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Abstract − In this paper, the low-frequency instability of 
full-wave finite element methods (FEM) is investigated. 
The curl part of the FEM matrix is shown to be singular. 
The paper explains how low-frequency instabilities are 
related to this singularity. Based on this analysis, an LU 
recombination method is implemented in FEM to solve 
the low-frequency problem. This method, which has 
previously been applied to the method of moments 
(MOM), reduces the errors in the curl part of the matrix 
and enforces the correct gauge condition. Moreover, the 
method is restructured to work more efficiently for sparse 
finite element matrices. 
 

I. INTRODUCTION 
 

The finite element method [1] is well-suited for 
solving problems involving inhomogeneous arbitrarily-
shaped objects. Many researchers have observed that the 
“curl-curl” operation that is frequently employed when 
FEM is used to solve the vector Helmholtz equation can 
result in ill-conditioned matrices in some circumstances 
[2- 4].  

One situation that generates ill-conditioned matrices 
and unstable solutions is modeling performed at low 
frequencies. The examples presented in this paper 
illustrate this behavior. In [5], special penalty terms were 
introduced and potential formulations were used to deal 
with this problem. 

Most full-wave surface integral techniques also 
suffer from low frequency difficulties [6, 7]. The low 
frequency instabilities can be ascribed to the divergence 
operator applied to the unknown surface current density 
in the integral equation. Mathematically, these 
instabilities are related to the singular property of the 
scalar potential part of the impedance matrix. A method  
to circumvent this problem was recently proposed [8, 9]. 
This approach, called the LU recombination method, 
employs linear transformations of the moment matrices in 
order to isolate and eliminate non-physical solutions. 

In this paper, the low-frequency problem with finite 
element formulations is described in terms of the singular 
property of the curl part in the finite element matrix when 
using curl-conforming Nedelec-type basis functions. The 

LU recombination method is applied in order to isolate 
the singularity in the curl part of the finite element 
matrix. It is not necessary to introduce any penalty terms, 
or create new basis functions. The approach is further 
refined so that the new matrices after LU recombination 
are partially sparse. This reduces the computation cost 
and greatly improves the performance. Finally, a couple 
of examples are presented. 

 
II. FORMULATION 

 
From Maxwell’s equations, the vector Helmholtz 

equation in terms of the E field can be written as, 
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where Jint and Mint are impressed electric and magnetic 
sources; ω is the angular frequency; µ0 and ε0 are the free 
space permeability and permittivity; and µr and εr are the 
relative permeability and permittivity. 

After applying a weighting function w(r), the FEM 
weak form is [4, 10], 
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where S is the surface enclosing volume V. 

The unknown E field is expanded using curl-
conforming basis functions that are the same as the 
weighting functions, 
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where En are unknown coefficients. The surface integral 
on the right hand side of equation (2) is evaluated by 
using surface basis functions fn(r), which are related to 
wn(r) by, 
 

( ) ( )ˆ
n n= ×w r n f r . (4) 

 
Equation (2) is then discretized into a matrix equation, 
 

⋅ = ⋅ +A E B J S . (5) 
 

The right hand side represents the boundary 
condition and the source term. J is the equivalent current 
density on the surface. S is the source term. E is a vector 
containing the unknown coefficients in equation (3). The 
elements of A are, 
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Let 
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which is the right-most term in the right-hand side of 
equation (6). 

Let 
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which is the left-most term in the right-hand side of 
equation (6). Every element of A1 approaches zero at 
arbitrarily low frequencies. The following reasoning 
demonstrates that, because of the ∇ ×  operator, A2 is a 
singular matrix when using the popular lowest order curl-
conforming basis functions. The rank of the matrix is 
determined by the total number of internal nodes in the 
finite element mesh [11]. 

The basis function for a tetrahedron can be defined on 
each edge as [12], 
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Here i1 and i2 are the node indices of edge i, defined 

in Fig. 1. l is the length of the edge, e is the unit vector 
along the edge, and V is the volume of the tetrahedron. 

 
 

 
 

Fig. 1. The tetrahedral element and its edge-node 
relations. 

 
Consider the local elements, i.e., the elements 

evaluated within one tetrahedron. The curl of the basis 
function is a constant within the tetrahedron, 
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The local element in 2

eA is, 
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where the superscript e indicates local elements. Thus 
within one tetrahedron, the local matrix can be written as 
in equation (11), shown on the top of the next page. 

For the tetrahedron in Fig. 1, edges 4, 5, and 6 form a 
triangle, which means, 

 
l4+l5+l6=0. (12) 

 
Consequently, the first three rows in equation (11) are 

linearly dependent. 
 

1 

2 

3 

4 
edge i1 i2 

1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4
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Or more specifically, consider the normalized local 

matrix ( )2

NeA  whose elements are given by, 
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The first three rows of ( )2

NeA  are linearly dependent 

and are related by integers,  
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This relationship is similar to equation (11) in [9]. 

The linearly dependent rows correspond to the edges in 
the tetrahedron sharing a common node. After assembling 
the local matrices into a global matrix, the rows of the 
global matrix corresponding to edges sharing the same 
nodes are linearly dependent, resulting in a singular 
global A2. 

It is evident from equation (7) that the FEM matrix 
(A=A1+A2) will be unstable at low frequencies, since a 
matrix (A1) with elements approaching zero will be added 
to a singular matrix (A2). Due to limited computer 
precision, the elements of A1 can become buried in the 
round-off error and not even affect the values in the 
overall finite element matrix. However, the information 
in A1 incorporates the gauge condition for the electric 
field [5]. Without this information, the matrix equation 
(5) is ill-conditioned, resulting in significant errors in the 
solution. 

III. LU RECOMBINATION METHOD IN FEM 
 

Based on the above analysis, the low frequency 
problem in FEM is analogous to the low-frequency 
problem in the boundary element method [9]. 
Consequently, the LU recombination method developed 
for the boundary element method can be applied to the 
finite element method. LU recombination can be used to 
enforce the singular property of A2 and preserve the 
correct gauge condition in matrix A1. However, the 
original A2 is a sparse matrix. Applying LU 
recombination in the manner described in [9] would 
produce a new, dense A2 matrix. This would be highly 
undesirable in an FEM formulation. Therefore, an 
incomplete LU recombination technique that is suitable 
for sparse matrices was developed. In this approach, only 
part of A2 is modified and the resulting new matrix is still 
sparse. The sparseness of the new matrix depends on the 
number of inner nodes in the mesh. 

The method begins with the L-D-U decomposition of 
A2, shown in equation (15) at the bottom of this page, just 
as it does when applied to the boundary element method 
[9], 
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 The A2 matrix is partitioned so that the linearly 

independent rows (represented by the subscript ii) are 
grouped together and the dependent rows (subscript dd) 
are moved to the end. The LU recombination method will 
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modify the sub-matrices Ldi, D2di, D2id, and D2dd, while Lii 
and D2ii are left unchanged. Therefore, A2ii=Lii•D2ii is 
unchanged after constructing a new A2. There is no need 
to recalculate A2ii after the modifications on L and D2. To 
accomplish that, the L matrix is replaced by, 

 
0ii

di dd
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I
L

L I
,                           (16) 

  
where I is identity matrix. The new decomposition on A2 
is then written in equation (17), as shown at the bottom of 
this page. Thus during the LU recombination, the A2ii part 
remains the same. No additional elements or errors are 
introduced. 

The same decomposition in equation (17) is applied 
to A1. After LU recombination, the new A becomes 
equation (18) at the bottom of this page. Note that Ldi is 
already modified, as described in [9]. The correct 
information in A1 is preserved. But the new A matrix is 
still ill-conditioned at low frequencies since A1 is much 
smaller than A2. The imbalance can be alleviated by 
introducing a scaling step. The sub-matrices D1di, D1id, 
and D1dd are scaled so that they are comparable to A2ii. 
This step greatly improves the condition of the new A 
matrix. It is especially beneficial when iterative methods 
are used to solve the matrix equations. 

 
IV. NUMERICAL RESULTS 

 
Two sample structures were evaluated using a finite 

element modeling technique with and without LU 
recombination. The first example is the rectangular power 
bus structure shown in Fig. 2. The dimensions of the 
structure are 20 cm x 20 cm x 1 cm. The power and 
ground planes are modeled as perfect electric conductors 
(PECs). The four side walls of the board are modeled as 
perfect magnetic conductors (PMCs). The dielectric 
between the planes has a relative permittivity of 4.5. The 
board is excited by an ideal current source located in the 
dielectric, 6 cm from one edge and 7 cm from an adjacent 
edge. 

 

 
 

Fig. 2. A power bus example. 
 

The input impedance of the power bus was 
calculated, and the results obtained using different 
methods are shown in Fig. 3. The solid dots show the 
result obtained using the standard FEM formulation. This 

technique fails when the frequency is below 1 MHz. The 
lower frequency limit is determined by the number of 
significant figures used when manipulating the elements 
of the FEM matrix. The solid line indicates the result 
when the LU recombination method is incorporated into 
the FEM. This result is accurate even below a few Hz. 
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Fig. 3. The input impedance of the power bus. 
 
Also shown in Fig. 3 are the results calculated using 

a cavity model and Ansoft HFSS [13]. The cavity model 
is a mode-expansion method suitable for rectangular 
power bus geometries. It models the power bus as a TMz 
cavity and determines the input impedance by summing 
the contributions of all relevant resonant modes [14]. This 
method has no problem at low frequencies but it can be 
difficult to apply to complicated geometries. HFSS, 
which is a FEM modeling code, extrapolates from the 
high frequency results to obtain a low frequency 
approximation. In this case, the extrapolation was valid 
down to a few kHz. 
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The second example is a stripline structure consisting 
of a metal trace imbedded in a dielectric between two 
metal planes as shown in Fig. 4. The dimensions of the 
planes are 20 mm x 10 mm and they are 2 mm apart. The 
dielectric constant is 4.5. The trace has a width of 1 mm 
and a length of 10 mm. The trace is driven by a 0.1-A 
current source at one end, and is terminated by a 50-Ω 
resistor on the other end. In this example the top and 
bottom planes are modeled as PECs, and the equivalent 
current on the dielectric boundary is set to zero. Also 
shown in Fig. 4 is the top view of the FEM mesh. 

Figure 5 shows the magnitude of the input impedance 
calculated at the source port. The impedance should have 
a real value of 50 Ω at low frequencies. The regular FEM 
result exhibits significant errors below 1 MHz. In fact, 
there are observable instability problems at frequencies 
above 1 MHz. With the help of the LU recombination 
method, the error is corrected and the results are accurate 
down to a few Hz. 

 
 

 
 

Fig. 4. A microstrip example and the mesh. 
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Fig. 5. The input impedance of the stripline 

V. CONCLUSION 
 

The singular behavior of the discretized curl term in 
the vector Helmholtz equation causes low-frequency 
instabilities in full-wave FEM formulations. The LU 
recombination method can be applied to existing FEM 
codes to solve this problem. The LU recombination 
method uses linear transformations to minimize the 
influence of errors in the curl part of the matrix. Properly 
applied, it is possible to preserve the sparseness of the 
FEM matrix. 
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