
Abstraction of Graphics Hardware Through The Use of Modern
Interfaces to Increase Performance of Linear Algebra Routines

M. Woolsey, W. E. Hutchcraft, and R. K. Gordon

Department of Electrical Engineering
University of Mississippi, University, MS 38677, USA

muwoolse@olemiss.edu, eeweh@olemiss.edu, eegordon@olemiss.edu

Abstract – General purpose computation on graphics
processing units (GPGPU) is introduced through the
application of modern interfaces that abstract graphics
hardware. In order to provide an example of these
techniques, implementation of an iterative matrix solving
algorithm is detailed using two interfaces – Stanford's
BrookGPU and Accelerator from Microsoft Research.
Performance of the Accelerator implementation is then
analyzed.

Keywords: Graphics processing unit, GPGPU, and
parallel computing.

I. BACKGROUND

 Graphics processing units (GPUs) utilize a parallel
pipeline architecture to render graphics onto a 2D screen.
A traditional GPU consists of vertex processors, a
rasterizer, and pixel processors, as shown in Fig. 1. The
vertex processor handles operations such as geometric
transformations and per-vertex lighting. The rasterizer
converts the vertex data to a 2D array of pixels, and the
pixel processors perform texturing and per-pixel lighting
operations. Early GPUs employed fixed function
pipelines, in which the vertex and pixel processors
performed a set of predefined operations. Later GPUs,
however, incorporated programmable pipelines, in which
programs called shaders can be passed to the vertex and
pixel processors. For general purpose applications, most
computations are performed within pixel shaders.
 The programmable pipelines incorporate many
parallel processors that function according to a single
instruction, multiple data programming scheme. A pixel
operation, for example, can be applied independently to
every pixel in a scene. This data-parallel processing
capability is the primary draw to general purpose
utilization. In addition to parallel processing, graphics
hardware also provides a number of useful built-in data
types and operations. Because the hardware is optimized
to operate on 3D graphics and lighting, data types include
multicomponent floating point vectors, and instruction
sets contain useful operations such as dot products.

 In the latest generation of graphics hardware, both
vertex and pixel operations are carried out on processors
called unified shaders or simply referred to by their
function – stream processors. This architecture results in
a more traditional parallel computing environment in
which data can be spread over a number of identical
processors. The current generation NVidia 8800GT used
in this research contains 112 stream processors, with a
peak performance of over 500 GFLOPS, and a cost of
less than $250.

Fig. 1. Traditional GPU architecture.

 Processing general purpose data on a GPU, however,
has required a creative approach since the hardware is
specialized for graphics use. In order for data arrays to be
processed within a GPU, they must be stored as textures
in graphics memory. In addition, the shader must be
explicitly loaded into the GPU memory. By rendering a
quadrilateral, data values and pixels can be mapped to
one another, and the shader operates on the texture
values. The rendering phase may be iterated as necessary,
redirecting the shader output as an input texture. The final
output may then be read from graphics memory.

292

1054-4887 © 2008 ACES

ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008

II. GPU PROGRAMMING

 Until recently, programming graphics hardware
required the knowledge of a shader language. These are
languages that can be compiled to run on pixel and vertex
processors, such as the OpenGL Shading Language
(GLSL), Microsoft's High Level Shader Language
(HLSL), and NVidia's C for graphics (Cg). GLSL is a
cross platform shading language, due to its OpenGL
heritage. HLSL is used within the Windows operating
system, as it links to DirectX. Cg, however, is unique in
that it can target either OpenGL or DirectX as a compiler
option. These languages are common in graphics
programming, and they require extensive knowledge
about the graphics processes as described in the previous
section as well as the selected graphics interface –
OpenGL or DirectX. While these languages are a great
improvement over hardware-specific assembly language,
a higher level of graphics hardware abstraction is
necessary for general purpose computation.
 The ability to perform general purpose computations
on graphics hardware without extensive background in
graphics programming is now possible due to the
abstraction provided by modern interfaces including
Brook for GPUs (BrookGPU) from Stanford University
and Accelerator from Microsoft Research. BrookGPU
and Accelerator extend C and Microsoft C Sharp (C#)
respectively with new syntax and data types allowing
data to be transferred to and from the GPU and shaders to
be loaded and configured as necessary without
complication. An example program will be shown for
both, and a brief performance analysis will be conducted
on the Accelerator program.

III. JACOBI ALGORITHM

 The Jacobi iterative matrix solving algorithm has
been written for both the CPU and GPU as a
demonstration. The algorithm computes u from
M u f = , and can be explored by solving for u1.

11 1 12 2 1N N 1M u M u M u f+ + + = ,

1 12 2 1N N
1

11

f M u M u
u

M
− − −

= .

Let D be a diagonal matrix that holds only the main
diagonal of M . The above expression may be written as,

1 11 11 1 1N 1N N
1

11

() ()f M D u M D u
u

D
− − − − −

= .

The RHS of this equation can be used to update the LHS

value, which results in the following iterative matrix
equation.

1 1 1()n nu D f D M D u+ − −= − −

 M ′ can be defined as M D− for simplicity, and the
elements of D can be stored in the vector d . This
allows the following expression, in which “÷” represents
an element-by-element division.

1 ()n nu f M u d+ ′= − ÷

 The procedure is performed by a matrix-vector
multiplication, followed by an element-by-element vector
subtraction, and then an element-by-element vector
division. The equation is successively evaluated for 1nu + ,
and at the end of each iteration, the components of u are
updated simultaneously [1].
 The advantage of Jacobi iteration in this
demonstration is that the evaluation of u components
can be performed independently, in parallel between
updates. The algorithm may be summarized in the
flowchart shown in Fig. 2.

Fig. 2. Iterative algorithm.

 In this research, the CPU and GPU Jacobi solvers are
applied to a matrix generated by a finite element
program. Other numerical methods may utilize a
completely different approach. In a finite difference
analysis, for example, the only elements contributing to
the value of an unknown are its neighbors, so the
algorithm only examines a point's neighbors to update its
value, rather than an entire matrix row. A performance
increase has been demonstrated in finite difference time
domain by applying GPU programming in this way [2].

293 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008

IV. BROOKGPU

 BrookGPU was developed at Stanford University as
an offshoot of the Brook stream processing language,
created for the Merrimac streaming supercomputer.
Brook extends C with the concepts of streams and
kernels. A stream is similar in concept to an array, and
can contain float values as well as the multicomponent
vector types – float2, float3, and float4 as shown in Fig.
3. Data may be passed from an array to a stream using the
streamRead operator and vice-versa using streamWrite.
Other than these operators, streams may only be accessed
in functions called kernels. Within a kernel, stream
operations are performed in parallel, and the concept of
stream shape must be considered to ensure proper
operation [3]. As an example, the following program
segment contains the Jacobi iteration using BrookGPU.
 The first step in writing a BrookGPU program is to
define and initialize the stream. Data arrays declared
outside the provided program segment are read into the
streams using the StreamRead function. For clarity, all
streams use unmodified names, while arrays used by the
CPU are given a suffix – i.e. d is a GPU stream while
d_array is stored in system memory. The Jacobi
algorithm is divided into four kernels within the main for
loop. First a multiplication is performed in which each
row of matrix M is multiplied element-by-element with
the row vector u. The resulting temp matrix is sent to a
reduction kernel, in which its rows are summed yielding a
column vector. This vector represents the matrix-vector
product, which is then transposed to a row vector. The
statement indexof row.yx returns an index of the current
row element with x and y switched, such that row[x,y] =
column[y,x]. The final kernel updates by evaluating the
statement of row vectors element-by-element. After the
iterations are complete, the computed value of u is
written back to a standard array from the GPU.
 A BrookGPU source file containing streams and
kernels must be converted to C and shader code using the
brcc compiler. After C compilation, program execution
calls upon the Brook Runtime, which controls
implementation of the kernels on the GPU. Compiler
switches applied to brcc allow conversion to Cg or HLSL
and optimizations for ATI and nVidia hardware. The last
official release of BrookGPU is v0.4, released October
15, 2004, so development using modern hardware and
drivers may not be efficient. The Jacobi program
produced oddly scaled results until graphics drivers were
updated. Even after the driver update, however, the
scaling problems would return for all but impractically
small matrix sizes. For this reason, a performance
evaluation will not be conducted on the BrookGPU
Jacobi implementation. At the time of writing, a long
awaited update (billed as the v0.5 “test release”) has been
made available for download, but has not been tested in
this project.

Main Program Segments:

// DEFINE STREAMS
float d<1,n>; //row
float f<1,n>; //row
float u<1,n>; //row
float columnProduct<n,1>; //column
float rowProduct<1,n>; //row
float M<n,n>; //matrix
float temp<n,n>; //matrix

// INITIALIZE STREAMS
streamRead(d, d_array); //diagonal
streamRead(f, f_array); //forcing vector
streamRead(M, M_array); //matrix M
streamRead(u, u_array); //initial approx.

// RUN JACOBI ITERATIONS
for(i=0; i<iterations; i++)
{
 mul(M, u, temp);
 sum(temp, columnSum);
 transpose(columnProduct, rowProduct);
 update(d, f, rowProduct, u);
}

streamWrite(u, u_array); //output u

Kernels:

kernel void mul(float a<>, float b<>, out float c<>)
 c = a * b;

reduce void sum(float a<>, reduce float r<>)
 r += a;

kernel void transpose(float column[][], out float
row<>)
 row=column[indexof row.yx];

kernel void update(float diagonal<>, float forcing<>,
 float product<>, out float new<>)
 new = (forcing – product) / diagonal;

Fig. 3. Sample from BrookGPU Jacobi program.

V. ACCELERATOR

 Accelerator was produced by Microsoft Research,
and is designed to abstract hardware such as GPUs and
cell processors. The current implementation provides
abstraction for GPGPU programming on C#, and
correspondence with a developer on the project suggests
that a native C++ version may eventually be released.
Accelerator provides a ParallelArray class that contains
all necessary functions – I/O, element operations,
reductions, transformations, and linear algebra. Linear

294WOOLSEY, HUTCHCRAFT, GORDON: ABSTRACTION OF GRAPHICS HARDWARE TO INCREASE PERFORMANCE OF LINEAR ALGEBRA

algebra routines include vector and matrix
multiplications. The ParallelArray class also contains
several subclasses such as IntParallelArray and
Float4ParallelArray which define data types for single
and multicomponent parallel data. Unlike BrookGPU, the
shaders are not explicitly separated in the form of kernels.
Instead, pixel shaders are created from the Accelerator
operations automatically. This does not allow as much
control over the underlying shaders, but it allows them to
be created and optimized by the compiler at runtime [4].

In the Accelerator program of Fig. 4, the GPU must
be initialized before additional calls to the ParallelArray
class, which has been shortened to PA for simplicity.
Four arrays are read into disposable float parallel arrays,
which must be disposed at the end of the program. The
Jacobi iteration is straightforward: the matrix-vector
product is performed using the InnerProduct function of
the ParallelArray class, and the new value of u is
calculated as in the BrookGPU program. An additional
step is required for memory management. Every time
PA.Evaluate() is called, a new array is allocated on the
GPU. The old array is explicitly disposed with each
iteration in order to free memory. At the completion of
the iterations, the ToArray function is used to recover the
computed value of u, and all other memory allocated on
the GPU is freed.

// INIT & UPLOAD TO GPU
PA.InitGPU();
DFPA d = new DFPA(d_array);
DFPA f = new DFPA(f_array);
DFPA M = new DFPA(M_array);
DFPA u = new DFPA(u_array);
DFPA uNew = null;

// BEGIN JACOBI ITERATIONS
for(i=0; i<iterations; i++)
{
 // MULTIPLY MATRIX BY u
 FPA product = PA.InnerProduct(M, u);
 // UPDATE u
 uNew = PA.Evaluate((f - product) / d);
 u.Dispose();
 u = uNew;
}

// DOWNLOAD RESULT FROM GPU & CLEAN UP
PA.ToArray(u, out u_array);
d.Dispose();
f.Dispose();
M.Dispose();
uNew.Dispose();
PA.UnInit();

Fig. 4. Sample from MSR Accelerator Jacobi program.

Programming with accelerator requires Microsoft
Visual Studio or Visual C# Express (available for
download) and naturally targets the DirectX graphics
interface. No additional steps are required in the
compilation process other than including the
accelerator.dll file within the project. A disadvantage,
however, is that Accelerator ties to DirectX through the
.NET framework requiring a Microsoft language such as
C#. Interfacing existing programs to Accelerator involves
use of the .NET framework, or by writing to a data file
that can be imported by an Accelerator program. The
current version of Accelerator – available from
research.microsoft.com – is v1.1, last updated July 9,
2007.

VI. ELECTROSTATIC EXAMPLE

As a practical example of electromagnetics
computations on GPUs, a simple electrostatic problem
domain is studied. Consider a rectangular cross-section.
The sides and bottom of this domain are maintained at
ground potential, while the top is excited with the
positive half-cycle of a unit-sinusoidal potential source.
The cross-section is discretized by a triangular mesh [5],
and a nodal finite element analysis is performed.

Although the Jacobi program is a proof-of-concept
rather than an optimized solver, it has been successfully
applied to the matrix equation resulting from the finite
element analysis. For the finer mesh of Fig. 5, the RMS
error present between the computed and theoretical
potentials is 0.0075. The error between the computed
CPU and GPU results is negligible, suggesting no
significant loss of precision between the two architectures
in this case.

VII. PERFORMANCE ANALYSIS

 Performance of the GPU (using Accelerator) and
CPU Jacobi algorithm implementations was examined.
Various mesh densities provided differing numbers of
unknowns in order to compute speed factors for varying
matrix sizes. The speed factor for this application is
defined as the ratio of CPU to GPU processing time.
Sufficient parallel computation must be performed in
order to overcome the communication and setup penalties
of the GPU.

For consistency, the initial approximation is set to
0.5 for each unknown. While no test for convergence is
employed in the current version of the program, the
number of iterations chosen to be ten times the number of
unknowns for each mesh in order to assure convergence
without an explicit test. For trials of less than 500
unknowns, the communication and set up time required
by the GPU outweighs any performance increase, which
can be noticed from the data presented in Figs. 6 and 7.
The speed factor increases to 21.1 for the case of 4000
unknowns, beyond which the CPU runs were not feasible

295 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008

on the test machine.

Fig. 5. Electrostatic potential in rectangular tube using
different meshes.

Fig. 6. Processing time for Jacobi iterations. NVidia
8800GT GPU, 2.2GHz Athlon 64 CPU.

Fig. 7. Speed factor (CPU time / GPU time). NVidia
8800GT GPU, 2.2GHz Athlon 64 CPU.

Figure 8 illustrates the performance increase by
generation of graphics technology using a benchmark of
2000 unknowns. The devices used in this graph spanned
from a GPU produced in October 2002 (earliest
technology compatible with Accelerator) to a current
generation one. All other GPU results were produced
using an NVidia 8800GT, while CPU results were
produced using a single core of a 2.2GHz AMD Athlon
64 processor.

Fig. 8. Accelerator benchmark.

VIII. CONCLUSIONS

 General purpose computation on graphics processing
units is now available to scientific and engineering
programmers through the rise of high level interfaces
such as BrookGPU and Accelerator. Through the
implementation of the Jacobi algorithm, both BrookGPU
and Accelerator syntax and programming issues have
been discussed. Performance analysis of the Accelerator
program has provided insight on the current power and
continuing performance increases available through the
use of GPUs.

REFERENCES

[1] E. Kreyszig, Advanced Engineering Mathematics, 8th

edition, John Wiley and Sons, New York, 1999.
[2] M. J. Inman and A. Z. Elsherbeni, “Programming

video cards for computational electromagnetics
applications,” IEEE Antennas and Propagation
Magazine, vol. 47, no. 6, December 2005.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K.
Fatahalian, M. Houston, and P. Hanrahan, “Brook for
GPU's: Stream computing on graphics hardware,”
Transactions on Graphics 23, August 2004.

[4] D. Tarditi; S. Puri, and J. Oglesby, “Accelerator:
using data parallelism to program GPU's for general-
purpose uses,” Proceedings of the 12th international
conference on Architectural support for
programming languages and operating systems
2006, San Jose, CA, USA, October 2006.

[5] J. R. Shewchuk, “Triangle: engineering a 2D quality

296WOOLSEY, HUTCHCRAFT, GORDON: ABSTRACTION OF GRAPHICS HARDWARE TO INCREASE PERFORMANCE OF LINEAR ALGEBRA

mesh generator and delaunay triangulator,” Applied
Computational Geometry: Towards Geometric
Engineering, vol. 1148 Lecture Notes in Computer
Science, pp. 203-222, Springer-Verlag, Berlin, May
1996.

Maxwell Woolsey was born in
Oxford, Mississippi on October 25,
1981. He earned his B.S. summa cum
laude in electrical engineering from the
University of Mississippi in 2005 and
is currently pursuing his M.S. degree in
electromagnetics also at the University
of Mississippi. His primary focus is the

application of FEM techniques to high-frequency
electromagnetics problems. Other related interests
include audio and microwave circuit design as well as
parallel computing.

W. Elliott Hutchcraft was born in
Lexington, Kentucky on April 29,
1973. He earned his B.S. in electrical
engineering at the University of
Mississippi, Oxford, MS in 1996, his
M.S. in electrical engineering at the
University of Mississippi, Oxford, MS
in 1998 and his Ph. D. in electrical

engineering at the University of Mississippi, Oxford, MS
in 2003. He is an Assistant Professor in the Department
of Electrical Engineering at the University of Mississippi
in Oxford, Mississippi. Dr. Hutchcraft is a member of Eta
Kappa Nu, Sigma Xi, IEEE, Tau Beta Pi, Phi Kappa Phi,
and ARFTG.

Richard K. Gordon was born in
Birmingham, Alabama on November
26, 1959. He earned his B.S. in
physics at Birmingham Southern
College, Birmingham, AL in 1983, his
M.S. in mathematics at the University
of Illinois, Urbana, IL in 1986 and his
Ph. D. in electrical engineering at the

University of Illinois, Urbana, IL in 1990. He is an
Associate Professor in the Department of Electrical
Engineering at the University of Mississippi in Oxford,
Mississippi. Dr. Gordon is a member of Eta Kappa Nu,
Phi Beta Kappa, and Tau Beta Pi.

297 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008

