of the tumor response for different
tumor shapes and orientations was executed in a simple
layered breast model. Both, the co-polarized and the
cross-polarized backscatter was recorded from the tumor

placed at different locations in the forward region of
the antenna array. The initial results indicate that when
looking at the co-polarized response, it is the Sphere and
the Co-Cylinder that provided higher-amplitude response.
On the other hand, when looking at the cross-polarized
response, it is the X-Cylinder that provided the higher-
amplitude response. Thus, for extracting maximum infor-
mation about the tumor, and since the tumor shape and
orientation are unknown, there is an advantage in using
the cross-polarized array arrangement.
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Abstract – The Macro Basis Functions (MBF) approach
receives increasing attention for the evaluation of the
effects of array truncation. In this paper, we show how
physically based MBFs can be obtained from solutions
for infinite arrays and for arrays of minimal size. The
method is first explained and illustrated for the case of
finite-by-infinite arrays of electrically connected tapered-
slot antennas. It is then extended to the case of planar
arrays. Very low error levels are achieved with a small
number of MBFs, in terms of port currents as well as in
terms of radiation patterns.

I. INTRODUCTION

In the last few years, very efficient techniques
appeared in the literature for the Method-of-Moments
(MoM) analysis of large finite periodic antenna arrays.
Some methods rely on the infinite-array solution, with
corrections for the effects of array truncation [1–3]. Those
methods are generally valid for very large arrays and
entail several approximations. Other approaches involve
fast iterative methods, in which matrix-vector products are
accelerated with the help of multipole decompositions or
Fast Fourier Transforms, combined with efficient precon-
ditionners [4]. In [5], the FFT approach is advantageously
combined with the concept of subentire-domain basis
functions, which consists of assuming that the currents on
a given antenna in the finite array can be decomposed in
terms of a limited number of known current distributions,
obtained through the solution of smaller problems. This
underlying idea has been found in many publications,
where the “macro basis functions” [6, 7] are also called
“characteristic basis functions” [8]. Among recent works
on this subject, we should note [9] and [10], where pri-
mary and secondary distributions are considered, in order
to accurately catch the effects of mutual coupling. A very
fast implementation of this method has been described
in [11], where the interactions between macro basis and
macro testing functions are computed with the help of
a multipole approach. This method allows the efficient
computation of all coupling coefficients of the finite array.
Besides this, the patterns of macro basis functions, which
are side-products of this method, are then used to rapidly
compute the embedded element patterns and, in turn, the
array pattern for any excitation law. A similar approach,

involving an iterative scheme, is presented in [12].
At first glance, finite and infinite-array approaches

seem very distinct. For large arrays, an initial design can
be obtained from the infinite-array simulations, potentially
with approximate corrections for truncation, while the
behavior of the finite array is verified with the help of
an efficient iterative or multiscale approach [13]. The
present paper consists of making one more step toward the
reconciliation of infinite-array and finite-array approaches.
A first set of macro basis functions is obtained from the
infinite-array analysis in a very specific and physically-
based way, which finds its justification in the Array
Scanning Method [14]. A second set of MBFs is obtained
from the solution of very small (2×1 or 2×2) arrays. In
[15], MBFs (named “standard distributions”) were also
obtained from infinite array solutions, but this method was
limited to finite-by-infinite arrays and, more importantly,
to periodic excitation, thus requiring only one infinite-
array solution (besides single-element and semi-infinite
array solutions). The combination of ASM and MBF
approaches, for the solution of the array excited at a single
port, was first shown in [16], where only finite-by-infinite
arrays are considered, while full-wave treatment of edge
elements was needed. In the present paper, the method
shown in [16] is extended to planar arrays, while special
MBFs are included to represent currents on elements on
the array periphery.

This paper is organized as follows. In Section 2, the
phenomenology of current waves in infinite arrays excited
at one element is recalled, and its quantitative evaluation
is obtained with the help of the Array Scanning Method
in Section 3. In Section 4, the method for extraction of
edge MBFs is explained and the numerical examples are
given in Section 5 for finite-by-infinite arrays of tapered-
slot antennas. The method is extended to arrays finite in
both directions in Section 6, where examples are shown in
terms of port currents and radiation patterns. The method
is summarized and discussed in Section 7.

II. CURRENT DISTRIBUTIONS IN INFINITE
ARRAYS

To properly assess the efficiency of the method
explained below, it is interesting to consider worst-case
situations in terms of coupling between elements. This is
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Fig. 1. Discretization of tapered-slot antenna with
overlapping basis functions (dashed).

why arrays of electrically connected tapered-slot antennas
[15, 17], will be taken as examples (see Figs. 1 and 2 for
meshes of the antennas and of the array): first, near the
lowest frequency end, the wavelength can be large com-
pared to the array spacing, which often leads to stronger
couplings and, second, the electrical connection between
elements also leads to very strong couplings and to a quite
different current distribution on elements located on the
periphery of the array. A first possibility for determining
the macro basis functions consists of considering a large
spectrum of plane-wave excitations of the antenna, as
well as source excitations. In practice, when successive
elements are electrically connected, the currents can flow
from one element to the next, with currents essentially
concentrated on the edges of conductors. If a free-standing
element is cut out of the array and excited, currents will
also flow along the cutting lines. This will not lead to
an acceptable representation of current distributions in
array conditions. Hence, some authors [18] proposed to
extend the subdomains to two or three antennas and to
carefully avoid singular currents by a spatial windowing
to the obtained current distributions. Despite the very
good results obtained for certain configurations [18], it
is difficult to say in how far the macro basis functions
generated in this way form a complete set of solutions.
Here, “complete” means that any current distribution that
can appear on the array can also be described as a linear
combination of the proposed set of macro basis functions.

III. ARRAY SCANNING METHOD AND MBFS

While attempting to answer the latter question, it is
useful to come back to the physical interpretation of fields
in infinite and finite arrays. Let us assume a finite array
excited at one given element. The currents excited on the
whole structure can be regarded as those present in an
infinite array, plus currents reflected (or “diffracted”) by
the edges of the array. Let us first consider the case of
excitation at one port in an infinite array. In this case, the
currents can be obtained from infinite-array simulations,
with the help of the Array Scanning Method (ASM) [14,

Fig. 2. Wave phenomenology in a finite-by-infinite
array excited along one infinite row. The currents on a
given point of successive antennas can be regarded as
progressive waves launched by the excited element and
reflected by the ends of the array (vertical lines). If the
Array Scanning Method is implemented with the help of
a finite summation, the source is repeated (cf. auxilliary
peaks).

19, 20]. The method is recalled in [21] for the case of
planar arrays, where examples are provided for wideband
phased arrays. In this section, it will be illustrated for a
simpler problem, involving arrays infinite along x̂, and
with M elements along ŷ. The complexity of the method
is then reduced to that of a linear array (see Fig. 2). If
element 0 (or row 0) is excited, the current on element m
(or row m) reads,

I(m) =
1

2π

∫ 2π

0

I∞(ψ) e−j mψ dψ (1)

where I∞(ψ) is the infinite-array current distribution
obtained with inter-element phasing ψ along ŷ. As for
the phasing along x̂, the infinite-array direction, it is
assumed identical for infinite-array and finite-by-infinite
array solutions.

The Array Scanning Method assumes the integration
of current distributions for all possible phase shifts, from 0
to 2π, between successive elements. In practice, solutions
will be computed for a finite set of phase shifts. The
simplest approximation, computing integral of equation
(1) with rectangles in the reciprocal (phase-shift) domain,
then comes down to a DFT approach,

I(m) ' 1
N

N−1∑
p=0

I∞(ψp) e−j mψp (2)

with ψp = 2π p/N .

The effect of this approximation is that excited cur-
rents are obtained as if the source were repeated every
N elements (see dashed lines for port currents in Fig. 2
for N = 4). This poses a problem when the exact
solution for a single excitation is looked for, but, as will
be seen further, it is not really a drawback when we
are just looking for characteristic current distributions,
or “macro basis functions”. Indeed, in an infinite array,
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and far from the source, the currents along successive
antennas may be regarded as a “wave” with a given
decay rate in terms of amplitude and with a given phase
velocity [22]. Far enough from the source, say beyond N◦
elements away from it, the successive current distributions
may -within a constant factor- be very similar, while
they can differ quite a lot near the source. Hence, the
repetition of excitation every N◦ antennas, as implicitly
incurred by the use of equation (2), is not a problem when
the number of linearly independent current distributions
available remains sufficient, i.e., as long as N is not
too small compared to N◦. Moreover, the repetition of
the sources does not really “spoil” the generated current
distributions, since the added current component is very
similar to the characteristic current distributions looked
for.

Besides this, when the array is finite, the difference
with the solution considered above may be regarded as
currents reflected by the edges of the array. This has been
illustrated in [22] for linear arrays of broadband dipoles.
In general, except for the elements right at the edges of
the array (which will be treated below), these “reflected”
current distributions are very similar to those found in an
infinite array excited by a single source. This supports
the use of the currents obtained from the ASM analysis
as macro-basis functions for the finite array. It is also
interesting to notice that, as a result of the physical ground
for the choice of current distributions, the distributions
obtained in this way will naturally exhibit continuous
currents at the boundaries between electrically connected
elements.

The explanation above provides a physically-based
choice of macro basis functions for elements inside the
array (i.e., for all elements, except those located right at
the edges of the array). This means that, considering the
excitation of any element in the array, the currents on a
given antenna can be written as a linear combination of
the current distributions obtained with the ASM method.
In turn, through superposition of excitation at individual
elements of the array, the ASM-based method should
provide accurate results for any active excitation law of
the array. Furthermore, since the ASM results are obtained
as linear combinations of infinite-array results, we can
also say that the currents for any excitation law should be
a linear combination of currents obtained in the infinite-
array case. Hence, the set of MBFs is simply made up of
all I∞(ψp) current distributions. The only constraint, for
the physical justification above to hold, is that the infinite-
array solutions be obtained by sampling regularly in the
reciprocal (i.e., phase-shift ψ) domain, i.e., ψp = 2π p/N ,
with p integer between 0 and N − 1. This includes
solutions outside the visible space, for which the antenna
active impedances are purely reactive.

IV. EDGE MBFS

As explained previously, the wave phenomenology
described above may not hold for the elements on the

edges of the array. This is particularly true for arrays
made of connected elements, since, in that case, the edge
elements may support significantly different types of cur-
rent distributions. Those are not well captured through the
ASM procedure. In the following, they will be obtained
by solving very small arrays, consisting of edge elements
only. In the finite-by-infinite array example, such an array
contains only two electrically connected elements; or
more precisely, a two-by-infinite array. Current distribu-
tions may be different on left and on right edge elements.
These elements may be fed directly, or they may be
illuminated through the feeding of another element in the
array. In the two-elements case, this leads to four possible
current distributions. This requires the full-wave solution
of a two-elements array, which, compared to other steps
in the computation procedure, takes a relatively small
computation time. The resulting four MBFs are simply
added to the set of N distributions obtained from the
ASM procedure. As already considered in [23], MBFs
are then orthogonalized through the SVD (Singular Value
Decomposition) procedure, in order to preserve a good
conditioning for the reduced system of equations.

V. FINITE-BY-INFINITE ARRAY EXAMPLE

Simulation examples will be shown for an array made
of metallic tapered slot antennas, with the discretization
shown on Fig. 1. The surface is meshed with the help
of 132 elementary basis functions, which are of rooftop
and RWG (”Rao-Wilton-Glisson” [24]) types, with half
basis functions electrically connecting the antenna to the
infinite ground plane and overlapping basis functions
(dashed) connecting antennas with each other in the E-
plane. Based on comparisons with results obtained with
finer meshes, the meshing used here has been found to
provide a satisfactory representation of the main antenna
characteristics, while still allowing the brute-force solu-
tion of intermediate-size finite arrays. For instance, with
this discretization, as well as with finer ones, the standing
wave ratio for the array scanned at broadside is below 2
from 0.42 GHz to 1.5 GHz.

The array analyzed here is infinite along x̂ (per-
pendicular to the figure), without a phase shift between
elements in that direction, and has 32 elements along
ŷ (from left to right). The element spacing is 12.7 cm,
while the wavelength is 30 cm. The elements are excited
successively (excitation of successive infinite rows) and
the currents are compared with the “brute-force solution”,
obtained through inversion (or LU decomposition) of the
MoM impedance matrix. Results are shown in Fig. 3 for
excitation at port 1 and at port 16. The upper plot shows
the port currents, while the lower plot shows the error
w.r.t. the brute-force solution, with a scale enlarged by a
factor of 6000. It can be seen that the residual error is
extremely small.

The remaining question is how many MBFs are
necessary to obtain a sufficient accuracy; in other terms,
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(a)

(b)
Fig. 3. Port currents in array of tapered slot anten-
nas, with 32 elements in one direction and infinite in
orthogonal direction, excited along one infinite raw. Array
spacing: 12.7 cm, wavelength: 30 cm. Top: port currents.
Bottom: with scale enlarged by a factor 6000, errors
between full-wave solution and MBF approach (a) first
row of antennas excited, (b) row 16 excited.

how large should N be in the Array Scanning Method?
In the case of weakly coupled arrays, for instance when
elements are located far apart, it is expected that current
distributions on antennas away from the excited element
should be very similar. In that case, N can be very small.
For strongly coupled arrays, and a fortiori, for electrically
connected elements, N can become larger, because of
the large variety in possible current distributions. The
maximum port error, normalized relative to current at the
excited port, is represented in Fig. 4 for increasing values
of N . It can be seen that the error suddenly drops to very
low values for N > 7. If the SVD procedure is not used,
the error increases again after N = 10 (crosses), because
an ill-conditioned system of equations is obtained through
the use of very similar basis functions. It can be seen
that the use of the SVD procedure (circles) avoids this
difficulty.

VI. EXTENSION TO PLANAR ARRAYS

A similar procedure can be used for planar arrays,
like finite arrays of tapered-slot antennas (Fig. 5). In this
case, the 2-D version of the ASM is exploited. The current
on antenna (m,n) for excitation of antennas with indices

Fig. 4. For 32-by-infinite array, with row 16 excited,
maximum relative error in port currents, versus value of N
in ASM. Circles: with SVD procedure. Crosses: without
SVD procedure.

Fig. 5. 5×5 array of tapered-slot antennas.

(rN, sN), with r and s integer, is given by,

Im,n =
1
N2

N∑
p=1

N∑
q=1

I∞(ψx,p, ψy,q) e−j mψx,p e−j nψy,q

(3)
with

ψx,p = 2π p/N and ψy,q = 2π q/N. (4)

In equation (3), I∞(ψx, ψy) is the infinite-array current
obtained with inter-element phasings along X and Y
equal to ψx and ψy , respectively.

As in the finite-by-infinite array case, if N is large
enough, this procedure provides a sufficiently complete
set of MBFs for large arrays, except for elements on
the outer edge, which may support significantly different
current distributions. This time, the problem is solved by
adding to the set of MBFs a few current distributions
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Fig. 6. Port currents for all elements of 5×5 array
excited (upper line) and errors produced by the infinite-
array approximation (crosses around -15 dB) and by
ASM+MBF with different values of N for the two-
dimensional ASM and with 8 additional MBFs from 2×2
array. The 4×4 case denoted with dashed lines does not
include the 8 additional MBFs.

obtained through the full-wave analysis of a small array,
e.g. a 2×2 array, which contains only edge elements.
Four elements and four independent excitations lead to
16 possible MBFs. However, if some symmetry is present
in the array, fewer distributions need to be considered. In
the present example with tapered-slot antennas, since two
parallel columns are perfectly symmetrical, this leads to 8
different current distributions. Adding these distributions
to those stemming from the ASM procedure with N = 4,
for example, leads to 24 MBFs, instead of the original 132
elementary basis functions per antenna. This reduction
by a factor 5.5 of the number of unknowns leads to a
reduction by a factor 166 in terms of direct solving time.
Larger time saving factors are expected for more complex
antennas.

Figure 6 shows results obtained for port currents in a
5×5 array of electrically connected tapered-slot antennas
(Fig. 5). Overlapping basis functions ensure the electrical
connection between antennas. It should be noted that, for
simplicity, these overlapping basis functions have been
kept on the last elements in each row. In the first numerical
example, all antennas are excited with a uniform voltage
excitation, with 100 Ω series impedances. The 25 port
currents are represented by the upper line in the right plot
of Fig. 6. It can be seen that variations of the order of 3 dB
appear, which underscores the strong effects of array trun-
cation. Errors, defined as the magnitude of the complex
difference between brute-force and approximate solutions,
are presented by the lines below. The errors produced by
the infinite-array solution are less than 10 dB below the
brute-force solution. Slightly better results are obtained
when considering only one MBF, that corresponds to the
infinite-array solution for scanning at broadside. Except

(a)

(b)
Fig. 7. Pattern for a 5×5 array of tapered-slot anten-
nas, with uniform excitation (a) E-plane, (b) H-plane.
Upper lines: brute-force solution. Lower lines: error from
ASM+MBF approach. Dashed: error from use of infinite-
array solution for surface currents.

for one (N = 4, dashed lines), the other examples include
the 8 additional MBFs obtained from the 2×2 finite-array
case. It can be seen that, for increasing values of N , the
errors are steadily going down. Basis functions obtained
with N = 4 (24 MBFs in total) lead half-way to single
machine precision; hence N = 4 will be considered
sufficient. This involves the calculation of the infinite-
array solutions for N2 different phase shifts. These can
be computed very fast, because the domain is limited to
a unit cell. Details about fast implementation, involving
fast calculation and tabulation of the periodic Green’s
function, can be found in [3].

Corresponding patterns can be seen in Fig. 7, for cuts
in E plane and in H plane. The upper line corresponds to
the brute-force solution, the dashed line stands for the
error produced by considering the infinite-array solution
on all antennas, and the lower line corresponds to the
error obtained with the N = 4 ASM+MBF approach (24
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(a)

(b)
Fig. 8. For a 5×5 array of tapered-slot antennas, excited
at a corner element. (a): port currents: brute-force solution
and error from ASM+MBF approach. (b): Embedded
element pattern in E-plane. Solid: vertical polarisation.
Dashed: horizontal polarisation. Upper curves: brute-force
solution. Lower curves: error from ASM+MBF approach.

MBFs in total). Compared to the brute-force solution, the
errors are located from 60 dB lower at broadside to 30
dB lower at grazing incidence.

The last example concerns excitation at a single
port. A worst case has been considered, in terms of
array truncation. It corresponds to excitation of a corner
element. The accuracy of the result on the 25 antennas
(taken along successive columns) is shown in Fig. 8(a)
for the port currents, and in Fig. 8(b) for the embedded
element pattern in the E plane. Upper curves correspond
to the brute-force solution, lower curves represent the
errors. As for the patterns, the dashed lines stand for the
cross-polar component, due to the asymetric excitation of
the finite array. It can be seen that excellent accuracies
are achieved, even for the cross-polar fields.

Finally, it is interesting to notice that, although lower
frequency cases generally lead to stronger truncation ef-

fects, with the method presented here, significantly better
accuracies were achieved for a wavelength of 60 cm (not
shown here) instead of 30 cm (examples above).

VII. CONCLUSION AND FURTHER
PROSPECTS

A physically based choice of macro basis functions
has been described for the full-wave simulation of finite
antenna arrays. We showed that a good choice corre-
sponds to infinite-array solutions computed on a regular
grid in the reciprocal domain (domain of phase shifts
between elements in both directions). This method allows
capturing of current waves launched at one element, prop-
agating over the passively terminated array, and bouncing
back on the edges of the array. This method is also
well suited to the particularly difficult case of electrically
connected elements, without requiring the development
of techniques devoted to tapering of current distributions
obtained over domains defined over more than one unit
cell.

The method has been demonstrated for metallic ar-
rays of tapered-slot antennas. Since edge elements can
exhibit quite different current distributions, a few more
MBFs are obtained from very small (2×2) arrays. Ex-
cellent results have been obtained for both port currents
and radiation patterns. It should be recalled that, once
the reduced MoM impedance matrix has been obtained,
solutions can be computed simultaneously at negligible
computational cost for any excitation law. Future efforts
will concentrate on the demonstration of this method to
the case of arrays containing dielectric parts.
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Abstract – This paper proposes an accurate and rapidly-
convergent algorithm for enhanced adaptive beamforming
based on the combination of the least mean mixed norm
(LMMN) algorithm with initialization using sample
matrix inversion (SMI). The algorithm uses a mixing
parameter δ which controls the proportions of the error
norms and offers an extra degree of freedom within
the adaptation. Monte Carlo simulations show that the
misadjustment curve has a minimum at δ = 0.40 which
means that the proposed algorithm has an optimum
steady-state performance at this mixing parameter
value. The convergence of the algorithm is further
improved by employing SMI to initialize the weights
vector in the LMMN update equation. This makes
the proposed SMI-initialized LMMN algorithm have a
better steady state performance when compared to the
least mean squares (LMS) algorithm and better stability
properties when compared to the least mean fourth
(LMF) algorithm. Simulation results obtained show
that the developed SMI-initialized LMMN algorithm
outperforms other algorithms in terms of computational
efficiency, numerical accuracy, and cosnvergence rate.

Keywords: Smart antennas, adaptive beamforming, and
least mean squares.

I. INTRODUCTION

Smart antennas have emerged as one of the leading
innovations for achieving highly efficient networks that
maximize capacity and improve quality and coverage.
Smart antennas provide greater capacity and performance
benefits than standard antennas because they can be used
to customize and fine-tune antenna coverage patterns to
the changing traffic or radio frequency (RF) conditions in
a wireless network [1]. Figure 1 shows a smart antenna
system which consists of a uniform linear array (ULA) for
which the current amplitudes are adjusted by a set of com-
plex weights using an adaptive beamforming algorithm.
The adaptive beamforming algorithm optimizes the array
output beampattern such that maximum radiated power
is produced in the directions of desired mobile users and
deep nulls are generated in the directions of undesired
signals representing co-channel interference from mobile
users in adjacent cells. Prior to adaptive beamforming, the

directions of users and interferers must be obtained using
a direction-of-arrival (DOA) estimation algorithm [2].

Recent research efforts into smart antennas have
varied over a wide range of methods and applications
including array pattern synthesis based on null steer-
ing and multi-user beamforming using a phase control
method [3], circular and hexagonal array geometries for
smart antenna systems [4], adaptive and a switched beam
smart antenna systems for wireless communications [5],
tapered beamforming method for uniform circular arrays
[6], beam steering with null and excitation constraints
for linear antenna arrays [7], displaced sensor array for
improved signal detection [8], and finally robust adaptive
beamforming algorithms [9, 10]. The emphasis of this
paper is on the development of enhanced adaptive beam-
forming algorithms for robust interference suppression.

Adaptive beamforming is achieved using adaptive
antenna array for which the weights of the array element
currents are adjusted in order to filter out the inter-
fering signals from undesired sources, while enhancing
the signal of interest from the desired source. Adaptive
beamforming algorithms are typically characterized in
terms of their convergence properties and computational
complexity. One practical adaptive algorithm is the Least
Mean Squares (LMS) which is simple to implement. It
does not require measurements of the pertinent correlation
functions, nor does it require matrix inversion. However,
the LMS algorithm converges slowly when compared with
other complicated algorithms such as the Recursive Least
Square (RLS) [11]. On the other hand, Sample Matrix
Inversion (SMI) algorithm has a fast convergence behavior
However, because its speedy convergence is achieved
through the use of matrix inversion, the SMI algorithm is
computationally intensive. Moreover, the SMI algorithm
has a block adaptive approach for which it is required
that the signal environment does not undergo significant
change during the course of block acquisition.

Various adaptive MMSE receivers are based on the
standard quadratic cost function. So far, the LMS algo-
rithm has proved popular for many applications because
of its simplicity and ease of implementation [2, 12] . How-
ever, many alternatives can also be defined to improve
the adaptation performance in specific statistical environ-
ments including the Least Mean Mixed Norm (LMMN)
algorithm [13, 14]. This algorithm has been used to
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Fig. 1. A functional block diagram of a smart antenna
system.

update the tap coefficients of the feedforward and feed-
back filters for the adaptation of the non-linear receiver,
coupled with a second order phase tracking subsystem,
for asynchronous DS-CDMA communication system im-
paired by double-spread multipath channel and Gaussian
mixture impulsive noise [15]. The purpose of this paper is
to develop an enhanced adaptive beamforming algorithm
based on LMMN but with SMI initialization to ensure
faster convergence. It is shown that judicious choice
of the LMMN algorithm mixing parameter provides an
algorithm with intermediate performance between the two
special cases of least mean squares (LMS) and least mean
fourth (LMF) algorithms. It is shown that the developed
LMMN algorithm along with SMI initialization provides
better steady state performance than the LMS algorithm
and better stability properties than the LMF algorithm.

The rest of the paper is organized as follows: Section
II describes the signal model for an adaptive beamformer
based on the ULA configuration. Section III presents the
theory of adaptive beamforming using the LMS algorithm,
the LMF algorithm, and the proposed SMI-initialized
LMMN algorithm. Simulation results are presented in
Section IV showing that the proposed SMI-initialized
algorithm outperforms the other algorithms. Finally,
conclusions are given in Section V.

II. SIGNAL MODEL

The standard array geometry that has been used for
smart antenna systems is the uniform linear array (ULA)
depicted in Fig. 2. A uniform linear array consists of
N elements that are spaced apart by half wavelength
(d = λ/2). The inter-element spacing in a ULA is
chosen to be λ/2 in order to reduce mutual coupling
effects which deteriorate the performance of the DOA
estimation algorithm as demonstrated in [16-21]. If the
inter-element spacing ischosen to be smaller than λ/2,
mutual coupling effects then cannot be ignored and the
DOA estimation algorithm fails to produce the desired
peaks in the angular spectrum. On the other hand,
increasing the inter-element spacing beyond λ/2 results
in spatial aliasing which takes the form of unwanted or

Fig. 2. Gemetry of a Uniform Linear Array (ULA) of N
sensors that are equally spaced apart a distance d = λ/2..

misplaced peaks in the angular spectrum. It is therefore
concluded that d = λ/2 represents the optimum value for
the inter-element spacing in a ULA.

The main advantage of using a ULA is that it
has the simplest geometry, an excellent directivity, and
produces the narrowest main-lobe in a given direction in
comparison to other array geometries. The ULA consists
of N linear equispaced omnidirectional sensors with inter-
element spacing d = λ/2 and is positioned along the x
axis with an azimuth angle θm measured with respect
to the z axis. It is assumed that the ULA receives M
narrowband source signals sm(t) from incidence direc-
tions θ1, θ2, ....θM , as shown in Fig. 2. The array also
receives I narrowband source signals si(t) from undesired
(or interference) users arriving at directions θ1, θ2, ....θI .
At a particular instant of time t = 1, 2, ...,K,where K
is the total number of snapshots taken, the desired users
signal vector xS(t) can be defined as,

xS(t) =
M∑

m=1

a(θm)sm(t) (1)

where a(θm) is the N × 1 array steering vector which
represents the array response at direction θm and is given
by,

a(θm) = [exp[j(n− 1)ψm]T ; 1 ≤ n ≤ N (2)

where[(.)]T is the transposition operator, and ψm repre-
sents the electrical phase shift from element to element
along the array defined by ψm = 2π(d/λ) sin θm where
d is the inter-element spacing and λ is the wavelength of
the received signal. The desired users signal vector xS(t)
of equation (1) can be written as,

xS(t) = ASs(t) (3)

where AS is the N×M matrix of the desired users signal
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direction vectors and is given by,

AS = [a(θ1),a(θ2), ....,a(θM )] (4)

and s(t) is the M × 1 desired users source waveform
vector defined as,

s(t) =
[
s1(t) s2(t) .. .. sM (t)

]T
. (5)

We also define the undesired (or interference) users
signal vector xI(t) as,

xI(t) = AI i(t) (6)

where AI is the N × I matrix of the undesired users
signal direction vectors and is given by,

AI = [a(θ1),a(θ2), ....,a(θI)] (7)

and i(t) is the I × 1 undesired (or interference) users
source waveform vector defined as,

i(t) =
[
i1(t) i2(t) .. .. iI(t)

]T
. (8)

The overall received signal vector x(t) is given by
the superposition of the desired users signal vector xS(t),
undesired (or interference) users signal vector xI(t), and
an N × 1 vector n(t) which represents white Gaussian
sensor noise. Hence, x(t) can be written as,

x(t) = xS(t) + n(t) + xI(t). (9)

The conventional (forward-only) estimate of the co-
variance matrix defined as,

R = E{x(t)xH(t)} (10)

where E{.} represents the ensemble average; and (.)H

is the Hermitian transposition operator. By applying
temporal averaging over K observation snapshots taken
from the signals incident on the sensor array, R can be
approximated as, [22]

R =
1
K

K∑
k=1

x(k)xH(k) (11)

Substituting for x(t) from equation (9) in equation
(11) yields,

R =
1
K

K∑
t=1

AS

[
s(k)s(k)H

]
AH

S + n(k) n(k)H

+
1
K

K∑
t=1

AI

[
i(k)i(k)H

]
AH

I . (12)

Finally, equation (12) can be written in compact form
as,

R = ASRssAH
M + σ2

nI + AIRiiAH
I (13)

where Rss = E{s(t)sH(t)} is an M ×M desired users
source waveform covariance matrix, Rii = E{i(t)iH(t)}
is an I × I undesired users source waveform covariance
matrix, σ2

n is the noise variance, and I is an identity matrix
of size N × N . In general the array correlation matrix
obtained in equation (13) is referred as the covariance

matrix only when the mean values of the signals and
noise are zero. The arriving signals mean value must
be necessarily zero because antennas can not receive d.c.
signals.

III. ADAPTIVE BEAMFORMING
ALGORITHM

An adaptive beamformer, which is shown in Fig.
2, consists of multiple antennas; complex weights, the
function of which is to amplify (or attenuate) and delay
the signals from each antenna element; and a summer
to add all of the processed signals, in order to tune out
the signals not of interest, while enhancing the signal
of interest. Hence, beamforming is sometimes referred
to as spatial filtering, since some incoming signals from
certain spatial directions are filtered out, while others are
amplified. The output response of the uniform linear array
is given by,

y(k) = wHx(k), (14)

where w is the complex weights vector and x is the
received signal vector given in equation (9). If d(k)
denotes the sequence of reference or training symbols
known a priori at the receiver at time n, an error, e(k) is
formed as,

e(k) = d(k)−w(k)Hx(k). (15)

This error signal e is used by the beamformer to
adaptively adjust the complex weights vector w so that the
mean-squared error (MSE) is minimized. It is intuitively
reasonable that successive corrections to the weights
vector in the direction of the negative of the gradient of the
MSE function should eventually lead to minimum mean
square error, at which point the weights vector assumes
its optimum value. Recursive estimates for the unknown
weight vector can be obtained adaptively via, [23]

w(k + 1) = w(k) + µx∗(k)fe(k) (16)

where w(k+1) denotes the weights vector to be computed
at iteration n+ 1, µ is the algorithm step size, and fe(k)
is a scalar function of the estimation error e(k). The
step size µ is related to the rate of convergence: in other
words, how fast the algorithm reaches steady state. The
smaller the step size the longer it takes the algorithm to
converge. This means that a longer reference or training
sequence is needed, which would reduce the payload and,
hence, the bandwidth available for transmitting data.

The most popular variant of equation (16) is the
least mean squares (LMS) algorithm for which the cost
function to be minimized is given by,

J2(k) = E{e2(k)} (17)

where E{.} which results in an estimation error function
fLMS

e (k) given as,

fLMS
e (k) = e(k). (18)
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Hence, the weights update equation (16) for LMS
becomes,

w(k + 1) = w(k) + µx∗(k)e(k). (19)

The cost function that is minimized for the least mean
fourth (LMF) algorithm is given by,

J4(k) =
1
4
E{e4(k)} (20)

which results in an estimation error function fLMF
e (k)

given by,
fLMF

e (k) = e3(k) (21)

In this case, the weights update equation (16) for LMF
becomes,

w(k + 1) = w(k) + µx∗(k)e3(k). (22)

Among other variants is the least mean mixed norm
(LMMN) algorithm for which the cost function to be
minimized is a linear mixture of the cost functions J2(k)
and J4(k) for the LMS and LMF algorithms, respectively.
It is given by,

J(k) =
δ

2
J2(k) +

1− δ
4

J4(k) (23)

where the parameter δ is called the norm mixing parame-
ter such that δ ∈ [0, 1] . This results in an estimation error
function given by,

fLMMN
e (k) = δe(k) + (1− δ)e3(k). (24)

The weights update equation (16) for LMMN be-
comes,

w(k + 1) = w(k) + µx∗(k)
[
δe(k) + (1− δ)e3(k)

]
.

(25)
It is to be noted from equation (25) that the LMMN

algorithm requires at each iteration only two more multi-
plications and one more addition than the LMS algorithm.
Moreover, when δ = 1 equation (25) becomes the weights
update equation for the LMS algorithm. On the other
hand, when δ = 0 equation (25) becomes the wights
update equation for the LMF algorithm. Judicious choice
of δ thereby provides an algorithm with intermediate
performance between that of the LMS and LMF, and a
mechanism to mitigate the problem of instability within
the LMF algorithm. Moreover, for operation in a statisti-
cally non-stationary environment, the mixing parameter δ
may be adapted to match appropriately the properties of
measured signals.

In order to ensure the stability and convergence of
the LMMN algorithm, the adaptive step size parameter µ
should be chosen within the range specified as, [13]

0 < µ <
1

N.E{x2(k)}

[
δ + (1− δ) 1

6.E{n2(k)}

]
(26)

where E{x2(k)} is the input signal power and E{n2(k)}
is the noise power. Analysis of the effect of varying the
adaptive step size parameter µ in [2, 21] showed that µ

should be chosen to be small in order to ensure numerical
stability of the algorithm. Hence, in all the simulation
results presented in Section 5 to follow have obtained
with an adaptive step size value µ =1×10−3.

It is known that the LMF algorithm has better steady
state performance than that of the LMS algorithm for
applications in which the noise has a probability density
function with short tail. However, its stability properties
are worse than those of the LMS algorithm. On the
other hand, the LMMN algorithm has better steady state
performance than the LMS algorithm and better stability
properties than the LMF algorithm [14]. It is for those
reasons that we consider the application of LMMN al-
gorithm to adaptive beamforming for robust interference
suppression. The steady-state performance of the LMMN
algorithm is a function of the norm mixing parameter δ.
The steady-state performance is quantified in terms of the
misadjustment, which is defined as,

M =
1
σ2

n

lim
k→∞

E{w(k)Hx(k)} (27)

The effect of varying the norm mixing parameter δ
on the misadjustment M is studied in Section 5. The
purpose there is to derive an optimal value for δ for which
the misadjustment M reaches a minimum value.

The weight initialization is arbitrary in the LMMN
algorithm which makes it take longer (i.e., requires more
iterations) to converge. To overcome this problem, we
use the sample matrix inversion (SMI) algorithm to ini-
tialize the weights vector in the LMMN update equation
(25). We further improve the performance of the LMMN
algorithm by evaluating the initial weights vector in the
LMMN weights update equation (25). SMI method is
a block-data adaptive algorithm and is known to be
the fastest algorithm for estimating the optimum weight
vector. Because of its high complexity, SMI algorithm
will be used only to estimate the initial weights vector
w(0) which is obtained as,

w(0) = R−1(0)r(0) (28)

where the estimates of the covariance matrix R(0) and
cross-correlation vector r(0) are given by,

R(0) =
B∑

k=1

x(k)xH(k) (29)

r(0) =
B∑

k=1

x(k)d∗(k). (30)

In equations (29) and (30), B represents the block
size and is taken to be small just to ensure that the
effect due to the change in the signal environment during
the block acquisition does not affect the performance of
the SMI algorithm. Also, a large block results in more
matrix inversions making the algorithm computationally
intensive.

The weight initialization as given in equation (28) is
not any arbitrary value but an estimate of the optimum
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value computed by the SMI algorithm. This means that
before the LMMN adaptation begins the antenna beam is
already steered to an approximate direction of the desired
signal, depending on the initial SMI weight estimate.
In this way, the LMMN algorithm takes little time to
converge. Also, after an estimate of the initial weights
is made using the SMI algorithm, the SMI-initialized
LMMN algorithm uses a continuous approach to adapt
itself to the changing signal environment by updating
the weights for every incoming sample. Since the initial
convergence is faster, the SMI-initialized LMMN algo-
rithm takes much less time than the LMMN algorithm
to adapt to the signal environment changes. Therefore,
the SMI-initialized LMMN algorithm is better suited for
continuous transmission systems. Numerical examples in
Section 7 illustrate the improved performance of the
combined LMMN/SMI algorithm in comparison with the
LMMN algorithm.

IV. SIMULATION RESULTS

Both the desired and interfering signals take the form
of a simple complex sinusoidal-phase modulated signal.
By doing so it can be shown in the simulations how
interfering signals of the same frequency as the desired
signal can be separated to achieve rejection of co-channel
interference. For simplicity purpose the reference signal
d(k) is considered to be the same as the desired signal.

A. Optimal Value of Norm Mixing Parameter (δ)
To find the optimal value of the norm mixing pa-

rameter δ, Monte Carlo simulations are carried to plot
the misadjustment M as defined in equation (27) versus
δ. The mixing parameter δ is used to calculate the tap
weights according to the LMMN weight update equation
(25). The LMMN step size is chosen as µ = 1× 10−3.
The mixing parameter δ is chosen as 10 equispaced
points in [0, 1]. The input signal, x(k) is zero-mean and
uniformly distributed with unity power. The noise signal
is also zero-mean and it is obtained by adding a Gaussian
distributed noise of power σ2

n1
= 0.1 and a uniformly

distributed noise of power σ2
n2

= 1.0. The signal-to-noise
ration (SNR) is 10 dB. The values of misadjustment M
are computed at the steady state, after 105 iterations, from
equation (27) by averaging over 50 Monte Carlo trials.
The variation of the misadjustment M with respect to δ
is shown in Fig. 3, where it is clear that the misadjustment
curve has a well defined minimum at δ = 0.40. Therefore
by choosing δ = 0.40, it is expected that the LMMN
algorithm performs better than both LMS (δ = 0) and
LMF (δ = 1) algorithms. Hence, all simulation results
for the LMMN algorithm presented in Section 5 to follow
are carried out with a mixing parameter value δ = 0.40
in order to ensure optimum steady state performance.

B. Beampattern
Consider an array of four elements (N = 4) and

half-wavelength spacing (d = 0.5λ). The array is to

Fig. 3. Misadjustment M vs. LMMN norm mixing
parametr δ (SNR= 10 dB, µ = 1× 10−3).

maximize output radiation towards a source signal arriv-
ing at an angle θS = 0o having a signal-to-noise ratio
SNR = 10dB. The array is also designed to mitigate
an interference signal arriving at an angle θI = −60o

having a signal-to-interference ratio SIR = −10dB. The
number of iterations is 6000 for both algorithms. The
step size for both LMS and LMMN algorithms is taken
as µ = 1 × 10−3 whereas the norm mixing parameter
δ is fixed at its optimum value obtained in Section 4 as
δ = 0.40. Results are presented in Fig. 4 where the solid
line represents the beampattern obtained using the LMS
algorithm and the dashed line represents the beampattern
obtained from the proposed LMMN algorithm with SMI
initialization. It is evident that the pattern nulls in the
case of the LMS algorithm (solid line in Fig. 4) are not
deep enough to cancel the effect of interfering signals.
This means that the LMS algorithm did not converge to
the optimum weights solution within the given number
of iterations. On the other hand, the SMI-initialized
LMMN algorithm (dashed line in Fig. 4) is capable of
generating deep pattern nulls (90dB below the maximum)
which are strong enough to cancel the effect of the
interfering signals. This means that the SMI-initialized
LMMN algorithm converges faster as it reached to the
optimum weights solution within the given number of
iterations. This is due to the fact that the initialization
of the weights vector in equation (25) was obtained from
the SMI algorithm as described in equations (28) to (30).

C. Convergence
Here, simulations are carried out for an array with

four elements (N = 4) and half-wavelength spacing
(d = 0.5λ). The array is to maximize output radiation
towards a source signal arriving at an angle θS = 0o

having a signal-to-noise ratio SNR = 10dB. The array is
also designed to mitigate an interference signal arriving at
an angle θI = −60o having a signal-to-interference ratio
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Fig. 4. Output beampattern using LMS and proposed
LMMN/SMI algorithm (N = 4, d = 0.5λ, SNR = 10
dB, SIR = −10dB, µ = 1× 10−3, δ = 0.40, θS = 0o,
θI = −60o ).

SIR = −10dB. The step size for both LMS and LMMN
algorithms is taken as µ = 1 × 10−3 whereas the norm
mixing parameter δ is fixed at its optimum value obtained
in Section 4 as δ = 0.40. The convergence of the array
weights is studied by plotting in Fig. 5 the magnitude of
the array weights vector w(1) versus number of iterations
for both LMS algorithm and proposed LMMN algorithm
with SMI initialization, respectively. It is evident from
that the array weights obtained using the LMS algorithm
(solid line in Fig. 5) did not converge to the steady state
optimum solution within the given number of iterations.
On the other hand when the proposed SMI-initialized
LMMN algorithm (dashed line in Fig. 5) is used, the
array weights converge to the stable value within the
given number of iterations since the initialization of the
weights vector in the LMMN update equation (25) was
done using the SMI algorithm as described in equations
(28) to (30). This verifies the improved convergence
rate that is achieved when the proposed SMI-initialized
LMMN algorithm is used.

D. Mean Square Error (MSE)

The convergence of the beamforming algorithm is
examined by plotting in Figs. 6 and 7 the Mean Square
Error (MSE) versus number of iterations for both the
LMS algorithm and proposed SMI-initialized LMMN al-
gorithm, respectively. Results of Fig. 7 show a significant
improvement in terms of a reduced MSE when the SMI-
initialized LMMN algorithm is used indicating that it has
a faster convergence rate when compared to the LMS
algorithm of Fig. 6. This verifies the improved accu-
racy that is obtained when the proposed SMI-initialized
algorithm is used.

Fig. 5. Convergence of w(1) using both LMS and SMI-
initialized LMMN algorithm (N = 4, d = 0.5λ, SNR =
10 dB, SIR = −10dB, µ = 1×10−3, δ = 0.40, θS = 0o,
θI = −60o ).

Fig. 6. Mean square error vs. number of iterations for
LMS algorithm (N = 4, d = 0.5λ, SNR = 10 dB,
SIR = −10dB, µ = 1× 10−3, θS = 20o, θI = −40o ).

Fig. 7. Mean square error vs. number of iterations for
SMI-initialized LMMN algorithm(N = 4, d = 0.5λ,
SNR = 10 dB, SIR = −10 dB, µ = 1 × 10−3,
δ = 0.40, θS = 20o, θI = −40o ).
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V. CONCLUSIONS

An accurate and computationally-efficient adaptive
beamforming algorithm based on LMMN with SMI ini-
tialization was presented. The algorithm uses a mixing
parameter δ which controls the proportions of the error
norms and offers an extra degree of freedom within
the adaptation. Monte Carlo simulations show that the
misadjustment curve has a minimum at δ = 0.40 which
means that the LMMN algorithm has an optimum steady-
state performance at this mixing parameter value. The
convergence of the algorithm is further improved by em-
ploying SMI to initialize the weights vector in the LMMN
update equation. Hence, the SMI-initialized LMMN
algorithm provides better steady state performance when
compared to the least mean squares (LMS) algorithm
and better stability properties when compared to the
least mean fourth (LMF) algorithm. Simulation results
obtained show that the proposed SMI-initialized LMMN
algorithm performs better when compared to the other
algorithms. The improved performance of the proposed
SMI-initialized LMMN algorithm takes the form of faster
convergence rate, less mean square error, as well as deeper
nulls placed accurately in the directions of interference
signals. These features make the proposed algorithm
suitable for the design and implementation of practical
smart antenna systems.

REFERENCES

[1] L. C. Godara, “Applications of antenna arrays to mo-
bile communications I:. performance improvement,
feasibility, and system considerations,” Proceedings
of the IEEE, Vol. 85, No. 7, 1031-1060, 1997.

[2] L. C. Godara, “Application of antenna arrays to
mobile communications, Part II: Beamforming and
direction-of-arrival considerations,” Proceedings of
IEEE, Vol. 85, No. 8, 1195-1245, 1997.

[3] M. Mouhamadou, P. Vaudon, and M. Rammal,
“Smart antenna array patterns synthesis: null steer-
ing and multi-user beamforming by phase control,”
Progress In Electromagnetics Research, PIER 60,
95-106, 2006.

[4] F. Gozasht, G. Dadashzadeh, and S. Nikmhr, “A
comprehensive performance study of circular and
hexagonal array geometries in the LMS algorithm
for smart antenna applications,” Progress In Elec-
tromagnetics Research, PIER 68, 281-296, 2007.

[5] F. E. Fakoukakis, S. G. Diamantis, A. P. Orfanides,
and G. A. Kyriacou, “Development of an adaptive
and a switched beam smart antenna system for wire-
less communications,” Journal of Electromagnetic
Waves and Applications, Vol. 20, No. 3, 399-408,
2006.

[6] M. I. Dessouky, H. Sharshar, and Y. A. Albagory,
“A novel tapered beamforming window for uniform

concentric circular arrays,” Journal of Electromag-
netic Waves and Applications, Vol. 20, No. 14, 2077-
2089, 2006.

[7] R. Vescovo, “Beam scanning with null and excitation
constraints for linear arrays of antennas,” Journal of
Electromagnetic Waves and Applications, Vol. 21,
No. 2, 267-277, 2007.

[8] R. M. Shubair and R. S. Nuaimi, “Displaced sensor
array for improved signal detection under grazing
incidence conditions,” Progress In Electromagnetics
Research, PIER 79, 427-441, 2008.

[9] Y.-J. Gu, Z.-G. Shi, K. S. Chen, and Y. Li, “Robust
adaptive beamforming for steering vector uncertain-
ties based on equivalent DOAs method,” Progress
In Electromagnetics Research, PIER 79, 277-290,
2008.

[10] Gu Y.-J., Shi Z.-G, Chen K. S, and Li Y., “Robust
adaptive beamforming for a class of Gaussian steer-
ing vector mismatch,” Progress In Electromagnetics
Research, PIER 81, 315-328, 2008.

[11] R. M. Shubair and A. Merri, “Robust algorithms
for direction finding and adaptive beamforming: per-
formance and optimization,” Proceedings of IEEE
International Midwest Symposium of Circuits & Sys-
tems (MWSCAS 2004), Hiroshima, Japan, 589-592,
July 25-28, 2004.

[12] L. C. Godara, “Improved LMS algorithm for adap-
tive beamforming,” IEEE Transactions on Antennas
and Propagation, Vol. 38, No. 10, 1631-1635.

[13] J. A. Chambers, O. Tanrikulu, and A. G. Constan-
tinides, “Least mean mixed-norm adaptive filtering,”
IEE Electronic Letters, Vol. 30, No. 9, 1994.

[14] O. Tanrikulu O. and J. A. Chambers, “Convergence
and steady-state properties of the least-mean mixed
norm (LMMN) adaptive algorithm,” IEE Proceed-
ings on Vision, Image and Signal Processing, Vol.
143, No. 3, 137-142, 1996.

[15] S. A. Jimaa, M. E. Jadah, and B. S. Sharif, “Least
mean mixed-norm adaptive filtering for impulsive
DS-CDMA channels,” Proceedings of IEEE Inter-
national Symposium on Signal Processing and In-
formation Technology (ISSPIT 2004), 9-12, 2004.

[16] E. M. Al Ardi, R. M. Shubair, and M. E. Al Mualla,
“Investigation of high-resolution DOA estimation
algorithms for optimal performance of smart antenna
systems,” Proceedings of IEE International Confer-
ence on Third Generation Mobile Communications
(3G’03), 460-464, 2003.

[17] E. M. Al Ardi, R. M. Shubair, and M. E. Al
Mualla, “Performance evaluation of direction finding
algorithms for adaptive antenna arrays,” Proceedings
of IEEE International Conference on Electronics,
Circuits, and Systems (ICECS’03), Vol. 2, 735-738,
2003.

[18] M. Samahi M. and R. M. Shubair, “Performance
of smart antenna systems for signal detection and
estimation in multipath fading environment,” Pro-

268SHUBAIR, JIMAA, OMAR: ROBUST ADAPTIVE BEAMFORMING USING LEAST MEAN MIXED NORM ALGORITHM



ceedings of IEEE International Conference on Inno-
vations in Information Technology (IIT’06), 2006.

[19] E. M. Al Ardi, R. M. Shubair, and M. E. Al Mualla,
“Direction of arrival estimation in a multipath envi-
ronment: an overview and a new contribution,” Ap-
plied Computational Electromagnetics Society Jour-
nal: Special Issue on Phased and Adaptive Array
Antennas, Vol. 21, No. 3, 226-239, 2006.

[20] J. M. Samhan, R. M. Shubair, M. A. Al Qutayri,
“Design and implementation of an adaptive smart
antenna system,” Proceedings of IEEE International
Conference on Innovations in Information Technol-
ogy (IIT’06), 2006.

[21] R. M. Shubair, M. A. Al Qutayri, and J. M. Samhan,
“A setup for the evaluation of the MUSIC and LMS
algorithms for a smart antenna system,” Journal of
Communications (JCM), Academy Publisher, Vol. 2,
No. 4, 71-77, 2007.

[22] H. L. Van Trees, Detection, Estimation, and Modu-
lation Theory, Part IV: Optimum Array Processing.
John Wiley & Sons, 2002.

[23] S. Haykin, Adaptive Filter Theory. Prentice-Hall, 4th
Ed., 2002.

Raed M. Shubair received his B.Sc. degree with Distinc-
tion and Class Honors from Kuwait University, Kuwait, in
June 1989 and his Ph.D. degree with Distinction from the
University of Waterloo, Canada, in February 1993, both
in Electrical Engineering. From March 1993 to August
1993 he was a Postdoctoral Fellow at the Department
of Electrical and Computer Engineering, University of
Waterloo, Canada. In August 1993 he joined Khalifa Uni-
versity of Science, Technology and Research (KUSTAR),
formerly Etisalat University College, UAE, where he is
currently an Associate Professor at the Communication
Engineering Department and Leader of the Communica-
tion & Information Systems Research Group. His cur-
rent research interests include adaptive array and multi-
channel processing, smart antennas and MIMO systems,
as well as applied and computational electromagnetic
modeling of RF and microwave circuits for wireless
communications. He has published over 80 papers in
refereed technical journals and international conferences.
He has been a member of the technical program, organiz-
ing, and steering committees of numerous international
conferences and workshops. He organized and chaired a
number of technical sessions in international conferences
including IEEE Symposium on Antenna and Propagation
(AP-S), IEEE Symposium on Electronics, Circuits and
Systems (ICECS), Progress in Electromagnetics Research
Symposium (PIERS), and Applied Computational Elec-
tromagnetics Symposium (ACES). Dr. Shubair is a Senior
Member of IEEE, Member of ACES. He was elected
to become Fellow of MIT Electromagnetics Academy in
2007. Dr. Shubair is a founding member of the IEEE
UAE Signal Processing and Communications Joint So-

cieties Chapter. He acted as Symposium Vice-Chair of
the 2008 IEEE Canadian Conference on Electrical and
Computer Engineering: Communications and Networking
Symposium. Dr. Shubair is Editor for the Journal of
Communications, Academy Publisher. He is listed in
Who’s Who in Electromagnetics and in several editions
of Who’s Who in Science and Engineering.

Shihab A. Jimaa received the M.Sc. degree in Digital
Communications Systems from Loughborough University,
UK, in 1986 and the Ph.D., Data transmissions over
ADPCM links, from the same university in 1989. In the
UK, he has worked at Loughborough University, Warwick
University, and University of Hertfordshire. He has also
worked at Amman University in Jordan and Near East
University in Cyprus. In 2002 he joined Khalifa Univer-
sity of Science, Technology and Research, UAE where
he is currently an Associate Professor at the Commu-
nication Engineering Department. His research interests
include adaptive algorithms for channel equalization and
beamforming, system identification, signal processing for
communications, and adaptive receiver structures for DS-
CDMA mobile communication systems. He has authored
over 50 technical papers in various journals and referred
international conferences. Dr. Jimaa is a Chartered Elec-
trical Engineer, Member of the IET, Senior Member of
the IEEE, and Member of IASTED International Program
Committee on Telecommunications.

Amjad A. Omar received the B.SC. and M.SC. in
Electrical Engineering from Kuwait University in 1985
and 1988, respectively. He received the Ph.D. in Electrical
Engineering from the University of Waterloo, Canada,
in 1993. He worked at the Communications Research
Center in Ottawa for two years (1993-1995). Since 1995
he has been working at several universities in the UAE
and Jordan and currently he is an Associate Professor
at the Telecommunication Engineering Department of
Hijjawi College for Engineering Technology at Yarmouk
University in Jordan. His research interests include nu-
merical electromagnetics, design of microwave and mil-
limeter wave circuit components, biomedical applications
of electromagnetics, and smart antennas. He has over 60
publications in various journals and referred international
conferences.

269 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



An Accurate Reduced-Order Polynomial Solution for
Root-MUSIC Source Localization Using Displaced Sensor Arrays

R. M. Shubair

Communication Engineering Department
Etisalat University College, P.O.Box 573, Sharjah, UAE

Tel: + 971 6 5611333, Fax: + 971 6 5611789
E-mail: rshubair@ece.ac.ae

Abstract – This paper proposes a modified Root-MUSIC
direction finding algorithm for source localization using a
displaced sensor array (DSA) configuration which utilizes
two parallely-displaced arrays in the vertical plane. It is
shown that the proposed configuration utilizes the spatial
displacement of array sensors in both the horizontal
and azimuth directions together with the symmetry of
the two parallel arrays in order to reduce the rank of
the spatial covariance matrix. This results in a reduced-
order Root-MUSIC polynomial for which the complex
roots correspond to the desired directions of the radiating
sources to be localized. Simulation results show that
the developed algorithm outperforms the standard Root-
MUSIC algorithm for conventional uniform linear arrays
(ULAs) in terms of computational efficiency, numerical
accuracy, and angular resolution.

Keywords: Smart antennas, source localization, direction
finding, and Root-MUSIC.

I. INTRODUCTION

The development of personal communication devices
is a challenging topic in modern electromagnetic research.
The number of users that can actually interact at the
same time with the base stations is very high. It is
therefore necessary to develop efficient methods, which
are able to track the desired users and mitigate the effects
of interference signals. The use of multiple antennas
seems to be very helpful in enhancing the performance of
transmit/receive systems in the communication networks.
In particular, multiple antennas offer several advantages:
They allow increasing the channel capacity; reducing
channel fading by using the spatial diversity of the an-
tenna array; and, finally, mitigating co-channel and inter-
symbol interferences.

Spatial filtering methods using advanced antenna
techniques, smart or adaptive antennas, have received
much attention over the last few years. Filtering in the
spatial domain can separate spectrally and temporally
overlapping signals from multiple mobile users, and
hence the performance of a system can be significantly
improved. Particular interest in such adaptive antennas

has been shown with regard to code-division multiple-
access (CDMA) systems. In CDMA systems, all users
communicate simultaneously in the same frequency band,
and hence multiple-access interference (MAI) is one of
the major causes of transmission impairment [1].

Furthermore, since antenna arrays generate beams
with a maximum toward the desired users and nulls in the
directions of interferences, they play an important role in
improving the performance of both the base stations and
the mobiles. To this end, an essential step is the source
localization or estimation of the directions of arrival
(DOAs) of the waves that impinge on the antenna array.
Several methods have been proposed in the literature for
source localization. Among them, subspace eigenanalysis-
based methods such as MUSIC, and its derivative version
Root-MUSIC [2], seem to be popular due to their high
resolution capability and low computational complexity.

A smart antenna system at the base station of a
cellular mobile system is depicted in Fig. 1. It consists
of a uniform linear antenna array for which the currents
are adjusted by a set of complex weights using an adaptive
beamforming algorithm. The adaptive beamforming algo-
rithm optimizes the array output beam pattern such that
maximum radiated power is produced in the directions
of desired mobile users and deep nulls are generated
in the directions of undesired signals representing co-
channel interference from mobile users in adjacent cells.
Prior to adaptive beamforming, the directions of users and
interferes must be obtained using a source localization or
direction-of-arrival estimation algorithm [3].

The concept of displaced sensor array (DSA) was
introduced by the author in [4-6] where it was shown
that such a configuration, which is composed of two
parallely-displaced sensor arrays, can improve the per-
formance of the smart antenna system. The proposed
DSA configuration has several other advantages. First,
it maintains almost the same radiation aperture as the
conventional uniform linear array yet it can handle more
signals from users and interferers because it has more
array sensors when compared to the conventional uniform
linear array. Second, the horizontal displacement between
the two parallel arrays allows for resolving correlated
signals encountered in multipath propagation environment
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Fig. 1. A functional bolock diagram of a smart antenna
system.

without having to apply spatial smoothing techniques.
Moreover, the vertical separation between the two parallel
arrays allows for resolving signals arriving in the vertical
plane at the endfire direction.

In this paper we show that using the proposed DSA
configuration results also in a reduced-order Root-MUSIC
polynomial. This in turn leads to a more efficient source
localization when compared to conventional Root-MUSIC
for uniform linear arrays.

The paper is organized as follows: Section II presents
the theory of Root-MUSIC source localization for uniform
linear array (ULA). Section III derives a reduced-order
modified Root-MUSIC polynomial using the proposed
displaced sensor array (DSA) configuration. Section
IV presents simulation results showing the performance
improvement obtained when the modified Root-MUSIC
algorithm proposed in this paper is used for cases involv-
ing signals incident close to array broadside as well as
endfire direction. Finally, some conclusions are given in
Section V.

II. ROOT-MUSIC FOR UNIFORM LINEAR
ARRAY (ULA)

Let a uniform linear array (ULA) be composed of
N sensors, and let it receive M (M < N ) narrowband
sources sm(t) impinging from directions θ1, θ2, ....θM , as
shown in Fig. 2. Assume that there are K snapshots
x(1),x(2), ...,x(K) available. The N ×1 array observa-
tion vector is modeled as,

x(t) =
M∑
m=1

aULA(θm)sm(t) + n(t) (1a)

= AULAs(t) + n(t), (1b)

where AULA is the N ×M matrix of the signal direction
vectors and is given by,

AULA = [aULA(θ1), .aULA(θ2), ....,aULA(θM )] (2)

aULA(θm) is the N × 1 steering vector of a ULA given
by,

aULA(θm) = [1, ej(2π/λ)d sin θm , ..., ej(2π/λ)(N−1)d sin θm ]T

(3)
where 1≤ m ≤M. In addition s(t) is an M × 1 vector
of source waveforms; n(t) is an N × 1 vector of white
sensor noise; λ is the wavelength; d is the inter-element
spacing; and (.)T is the transpose. Equation (3) can be
rewritten as,

aULA(zm) =
[

1 zm . . zN−1
m

]T
(4a)

=
[

1 ejψm . . ej(N−1)ψm
]T

(4b)

= [exp {(2π/λ)(n− 1)d sin θm}]T , (4c)

where zm = ejψm , ψm = (2π/λ)d sin θm, and 1≤ n ≤
N .

The conventional (forward only) estimate of the co-
variance matrix is defined as,

R = E{x(t)xH(t)} (5)

where E{.} represents the ensemble average; and
(.)H is the Hermitian transposition operator. Equation
(5) can be approximated by applying temporal averaging
over K snapshots (or samples) taken from the signals
incident on the sensor array. This averaging process leads
to forming a spatial correlation (or covariance) matrix R
given by, [7]

R =
1
K

K∑
k=1

x(k)xH(k). (6)

Substituting for x(t) from equation (1) in equation (6)
yields,

R = AULARssAH
ULA + σ2

nI (7)

where Rss = E{s(t)sH(t)} is an M × M source
waveform covariance matrix, σ2

n is the noise variance, and
I is an identity matrix. The matrix R is centro-Hermitian
if, [7]

R = JR∗J (8)

where J is the exchange matrix with ones on its anti-
diagonal and zeros elsewhere, and (.)∗ stands for complex
conjugate. The covariance matrix R in equation (8) is
known to be centro-Hermitian if and only if S is a diago-
nal matrix, i.e., when the signal sources are uncorrelated.

A common a subspace based DOA estimation al-
gorithm is MUSIC (MUltiple SIgnal Classification) [3].
This method is based on the eigen-decomposition of
the covariance matrix R to into a signal subspace
having M eigenvalues with corresponding eigenvec-
tors v1, v2 , ......., .vM , and noise subspace having
(N − M) eigenvalues with corresponding eigenvectors
vM+1, vM+2 , ......., .vN . Let Vs be the matrix whose
columns are the source subspace eigenvectors, and Vn
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Fig. 2. Geometry of a uniform linear array (ULA).

be the matrix whose columns are the noise subspace
eigenvectors, i.e.,

Vs = [v1,v2, ...,vM ] (9)

Vn = [vM+1,vM+2, ...,vN ]. (10)

The covariance matrix R can then be expressed as,
[7]

R = VΠV (11a)
= VsΠsVs + σ2VnVH

n (11b)

where the subscripts s and n stand for signal and noise
subspace, respectively. In equation (11a) Πs is a diagonal
matrix given by Πs = diag{π1, π2, ..., πM}. Hence, the
normalized MUSIC angular spectrum is defined as, [7, 8]

PULA(θ) =
AH
ULAAULA

AH
ULAVnVH

n AULA
. (12)

By examining the denominator in equation (12) it is
evident that peaks in the MUSIC angular spectrum occur
at angles θ for which the array manifold matrix AULA

is orthogonal to the noise subspace matrix En. Those
angles θ define the desired angles of arrival of the of
the narrownband source signals impinging on the ULA.
A comprehensive performance evaluation of the MUSIC
algorithm for DOA estimation can be found in [9, 12].

The denominator in equation (12) can be rearranged
to form the conventional Root-MUSIC polynomial as, [8]

GULA(z) = aTULA(1/z)VnVH
n aULA(z). (13)

The roots of the polynomial GULA(z) defined in
equation (13) occur in pairs (z and 1/z) with the same
argument in the z-plane. The roots zm which lie on the
unit circle (or close to it) will correspond to the directions
of arrival θm of the incident signals while the other roots

are spurious roots. The directions of arrival θm are thus
given by,

θm = sin−1

[
(
λ

2πd
) arg(zm)

]
. (14)

III. MODIFIED ROOT-MUSIC FOR
DISPLACED SENSOR ARRAY (DSA)

The DSA configuration consists of two parallel ULAs
displaced by a horizontal distance d = λ/4 and vertical
separation s = λ/2, as shown in Fig. 3. Each of the two
parallel ULAs consists of N linear equispaced omnidi-
rectional sensors with inter-element spacing d = λ/2.The
two parallel ULAs are positioned along the x axis with
an azimuth angle θm measured with respect to the z
axis. It is assumed that the DSA configuration receives
M narrowband source signals sm(t) from incidence di-
rections θ1, θ2, ....θM . At a particular instant of time
t = 1, 2, ...,K, where K is the total number of snapshots
taken, the desired users signal vector x(t) is given by,

x(t) =
M∑
m=1

[a1(θm) + a2(θm)] sm(t) + n(t) (15)

where n(t) is the sensor noise vector modeled as tem-
porally white and zero mean complex Gaussian process,
a1(θm) and a2(θm) are the steering (or response) vectors
for the two parallel arrays with respect to θm, which
represents the angle of arrival of the m th signal. The
first steering vector a1(θm) has dimensions N × 1 and
represents the space factor of the first array with respect
to direction θm. It is given by,

a1(θm) = {exp [j(n− 1)ψm]}T , 1 ≤ n ≤ N (16)

where {}T is the transposition operator, and ψm repre-
sents the electrical phaseshift from element to element
along the array defined as ψm = 2π(d/λ) sin θm, where
d is the inter-element spacing and λ is the wavelength of
the received signal. The second steering vector a2(θm)
has dimensions N×1 also and represents the space factor
of the second array with respect to direction θm. It is
given by,

a2(θm) = a1(θm).Fs(θm).F∆(θm) (17)

where Fs(θm) and F∆(θm) represent the space factors due
to the vertical separation s and horizontal displacement
∆ of the two parallel arrays, respectively. These are given
by,

Fs(θm) = exp
[
−j2π

( s
λ

)
cos θm

]
(18)

F∆(θm) = exp
[
−j2π

(
∆
λ

)
sin θm

]
. (19)
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Equation (15) can be written as,

x(t) =
M∑
m=1

aDSA(θm)sm(t) + n(t) (20)

where aDSA(θm) is the DSA steering vector given as the
superposition of the steering vectors of the two parallely-
displaced ULAs, i.e.,

aDSA(θm) = a1(θm) + a2(θm). (21)

The combination of all possible steering vectors
forms the array manifold (or steering vector) matrices A1

and A2 of size N ×M each, i.e.,

A1 = [a1(θ1), .a1(θ2), ....,a1(θM )] (22)

A2 = [a2(θ1), .a2(θ2), ....,a2(θM )]. (23)

The received signal vector x(t) of equation (15) can
then be written as,

x(t) = ADSAs(t) + n(t) (24)

where ADSA is the overall array manifold matrix and is
given by,

ADSA= A1 + A2. (25)

The covariance matrix for the DSA configuration can
then be expressed as,

R = ADSARssAH
DSA + σ2

nI. (26)

Using the expression for ADSA as given in (24),
the denominator in equation (12) results in the following
modified Root-MUSIC polynomial,

GDSA(z) = aTDSA(1/z)VnVH
n aDSA(z). (27)

GDSA(z) given in equation (27) for the proposed
DSA has a reduced order compared to the order of the
conventional Root-MUSIC polynomial GULA(z) derived
in equation (13) for ULA.

IV. SIMULATION RESULTS

A. Detection of Signals Incident Closer to Array Broad-
side Direction

The results for Root MUSIC were obtained using a
ULA configuration with N = 12 elements in the array,
and compared them to those obtained using the modified
Root-MUSIC using the DSA configuration with N/2 = 6
elements in each array. Inter-element spacing of d = λ/2
is maintained in both configurations. This is essential to

Fig. 3. Proposed displaced sensor array (DSA) configu-
ration consists of two parallely-displaced uniform linear
arrays (ULAs) in the vertical plane displaced horizontally
by a distance ∆ = λ/4 and separated vertically by a
distance s = λ/2.

reduce the effects of inter-element mutual coupling. We
have assumed a signal-to-noise ratio SNR = 10dB and
the number of snapshots K = 100. There are M = 5
incoming signals to be detected arriving at directions θm
close to the array broadside direction (θ = 0o). These
directions are: θ1=30o, θ2=20o, θ3=10o, θ4=-20o, and θ5=-
40o.

Results are presented in Table 1 showing that more
accurate results with less percentage error are obtained
for the DOA estimates when the modified Root-MUSIC
algorithm is used. These results are also plotted in Fig.
4 which clearly demonstrates that the modified Root-
MUSIC for DSA outperforms conventional Root-MUSIC
for ULA in terms of numerical accuracy coupled with
computational efficiency. The latter feature is evident
from the reduced-order complex-root polynomial obtained
as a result of the modified Root-MUSIC algorithm pro-
posed for DSA of this paper.

B. Detection of Signals Incident Closer to Array Endfire
Direction

The results for Root MUSIC were obtained using a
ULA configuration with N = 14 elements in the array,
and compared them to those obtained using the modified
Root-MUSIC using the DSA configuration with N/2 = 7
elements in each array. Inter-element spacing of d = λ/2
is maintained in both configurations. We have assumed
a signal-to-noise ratio SNR = 10dB and the number of
snapshots K = 100. There are M = 6 incoming signals
to be detected arriving at directions θm close to the array
endfire direction (θ = ±90o). These directions are: θ1=-
85o, θ2=-80o, θ3=-75o, θ4=75o, θ5=80o, and θ6=85o.

Results are presented in Table 2 showing that more
accurate results with less percentage error are obtained
for the DOA estimates when the modified Root-MUSIC
algorithm is used. These results are also plotted in Fig.
5 which clearly demonstrates that the modified Root-
MUSIC for DSA outperforms conventional Root-MUSIC
for ULA in terms of numerical accuracy coupled with
computational efficiency. The latter feature is evident
from the reduced-order complex-root polynomial obtained
as a result of the modified Root-MUSIC algorithm pro-
posed for DSA of this paper.
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Table 1. Comparison of Root-MUSIC and Modified
Root-MUSIC (incidence close to array broadside direc-
tion) (M = 5, d = 0.5λ, SNR = 10dB, and K = 100).

Root-MUSIC Modified Root-MUSIC
θexact
m θm % error θm % error
30o 30.78o 2.60% 30.11o 0.37%
20o 20.53o 2.65% 20.21o 1.05%
10o 10.16o 1.60% 10.02o 0.20%
-20o -20.33o 1.65% -20.07o 0.35%
-40o -40.6o 1.50% -40.12o 0.3%

Table 2. Comparison of Root-MUSIC and Modified
Root-MUSIC (incidence close to array endfire direction)
(M = 6, d = 0.5λ, SNR = 10dB, and K = 100).

Root-MUSIC Modified Root-MUSIC
θexact
m θm % error θm % error
-85o -76.2o 10.35% -80.9o 4.82%
-80o -73.1o 8.63% -76.8o 4.00%
-75o -70.9o 5.47% -73.5o 2.00%
75o 71.9o 4.13% 73.8o 1.60%
80o 75.3o 5.88% 77.2o 2.25%
85o 77.5o 8.82% 82.9o 2.47%

Fig. 4. Comparison of Root-MUSIC and Modified Root-
MUSIC for incidence close to the array broadside direc-
tion.

Fig. 5. Comparison of Root-MUSIC and Modified Root-
MUSIC for incidence close to the array endfire direction.

V. CONCLUSIONS

We have used a parallely-displaced sensor array con-
figuration to derive a reduced-order polynomial expres-
sion for the Roo-MUSIC source localization method. The
derived reduced-order complex-root polynomial makes
the proposed method for displaced sensor arrays much
more efficient in terms of computational complexity when
compared to the conventional Roo-MUSIC method used
in conjunction with uniform linear arrays. Moreover,
the horizontal displacement in the displaced sensor ar-
ray configuration between the two parallel arrays allows
for resolving correlated signals encountered in multipath
propagation environment without having to apply spa-
tial smoothing techniques [11]. Moreover, the vertical
separation between the two parallel arrays allows for
resolving signals arriving in the vertical plane at the
endfire direction. Results were presented to show the
improved performance of the proposed method in terms
of computational efficiency and numerical accuracy.
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Abstract − Microstrip TRL standards for the Thru, 
Reflect, and Line are designed, fabricated and tested. A 
split fixture design is built which contains microstrip to 
coaxial transitions to aid in measuring non-coaxial 
devices. With this microstrip TRL calibration kit, 
accurate and repeatable calibrations over a broad 
frequency range will be verified. This kit is used to 
measure and model several components such as a 
capacitor, an inductor, a transistor, and a radio frequency 
identification tag. The TRL kit allows the reference 
planes to be set at the device under test and allows novel 
modeling of the device’s intrinsic and extrinsic 
parameters through optimization of a network to 
minimize the difference between S-Parameter 
measurements taken with the TRL kit and device under 
test and the proposed model.  

 
I. REQUIREMENTS FOR TRL STANDARDS 

 
The Short-Open-Load-Thru (SOLT) technique is the 

traditional calibration method used primarily for coaxial 
applications. In non-coaxial measurements it is more 
difficult to build impedance standards that are easily 
characterized. In microstrip, short circuits are inductive, 
open circuits radiate energy, and it is difficult to build a 
high quality purely resistive load. Because of these 
limitations, studies are done on an alternative method for 
calibration in non-coaxial environments called Thru-
Reflect-Line (TRL) that uses simple, realizable standards. 
This form of calibration can provide more accurate 
results than the SOLT method even for coaxial 
applications. The standard SOLT calibration depends on 
a set of four well-defined impedance standards (open, 
short, load, thru), but TRL only relies on lines with a 
consistent characteristic impedance and a reflect that 
doesn’t have to well defined like a short or an open 
circuit. Because of this, TRL calibration standards are 
easier to manufacture than SOLT standards, especially 
for in-fixture environments. In this paper, the TRL 
calibration technique is studied for use in testing 
packaged transistors and passive surface mount 
components that are typically used on microstrip. The 

device under test must be physically connected to the 
network analyzer by some kind of transition. As a 
solution, we propose the development of a TRL 
calibration kit in which only microstrip TRL standards 
are used for S-parameter characterization of non-coaxial 
devices. The hookup of the three different standards 
along with the associated error boxes is shown in 
Appendix I [1]. The thru is obtained by placing the two 
fixture halves together in between the set of coaxial 
connectors. The thru standard is of zero length. Its 
characteristics are perfect transmission (S21=1 with zero 
degree phase shift) and reflection coefficients equal to 
zero. At all frequencies, an ideal short is defined to have 
perfect reflection in which its reflection coefficient, S11, is 
equal to negative one. The line length is designed to have 
an electrical length equivalent to 90° phase shift at the 
center frequency of the entire range. It is characterized by 
perfect transmission when│S21│= 1. The major limitation 
of the TRL technique is the limited bandwidth of the Line 
standards. A single line is only usable over a maximum of 
an 8:1 frequency range, so multiple lines are required for 
broad frequency coverage. At low frequencies, Line 
standards can become too long for practical use [2]. In the 
work reported here, three different line lengths, one to 
cover the low frequency range of 200 MHz to 1.8 GHz, a 
second to cover 700 MHz to 6.3 GHz, and a third to 
cover 1.4 to 12.6 GHz. These three lines would allow 
measurement up through the X-band. Since the design 
was to be used in a 50 Ohm system, widths of the 50 ohm 
microstrip lines were found using a linecalc program with 
the knowledge of the dielectric constant and the thickness 
of the board. The board substrate used in the design of the 
microstrip TRL calibration kit is the RT Duroid 6002 
High Frequency Laminate from Rogers Corporation with 
dielectric constant of 2.94 and thickness of 30 mils [3]. 
An example of using a linecalc program available in 
Agilent’s Advanced Design System (ADS) is shown in 
Fig. 1 below [4]. 

The width and relative dielectric constant are then 
used in a set of formulas shown below to obtain different 
frequency Line lengths. A block for each Line length was 
first designed then built. These blocks represent the Line 
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standard in the TRL calibration technique. Twenty 
percent of the center frequency defines the lower part of 
the operating range. One-hundred and eighty percent of 
the center frequency defines the upper part of the range.  
For example, consider the low frequency range:  

center frequency, fc = 1 GHz 
20% of 1 < fc <180% of 1                                               
200 MHz < fc < 1.8 GHz . 

From the above calculations, a low frequency Line 
insert piece was designed to cover 200 MHz to 1.8 GHz. 
From LineCalc, width, w = 1.935 mm and relative 
effective dielectric constant, εreff = 2.383 were obtained 
when the center frequency was set at 1 GHz. From these 
values and the following set of equations we obtain the 
phase velocity, pv  and wavelength, gλ . The line length 
is designed to be one quarter the wavelength at the center 
frequency as shown below, 
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Following the same calculating procedure as above, 

with center frequency at 3.5 GHz, a resulting span from 
700 MHz to 6.3 GHz characterized a second Line length 
insert piece for the middle frequency range of the 
designed microstrip TRL calibration kit. Finally, a third 
line was designed with center frequency at 7 GHz and a 
range covering 1.4 GHz to 12.6 GHz. Typically, the VNA 
has calibration kits for most coaxial devices and the 
different standards for these kits have been defined within 
the network analyzer. The VNA also typically has the 
TRL calibration algorithm embedded into the system 
software. However, for the TRL algorithm to work, it is 
necessary to create and define each standard that will be 
used with the designed text fixture. The user-created 
standard kit includes the electrical characteristics of each 
calibration standard. Figure 2 shows the Standard 
Definition window for a VNA Calibration Kit Program 
used for out Agilent 8510C VNA [5].  

Entered are the Short, Line, and Thru delay values in 
picoseconds. These values were obtained through a one-
port SOLT calibration using the Agilent coaxial 
calibration kit. Each standard was placed on port 1 of the 
network analyzer, and with the port extension feature, the 
length of each standard was recorded and entered into the 
Offset Delay column in the Standards Definition window. 

 

 
 

Fig. 1. A typical LineCalc window. 
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Fig. 2. User-created Cal Kit standards definitions. 
 
 

II. SPLIT FIXTURE DESIGN 
 

For non-coaxial device measurement, a test fixture is 
needed to mount the device under test. The split design 
gives the ability to mount calibration standards of 
different lengths and non-coaxial devices to the center 
block which is inserted between the fixture halves. The 
test fixtures that represent the TRL calibration standards 
were made out of brass blocks and built using a CNC 
machine. Each block part was carefully modeled in the 
mechanical design software Pro-Engineer [6]. Figure 3 is 
a layout in Pro-Engineer showing dimensions in cm for 
the Reflect block, one of the required calibration 
standards of the TRL technique. Figure 3 simply 
demonstrates how each part was carefully designed and 
laid out for machining. 

Figure 4 shows the assembled split fixture (zero 
length Thru standard) with the two block halves and a 
Teflon bridge on top. The purpose of the bridge is to 
insure connection between the device under test and the 
connecting blocks. The connection could be done with 
solder, but the Teflon bridge will allow connection 
without having to solder the leads of the device under test 
to the microstrip fixture leaving the calibration kit general 
to the various sizes and shapes of RF non-coaxial 
components. In the middle of the Teflon piece are two 
fingers. These fingers press down on the leads of the 
device under test so that there is good electrical 

connection between the device under test and microstrip 
line. The Teflon piece is connected to the block with 
screws, and these screws provide the pressure to the 
fingers which are lined with copper strips for 
conductivity. It should be pointed out that the Teflon 
could, in fact, introduce discontinuities, but since its 
dielectric constant is relatively low, and only a small 
portion touched the microstrip lines, it did not affect the 
measurement results in the frequency range of interest. 

 

 
 

Fig. 3. Pro-Engineer layout for the Reflect standard (2.5 x 
5.0 cm block half). 

Standard types and their corresponding 
numbers: Short #1, Thru#14, Line#15 

Offset Delay (ps) Coaxial or Waveguide 
For microstrip, choose coaxial 
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Fig. 4. Thru standard with Teflon bridge connection. 

 
As can be seen from the Pro Engineer design, the 

individual blocks have assembling bolts and precision 
guiding pins, for accurate alignment of microstrip 
sections. Figure 5 points out the low frequency Line 
standard inserted in between the two halves with guiding 
pins and bolt holes to ensure a tight fit. Any high Reflect 
standard can be used and must be the same on port 1 and 
port 2 of the network analyzer. 

 

 
 

Fig. 5. Low frequency Line insert with guiding pins and 
bolts. 

 
In this work, the Reflect standard is a 5 x 2.5 cm 

block with a wire soldered at the end of the microstrip 
line resembling a short circuit shown in Fig. 6.  
 

Short Circuit
(soldered)
Short Circuit
(soldered)

 
 
Fig. 6. Reflect standard (short circuit). 
 

III. CHECKING THE CALIBRATION 
PERFORMANCE 

 
This section below will check the performance of 

each TRL standard for the low frequency range. The 
reflection coefficient of the Reflect standard is supposed 
to be negative one at all frequencies. The objective is to 

obtain total reflection, 20 log (1) equals 0 dB. Figure 7 is 
a plot of the reflection coefficient in log magnitude 
verifying the Reflect standard requirement. Figure 8 
verifies both the Line and Thru standards. The low 
frequency Line length is designed to have an electrical 
length of 90° at center frequency of 1 GHz.  
 

 
Fig. 7. Short standard verification. 
 

The marker “m1” denotes the center frequency point. 
Note that the red marker on this transmission plot, is, as 
designed, nearly one quarter wavelength away from the 
Thru.  The red curve is the measured range between 200 
MHz and 1.8 GHz.  Notice that the Line length varies as 
a function of frequency. The phase due to the electrical 
length of the line is different at each frequency and 
therefore the Line length is different at each frequency. 
The thru will remain constant at zero degrees.   

The TRL calibration kit has been tested for the lower 
frequency band, and the results are excellent.  The results 
are similar for the middle and upper bands. However, 
some difficulties arose with the performance of the 
Reflect standard when calibrating with the high frequency 
set of blocks which results in the limitation of its use to 
only 9 GHz.  Further studies will be done regarding the 
Reflect block to determine the reason for the incorrect 
reflection coefficient at a few specific frequencies to 
increase the overall working frequency range.  A new 
Reflect board with grounding vias is being designed, and 
it is expected that this should cause the short circuit to 
appear less inductive.  It is hoped that this will remedy 
the problem and allow the use of the high frequency 
block to 12.6 GHz.   
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(c) Line and Thru 

 
Fig. 8. (a)Line standard verification, (b)Thru standard 
verification, and (c) Line and Thru- phase in degrees. 
 
IV. MEASUREMENT AND CHARACTERIZATION 

OF ACTIVE AND PASSIVE RF COMPONENTS 
 

Calibration is necessary before taking measurements. 
In order to remove systematic errors the TRL calibration 
technique is used to setup the reference plane at the 
device under test. Because this TRL kit allows the 
reference plane to easily be set at the test device’s 

terminals, models can easily be obtained through 
optimization of a model and the measured S-parameters.  
This section will show several measurements of non-
coaxial devices such as a capacitor, an inductor, and a 
transistor all setup and tested using the designed 
microstrip TRL calibration kit.  All of these were 
measured using the low or middle frequency ranges 
because they were being used in an amplifier that was 
being designed for the WLAN range (2.4 GHz).  In 
addition, a radio frequency identification (RFID) tag was 
also measured.  For all of these components, the S-
parameters were measured, and these S-parameters could 
be used to obtain a model for the device, or the S-
parameters could be used directly in a simulation.   

 
Capacitor:  

The designed microstrip TRL calibration kit can be 
used to assess the performance of capacitors. The 
capacitor used in measurement was the C06CF5R1B9U 
high Q Multilayer Capacitor from Dielectric laboratories, 
Inc. [7]. This capacitor was measured using the designed 
low frequency microstrip TRL calibration kit over the 
range of 200 MHz to 1.8 GHz. To determine the 
measured capacitor’s value, the capacitor was modeled 
using an equivalent circuit and optimized in ADS. The 
equivalent circuit used was a series RLC circuit with 
another resistor in parallel with the capacitance.  A 
simulation was run to best fit the measured data to an the 
capacitor circuit model. Results conclude that the 
optimization yields that the value of the capacitor is 
5.41489 pF. It would be hard to accurately measure this 
capacitance this accurately with an LCR meter, but with 
the optimization in ADS, the result is to this number of 
significant digits over the frequency range measured.  
The data sheet provided by Dielectric Laboratories, Inc 
lists nominal value for the capacitor is 5.1 pF. Measured 
results show a good match between the data provided. 
Figure 9 compares the transmission results of the 
measured capacitor to the data provided by the 
manufacturing company in log magnitude format.  The 
measured S-parameters match the model well; the two 
curves shown illustrated the difference between the 
company’s nominal capacitor value and the particular one 
that was measured.  At the higher frequencies, both are 
acting as short circuits, as a capacitor should.   
 
Inductor: 

A hand wound inductor coil that was to be used as an 
RF choke was made from 28 gauge enamel coated copper 
wire and soldered to the microstrip boards for 
measurement. A 3-turn inductor was measured using the 
low frequency calibration kit over the frequency range of 
200 MHz to 1.6 GHz. The picture in Fig. 10 below shows 
the 3-turn inductor soldered to the 50 Ohm microstrip 
transmission lines placed on the designed test fixture 
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which is connected to ports one and two of the network 
analyzer.  
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Fig. 9. S21 capacitor results. Red = Measured capacitance 
(optimized to C=5.41489 pF using an equivalent circuit 
with parasitics using ADS), Magenta = Typical 
Manufacturer’s Characteristics (C=5.1 pF).   
 
 

 
 
Fig. 10. 3-Turn inductor. 
 

Results for the 3-turn inductor are shown in Fig. 11 
in Smith chart form. This inductor was merely fabricated 
to have impedance much higher than 50 Ohms so that the 
RF could be blocked in the desired frequency range since 
it was to be used as an RF choke in an amplifier design.  
So, to insure the device was acting accordingly, the 
device was modeled in ADS as shown in Fig. 12 below.  
This model includes parasitic elements as well as the 
inductor itself.  Optimization enables us to determine the 
value of the inductor itself. As can be seen from Fig. 12, 
the inductance value obtained from the equivalent circuit 
was in good agreement with the design as the equivalent 
circuit’s inductance was approximately 48 nH, which by 
itself (not including parasitic) has an impedance that is at 
least ten times larger than 50 Ohms in the amplifier’s 
frequency range of 1.9-2.6 GHz.  The resulting equivalent 
circuit’s S-parameter results are shown in blue on Fig. 11.  
Thus, the equivalent circuit provides an excellent model 
for the inductor over the desired frequency range.   
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Fig. 11. 3-Turn inductor results. Red = measured, Blue = 
simulated model including parasitics.  
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Fig. 12. ADS schematic of the equivalent circuit of an inductor. 
 

Radio Frequency Identification (RFID) Chip: 
An RFID tag is an object that can be attached to 

another object for the purpose of identification using 
radio waves. Chip-based RFID tags contain silicon chips 
and antennas [8]. A sample commercial RFID tag with an 
integrated chip was set up for impedance measurement. 
The setup is depicted in Fig. 13. The terminals shown in 
the Figure were connected to port 1 and port 2 of the 
network analyzer. The fingers on the Teflon bridge 
pressed the edges of the chip down for contact during 
measurement.  Characteristics were not provided by the 
manufacturer, so the TRL calibration kit enables us to 
determine the input impedance of the tag. 
 

 
 
Fig. 13. RFID measurement setup. 
 
The S-parameters were measured. A picture of the RFID 
chip is shown in Fig. 14 along with S11 data plotted on a 
Smith chart.  

From the measured S-parameters, the RFID tag’s 
input impedance could be obtained. 
 
Transistor: 

A silicon carbide (SiC) transistor from the 
manufacturing company CREE [9] is an active 
component used in an RF amplifier design. This small 

transistor has a large power output capability. So before 
actual measurements of the amplifier, the designed 
microstrip TRL calibration kit was used for testing the 
D.C. biasing and general behavior of the CREE transistor. 
For the CREE transistor a special block was made so that 
the bottom of the transistor can sit down into the block 
allowing the leads to reach the microstrip board. This 
block is shown in Fig. 15. The transistor leads were 
soldered to the board. A Teflon piece was pressed over 
the transistor for electrical conductivity during 
measurements.  

 

 
 
Fig. 14. Reflection, S11, results and a picture of the 
measured RFID chip.  

 

 
 

Fig. 15.  The CREE transistor sits on this block. 
 

The transistor was measured using the middle 
frequency range designed microstrip TRL calibration kit 
but only from 100 MHz to 4 GHz. A thermocouple wire 

freq (200.0MHz to 1.800GHz)

S(1
,1)
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was used to monitor the temperature as different Q-points 
were tested. The tip of the thermocouple wire was 
pressing against the top of the transistor. From above, 
pressure was applied by the Teflon bridge and a small 
piece of silicon. Figure 16 contains two pictures. The first 
picture, (a), is the measurement setup of the CREE SiC 
transistor as its temperature readings are being taken 
while the fan cools it off. The second picture labeled (b) 
is a close up of the thermocouple wire and Teflon bridge 
that will press over the mounted transistor during 
measurements.  

 

 
(a) 

 

 
 (b) 

 
Fig. 16. (a) Measurement of CREE SiC transistor (b) 
Teflon piece with silicon padding and thermocouple wire 
for monitoring the temperature. 

 
The fan served as a cooling mechanism as the 

temperatures started to reach the maximum operating 
temperature of 125 ˚C.  As the temperature increased, a 
clamp was added to create better contact with the copper 
block and dissipate more heat.  Before applying any 
current, the temperature read 22.6 ˚C from the 
thermocouple meter. Full two-port measurements were 
performed at the biasing point of VGS= -6.87 V, VDS= 
48.0 V, and IDS= 249.4 mA at 139 degrees Celsius. This 

was near the manufacturer’s provided data which was 
taken at VGS= -6.0 V, VDS= 48.0 V, and IDS= 250.0 mA.  
Figure 17 illustrates a comparison between the S21 
(transistor gain) of the closest fit curve that was obtained 
during measurement from the set of different Q-points 
listed in Table 1 to CREE’s manufacturer’s data. As seen 
from the S21 data, the results are close, and differences are 
likely due to device variability.  The full two-port data 
was also used in building a circuit model for the SiC 
transistor. 

 

 
 

Fig. 17. Gain of measured S (8, 7) versus CREE’s 
manufacturer’s curve S (10, 9). 
 

V. CONCLUSION 
 

In this work, the design and fabrication of a 
microstrip TRL calibration kit has been developed, 
discussed, and proven to work for RF device 
measurements.  The Thru, Reflect, and Line standards 
were verified through the TRL calibration process. The 
microstrip split fixture design gives ability to mount 
calibration devices of different lengths and packaged 
transistors to the center block. Several non-coaxial 
components such as a capacitor, an inductor, a transistor, 
and an RFID tag were mounted onto and measured with 
this split fixture design calibration kit.  One key 
importance of this kit is that it allows extraction of both 
intrinsic and parasitic device parameters through the 
novel optimization and circuit simulation shown 
throughout this paper.   
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APPENDIX I 
 

TRL Technique 
The signal flow graphs of the TRL calibration 

technique are shown in the figures below.  The Error 
Boxes are the errors in the measurement that are 
calibrated out after the TRL calibration is performed.  
These errors include errrors associated with directivity, 
source and load matching, etc.  By connecting the Thru, 
the Reflect, and the Line standards, enough 
measurements are made to find the unknowns that are 

associated with the error boxes,  the impedance of the 
transmission lines, and the reflection coffecient of the 
Reflect standard.  Finally, the reference planes can be set 
at the DUT (where the Thru, Reflect, and Line are placed 
in the pictures).  Notice in the Thru connection, that 

thrul is typically zero, so the resulting terms are just 1.  If 
a nonzero length thru is used, the technique is often called 
LRL due to the fact that two lines are being used in the 
calibration.  Details of the resulting equations can be 
found in [1]. 
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Abstract − Understanding the electromagnetic 
interactions with sea spray is of interest for many 
applications such as satellite or terrestrial 
communications, remote sensing systems for surveillance 
and meteorology. The water droplets in spray are a key 
factor in the energy transfer between the atmosphere and 
the ocean, which can help the wind speed retrieval 
algorithms for the global climate models. Furthermore, 
the presence of these droplets along the propagation path 
interferes with both land-based and satellite based remote 
sensing of the ocean surface. This paper investigates the 
backscatter response from sea spray, which is modeled as 
a layer of water droplets over a rough ocean surface. The 
distorted Born approximation technique is used in 
conjunction with the analytical wave theory to compute 
backscattering from the medium. 
 
Keywords: remote sensing, scattering, random medium, 
maritime, ocean, and sea spray. 
 

I. INTRODUCTION 
  

The presence of water droplets along the propagation 
path interferes with both land-based and satellite-based 
remote sensing systems of ocean surface. This can cause 
adverse effects for weather forecasting, wireless 
communication and military surveillance systems. 
Understanding the electromagnetic interactions with sea 
spray is also important as it plays a critical role in the 
energy exchange between the surface of the ocean and the 
atmosphere. This energy transfer helps define the 
boundary condition for atmospheric and oceanic models 
and is a key factor for the global and regional climate 
models. The simulation of the complex interaction of the 
weather system with the sea is often a major challenge in 
meteorology. 

This paper investigates the backscatter response from 
a layer of water droplets over a rough ocean surface as 
shown in Fig. 1. The results of this model have been 
presented before, [1]. This paper extends the earlier 
findings, and provides an investigation of cluster effects 
when the particles get in close proximity to each other.  

The water droplets in sea spray are modeled as 
perfectly conducting spheres of various sizes. The 

droplets are randomly distributed inside the layer, that 
extends from z = -d to z = 0. Different probability 
distribution functions (pdf) are used to generate different 
scenarios for the size distribution of the droplets inside 
the medium. It is assumed that the layer extends 
indefinitely in the x-y plane. A Lambertian rough surface, 
with a dielectric constant equal to that of water is 
assumed in the background. Sea spray is more 
complicated than the assumptions made in this analysis. 
Factors such as ligaments from which the droplets are 
torn, air bubbles and foam at the water-air interface are 
currently neglected in the backscatter calculations.  
 

II. THE BACKSCATTER CROSS SECTION 
 

The backscattered fields from the medium are 
calculated by using the analytical wave theory in 
conjunction with the distorted Born Approximation. 
Therefore, the approach is field based and provides more 
accuracy than power based approaches, such as the 
radiative transfer. The calculations are valid for a sparse 
medium; i.e. the fractional volume of the particles is less 
than the total volume of the medium. 

 

 
 

Fig. 1. Sea spray as a layer of discrete random medium. 
 
The Distorted Born Approximation (DBA) is used to 

calculate the backscattering from the layer of sea spray 
for both horizontal and vertical polarizations. The 
approach is similar to the standard Born approximation, 
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which is a single scatter approximation with the 
exception of two fundamental assumptions: i) mean field 
propagating inside the medium is incident on each 
particle. ii) the scattered fields due to the mean wave are 
computed using a Green’s function for the mean wave. 

The scattering from a discrete random medium when 
illuminated by an electromagnetic pulse has been studied 
before and applied to vegetation or a layer of rain, [2-4]. 
The assumptions require the solution for the mean field 
before the scattered fields can be calculated. The Foldy-
Lax technique [5] is used to determine an approximate 
expression for the mean field inside the medium. This 
approach assumes a sparse medium; i.e. the fractional 
volume of the scatterers is very small. The solution for 
the mean wave suggests that the medium can be 
characterized by an equivalent dielectric constant [6]. The 
DBA method allows the mean field to attenuate as it 
propagates inside the medium, as opposed to the Born 
Approximation, where the mean field is assumed to be 
identical to the incident field. As a first step, an 
equivalent propagation constant in the medium is 
determined based on the statistical properties and 
scatterer types in the medium. This equivalent 
propagation constant defines an equivalent medium that 
accounts for attenuation as the fields propagate inside. 
The particles are then embedded inside this equivalent 
medium for scattering calculations. An application of this 
approach to vegetation can be found in [7], where all 
particles inside the medium are assumed identical, and a 
2-dimensional problem is studied. 

The backscattering coefficient from the medium is 
given by, 
 

{ } { }
24

, , , ,
rp

pq s s i i
iq

r P
p h v q h v

AP

π
σ = ∈ ∈     (1) 

                         

where iq
P is the power of the incident plane wave with 

polarization, q̂  and 
rp

P is the average received power 

of the p̂  polarized scattered wave, A is the illuminated 
area on the surface, r is the distance of the radar to this 
area. The far field is assumed in the calculations; i.e. ko r 
>> 1. 

The backscattered term for a first order 
approximation is the sum of three distinct contributions 
referred to as: direct, direct-reflected, and reflected terms.  

 
o o o o
pq pq pq pqd dr r

σ σ σ σ= + + .               (2) 

 
The direct term involves volume scattering; i.e., that 

portion of the backscattered power directly from the 
particles illuminated.  

The direct-reflected term involves a particle and a 
single bounce from the background before the incident 
wave is scattered back to the radar. It consists of four 
components due to the coupling of two possible fields 
that can arrive back through a single reflection from the 
ground. The first field directly illuminates the particle and 
is scattered toward the ground and reaches back through a 
reflection from the ground. The second field illuminates 
the particle after being reflected from the ground and is 
scattered directly back. Both of these fields are in phase 
and can couple with each other in four different ways in 
the power calculations. This is an advantage of using a 
field based approach used in this model, as power based 
approaches would neglect this coupling effect.  

The reflected term arrives back after a double bounce 
from the background. Figure 2 depicts the different 
characteristics of these components. The expressions for 
these terms are given as follows, 
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In the expressions above, the total number of 
different spheres inside the medium is denoted by Ntype, 
and j is an index over the different types.  The density of 

type j in the medium is denoted by ( )jρ . The scattering 
amplitudes for a q-polarized incident wave that is 
scattered back with p-polarization are denoted by 

ˆˆ( , )pqf o i , where the first unit vector in the argument ( ô ) 

refers to the outgoing (i.e. scattered) field direction and 
the second unit vector ( î ) corresponds to the incoming 
(or incident) field direction for a particle. The 
superscripts + and – over the unit vectors describe the 
direction of the vector along the z-axis, i.e. the axis 
normal to the medium boundary. Thus, i − indicates 
incidence along a downward direction (i.e., with a 
negative component along the z-axis), and corresponds to 
the direction of the incident mean wave. The mean wave 
can also be incident on a particle after a reflection from 
the background, and i +  refers to that direction, which is 
upward (i.e. with a positive component along the z-axis). 
Similarly i −−  and i +−  correspond to direction of the 
scattered fields from the particle for the backscatter case. 
Figure 3 depicts these vectors. 

 

 

 
 
Fig. 2. Backscattering components. 

 
The effective propagation constant inside the medium 

for different polarization states is represented by 

pκ and qκ , where p and q denote polarization states for 

the scattered and incident fields, respectively. Both 

pκ and qκ  are functions of the equivalent medium 

characteristics. For an azimuthally symmetric medium, 
given cos( )z o ok k θ= , the expressions can be written as, 

 

 
 

Fig. 3. Unit vector definitions. 
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 III. MODEL RESULTS 

 
Modeling the electromagnetic interactions with sea 

spray requires knowledge on the characteristics of the 
droplets. Many approaches for generating a spray 
generation function exist in literature, [8-10]. The sea 
spray generation function, commonly denoted as dF/dr0, 
[9] where r0 is the radius of a droplet at its formation, has 
units of number of droplets produced per square meter of 
surface per second per micrometer increment in droplet 
radius.  

There is not a real consensus on how to model this 
function, which can be affected by various external 
parameters such as the wind speed, liquid surface tension, 
etc. However, a noticeable feature observed of natural 
sprays is that the droplet size distribution is very broad, 
and demonstrates a skewed distribution, [11] [12]. A 
comprehensive discussion on the formation of the 
droplets is given in [13], and demonstrations of the 
breakup regimes of liquid jets from ligaments when 
subjected to flowing gas are provided. The droplet 
distribution studied in this paper is based on [13] where 
the pdf for droplet sizes is calculated based on the pdf of 
ligaments of different lengths. This results in an 
exponential function as follows, 
 

/ 0( ) nd dp d e−=                             (7) 
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where d is the droplet diameter in millimeters, <d0> is the 
average ligament size, and the parameter n is 
approximately given as 3.5n ≈ . The distribution 
function is normalized in the calculations such that the 
integral over the possible sizes is one. Therefore equation 
(7) is modified as follows, 
 

/ 0

0
( ) nd dnf d e

d
− < >= .                    (8) 

 
IV.  SIMULATION PARAMETERS AND TEST 

CASES 
 

Simulations for backscattering are based on a 1 m3 
water amount distributed in a medium with 2.5 m height. 
The possible droplet sizes in the medium are discretized 
to four values; i.e., d = [0.05, 0.25, 0.50, 1.00] mm, as 
shown in Fig. 4 where the solid line describes the pdf in 
equation (8), and the square markers denote the sampled 
sizes for the simulations.  
 

 
 
Fig. 4. Droplet size distribution in the simulation based 
on spray probability density function. 

 
Three different test cases were run using the spray 

model. Each test case has different scatterer 
characteristics. The first case represents the 1m3 water 
using the four types of spheres as identified in Fig. 4. The 
second case generates the same amount of water by using 
only the smallest size droplets; i.e., diameter is 0.025 mm. 
The third case generates the same amount of water by 
using only the largest size droplets, i.e. diameter is 1.00 
mm. The total number for each droplet size for the three 
cases is then computed such that they add up to the total 
volume of water; i.e., 1m3, in the medium. A Lambertian 
rough surface is assumed in the background.  

The scattering calculations from the spheres are 
based on expressions in [14], which provide 
approximations to Mie Theory for different values of koa. 

A plane wave at 30 GHz is assumed to be incident on the 
medium, along a 60 degree incidence angle with respect 
to the z-axis. Only hh-polarization is presented in the 
table, as the results for vv-polarization is identical due to 
the assumption of perfect spheres for the droplets. There 
is no cross-polarized component for the same reason. 
Only the direct and direct-reflected components are 
calculated for the total return as the reflected term is 
expected to be smaller than these terms due to the double 
bounce from the background and longer path traveled 
inside the medium. The total backscattering cross-section 
and its different components from the medium are shown 
in the table in Fig. 5 for the three test cases. 

  

 
 
Fig. 5. Backscattering cross-section from the medium for 
different cases - contribution from different terms. The 
total water content is 1m3 for all cases. 
 
It is observed from the simulation results that: 
(1) In case 1, strongest contribution to backscatter is from 

the larger size droplets for the direct term. The dir-ref 
term is much weaker, as the attenuation is very high 
(108 db) for this case. Therefore, the total 
backscattering for this case is due to the direct 
backscatter from largest particles. 

(2) In case 2, the total backscattering is significantly 
lower than case 1, although the attenuation is 
negligible for this case. The smaller particles do not 
have a high return, although the amount of water is 
exactly the same as in case 1. The direct-reflected 
term is comparable to the direct term, but the sum of 
both direct and dir-ref is still lower than case 1. This is 
because the particle size is much smaller than the 
wavelength (λ = 10 mm and d = 0.05 mm), and there 
is not strong backscattering as the particles behave 
like point sources. 

(3) Case 3 results are almost identical to case 1, although 
case 3 has almost twice the number of spheres in case 
1. The reason for almost identical backscattering in 
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both cases although the particle density is doubled in 
Case 3 can be explained by the increased attenuation 
due to the doubling of the particle density inside the 
medium. The incident field penetrates less into the 
medium for the denser case, resulting in an effectively 
equal number of particles contributing to 
backscattering.  
 

V.  CLUSTER EFFECTS 
 
When the number of particles inside a medium 

increases, the particles are located much closer to each 
other. The simulation results for the test cases above do 
not consider such effects as single scattering is assumed 
in the calculations for scattered fields. As a matter of fact, 
increasing the number of spheres in the model further will 
not increase the backscatter response with this approach. 
However, multiple scattering or clustering effects 
becomes important under these circumstances, and can 
yield higher returns than the predictions based on single 
scattering.  

In order to investigate clustering effects, two cases 
with identical number and size of water droplets were run. 
The droplets were paired in one simulation and treated as 
a scatterer type. The other simulation treated the spheres 
separately using single scattering as before. For the test 
case with pairs, the scattering from the pair is calculated 
using HFSS, which is a full wave analysis tool that uses 
the finite element method. The full wave approach 
incorporates multiple scattering effects between the 
spheres in a pair. The bistatic scattering characteristics of 
the droplet pair as calculated by HFSS is shown in Fig. 6.  

The bistatic scattering result generated by HFSS is 
incorporated in the model, so that the droplet pair is 
treated as a scatterer in the medium. The equivalent 
propagation constant of the medium, the attenuation 
coefficient and the backscattering terms are computed 
using the HFSS generated results. All spheres were 
assumed to have diameters of 1 mm, and the pair test case 
assumed a center to center separation of 1.2 mm between 
the droplets.  The results of the two cases are shown in 
Fig. 7. Case 3 corresponds to the single scattering case as 
before, and case 4 shows the effects of pairing the spheres 
in the medium. Although we have identical particles and 
particle densities in both cases, accounting for the close 
proximity of particles, i.e., cluster effects, enhances the 
backscatter by almost 4 dB. Two factors contribute to this 
enhancement effect: (i) the backscattering is more than 
double for pairs versus single sphere. (ii) The attenuation 
in the medium is a function of the imaginary part of 
forward scattering amplitude. HFSS results suggest that 
there is only 25% increase in the imaginary part of the 
forward scattering amplitude for a pair of spheres versus 
a single sphere. Therefore, the medium with droplet pairs 
have less attenuation compares to the medium with single 
spheres. 

 

 
 
Fig. 6. Bistatic scattering characteristics of the droplet 
pair - HFSS simulation, 1.2 mm separation between 
centers of droplets, diameter = 1mm. 

 

 
 

Fig. 7. Comparison of clustering effects for identical 
medium, pair versus single droplet. 

 
VI. CONCLUSIONS 

 
The interaction of electromagnetic waves with sea 

spray is a complex phenomenon. Particle size, shape, 
density and distribution in the medium all play a 
significant role in modeling these interactions. 
Furthermore, numerous environmental factors, such as 
the sea state, wind, and man made influences affect the 
characteristics of such medium. A statistical 
electromagnetic model is developed to model this 
phenomenon as a discrete random medium using single 
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scattering approach and distorted Born approximation. 
The water droplets are modeled as perfectly conducting 
spheres. This assumption simplifies the calculations and 
provides a first order estimate in understanding the 
characteristics of backscattering from sea spray. Effects 
of ligaments which are elongated water particles from 
which droplets are torn are neglected in the current 
model. The presence of foam and air bubbles at the 
interface between air and sea are not included either.  

Calculations based on this model demonstrate that 
the particle size and density determine the attenuation 
levels in the medium. For a low albedo; i.e., lossy, 
medium the most significant contribution to 
backscattering is due to volume scattering; i.e., direct 
term. The strength of the direct-reflected contribution 
depends on the attenuation levels in the medium, and can 
be comparable to volume scattering for lossless media. It 
is also shown that the close proximity of particles can 
have a significant effect in terms of backscattering and 
attenuation. This effect was demonstrated by comparing 
two cases with identical particle size and density. This 
implies that cluster effects (i.e., groups of two or more 
droplets) should be investigated to avoid underestimation 
of backscattering. 
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Abstract – General purpose computation on graphics 
processing units (GPGPU) is introduced through the 
application of modern interfaces that abstract graphics 
hardware. In order to provide an example of these 
techniques, implementation of an iterative matrix solving 
algorithm is detailed using two interfaces – Stanford's 
BrookGPU and Accelerator from Microsoft Research. 
Performance of the Accelerator implementation is then 
analyzed. 
 
Keywords: Graphics processing unit, GPGPU, and 
parallel computing. 
 

I. BACKGROUND 
 
 Graphics processing units (GPUs) utilize a parallel 
pipeline architecture to render graphics onto a 2D screen. 
A traditional GPU consists of vertex processors, a 
rasterizer, and pixel processors, as shown in Fig. 1. The 
vertex processor handles operations such as geometric 
transformations and per-vertex lighting. The rasterizer 
converts the vertex data to a 2D array of pixels, and the 
pixel processors perform texturing and per-pixel lighting 
operations. Early GPUs employed fixed function 
pipelines, in which the vertex and pixel processors 
performed a set of predefined operations. Later GPUs, 
however, incorporated programmable pipelines, in which 
programs called shaders can be passed to the vertex and 
pixel processors. For general purpose applications, most 
computations are performed within pixel shaders. 
 The programmable pipelines incorporate many 
parallel processors that function according to a single 
instruction, multiple data programming scheme. A pixel 
operation, for example, can be applied independently to 
every pixel in a scene. This data-parallel processing 
capability is the primary draw to general purpose 
utilization. In addition to parallel processing, graphics 
hardware also provides a number of useful built-in data 
types and operations. Because the hardware is optimized 
to operate on 3D graphics and lighting, data types include 
multicomponent floating point vectors, and instruction 
sets contain useful operations such as dot products. 

 In the latest generation of graphics hardware, both 
vertex and pixel operations are carried out on processors 
called unified shaders or simply referred to by their 
function – stream processors. This architecture results in 
a more traditional parallel computing environment in 
which data can be spread over a number of identical 
processors. The current generation NVidia 8800GT used 
in this research contains 112 stream processors, with a 
peak performance of over 500 GFLOPS, and a cost of 
less than $250. 
 

 
 

Fig. 1. Traditional GPU architecture. 
 
 Processing general purpose data on a GPU, however, 
has required a creative approach since the hardware is 
specialized for graphics use. In order for data arrays to be 
processed within a GPU, they must be stored as textures 
in graphics memory. In addition, the shader must be 
explicitly loaded into the GPU memory. By rendering a 
quadrilateral, data values and pixels can be mapped to 
one another, and the shader operates on the texture 
values. The rendering phase may be iterated as necessary, 
redirecting the shader output as an input texture. The final 
output may then be read from graphics memory. 
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II. GPU PROGRAMMING 
 
 Until recently, programming graphics hardware 
required the knowledge of a shader language. These are 
languages that can be compiled to run on pixel and vertex 
processors, such as the OpenGL Shading Language 
(GLSL), Microsoft's High Level Shader Language 
(HLSL), and NVidia's C for graphics (Cg). GLSL is a 
cross platform shading language, due to its OpenGL 
heritage. HLSL is used within the Windows operating 
system, as it links to DirectX. Cg, however, is unique in 
that it can target either OpenGL or DirectX as a compiler 
option. These languages are common in graphics 
programming, and they require extensive knowledge 
about the graphics processes as described in the previous 
section as well as the selected graphics interface – 
OpenGL or DirectX. While these languages are a great 
improvement over hardware-specific assembly language, 
a higher level of graphics hardware abstraction is 
necessary for general purpose computation. 
 The ability to perform general purpose computations 
on graphics hardware without extensive background in 
graphics programming is now possible due to the 
abstraction provided by modern interfaces including 
Brook for GPUs (BrookGPU) from Stanford University 
and Accelerator from Microsoft Research. BrookGPU 
and Accelerator extend C and Microsoft C Sharp (C#) 
respectively with new syntax and data types allowing 
data to be transferred to and from the GPU and shaders to 
be loaded and configured as necessary without 
complication. An example program will be shown for 
both, and a brief performance analysis will be conducted 
on the Accelerator program. 
 

III. JACOBI ALGORITHM 
 
 The Jacobi iterative matrix solving algorithm has 
been written for both the CPU and GPU as a 
demonstration. The algorithm computes u  from 
M u f  = , and can be explored by solving for u1. 
 

11 1 12 2 1N N 1M u M u M u f+ + + = , 
 

1 12 2 1N N
1

11

f M u M u
u

M
− − −

= . 

 
Let D  be a diagonal matrix that holds only the main 
diagonal of M . The above expression may be written as, 
 

1 11 11 1 1N 1N N
1

11

( ) ( )f M D u M D u
u

D
− − − − −

= . 

 
The RHS of this equation can be used to update the LHS 

value, which results in the following iterative matrix 
equation. 
 

1 1 1( )n nu D f D M D u+ − −= − −  
 
 M ′  can be defined as M D−  for simplicity, and the 
elements of D  can be stored in the vector d . This 
allows the following expression, in which “÷” represents 
an element-by-element division. 
 

1 ( )n nu f M u d+ ′= −  ÷  
 
 The procedure is performed by a matrix-vector 
multiplication, followed by an element-by-element vector 
subtraction, and then an element-by-element vector 
division. The equation is successively evaluated for 1nu + , 
and at the end of each iteration, the components of u  are 
updated simultaneously [1]. 
 The advantage of Jacobi iteration in this 
demonstration is that the evaluation of u  components 
can be performed independently, in parallel between 
updates. The algorithm may be summarized in the 
flowchart shown in Fig. 2. 
 

 
 
Fig. 2. Iterative algorithm. 
 
 In this research, the CPU and GPU Jacobi solvers are 
applied to a matrix generated by a finite element 
program. Other numerical methods may utilize a 
completely different approach. In a finite difference 
analysis, for example, the only elements contributing to 
the value of an unknown are its neighbors, so the 
algorithm only examines a point's neighbors to update its 
value, rather than an entire matrix row. A performance 
increase has been demonstrated in finite difference time 
domain by applying GPU programming in this way [2]. 
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IV. BROOKGPU 
 
 BrookGPU was developed at Stanford University as 
an offshoot of the Brook stream processing language, 
created for the Merrimac streaming supercomputer. 
Brook extends C with the concepts of streams and 
kernels. A stream is similar in concept to an array, and 
can contain float values as well as the multicomponent 
vector types – float2, float3, and float4 as shown in Fig. 
3. Data may be passed from an array to a stream using the 
streamRead operator and vice-versa using streamWrite. 
Other than these operators, streams may only be accessed 
in functions called kernels. Within a kernel, stream 
operations are performed in parallel, and the concept of 
stream shape must be considered to ensure proper 
operation [3]. As an example, the following program 
segment contains the Jacobi iteration using BrookGPU. 
 The first step in writing a BrookGPU program is to 
define and initialize the stream. Data arrays declared 
outside the provided program segment are read into the 
streams using the StreamRead function. For clarity, all 
streams use unmodified names, while arrays used by the 
CPU are given a suffix – i.e. d is a GPU stream while 
d_array is stored in system memory. The Jacobi 
algorithm is divided into four kernels within the main for 
loop. First a multiplication is performed in which each 
row of matrix M is multiplied element-by-element with 
the row vector u. The resulting temp matrix is sent to a 
reduction kernel, in which its rows are summed yielding a 
column vector. This vector represents the matrix-vector 
product, which is then transposed to a row vector. The 
statement indexof row.yx returns an index of the current 
row element with x and y switched, such that row[x,y] = 
column[y,x]. The final kernel updates by evaluating the 
statement of row vectors element-by-element. After the 
iterations are complete, the computed value of u is 
written back to a standard array from the GPU. 
 A BrookGPU source file containing streams and 
kernels must be converted to C and shader code using the 
brcc compiler. After C compilation, program execution 
calls upon the Brook Runtime, which controls 
implementation of the kernels on the GPU. Compiler 
switches applied to brcc allow conversion to Cg or HLSL 
and optimizations for ATI and nVidia hardware. The last 
official release of BrookGPU is v0.4, released October 
15, 2004, so development using modern hardware and 
drivers may not be efficient. The Jacobi program 
produced oddly scaled results until graphics drivers were 
updated. Even after the driver update, however, the 
scaling problems would return for all but impractically 
small matrix sizes. For this reason, a performance 
evaluation will not be conducted on the BrookGPU 
Jacobi implementation. At the time of writing, a long 
awaited update (billed as the v0.5 “test release”) has been 
made available for download, but has not been tested in 
this project. 

Main Program Segments: 
 

// DEFINE STREAMS 
float d<1,n>; //row 
float f<1,n>; //row 
float u<1,n>; //row 
float columnProduct<n,1>; //column 
float rowProduct<1,n>; //row 
float M<n,n>; //matrix 
float temp<n,n>; //matrix 
 
// INITIALIZE STREAMS 
streamRead( d, d_array ); //diagonal 
streamRead( f, f_array ); //forcing vector 
streamRead( M, M_array ); //matrix M 
streamRead( u, u_array ); //initial approx. 
  
// RUN JACOBI ITERATIONS 
for( i=0; i<iterations; i++ ) 
{ 
 mul( M, u, temp ); 
 sum( temp, columnSum ); 
 transpose( columnProduct, rowProduct ); 
 update( d, f, rowProduct, u ); 
} 
 
streamWrite( u, u_array ); //output u 
 
Kernels: 
 

kernel void mul( float a<>, float b<>, out float c<> )  
 c = a * b; 
 
reduce void sum(  float a<>, reduce float r<> )  
 r += a; 
 
kernel void transpose(float column[][], out float 
row<>)  
 row=column[ indexof  row.yx ];  
 
kernel void update( float diagonal<>, float forcing<>,  
                                 float product<>, out float new<> )  
 new = ( forcing – product ) / diagonal; 

 
Fig. 3. Sample from BrookGPU Jacobi program. 
 
 

V. ACCELERATOR 
 
 Accelerator was produced by Microsoft Research, 
and is designed to abstract hardware such as GPUs and 
cell processors. The current implementation provides 
abstraction for GPGPU programming on C#, and 
correspondence with a developer on the project suggests 
that a native C++ version may eventually be released. 
Accelerator provides a ParallelArray class that contains 
all necessary functions – I/O, element operations, 
reductions, transformations, and linear algebra. Linear 
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algebra routines include vector and matrix 
multiplications. The ParallelArray class also contains 
several subclasses such as IntParallelArray and 
Float4ParallelArray which define data types for single 
and multicomponent parallel data. Unlike BrookGPU, the 
shaders are not explicitly separated in the form of kernels. 
Instead, pixel shaders are created from the Accelerator 
operations automatically. This does not allow as much 
control over the underlying shaders, but it allows them to 
be created and optimized by the compiler at runtime [4]. 

In the Accelerator program of Fig. 4, the GPU must 
be initialized before additional calls to the ParallelArray 
class, which has been shortened to PA for simplicity. 
Four arrays are read into disposable float parallel arrays, 
which must be disposed at the end of the program. The 
Jacobi iteration is straightforward: the matrix-vector 
product is performed using the InnerProduct function of 
the ParallelArray class, and the new value of u is 
calculated as in the BrookGPU program. An additional 
step is required for memory management. Every time 
PA.Evaluate() is called, a new array is allocated on the 
GPU. The old array is explicitly disposed with each 
iteration in order to free memory. At the completion of 
the iterations, the ToArray function is used to recover the 
computed value of u, and all other memory allocated on 
the GPU is freed.  
 
 
// INIT & UPLOAD TO GPU 
PA.InitGPU(); 
DFPA d = new DFPA( d_array ); 
DFPA f = new DFPA( f_array ); 
DFPA M = new DFPA( M_array ); 
DFPA  u = new DFPA( u_array ); 
DFPA uNew = null; 
 
// BEGIN JACOBI ITERATIONS 
for( i=0; i<iterations; i++ ) 
{ 
 // MULTIPLY MATRIX BY u 
 FPA product = PA.InnerProduct( M, u ); 
 // UPDATE u 
 uNew = PA.Evaluate( ( f - product ) / d ); 
 u.Dispose(); 
 u = uNew; 
} 
 
// DOWNLOAD RESULT FROM GPU & CLEAN UP 
PA.ToArray( u, out u_array ); 
d.Dispose(); 
f.Dispose(); 
M.Dispose(); 
uNew.Dispose(); 
PA.UnInit(); 
 
Fig. 4. Sample from MSR Accelerator  Jacobi program. 
 

Programming with accelerator requires Microsoft 
Visual Studio or Visual C# Express (available for 
download) and naturally targets the DirectX graphics 
interface. No additional steps are required in the 
compilation process other than including the 
accelerator.dll file within the project. A disadvantage, 
however, is that Accelerator ties to DirectX through the 
.NET framework requiring a Microsoft language such as 
C#. Interfacing existing programs to Accelerator involves 
use of the .NET framework, or by writing to a data file 
that can be imported by an Accelerator program. The 
current version of Accelerator – available from 
research.microsoft.com – is v1.1, last updated July 9, 
2007. 
 

VI. ELECTROSTATIC EXAMPLE 
 

As a practical example of electromagnetics 
computations on GPUs, a simple electrostatic problem 
domain is studied. Consider a rectangular cross-section. 
The sides and bottom of this domain are maintained at 
ground potential, while the top is excited with the 
positive half-cycle of a unit-sinusoidal potential source. 
The cross-section is discretized by a triangular mesh [5], 
and a nodal finite element analysis is performed. 

Although the Jacobi program is a proof-of-concept 
rather than an optimized solver, it has been successfully 
applied to the matrix equation resulting from the finite 
element analysis. For the finer mesh of Fig. 5, the RMS 
error present between the computed and theoretical 
potentials is 0.0075. The error between the computed 
CPU and GPU results is negligible, suggesting no 
significant loss of precision between the two architectures 
in this case. 
 

VII. PERFORMANCE ANALYSIS 
 
 Performance of the GPU (using Accelerator) and 
CPU Jacobi algorithm implementations was examined. 
Various mesh densities provided differing numbers of 
unknowns in order to compute speed factors for varying 
matrix sizes. The speed factor for this application is 
defined as the ratio of CPU to GPU processing time. 
Sufficient parallel computation must be performed in 
order to overcome the communication and setup penalties 
of the GPU. 

For consistency, the initial approximation is set to 
0.5 for each unknown. While no test for convergence is 
employed in the current version of the program, the 
number of iterations chosen to be ten times the number of 
unknowns for each mesh in order to assure convergence 
without an explicit test. For trials of less than 500 
unknowns, the communication and set up time required 
by the GPU outweighs any performance increase, which 
can be noticed from the data presented in Figs. 6 and 7. 
The speed factor increases to 21.1 for the case of 4000 
unknowns, beyond which the CPU runs were not feasible 
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on the test machine. 

 

 
Fig. 5. Electrostatic potential in rectangular tube using 
different meshes. 
 

 
Fig. 6. Processing time for Jacobi iterations. NVidia 
8800GT GPU, 2.2GHz Athlon 64 CPU. 

 
Fig. 7. Speed factor (CPU time / GPU time). NVidia 
8800GT GPU, 2.2GHz Athlon 64 CPU. 

Figure 8 illustrates the performance increase by 
generation of graphics technology using a benchmark of 
2000 unknowns. The devices used in this graph spanned 
from a GPU produced in October 2002 (earliest 
technology compatible with Accelerator) to a current 
generation one. All other GPU results were produced 
using an NVidia 8800GT, while CPU results were 
produced using a single core of a 2.2GHz AMD Athlon 
64 processor. 
 

 
Fig. 8. Accelerator benchmark. 
 

VIII. CONCLUSIONS 
 
 General purpose computation on graphics processing 
units is now available to scientific and engineering 
programmers through the rise of high level interfaces 
such as BrookGPU and Accelerator. Through the 
implementation of the Jacobi algorithm, both BrookGPU 
and Accelerator syntax and programming issues have 
been discussed. Performance analysis of the Accelerator 
program has provided insight on the current power and 
continuing performance increases available through the 
use of GPUs. 
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