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Highly Accurate Implementations of Methods for Handling 
Singularities on a Planar Patch 

 
1 M. M. Bibby and 2 A. F. Peterson  

 
1 Gullwings, 47 Whitney Tavern Rd., Weston, MA 02493 

e-mail: mbibby@gullwings.com 
2 Georgia Institute of Technology, Atlanta, GA 

e-mail: peterson@ece.gatech.edu 
 
 
Abstract − Three methods for evaluating integrals 
containing the Green’s function singularity are studied 
from the standpoint of numerical accuracy at levels 
required in high order calculations.   A significant source 
of potential error was found to be common to all 
methods.   Suggestions for improving the accuracy of all 
three are proposed. 
 
Keywords: Green’s function singularity, singularity 
extraction, Duffy transformation, arcsinh transformation, 
integral equation, method of moments, high order, and 
boundary element method. 
 
 

I.  INTRODUCTION 
 

In a recent paper [1], the authors developed an exact-
to-machine-precision method for the evaluation of the 
free-space Green’s function on a rectangular patch.   This 
result was then used to examine the singularity extraction 
and singularity cancellation methods as a function of the 
ratio of the sides of a rectangular patch, using the 
corresponding exact result for comparison.   It was found 
that the aspect ratio of the patch, and the triangles 
contained therein, had a significant effect on the accuracy 
associated with the schemes studied.   In order to 
overcome the accuracy problems identified, a number of 
remedies were proposed.   These remedies mainly 
involved using higher precision in the calculations, 
making them unattractive to potential users.   Since paper 
[1] was published, a paper by Khayat and Wilton 
introduced a new singularity cancellation method using 
an arcsinh transformation [2], possibly overcoming the 
drawbacks of the remedies just referred to.   Here we 
examine the arcsinh method in comparison to the two 
methods, already studied, and augment the conclusions of 
the previous paper.  In addition, we identify one of the 
principal causes of error in our implementation of the 
three methods. 

The objectives here are to: 1) examine the arcsinh 
method and compare it with the earlier results, 2) explain 
the cause of the inaccuracies found in all three methods 

and 3) test all three methods over the widest range of the 
aspect ratio of the patch that may be encountered in 
practice. 

The range of aspect ratios is determined by 
consideration of test point locations on a patch.   In 
practice, the domain of a patch is divided into four 
rectangular sub-patches each with a corner at the test 
point.  The location of the test point, and hence the aspect 
ratio of each sub-patch, is controlled by the quadrature 
rule employed to perform the required integrations.  As 
shown in [1], this can lead to a sub-patch aspect ratio up 
to 1:10-10. This observation determines the range of 
aspect ratios over which the tests are performed.   The 
ratio may seem extreme, but the primary motivation for 
this work is to obtain accuracy near the limit of machine 
precision, which is an important requirement in high 
order numerical solutions of integral equations. 

 
II.  REVIEW OF METHODS 

 
The integral to be evaluated has the form, 

I(x, y) = f ( ′x , ′y )
e− jkR

R
d ′x d ′y∫∫          (1) 

where f is usually a bounded, well-behaved function, k = 
2π /λ  where λ is the wavelength, and  R  is given by, 

             R = x − ′x( )2
+ y − ′y( )2

                   (2) 

The accurate evaluation of equation (1) is most 
difficult when the test point (x,y) is within or near the 
source cell over which the integral is performed, due to 
the O(1/R) behavior of the Green’s function, e-jkR/R. 

In the earlier paper [1], we examined the singularity 
extraction, SE, procedure and the Duffy transformation 
[3].   These methods are fully described in that paper.   A 
third approach for evaluating equation (1) is the arcsinh 
transformation proposed by Khayat and Wilton [2] which 
is described next.  For a rectangular domain 0 < x ' < a , 
0 < y ' < b  and the test point at x=y=0, the domain is 
divided into triangles along the line y’ = b/a x’. We 
introduce the change of variable indicated in equation (3) 
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in the first integral and the substitution of equation (4) in 
the second integral. This leads to equation (5) or, 
equivalently, (6).   The integrands in equation (6) are 
bounded and amenable to numerical quadrature. 

For a number of specific functions f, including 
f(x,y)=1, one of the integrals in each of the double 
integrals arising from the Duffy and the arcsinh 
approaches can be performed analytically. To ensure a 
fair comparison with the SE procedure, we do not take 
advantage of that step in the following, although in 
practice it would make sense to do so. 

 
III. METHODOLOGY 

 
The present study investigates the numerical 

accuracy obtained from the preceding methods, using 
single and double precision for some or all of the 
calculations, for the case f(x,y)=1. Many bounded 
functions could be used for f(x,y). The procedure used to 
determine the reference values requires that a function of 
the form  f(x,y)= xm ym, where   0 ≤ n,m , be used. 
However, a constant f(x,y) is considered sufficiently 
challenging.  The domain of integration is a patch that has 
one side of dimension  0.1λ  and the other of dimension 
10-n λ, where   1 ≤ n ≤ 11.  The test point is at one corner. 
As discussed in [1] it is instructive to examine a wide 
range of cell aspect ratios, and we consider K  ranging 
from 1:1 to 10-10 :1. This is particularly important when 
using high order basis functions and/or over-determined 
systems where many test points are present on the patch. 
As a baseline for comparison, a reference result for 
equation (1) was obtained using the approach of [1].  The 
reference was evaluated in Multi-Precision arithmetic [4] 
using an epsilon value of 10.0-400. The reference values 
are shown in Table 1 to double precision accuracy. 
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Table 1. Values for the value of the integral defined in 
equation (1) for the range of aspect ratios used in this 
study. 

 

Aspect 
Ratio Real Imaginary 

1 1.615721995380920E-01 -6.012599373499612E-02 

0.1 3.898233302555344E-02 -6.145640913466086E-03 

1.00E-02 6.201218961036034E-03 -6.146987225913048E-04 

1.00E-03 8.503815540084963E-04 -6.147000690637945E-05 

1.00E-04 1.080640082293225E-04 -6.147000825285354E-06 

1.00E-05 1.310898591857477E-05 -6.147000826631829E-07 

1.00E-06 1.541157101160280E-06 -6.147000826645292E-08 

1.00E-07 1.771415610459726E-07 -6.147000826645428E-09 

1.00E-08 2.001674119759131E-08 -6.147000826645429E-10 

1.00E-09 2.231932629058536E-09 -6.147000826645429E-11 

1.00E-10 2.462191138357940E-10 -6.147000826645429E-12 

 
The double integrals examined here were evaluated 

using the product of adaptive Gauss-Kronrod-Patterson 
quadrature rules [5], starting with 15 nodes and 
proceeding to 511 nodes if/when needed. The integration 
cycle was terminated when two consecutive values 
differed by less than 2ε  (where ε  is the operating 
precision). 

The different singularity-handling schemes were 
evaluated using the relative error. 

               Error = log10

I − Iref

Iref

 .                  (7) 

Here, I and Iref are the values of the relevant integral 
and the reference value, respectively, evaluated in the 
stated machine precision. The smallest error is limited by 
the precision of the compiler used for the calculations.   
Here those limits are -6.92360 and -15.6536 for single 
and double precision, respectively. 

The work reported here was conducted using 
Fortran90. The available compiler did not include the 
inverse hyperbolic functions. Consequently sinh-1(K) was 
initially calculated using the widely accepted definition 
[6, p178], 

 

            sinh−1 x( )= ln x + x2 +1( )  .             (8) 
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IV.  RESULTS 
 
When the above singularity removal methods are 

evaluated in the various machine precisions, for f(x,y)=1, 
the findings in Tables 2 and 3 are obtained (the relevant 
results for SE and Duffy from the earlier study are 
reported here for ease of comparison purposes). The 
results indicate that all methods degrade in accuracy as 
the cell aspect ratio increases. Tables 2 and 3 report error 
in the real part of the integral. For the imaginary part, 
both the SE and Duffy methods maintain accuracy over 
the entire range tested. On the other hand, the arcsinh 
method showed deterioration in the imaginary part that is 
similar to that observed in Tables 2 and 3 in the real part 
as the aspect ratio is decreased. 

 
Table 2. Relative error in the real part of equation (1) 
when using single precision. 
 

 Singularity Removal Method. 

Aspect Ratio SE Duffy Arcsinh 

1 -6.92369 -6.92369 -6.92369 

0.1 -6.41765 -6.92369 -6.92369 

1.00E-02 -5.94832 -6.92369 -6.04523 

1.00E-03 -5.07121 -6.92369 -5.57357 

1.00E-04 -3.90065 -4.09225 -4.95281 

1.00E-05 -2.42700 -2.08886 -4.01513 

1.00E-06 2.73E-03 -1.10230 -2.55098 

1.00E-07 2.37E-03 -0.70402 -1.99378 

1.00E-08 2.10E-03 -0.53765 -1.33035 

1.00E-09 1.89E-03 -0.43983 -1.37764 

1.00E-10 1.71E-03 -0.37390 -1.42028 

 
Table 3. Relative error in the real part of equation (1) 
when using double precision. 

 

 Singularity Removal Method. 

Aspect Ratio SE Duffy Arcsinh 

1 -15.6536 -15.6536 -15.6536 

0.1 -15.6536 -15.6536 -15.6536 

1.00E-02 -14.1219 -15.6536 -14.9000 

1.00E-03 -13.5385 -15.6536 -14.2413 

1.00E-04 -12.2983 -11.2123 -13.6050 

1.00E-05 -11.7914 -5.33437 -12.3036 

1.00E-06 -10.1758 -3.62397 -11.6391 

1.00E-07 -9.18065 -1.50125 -10.5242 

1.00E-08 -8.38368 -0.85638 -9.28591 

1.00E-09 -8.43096 -0.64213 -8.46256 

1.00E-10 -6.14382 -0.52264 -8.50283 

V.  DISCUSSION 
 

It was observed in [1] that the performance of the SE 
method can be improved to full precision if the extracted 
term is evaluated at the next higher precision level. It was 
also pointed out that the Duffy method could be similarly 
improved if the SE procedure was applied to the integrals 
involved in the Duffy procedure. This results in two 
bounded integrals and two extracted terms. For the 
improved Duffy method, the extracted term must also be 
evaluated in the next higher precision [1]. In this study, 
we also found that the arcsinh method can be improved 
by employing the next higher precision for the evaluation 
of the integration limit, sinh-1(K) using equation (8). 

A review of these remedies for the SE and improved 
Duffy methods revealed that the need for higher precision 
arose in connection with those extracted terms that have 
the same form as equation (8) for sinh-1(K), namely 
log K + K 2 + 1( ) [6, p. 420].   Further investigation, 

involving the use of three different commercial Fortran90 
compilers, revealed that there is significant 
rounding/truncation error in the evaluation of that 
function for small K .  (Compilers that provide an 
intrinsic function for sinh-1(K) worked correctly.)  As an 
alternative to the use of higher precision as recommended 
in [1], we employed the Newton-Raphson procedure [6, 
p. 355] to evaluate the function 

  
lo g K + K 2 + 1( ) by 

solving for x in, 
 
                 f = sinh x( )− K = 0  .                  (9) 
 
The Newton-Raphson procedure was terminated 

when two consecutive values differed by less than 2ε  
(where ε  is the operating precision).  A code fragment 
for the evaluation of sinh-1(K) is provided in Figure 1.  
When sinh-1(K) in the arcsinh formulation, and 
lo g K + K 2 + 1( ) in the SE and improved Duffy 

procedures, was evaluated using the Newton-Raphson 
approach, the results shown in Tables 4 and 5 were 
obtained. 

When the Newton-Raphson method is used to 
evaluate sinh-1(K), or lo g K + K 2 + 1( ), in the various 

methods, both the real and imaginary parts of equation 
(1) retain essentially full precision for all three 
approaches. 

The procedures necessary to maintain essentially full 
precision with the three different methods when 
integrating the Green’s function are summarized in Table 
6. 
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Table 4. Relative error in the real part of equation (1) 
when using single precision and the Newton-Raphson 
method. 

 

 Singularity Removal Method. 
Aspect 
Ratio SE Duffy 

 
Improved 

Duffy Arcsinh 

1 -6.92369 -6.92369 -6.92369 -6.92369 

0.1 -6.92369 -6.92369 -6.92369 -6.92369 

1.00E-02 -6.92369 -6.92369 -6.92369 -6.92369 

1.00E-03 -6.92369 -6.92369 -6.92369 -6.92369 

1.00E-04 -6.92369 -4.09225 -6.92369 -6.87076 

1.00E-05 -6.92369 -2.08886 -6.92369 -6.92369 

1.00E-06 -6.92369 -1.10230 -6.92369 -6.92369 

1.00E-07 -6.92369 -0.70402 -6.92369 -6.92369 

1.00E-08 -6.92369 -0.53765 -6.92369 -6.92369 

1.00E-09 -6.92369 -0.43983 -6.92369 -6.92369 

1.00E-10 -6.92369 -0.37390 -6.92369 -6.92369 

 
 

Table 5. Relative error in the real part of equation (1) 
when using double precision and the Newton-Raphson 
method. 

 

 Singularity Removal Method. 
Aspect 
Ratio SE Duffy 

 
Improved 

Duffy Arcsinh 

1 -15.6536 -15.6536 -15.6536 -15.6536 

0.1 -15.6536 -15.6536 -15.6536 -15.6536 

1.00E-02 -15.6536 -15.6536 -15.6536 -15.6536 

1.00E-03 -15.1955 -15.6536 -15.6536 -15.6006 

1.00E-04 -14.4545 -11.2123 -15.6536 -15.6536 

1.00E-05 -13.4821 -5.33437 -15.6536 -15.6536 

1.00E-06 -14.3435 -3.62397 -15.6536 -15.6536 

1.00E-07 -15.6536 -1.50125 -15.6536 -15.6536 

1.00E-08 -15.6536 -0.85638 -15.6536 -15.6536 

1.00E-09 -15.6536 -0.64213 -15.6536 -15.4311 

1.00E-10 -15.6536 -0.52264 -15.6536 -15.6536 

 
 

The integrals considered here are expressed in the 
Cartesian coordinate system.  In a non-Cartesian system 
the above remedies still apply — so long as closed-form 
solutions for the extracted terms are available.  The 
arcsinh method avoids this requirement, but does require 
that an invertible transformation be identified.  In more 
general constructions where cells might be mapped to 
curved surfaces, and the integrand contains an additional 
Jacobian, the preceding observations may not apply. 
 
 

Table 6. Summary of procedures for the high accuracy 
evaluation of equation (1). 
 

Method Approach 

SE 

 Must have closed-form integral for the extracted term 
 log K + K 2 +1( ) must be evaluated carefully, here 

by Newton-Raphson. 

Duffy 

 Only the improved form is viable over the whole range 
 Singularity extraction needs to be applied to the two 
main integrals 

 Must have closed-form integrals for the extracted terms 

 
log K + K 2 + 1( )

 must be evaluated carefully, here 
by Newton-Raphson. 

Arcsinh  
sinh−1 K( )

 must be evaluated carefully, here by 
Newton-Raphson. 

Duffy 

 Only the improved form is viable over the whole range 
 Singularity extraction needs to be applied to the two 
main integrals 

 Must have closed-form integrals for the extracted terms 

 
log K + K 2 +1( )

 must be evaluated carefully, here 
by Newton-Raphson. 

 
 

 
 

Fig. 1. Fortran90 code for inverse hyperbolic sine 
function. 
 

Function asinh(x) 
!  This program uses Newton-Raphson to calculate 
arcsinh(x) 
 implicit real*8 (a-h, o-z) 
 d0=float(0) 
 d1=float(1) 
 d2=float(2) 
 xlimit=d2*epsilon(d1) 
! 
 uold=d0 
!  Select a starting point – this is somewhat arbitrary 
 if(x .lt. d2) then 
  unew=sign(d1,x) 
 else 
  unew=sign(d1,x)*log(abs(x)) 
 endif 
 do while(abs(unew – uold) .gt. xlimit) 
  f=sinh(unew) 
  df=cosh(unew) 
  correction=(f – x)/df 
  uold=unew 
  unew=uold – correction 
 end do 
! 
 asinh(x)=unew 
return
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Abstract − In this paper, the low-frequency instability of 
full-wave finite element methods (FEM) is investigated. 
The curl part of the FEM matrix is shown to be singular. 
The paper explains how low-frequency instabilities are 
related to this singularity. Based on this analysis, an LU 
recombination method is implemented in FEM to solve 
the low-frequency problem. This method, which has 
previously been applied to the method of moments 
(MOM), reduces the errors in the curl part of the matrix 
and enforces the correct gauge condition. Moreover, the 
method is restructured to work more efficiently for sparse 
finite element matrices. 
 

I. INTRODUCTION 
 

The finite element method [1] is well-suited for 
solving problems involving inhomogeneous arbitrarily-
shaped objects. Many researchers have observed that the 
“curl-curl” operation that is frequently employed when 
FEM is used to solve the vector Helmholtz equation can 
result in ill-conditioned matrices in some circumstances 
[2- 4].  

One situation that generates ill-conditioned matrices 
and unstable solutions is modeling performed at low 
frequencies. The examples presented in this paper 
illustrate this behavior. In [5], special penalty terms were 
introduced and potential formulations were used to deal 
with this problem. 

Most full-wave surface integral techniques also 
suffer from low frequency difficulties [6, 7]. The low 
frequency instabilities can be ascribed to the divergence 
operator applied to the unknown surface current density 
in the integral equation. Mathematically, these 
instabilities are related to the singular property of the 
scalar potential part of the impedance matrix. A method  
to circumvent this problem was recently proposed [8, 9]. 
This approach, called the LU recombination method, 
employs linear transformations of the moment matrices in 
order to isolate and eliminate non-physical solutions. 

In this paper, the low-frequency problem with finite 
element formulations is described in terms of the singular 
property of the curl part in the finite element matrix when 
using curl-conforming Nedelec-type basis functions. The 

LU recombination method is applied in order to isolate 
the singularity in the curl part of the finite element 
matrix. It is not necessary to introduce any penalty terms, 
or create new basis functions. The approach is further 
refined so that the new matrices after LU recombination 
are partially sparse. This reduces the computation cost 
and greatly improves the performance. Finally, a couple 
of examples are presented. 

 
II. FORMULATION 

 
From Maxwell’s equations, the vector Helmholtz 

equation in terms of the E field can be written as, 
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where Jint and Mint are impressed electric and magnetic 
sources; ω is the angular frequency; µ0 and ε0 are the free 
space permeability and permittivity; and µr and εr are the 
relative permeability and permittivity. 

After applying a weighting function w(r), the FEM 
weak form is [4, 10], 
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where S is the surface enclosing volume V. 

The unknown E field is expanded using curl-
conforming basis functions that are the same as the 
weighting functions, 
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( ) ( )n n
n

E= ∑E r w r  (3) 

 
where En are unknown coefficients. The surface integral 
on the right hand side of equation (2) is evaluated by 
using surface basis functions fn(r), which are related to 
wn(r) by, 
 

( ) ( )ˆ
n n= ×w r n f r . (4) 

 
Equation (2) is then discretized into a matrix equation, 
 

⋅ = ⋅ +A E B J S . (5) 
 

The right hand side represents the boundary 
condition and the source term. J is the equivalent current 
density on the surface. S is the source term. E is a vector 
containing the unknown coefficients in equation (3). The 
elements of A are, 
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Let 

( ) ( )1 0mn r
V

A j dVωε ε= ⋅∫ n mw r w r ,        (7a) 

 
which is the right-most term in the right-hand side of 
equation (6). 

Let 
 

( )( ) ( )( )
2

0
mn

V r

A dV
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= ∫ n mw r w r
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which is the left-most term in the right-hand side of 
equation (6). Every element of A1 approaches zero at 
arbitrarily low frequencies. The following reasoning 
demonstrates that, because of the ∇ ×  operator, A2 is a 
singular matrix when using the popular lowest order curl-
conforming basis functions. The rank of the matrix is 
determined by the total number of internal nodes in the 
finite element mesh [11]. 

The basis function for a tetrahedron can be defined on 
each edge as [12], 

 

7 7
7

 in the tetrahedra
0 otherwise

1,2,...,6

i i
i

i

− −
−

+ ×
=

               =

⎧
⎨
⎩

f g r r
w

   (8a) 

 

where 
7

7 1 26
i

i i i

l
V
−

− = ×f r r , (8b) 
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l l
V

−
− =g e . (8c) 

 
Here i1 and i2 are the node indices of edge i, defined 

in Fig. 1. l is the length of the edge, e is the unit vector 
along the edge, and V is the volume of the tetrahedron. 

 
 

 
 

Fig. 1. The tetrahedral element and its edge-node 
relations. 

 
Consider the local elements, i.e., the elements 

evaluated within one tetrahedron. The curl of the basis 
function is a constant within the tetrahedron, 
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The local element in 2

eA is, 
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where the superscript e indicates local elements. Thus 
within one tetrahedron, the local matrix can be written as 
in equation (11), shown on the top of the next page. 

For the tetrahedron in Fig. 1, edges 4, 5, and 6 form a 
triangle, which means, 

 
l4+l5+l6=0. (12) 

 
Consequently, the first three rows in equation (11) are 

linearly dependent. 
 

1 

2 

3 

4 
edge i1 i2 

1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4
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Or more specifically, consider the normalized local 

matrix ( )2

NeA  whose elements are given by, 
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The first three rows of ( )2

NeA  are linearly dependent 

and are related by integers,  
 

( ) ( ) ( )21 22 23 0
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N N Ne e e
j j jA A A

j

+ + =

=
.            (14) 

 
This relationship is similar to equation (11) in [9]. 

The linearly dependent rows correspond to the edges in 
the tetrahedron sharing a common node. After assembling 
the local matrices into a global matrix, the rows of the 
global matrix corresponding to edges sharing the same 
nodes are linearly dependent, resulting in a singular 
global A2. 

It is evident from equation (7) that the FEM matrix 
(A=A1+A2) will be unstable at low frequencies, since a 
matrix (A1) with elements approaching zero will be added 
to a singular matrix (A2). Due to limited computer 
precision, the elements of A1 can become buried in the 
round-off error and not even affect the values in the 
overall finite element matrix. However, the information 
in A1 incorporates the gauge condition for the electric 
field [5]. Without this information, the matrix equation 
(5) is ill-conditioned, resulting in significant errors in the 
solution. 

III. LU RECOMBINATION METHOD IN FEM 
 

Based on the above analysis, the low frequency 
problem in FEM is analogous to the low-frequency 
problem in the boundary element method [9]. 
Consequently, the LU recombination method developed 
for the boundary element method can be applied to the 
finite element method. LU recombination can be used to 
enforce the singular property of A2 and preserve the 
correct gauge condition in matrix A1. However, the 
original A2 is a sparse matrix. Applying LU 
recombination in the manner described in [9] would 
produce a new, dense A2 matrix. This would be highly 
undesirable in an FEM formulation. Therefore, an 
incomplete LU recombination technique that is suitable 
for sparse matrices was developed. In this approach, only 
part of A2 is modified and the resulting new matrix is still 
sparse. The sparseness of the new matrix depends on the 
number of inner nodes in the mesh. 

The method begins with the L-D-U decomposition of 
A2, shown in equation (15) at the bottom of this page, just 
as it does when applied to the boundary element method 
[9], 
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 The A2 matrix is partitioned so that the linearly 

independent rows (represented by the subscript ii) are 
grouped together and the dependent rows (subscript dd) 
are moved to the end. The LU recombination method will 
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modify the sub-matrices Ldi, D2di, D2id, and D2dd, while Lii 
and D2ii are left unchanged. Therefore, A2ii=Lii•D2ii is 
unchanged after constructing a new A2. There is no need 
to recalculate A2ii after the modifications on L and D2. To 
accomplish that, the L matrix is replaced by, 

 
0ii

di dd

=
⎡ ⎤
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⎣ ⎦

I
L

L I
,                           (16) 

  
where I is identity matrix. The new decomposition on A2 
is then written in equation (17), as shown at the bottom of 
this page. Thus during the LU recombination, the A2ii part 
remains the same. No additional elements or errors are 
introduced. 

The same decomposition in equation (17) is applied 
to A1. After LU recombination, the new A becomes 
equation (18) at the bottom of this page. Note that Ldi is 
already modified, as described in [9]. The correct 
information in A1 is preserved. But the new A matrix is 
still ill-conditioned at low frequencies since A1 is much 
smaller than A2. The imbalance can be alleviated by 
introducing a scaling step. The sub-matrices D1di, D1id, 
and D1dd are scaled so that they are comparable to A2ii. 
This step greatly improves the condition of the new A 
matrix. It is especially beneficial when iterative methods 
are used to solve the matrix equations. 

 
IV. NUMERICAL RESULTS 

 
Two sample structures were evaluated using a finite 

element modeling technique with and without LU 
recombination. The first example is the rectangular power 
bus structure shown in Fig. 2. The dimensions of the 
structure are 20 cm x 20 cm x 1 cm. The power and 
ground planes are modeled as perfect electric conductors 
(PECs). The four side walls of the board are modeled as 
perfect magnetic conductors (PMCs). The dielectric 
between the planes has a relative permittivity of 4.5. The 
board is excited by an ideal current source located in the 
dielectric, 6 cm from one edge and 7 cm from an adjacent 
edge. 

 

 
 

Fig. 2. A power bus example. 
 

The input impedance of the power bus was 
calculated, and the results obtained using different 
methods are shown in Fig. 3. The solid dots show the 
result obtained using the standard FEM formulation. This 

technique fails when the frequency is below 1 MHz. The 
lower frequency limit is determined by the number of 
significant figures used when manipulating the elements 
of the FEM matrix. The solid line indicates the result 
when the LU recombination method is incorporated into 
the FEM. This result is accurate even below a few Hz. 
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Fig. 3. The input impedance of the power bus. 
 
Also shown in Fig. 3 are the results calculated using 

a cavity model and Ansoft HFSS [13]. The cavity model 
is a mode-expansion method suitable for rectangular 
power bus geometries. It models the power bus as a TMz 
cavity and determines the input impedance by summing 
the contributions of all relevant resonant modes [14]. This 
method has no problem at low frequencies but it can be 
difficult to apply to complicated geometries. HFSS, 
which is a FEM modeling code, extrapolates from the 
high frequency results to obtain a low frequency 
approximation. In this case, the extrapolation was valid 
down to a few kHz. 
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The second example is a stripline structure consisting 
of a metal trace imbedded in a dielectric between two 
metal planes as shown in Fig. 4. The dimensions of the 
planes are 20 mm x 10 mm and they are 2 mm apart. The 
dielectric constant is 4.5. The trace has a width of 1 mm 
and a length of 10 mm. The trace is driven by a 0.1-A 
current source at one end, and is terminated by a 50-Ω 
resistor on the other end. In this example the top and 
bottom planes are modeled as PECs, and the equivalent 
current on the dielectric boundary is set to zero. Also 
shown in Fig. 4 is the top view of the FEM mesh. 

Figure 5 shows the magnitude of the input impedance 
calculated at the source port. The impedance should have 
a real value of 50 Ω at low frequencies. The regular FEM 
result exhibits significant errors below 1 MHz. In fact, 
there are observable instability problems at frequencies 
above 1 MHz. With the help of the LU recombination 
method, the error is corrected and the results are accurate 
down to a few Hz. 

 
 

 
 

Fig. 4. A microstrip example and the mesh. 
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Fig. 5. The input impedance of the stripline 

V. CONCLUSION 
 

The singular behavior of the discretized curl term in 
the vector Helmholtz equation causes low-frequency 
instabilities in full-wave FEM formulations. The LU 
recombination method can be applied to existing FEM 
codes to solve this problem. The LU recombination 
method uses linear transformations to minimize the 
influence of errors in the curl part of the matrix. Properly 
applied, it is possible to preserve the sparseness of the 
FEM matrix. 
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Abstract − The authors have applied a graphics 
processing unit (GPU) to the finite-difference time-
domain (FDTD) method to realize a cost-effective and 
high-speed computation of an FDTD simulation. The 
authors used the plane wave scattering by a perfectly 
conducting rectangular cylinder as the model and 
investigated the performance of this implementation. The 
authors timed the computation time of the scattered 
electromagnetic field by the two-dimensional (2-D) 
FDTD method at 1,000 steps. Using a PC equipped with 
an Intel 3.4-GHz Pentium 4 processor and an nVIDIA 
Geforce 7800 GTX GPU, the authors achieved an 
approximately 10-fold improvement in computation 
speed compared with the speed of a conventional central 
processing unit (CPU) executing the same task. 

 
I. INTRODUCTION 

 
The FDTD method [1] is a numerical technique that 

can be used to solve electromagnetic boundary value 
problems in the time domain. This method has excellent 
numerical accuracy, and is simple to program. Up to now, 
we have used this technique to solve various 
electromagnetic field problems such as those pertaining 
to antennas and electromagnetic scattering [2,3]. 
However, FDTD simulations for investigating frequency 
response are computationally expensive. Approaches to 
this important problem have included modification of the 
FDTD method and executing the FDTD algorithm on 
more powerful hardware configurations. 

The former approach consists of the alternating 
direction implicit - FDTD (ADI-FDTD) method [4], and 
the latter technique consists of a parallel and distributed 
FDTD method [5–7]. These methods have achieved high-
speed computation. However, the ADI-FDTD method is 
less accurate than the conventional FDTD method, and 
the parallel and distributed FDTD method requires a 
supercomputer [7], a PC cluster [5], or a workstation 
cluster [6], and so is expensive both in financial terms 
and in the utilization of space. 

In recent years, rapid development of powerful GPUs 
has increased the performance of computer graphics (CG) 
used for the display of three-dimensional (3-D) images. 
Current GPUs have a large memory and many 
programmable graphics pipelines consisting of vertex and 
fragment processors. For example, the nVIDIA Geforce 
7800 GTX has eight vertex and 24 fragment processors 
with high floating-point performance. We have 
formulated a program for the GPU using high level 
shader language (HLSL) and Direct X or OpenGL as a 
graphics application programming interface (API), called 
“Shader Program”. Vertex and fragment processors can 
implement looping and floating point math [8,9]. 
Recently, programmable GPUs have been used for a 
number of applications other than CG. Traditional 
physical simulations based on matrix calculations with a 
GPU have been studied [10-12]. High-speed computer 
generated holography using a GPU implementation has 
been reported [13]. From these considerations, it seems 
that a state of the art GPU would be a cost-effective and 
very compact device for high-speed computation of 
FDTD simulation. In the FDTD method, M. J. Inman, et 
al. reported the GPU code, without absorbing boundaries, 
written in brook as HLSL and the speedup factors of two 
different video cards (ATI Radeon 9550 and x800) [14]. 
The ATI Radeon 9550 and x800 support the 24-bit 
floating-point format, while the nVIDIA Geforce 6800 
GT and 7800 GTX support the 32-bit floating-point 
format (IEEE 754) [9]. G. S. Baron, et al. coded in 
OpenGL and used NVIDIA’s HLSL, Cg, and discussed 
speedup and accuracy [15]. Their code included the 
calculation of the uniaxial perfectly matched layer 
absorber. However, the Euclidean normalized error 
increased monotonously with respect to the time steps. 
However, since they did not investigate the accuracy 
without absorbing boundaries, the cause of the errors is 
not confirmed to be the calculation of the absorbing 
boundary or the 32-bit floating-point format. The present 
authors believe that the investigation of accuracy without 
absorbing boundaries is important for the development of 
the GPU code.  
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In the present paper, we propose the shader program 
code to realize accurate and high-speed computation of 
the FDTD method using a GPU and investigate the basic 
performance of this computation. We coded in DirectX 
9.0c and Microsoft’s HLSL because they are well known. 
When analyzing an electromagnetic boundary value 
problem using the FDTD method, most of the simulation 
time is used for the calculation of the electromagnetic 
fields except at the absorbing boundary. Therefore, we 
used a simple 2-D model, the plane wave scattering by a 
perfectly conducting rectangular cylinder, without the 
absorbing boundary to investigate the basic performance. 
In the GPU code, the physical parameters are normalized 
by the electric permittivity ε0 and magnetic permeability 
µ0 in a vacuum space because GPU supports the 32-bit 
floating-point format. The authors timed the computation 
time of the scattered electromagnetic field by the FDTD 
method [3]. The result of the calculation using the GPU 
only, without the CPU, was approximately a 10-fold 
improvement in computation speed compared with a 
conventional CPU (Intel Pentium 4, 3.4-GHz), simulation 
of the FDTD method. The electric field Ez calculated with 
the GPU agreed perfectly with that of the CPU in the 32-
bit floating-point format. The GPU maintained the 
accuracy of single-floating point. 

The present paper is structured as follows. In Section 
II, we introduce the 2-D FDTD method. In Section III, we 
briefly describe a modern graphics hardware device. In 
Section IV, we describe the implementation of an FDTD 
simulation using a GPU. In Section V, we detail the 
performance of the FDTD simulation using the GPU. In 
the final section, we present conclusions regarding the 
high-speed FDTD computation using the GPU and 
describe future research. 

 
II. SCHEME OF THE 2-D FDTD METHOD 

 
In this section, the authors outline the scheme of the 

FDTD method, which was first proposed by Yee [1]. The 
basic equations of the 2-D FDTD method in the 
transverse magnetic (TM) case are as follows, 
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where ),(1 jiEn
z
+  is the required value zE of the electric 

field at the grid point (i, j) and the (n+1)-th time step, 
x∆ and y∆  are the sizes of the spatial division in the x 

and y directions, respectively, and t∆  is the time 
increment. The parameters ε and µ are the electric 
permittivity and the magnetic permeability in the medium, 
respectively. 

The electric and magnetic fields are evaluated in 
alternate half-time steps from the initial values with these 
equations. The FDTD method can finally be used to solve 
these equations and hence can be used to compute the 
solution of an electromagnetic boundary value problem in 
the time domain. 

However, in order for the solution to be valid [16], 
the time increment t∆  must satisfy the von Neumann 
stability condition as follows, 

                                                             
(4) 

 
where  0C  is the speed of light in free space. 

In the case that a scattering object is a perfect 
conductor, the scattered electromagnetic fields are as 
follows, 

 
                     (5) 
 

where scat
zE  and inc

zE  are the scattered electric field and 
the electric field of the incident wave, respectively. 
 

III. OUTLINE OF MODERN GRAPHICS 
HARDWARE 

 
In 3-D CG, we model each 3-D object to be drawn 

on the screen of the host computer in terms of graphics 
primitives. A primitive is the simplest type of figure: 
points, lines, triangles, quadrilaterals, and other polygons. 
Term rendering is used for the process of generating an 
image on the screen from a model. The GPU has 
been developed for real-time processing of 3-D CG 
rendering. Figure 1 shows a block diagram and the 
dataflow of a conventional graphics hardware device for 
rendering. The graphics hardware stores the data for 
rendering, the vertex, texture, pixel data, and the frame 
buffer, and so on, in the video memory. The frame buffer 
temporarily stores the image after rendering and is the 
final target of rendering. The GPU has a pipeline 
architecture  consisting of three parts: the vertex 
processors, the fragment processors, and the rasterizer. 
The GPU generally performs the rendering as follows: 
(1) The CPU sends the set of vertices of the graphics 

primitives to the vertex processors. 
(2) The vertex processors transform the geometry of the 

vertices into screen coordinates for display. 
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Fig. 1. Block diagram and dataflow of conventional graphics hardware. 
 

 
(3) The rasterization process is as follows: 

(a) The collection of pixels is output by the rasterizer. 
(b) The attributes, such as texture coordinates, stored 
at the vertices are linearly interpolated. 
(c) The interpolated value at each pixel is stored. 

(4) The fragment processors perform special purpose 
arithmetic operations on the texture data and 
compute the resulting final color for each pixel to be 
drawn on the screen.   

(5) The outputs of the fragment processors are sent to the 
frame buffer in the video memory and the 3-D 
objects then appear on the display. 

 
With the rapid progress in generating realistic 

images for computer games have become a requirement 
for CG to handle large numbers of floating point 
calculations, resulting in increasingly large and complex 
rendering implementations. The current GPU has many 
vertex and fragment processors with high floating point 
performance. For example, the recently released nVIDIA 
Geforce 7800 GTX consists of eight vertex and 24 
fragment processors, which can perform 32-bit floating-
point calculations. The vertex and fragment processors 
can be utilized as multiple instruction, multiple data 
(MIMD) and single instruction, multiple data (SIMD) 
parallel processing units, respectively. Programs to be 
executed by these processors are written using a shader 
language and are consequently referred to as shader 
programs. Programmable GPUs have recently been used 
for various applications other than graphics. This is 
known as general-purpose computation on a GPU 
(GPGPU), of which the present study is an example. 

 
IV. IMPLEMENTATION 

 
We used Microsoft's HLSL as the shader 

programming language and DirectX 9.0c as the graphics 
API. Shader programs consist of vertex and pixel shader 
programs, which are executed on the vertex and fragment 
processors, respectively. The authors calculate the 
electromagnetic fields of the FDTD method with the 
fragment processors in the GPU, because the GPU has 
more fragment processors than vertex processors. For 
example, the nVIDIA Geforce 7800 GTX consists of 
eight vertex processors and 24 fragment processors. In 
order to calculate the electromagnetic fields with 
fragment processors, the electromagnetic fields Ez, Hx, 
and Hy in the computational region of the FDTD method 
are stored in two textures (temp1_tex, temp2_tex), where 
“temp1_tex” consists of the electric field Ez in a 
computational region of the FDTD method and 
“temp2_tex” consists of the magnetic fields Hx and Hy. If 
the size of the computational region of the FDTD method 
is Lx ∆x×Ly  ∆y, the space division of the x- and y-
directions in the textures are 1/Lx and 1/Ly, respectively, 
because a side of a texture is 1.0.   

The vertex and fragment processors in the GPU 
calculate the electromagnetic fields Ez, Hx, and Hy of  the 
FDTD method by rendering in CG as follows: 

(1) Set the vertices (0,0), (1,0), (0,1), and (1,1) on the  
textures “temp1_tex” and “temp2_tex”. 
(2) The vertex processors transform the geometry of  
vertices into screen coordinates for display. 
(3) The collection of pixels on textures is output by the 
rasterizer. 
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(4) The fragment processors calculate the electro-
magnetic fields Ez, Hx, and Hy at next time step in 
parallel. 
 

In the program developed herein, the electric field 
Ez, the magnetic fields Hx  and Hy, and other parameters 
are stored in GPU registers. The rendering function 
“VOID Update()” of the CG program written in C++ is 
shown below. 

This program calls the functions for the 
electromagnetic field (Ez, Hx, Hy) calculation in shader 
programs.  “WIDTH” is the size of the side of the 
computational region in the FDTD simulation. Here, Lx 
and Ly are the same. “invTexsize” is the size of a pixel, 
and “dtdx” and “dtdy” are as follows, 

 
                             xtdtdx ∆∆=                                (6) 

 
dtdy t y= ∆ ∆                                 (7) 

 
where x∆ and y∆  are the space division, t∆  is the time 
increment. “dt” and “times” are the time increment and 
simulation time, respectively. “BeginPass()” calls each 
function of the shader programs. 
 
VOID Update(LPDIRECT3DDEVICE9 pD3DDev) 
{ 

for (int step = 0; step < 1000; step++) { 
Hxy->GetSurfaceLevel(0, &pSurf_Hxy); 
pD3DDev->SetRenderTarget(0, pSurf_Hxy); 
pEffect->SetTechnique( hTechnique); 
if (step != 0) { 
pEffect->SetTexture("temp1_tex", Hxy); 
pEffect->SetTexture("temp2_tex", Ez); 

} else { 
    pEffect->SetTexture("temp1_tex",initHxy); 

pEffect->SetTexture("temp2_tex", initEz); 
   } 

pEffect->SetFloat(hinvTexSize,1.0f/(float)WIDTH); 
pEffect->Begin( NULL, 0 ); 
pEffect->BeginPass(0); 
pD3DDev->SetFVF( D3DFVF_CUSTOMVERTEX ); 
pD3DDev->SetVertexDeclaration( 

pVertexDeclaration); 
pD3DDev->SetStreamSource(0,g_pVB,0,  

sizeof(CUSTOMVERTEX) 
); 

pD3DDev-
>DrawPrimitive(D3DPT_TRIANGLESTRIP,0,2 ); 

pEffect->EndPass(); 
pEffect->End(); 
times += dt; 
Ez->GetSurfaceLevel(0, &pSurf_Ez); 
pD3DDev->SetRenderTarget(0, pSurf_Ez); 
pEffect->SetTechnique( hTechnique); 
pEffect->SetTexture("temp1_tex", Hxy); 
if (step != 0) { 

pEffect->SetTexture("temp2_tex", Ez); 
} else { 

pEffect->SetTexture("temp2_tex", initEz); 
   } 

pEffect->SetFloat(hinvTexSize,1.0f/(float)WIDTH); 
pEffect->SetFloat(htimes, times); 
pEffect->Begin( NULL, 0 ); 
pEffect->BeginPass(1); 
pD3DDev->SetFVF( D3DFVF_CUSTOMVERTEX ); 
pD3DDev->SetVertexDeclaration( 

pVertexDeclaration); 
pD3DDev->SetStreamSource( 0, g_pVB, 0, 
sizeof(CUSTOMVERTEX) ); 
pD3DDev->DrawPrimitive(D3DPT_TRIANGLESTRIP, 

0,2); 
pEffect->EndPass(); 
pEffect->End(); 
pD3DDev->SetRenderTarget(0, pOldBackBuffer); 
pD3DDev->SetDepthStencilSurface(pOldZBuffer); 
pEffect->SetTechnique( hTechnique); 
pEffect->SetTexture("temp1_tex", Ez); 

  } 
} 
 

The pixel shader program is shown below. In this 
program, “float2” is a 2-D floating-point vector type and 
“float4” is a four-dimensional floating-point vector type. 
The parameters from t0 to t3 are input registers of the 
GPU. “tmep1_samp” and “temp2_samp” are sampler 
objects for reading “temp1_tex” and “temp2_tex”, 
respectively. The function “PS” returns the values of the 
electromagnetic fields. The function “PS0” calculates the 
magnetic fields Hx and Hy (equations (1) and (2)). The 
function “PS1” calculates the electric field zE  (equation 
(3)). “VS_OUTPUT0” is the output from the vertex 
shader. The function “VS0” is the vertex program to 
transform the geometry of vertices into screen 
coordinates. 
 
float4 PS0 ( VS_OUTPUT0 In ) : COLOR 
{ 

float hx, hy; 
  float ddd;  

float2 t0 = tex2D(temp1_Samp, In.Tex0).xy; 
float t1 = tex2D(temp2_Samp, In.Tex0).x; 
float t2 = tex2D(temp2_Samp, In.Tex0  

+ float2(0.0f, invTexSize)).x; 
float t3 = tex2D(temp2_Samp, In.Tex0  

+ float2(-invTexSize, 0.0f)).x; 
hx = t0.x - dtdy * (t1 - t2); 
hy = t0.y + dtdx * (t1 - t3); 
return float4(hx, hy, 0.0f, 1.0f); 

} 
VS_OUTPUT0 VS0 ( 
   float4 Position   : POSITION, 

 float2 Texcoord : TEXCOORD0 
){ 
    VS_OUTPUT0 Out = (VS_OUTPUT0)0; 

Out.Pos = Position; 
    Out.Tex0 = Texcoord; 
    return Out; 
} 
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float4 PS1 ( VS_OUTPUT0 In ) : COLOR 
{ 

float ez; 
float2 t0 = tex2D(temp1_Samp, In.Tex0).xy; 
float2 t1 = tex2D(temp1_Samp, In.Tex0  

+ float2(invTexSize, 0.0f)).xy; 
float2 t2 = tex2D(temp1_Samp, In.Tex0  

+ float2(0.0f, -invTexSize)).xy; 
float t3 = tex2D(temp2_Samp, In.Tex0).x; 
float2 a; 
float ddd,ams; 
ez = t3 + dtdx * (t1.y - t0.y) 

- dtdy * (t2.x - t0.x); 
a.x=In.Tex0.x * WIDTH; 
a.y=In.Tex0.y * HEIGHT;  
if ( 240 <= a.x  && a.x <= 272 && 240 <= a.y  && a.y <= 

272) {  /* 1024x1024 */ 
  ddd=(In.Tex0.x*WIDTH-3.0f)*dx*cos(thetai)  

+(In.Tex0.y*HEIGHT-3.0f)*dy*sin(thetai); 
  if(ddd > times){ 
      ams = 0.0f; 
  }else if (ddd > (times - wlamd)){ 
      ams=(times - ddd)/wlamd * am; 
  }else { 
      ams=am; 
  }      
 ez=-ams * sin(omega*(times-ddd)); 

} 
return float4(ez, 0.0f, 0.0f, 1.0f); 

} 
 
technique FDTDShader 
{ 
  pass P0 
    { 
        VertexShader = compile vs_3_0 VS0(); 
        PixelShader  = compile ps_3_0 PS0(); 
    } 
  pass P1 
    { 
        VertexShader = compile vs_3_0 VS0(); 
        PixelShader  = compile ps_3_0 PS1(); 
    } 
} 

 
The program developed herein is loaded into the 

GPU and the calculation of the FDTD method is 
executed by the fragment processor. In this way, the 
electromagnetic fields were calculated using the FDTD 
method. 

The boundary condition of the perfect conductor 
(equation (5)) is added in the function “PS1”. 
 

  V. PERFORMANCE 
 
The authors used an nVidia Geforce 7800 GTX as 

the GPU. Table 1 shows the specifications of the Geforce 
7800 GTX, which has eight vertex and 24 fragment 
processors. We timed the calculations required for a 
simple model to investigate the performance of GPU. As 

the model, we used the FDTD method to analyze plane 
wave scattering by a perfectly conducting rectangular 
cylinder. We used the plane wave as the incident wave, 
and the electric field inc

zE of incident wave is as follows, 
                                             

0 sin( )inc
zE E t t kx xω= ∆ − ∆                 (8) 

 

where  
 
              
 

Table 1. Specifications of the nVidia Geforce 7800 GTX. 
 

Core Clock 430 MHz 
Memory 256 MB 

Memory Clock 1.2 GHz 
Memory Bandwidth 54.4 GB/Sec 

Video Memory Interface Width 256 bit 
Vertex Shader 8 
Pixel Shader 24 
API Support Direct X 9.0c , 

OpenGL 2.0 
 

The cylinder has an electrical size of kAs = 10.0, 
where As is the side of the rectangular cylinder. We used 
equation (5) as the boundary condition on the scattered 
object. The scattered electromagnetic fields were 
calculated by the FDTD method. 

We compared the GPU system with the CPU system. 
In the GPU system, we used the FDTD code written in 
the C++ language and HLSL. All calculations of the 
FDTD method were performed by only the GPU. For the 
calculation time of the GPU system, the authors timed 
1,000 steps of the calculation using Microsoft Windows 
XP, Microsoft Visual C++ .NET as the C++ compiler 
with the options, “-O2” and without threading, and 
DirectX9.0c as the graphics API. In the CPU system, we 
used the conventional FDTD code written in the C 
language, all calculations of the FDTD method were 
performed by the CPU only, without the GPU. For the 
calculation time of the CPU system, we timed 1,000 
steps of the calculation using two operating systems (OS), 
Microsoft Windows XP and Linux OS (Fedora Core 4). 
We used Microsoft Visual C++ .NET as the C compiler 
with the options “-O2” and without threading. In Linux, 
we used vmlinuz-2.6.11, not the kernel for Symmetric 
Multiple Processors, as the kernel and gcc 4.0 as the C 
compiler with “-O3” as the compiler option. 

The specifications of the personal computer used in 
the GPU and CPU systems were an Intel Pentium 4, 3.4-
GHz for the CPU with 2.0 GB of memory. 

Table 2 shows the calculation time for 1,000 steps 
for each size of computational region for each system. 
For a computational region of 1024×1024, the 
calculation time of the GPU system was 6,340 msec, 

/20.λ=∆=∆=∆ yxh  
 ,/5.0 ,/2 ,40/2 0Chtkt ∆=∆=∆= λππω
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while the calculation time of the CPU system using 
Linux OS: CPU (Linux) was 70,230 msec. Hence, the 
calculation speed of the GPU system was approximately 
11 times faster than that of the CPU (Linux). For the 
CPU system using Windows XP: CPU (Win), the 
calculation time of the CPU (Win) system was 74,841 
msec. The calculation speed of the GPU system in this 
case was approximately 12 times faster than that of the 
CPU (Win). In the GPU system, the computation time is 
proportional to the number of grid points on 
computational region of the FDTD method, which means 
that the fragment processors in the GPU efficiently 
calculate the electromagnetic field of the FDTD method 
in parallel. The authors compared the values of the 
electric field Ez at 1,000 steps for the two systems. The 
electric field Ez calculated with the GPU agreed perfectly 
with that of the CPU in 32-bit floating-point format. The 
GPU maintained single-floating point accuracy. 

A GPU can directly display the result of FDTD 
simulation without computation by a CPU. Figure 2 
shows the total electric field zE  of the GPU after 600 
and 900 steps.  
 

Table 2. Comparison between the calculation time of 
GPU and that of CPU. 

 

 
 

 
 (a) 

 
 

(b) 
 

Fig. 2. Total electric field zE  values of the FDTD 
simulation at two intervals (a) after 600 steps and (b) 
after 900 steps. 
 

VI. CONCLUSION 
 

The authors developed the program for the 
calculation of the FDTD method with a GPU and 
investigated the performance of the GPU by analyzing 
plane wave scattering by a perfectly conducting 
rectangular cylinder. In the 1024×1024 computational 
region, the calculation speed of the GPU (nVidia Geforce 
7800 GTX) was approximately 11 times faster than that 
of a CPU only (Intel Pentium 4, 3.4-GHz). The electric 
field Ez calculated with the GPU system agreed well with 
that of the CPU system at 1,000 steps. Finally, we found 
that the program using HLSL performed high-speed 
FDTD simulation using the GPU, and the GPU 
maintained the single-floating point accuracy. 
Furthermore, the GPU can directly display the result of 
FDTD simulation without calculation by the CPU. The 
GPU provides high-speed calculation of the FDTD 
method and visualization of the electromagnetic field 
analyzed in the time domain. 

In the future, we plan to extend the GPU program by 
including the code for the implementation of the 
absorbing boundary and to apply the GPU to the 
execution of the 3-D version of the FDTD method. 
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Corrected Nyström Method
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Abstract – The locally corrected Nyström method is
applied to the magnetic field integral equation for a
conducting body of revolution. A construction method
is presented for the locally corrected weights for the
resulting one-dimensional coupled scalar magnetic field
integral equations. Special attention is paid to minimizing
the cost for multi-frequency computations. Numerical
results are presented for the sphere, oblate spheroid, and
right circular cylinder. Good agreement with results from
mature moment method codes is observed.

I. INTRODUCTION

The Locally Corrected Nyström (LCN) method
brings the high-order convergence properties of the Nys-
tröm method for integral equations to those with singular
kernels such as those that arise in electromagnetic bound-
ary value problems [1–3]. Computation of the corrected
quadrature weights can be efficiently accomplished.

Here we apply the LCN method to a body of revo-
lution (BOR) under plane wave illumination. The BOR
geometry allows the 2D surface integral equation to be
reduced to a series of 1D integral equations through the
use of a Fourier series expansion. The solution of each
1D problem is a mode function in the series expansion of
the total current.

Often, we desire to solve electromagnetic scattering
problems for a fixed geometry over a range of frequencies.
In the context of the LCN method, the goal is to compute
the corrected weights once and then reuse them for the
desired frequencies and necessary mode numbers. We
show that careful use of quadrature rules will allow the
reuse of corrected weights over a range of frequencies
and mode numbers, greatly enhancing the computational
efficiency of the algorithm.

II. CONVENTIONAL AND LOCALLY
CORRECTED NYSTRÖM METHOD

In the conventional Nyström method, an integral
equation,

g(x) =
∫ b

a

G(x, x′)u(x′)dx′ (1)

is replaced by a quadrature equation,

g(x) ≈
Ns∑
p=1

Na−1∑
q=0

ωqG(x, xpq)u(xpq) (2)

where xpq is the qth abscissa on the pth subinterval.
Evaluating g(x) at the nth abscissa of the mth subinterval,
i.e., each abscissa from the underlying quadrature rule,
gives,

g(xmn ) ≈
Ns∑
p=1

Na−1∑
q=0

ωqG(xmn , x
p
q)ũ(xpq) (3)

where xpq is the qth abscissa on the pth subinterval.
Solving the resultant linear system of equations yields
the value of ũ(x) at the quadrature points. Interpolation
provides ũ(x) over the integration interval. However, an
obvious problem for electromagnetic integral equations
is the singularity of the kernel which makes evaluation at
xmn = xqp impossible. In addition, quadrature convergence
is slow when ||xmn − xqp|| << λ.

The LCN replaces some of the quadrature weights
ωq by “locally corrected” ones, ωq , which are used when
the distance between xmn and xqp is small. The details can
be found in the literature [2, 3].

III. MFIE FOR A BOR SCATTERER

The magnetic field integral equation (MFIE) over a
PEC BOR geometry can be reduced to a one dimensional
problem along the curve defining the BOR. Given an
incident field ~H

i
we wish to solve the MFIE [4] for the

surface current ~Js,

n̂× ~H
i
(~r) =

1
2
~Js(~r)− n̂×∫

S

~Js(~r ′)×∇′g(~r,~r ′) ds′, ~r ∈ S
(4)

where g(~r,~r ′) = exp(ik|~r − ~r ′|)/[4π|~r − ~r ′|] is the
free space Green function for the Helmholtz equation
(assuming e−iωt time dependence) and n̂ is the outward
pointing unit normal vector on the surface S.

317 ACES JOURNAL, VOL. 23, NO. 4, DECEMBER 2008



The BOR geometry is created by rotating a curve
(ρ, z) about the z-axis. The curve is parameterized by its
arc-length ` ∈ [0, L]. The surface current has two vector
components, one in the azimuthal direction and the other
in the direction of the defining arc – ~Js = ˆ̀J` + φ̂Jφ. In
the BOR coordinate system, the surface into two variables
` and φ,

x = ρ(`) cosφ, y = ρ(`) sinφ, z = z(`).

The periodicity of the BOR geometry in the az-
imuthal direction allows the solution to be expanded into
a Fourier series in the φ-direction hence reducing the
integral equation to only ` dependence. Using the above
description of the BOR geometry and some change of
variables, the vector integral equation (4) can be written
as the following system of two scalar second-kind integral
equations [5],

J`(`, φ)
2

=

2π∫
0

L∫
0

α12(`, `′, φ′, φ) d`′ dφ′ + ˆ̀· (n̂× ~H
i
)

(5)

Jφ(`, φ)
2

=

2π∫
0

L∫
0

α34(`, `′, φ′, φ) d`′ dφ′ + φ̂ · (n̂× ~H
i
)

(6)

where

α12 = α1(`, `′, φ′)J`(`′, φ′+φ)+α2(`, `′, φ′)Jφ(`′, φ′+φ),

α34 = α3(`, `′, φ′)J`(`′, φ′+φ)+α4(`, `′, φ′)Jφ(`′, φ′+φ).

The kernel functions α1...4 are given in [2]. Both J`
and Jφ are periodic in the azimuthal direction and thus
both have a Fourier series expansion in the φ-variable,

J`(`, φ) =
∞∑

n=−∞
j`n(`)einφ, (7)

Jφ(`, φ) =
∞∑

n=−∞
jφn(`)einφ. (8)

Our focus now will be on an integral equation for
each of the individual coefficient functions j`n(`) and
jφn(`). The incident field can also be expressed as a
Fourier series on the surface of the BOR. Using orthog-
onality of the exponentials we isolate one of unknown
coefficient functions, and since j`m(`) and jφm(`) have no

φ′ dependence we can write the integral equation as,

j`m(`)
2

= ˆ̀
m+

L∫
0

[
j`m(`′)G1

m(`, `′) + jφm(`′)G2
m(`, `′)

]
d`′ (9)

jφm(`)
2

= φ̂m+

L∫
0

[
j`m(`′)G3

m(`, `′) + jφm(`′)G4
m(`, `′)

]
d`′,

(10)

where ˆ̀
m = [ˆ̀ · (n̂ × ~H

i
)]m, φ̂m = [φ̂ · (n̂ × ~H

i
)]m,

and Gim(`, `′) =
2π∫
0

αi(`, `′, φ′)eimφ
′
dφ′.

Thus, the original integral equation (4) is reduced to a
one dimensional problem. However, the one-dimensional
problem is only solving for one component of the Fourier
series solution with Nf Fourier modes; the problem must
be solved Nf times. The value of k will determine
the number of terms of the Fourier series that must be
computed to achieve adequate accuracy.

IV. THE CORRECTED WEIGHTS

The Helmholtz kernel eikR

R is separable into a fre-
quency dependent factor and a frequency independent
factor. The frequency dependent portion is smooth while
the frequency independent portion contains the singular-
ity. Given this situation, the corrected weights can be
computed for the frequency independent portion of the
kernel and the frequency dependent part can be absorbed
into the solution. Hence, the locally corrected weights are
computed, and any change in frequency can be accounted
for by a simple multiplication of the quadrature weights.
In the case of the BOR geometry the situation is not
so straightforward. There are two significant differences
between the standard Helmholtz kernel and the BOR
kernels (Gi, i = 1 . . . 4). First, not only is it necessary
to be able to account for different frequencies, but the
different modes must be dealt with as well. Second, the
BOR kernel is not separable since the Helmholtz kernel
is incorporated into an integration in the φ direction. The
second of the two differences is the one that requires a
careful approach, and when dealt with will allow a single
set of weights to be used for any frequency and any mode.

In order to use the corrected weights for all frequen-
cies and all modes in the BOR formulation, the key is
to look at the integral as the original 2-D integral rather
than the 1-D integral.

The first option is to perform local corrections in 2-
D over the entire strip containing the singularity. Assume
the singular point is in the interval (ai, bi). The integral
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of the form,

I(`) =

bi∫
ai

um(`′)Gim(`, `′) d`′ (11)

can be written as,

I(`) =

bi∫
ai

2π∫
0

um(`′)αi(`, `′, φ′)eimφ
′
dφ′ d`′. (12)

It is clear upon inspection of the functions
αi(`, `′, φ′)eimφ

′
can be written as a product

Φi(`, `′, φ′,m, k)Ψi(`, `′, φ′) where Φi is smooth
and contains all the frequency and mode dependent
factors, while Ψi contains the singularity and has no
dependance on frequency or mode. Therefore, the local
corrections can be performed in two dimensions for the
double integral using only Ψi as the singular kernel. The
Φi can simply be absorbed into the solution function
ui(`′). The local corrections will produce a quadrature
rule of the form,

bi∫
ai

2π∫
0

um(`′)αi(`, `′, φ′)eimφ
′
dφ′ d`′ (13)

=

bi∫
ai

2π∫
0

um(`′)Φi(`, `′, φ′,m, k)Ψi(`, `′, φ′) dφ′ d`′,

(14)

≈
∑
p

∑
q

um(`p)Φi(`, `p, φq,m, k)ωpq, (15)

where ωpq are the locally corrected weights. Now to make
this quadrature rule consistent with the BOR formulation,
simply factor out the u(`p) out of the inner sum to arrive
at,

bi∫
ai

um(`′)Gim(`, `′) d`′ ≈
∑
p

um(`p)ω̃1
p (16)

where ω̃1
p =

∑
q

Φi(`, `p, φq,m, k)ωpq . At this point, it is

clear that the locally corrected weights ωpq need only be
computed once, and can be updated by multiplication to
account for changes in frequency or mode number. The
drawback is that this yields a large local correction. Ad-
ditional details in the development are somewhat tedious
and can be found in [2]. The final result is,

bi∫
ai

um(`′)Gim(`, `′) d`′ ≈
∑
p

um(`p)ω̃3
p (17)

where

ω̃3
p =

∑
q

Φi(`, `p, φq,m, k)ωpq

+
∑
q

ωp(q)ωqαi(`, `p, φq)eimφq .
(18)

Local correction need be done only once and can
be easily modified for changes in frequency and mode.
In this case, many more local corrections are done, but
the additional corrections are small problems for one
dimensional integrals. This improves accuracy without
producing a very large system of local corrections.

V. NUMERICAL RESULTS

The following results show the application of the
above methods to some canonical geometries. The locally
corrected Nyström results are produced by AFITBOR [2]
which use the methods described in the paper. Com-
parisons are made to CARLOS-BOR [6], a method of
moments solver for the MFIE, to the three-dimensional
moment method code AIM [7], or to a known analytical
solution.

A. Sphere
We compare the far-zone scattered fields produced

by the AFITBOR to the Mie series solution [4]. Figure 1
shows very good agreement between the radar cross-
section (RCS) results obtained from the Mie series and
AFITBOR for a conducting sphere with radius equal to
one wavelength. The direction of the incident wave is 90◦

from axial incidence. The computation uses 12 modes in
the Fourier series expansion. The results are very nearly
identical to those obtained for axial incidence, in which
only one Fourier mode is excited.

B. Oblate Spheroid
Here we apply the method to a non-spherical BOR.

The only change in the code is to change the definition of
the BOR defining curve. The spheroid is the BOR found
by rotating half an ellipse with major axis a = 2λ in the
x-direction and minor axis b = 1λ in the z-direction in
the (x, z)-plane. The RCS for the θθ - polarization and
φφ - polarization is plotted in Fig. 2.

C. Cylinder
Finally, we consider the “450” squat cylinder [8]

which is a cylinder with radius 2.25 and height 2.1 inches.
We let the wavelength be unity (λ = 1 inch). The incident
field is 90◦ from axial incidence. As seen in Fig. 3 there
is some disagreement in the RCS produced by AFIT-
BOR compared to CARLOS-BOR, but comparison with
a non BOR code (AIM) [7] shows AFITBOR comparing
slightly better than CARLOS-BOR.

VI. CONCLUSION

The locally corrected Nyström (LCN) method allows
the high order properties of the Nyström method to be
applied to electromagnetic integral equations. The primary
difficulty lies in the computation of the local corrections.
Even though computation of locally corrected weights
is an O(n) operation, it can still be a computationally
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(a)

(b)

Fig. 1. Bistatic RCS of a unit sphere with λ = 1 and
angle of incidence 90◦. φφ-polarized data are shown on
the top while θθ-polarized data are shown on the bottom.

intensive procedure, so it is highly desirable to compute
the corrected weights only when necessary. The paper
has shown how to use a set of local corrections on a
fixed geometry for a range of frequencies and a range of
modes in a modal expansion for a body of revolution.
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Abstract – A numerical solution based on integral equa-
tion is derived for an electromagnetic scattering from
M multiple parallel cylinders. The problem is two-
dimensional and the integral equation is solved using the
Nyström method. To validate the algorithm, we compare
our numerical results with the semi-analytical ones ob-
tained from multipole expansion method.

I. INTRODUCTION

Problems of multiple scattering are of significant im-
portance in many areas of technology. Indeed, many wave
propagation problems can be modeled as such. Exam-
ples include electromagnetic and optical communication,
imaging, object characterization, electronic and optical
components, etc. Hence, the development of efficient and
accurate numerical simulation for such problems is highly
desirable. In this paper we discuss an efficient com-
putational algorithm for the problem of approximating
the scattered electromagnetic field from two dimensional
multiple parallel dielectrics of arbitrary cross-sections. For
the sake of clarity, we only consider the TM polarization
case. The method caries out easily for other polarizations
as well. When solving this type of problems, there are two
possible directions to follow. The first is to analytically
treat a simplified model [1,2] that captures the relevant
properties of the actual problem. Although analytic so-
lutions are rarely possible for the structures of arbitrary
realistic complexity, they provide a closed mathematical
description, and in most cases a better understanding, of
the solution. The second class of algorithms utilize numer-
ical methods [3,4] to treat more realistic descriptions of
the underlying physics. However, in exchange, it can be
difficult to find fast and accurate computational model.
Since, for many applications, the assumption of simple
geometry is far from warranted we develop in this paper
an efficient algorithm that can handle complex geometries.
In particular, our method is based on boundary element
method (BEM). Usually, for BEM approximations, the
implementation is based on either Green’s theorem in each
dielectric objet [5,6] or the use of single and/or double
layer potentials [7]. In the case of one dielectric object,

both methods lead to a pair of integral equations for a pair
of unknowns. We deduce that, by using these approaches
for multiple dielectric scatterers, for M interfaces we have
2M unknown functions to determine. For one dielectric
object a single integral equation involving one unknown
function was obtained [8] by using a hybrid of integral
equation and Green’s theorem. It is also possible to obtain
single integral equations by using the extended boundary
condition method [5]. But this later method suffers from
the choice of the boundary as well as ill-posedness. The
purpose of this paper is to obtain an efficient numerical
solution of single Fredholm type integral equations on
each interface for multiple dielectric scattering by the use
of boundary layers and Green’s formula. The method,
which reduces the number of unknowns by half, converges
very fast and is accurate. The numerical computation is
implemented by using the Nyström method. Our results
are validated by numerical examples for circular cylinders
where analytic solution is found by using the multipole
expansion method.

II. THE MATHEMATICAL FORMULATION
OF THE PROBLEM

Let Ωl, l = 1, 2, · · ·M, be the cross-sections of M
parallel cylinders, describing the scatterers (Fig. 1) and

Fig. 1. Multiple scattering of a plane wave ui by many
cylinders.
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Let Γl be the boundary of Ωl. The unit outward normal
ν to Γl is assumed to be directed towards the exterior.
We denote the field outside (in the air) as Ω0, i,e. Ω0 =
R2\ ∪Ml=1 (Ωl).

For simplicity we consider an s-polarized field inci-
dent upon the dielectric (nonmagnetic) cylinders of cross-
sections Ωl, with the electric field parallel to the x3−axis.
But generalization to other polarizations and materials
does not present any difficulty.

Each domain Ωl l = 0, 1, · · ·M, has permittivity
εl. The scatterers are assumed to be illuminated by an
incident field Ei which is a plane wave with direction
d and angle α, i.e. d = (cosα, sinα). With use of
a time dependence in e−jωt (ω is the frequency and
j =
√
−1), the incident electric field is given, for every

point x = (x1, x2), by,

Ei(x) = ejω
√
ε0x·d.

Then (cf. [1]) we have to solve the Helmholtz equa-
tion in each dielectric object Ωl, l = 1, 2, · · ·M and in
the outer region Ω0,

(∇2 + κ2
l )El = 0 in Ωl, l = 0, · · · ,M

where the wave numbers κl are given by κl = ω
√
εl.

For l = 1, 2, · · ·M , the electric field El represents E in
Ωl, and in Ω0 we have E = E0 + Ei, where E0 is the
scattered electric field.

In addition, E0 must satisfy the Sommerfeld radiation
condition, i.e.,

lim
|x|→∞

|x|1/2
(
∂E0

∂|x|
− jκ0E0

)
= 0..

We denote the fundamental solution to the Helmholtz
equations (the free-space source) by,

Φk(x,y) = − j
2
H

(1)
0 (κk|x− y|), k = 0, 1, · · · ,M

where H
(1)
0 is the Hankel function of the first kind

and order zero. We use the factor j/2 (instead of the
standard j/4) for convenience in the derivation of the
integral equations below. In the sequel we shall assume
that ε0 = 1.

III. THE INTEGRAL EQUATION APPROACH
TO SOLVE THE PROBLEM

We would like to obtain a set of M equations with
M unknowns on each boundary Γl of Ωl, l = 1, · · · ,M .
Now, for k = 0, 1, · · ·M, l = 1, 2, · · · ,M and (density)
functions φl, ψl, define the single and double layer poten-
tials,

Slkφl(x) =
∫

Γl

Φk(x,y)φl(y) ds(y), x ∈ R2\Γl

and

Dl
kψl(x) =

∫
Γl

∂

∂ν(y)
Φk(x,y)ψl(y) ds(y),x ∈ R2\Γl,

respectively. Their normal derivatives at some point on a
boundary Γm, m 6= l, are given by,

M l,m
k φl(x) =

∂

∂ν(x)
Slkφl(x), x ∈ Γm

and

N l,m
k ψl(x) =

∂

∂ν(x)
Dl
kψl(x), x ∈ Γm.

Accordingly we shall denote Sl,mk φl(x) and Dl,m
k ψl(x)

the values of Slkφl(x) and Dl
kψl(x) when x belongs to

Γm, m 6= l.
It is known (cf. [9] Sections 2.4 and 2.5) that when

x approaches Γl, Slk and N l
k are continuous whereas Dl

k

and M l
k exhibit jumps. In particular,

Slk = Ŝlk, N
l
k = N̂ l

k, D
l
k = D̂l

k ∓ I,M l
k = M̂ l

k ± I (1)

where the upper (lower) sign corresponds to the limit
when x approaches Γl from outside (inside) and I is the
identity operator. The hats on the operators mean the case
when x ∈ Γl.

To arrive at the desired integral equation we define
a layer ansatz (a combination of single and double layer
potentials) in Ωl, l = 1, 2, · · · ,M , and apply Green’s
theorem in Ω0. So, for l = 1, 2, · · · ,M, let,

El =
(
−jρlSll +Dl

l

)
φl(x) x ∈ Ωl

where ρl are arbitrary nonzero complex numbers.
We have, by jump relations (1),{

El = P ll φl
∂
∂νEl = Qllφl

on Γl (2)

where P ll = −jρlŜll + (I + D̂l
l) and Qll = −jρl(−I +

M̂ l
l ) + N̂ l

l .
In the exterior region, we use Green’s theorem to

obtain (cf. [9] pp. 68-70),{
E0(x) =

∑M
l=1

(
Sl0

∂
∂νE(x)−Dl

0E(x)
)
,x ∈ Ω0,

f(x) =
∑M
l=1

(
Dl

0E(x)− Sl0 ∂
∂νE(x)

)
,x ∈ R2\Ω0,

(3)
where f = 2Ei.

Now, using the jump relations (1), we obtain the
second equation in the system (3) on Γl, l = 1, 2, · · ·M .
Using the boundary conditions, and substituting El and
∂El/∂ν (given in equation (2)) into these equations we
arrive at a set of M integral equations with M unknowns
φl on Γl, l = 1, 2, · · · ,M ,

f = Âl0φl −
M∑

m=1,m6=l

Am,l0 φm on Γl (4)

where
Âl0 =

(
(D̂l

0 − I)P ll − Ŝl0Qll
)
,

and

Am,l0 =
M∑

m=1,m6=l

(
(Dl,m

0 − I)P ll − S
l,m
0 Qll

)
.
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This problem is discretized using the Nyström
method [7,10]. The resulting matrix equation, that in-
volves many matrix-vector multiplications resulted from
the multiplications of layer potentials and/or their deriva-
tives, is solved by a two-grid iterative method [11,12].
The matrix vector multiplications can be done quickly by
FMM routines [13].

IV. NUMERICAL VALIDATION AND
RESULTS

It is well known that E0 has the following asymptotic
behavior [9],

E0(x) =
ejκ0|x|√
|x|

{
E∞(

x
|x|

) +O

(
1
|x|

)}
|x| → ∞

where E∞ is known as the far (scattered) field. It is related
with the intensity at infinity I∞(or the bistatic differential
cross section) as,

I∞ = 2π|E∞|2.

We wish to compute an approximation of the far field
E∞. We use θ to denote the observation angle, i.e., x =
|x|(cos(θ), sin(θ)). Unless otherwise stated we use ω = 1,
and nl = 1.5, l = 1, 2, · · · ,M .

For validating the algorithm we start with the com-
putation of the far field for circular cylinders. A quasi-
analytical solution (QAS) can be obtained in this case
[1].

Fig. 2. The absolute value of the far field against the
incident angle α for two circular cylinders of different
radius using the BEM (solid line) and QAS (dots) algo-
rithms. Here we use θ = 0 (top, left), θ = π/4 (top,
right), θ = π/2 (bottom, left), and θ = 3π/2 (bottom,
right). We have used ε1 = 1.5 and ε2 = 2.3.

In Fig. 2, for different observation angles θ, we plot
the absolute value of the far field against the incident
angle α for two circular cylinders of radii r = 1 and
r = 2 using QAS (dots) and the BEM (solid line)
described in this paper. We see a very good match of

the two solutions. This is achieved for 8 grid points of
the Nyström implementation.

Next we look at the case of more circular cylinders.
To this end we add two more cylinders of radii r = 0.5
and r = 0.25. The positions of the four cylinders is the
same as for the objects in Fig. 5. The result is given in
Fig. 3 where we give similar computations as the case of
the two circular cylinders. Like for the previous case we
see an excellent match of the two methods. To see the
exponential convergence of our integral equation method
we plot the absolute value of the far field against the
number of grid points in Fig. 4.

Fig. 3. The absolute value of the far field against the
incident angle α for four circular cylinders of different
radius using the BEM (solid line) and QAS (dots) algo-
rithms. Here we use θ = 0 (top, left), θ = π/4 (top,
right), θ = π/2 (bottom, left), and θ = 3π/2 (bottom,
right). We have used ε1 = 1.5, ε2 = 2.3 ε3 = 1.9 and
ε4 = 0.5.

Fig. 4. The absolute value of the far field against
the number of grid points for the case of four circular
cylinders with different radii. Here we use θ = 0 and
α = 0.

Finally we look at the case of non-convex boundaries
where analytical results can not be obtained. In particular,
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Fig. 5. Four non convex dielectric objects of different
sizes.

consider the case of four such boundaries as given in
Fig. 5. They have the following parametric formula for
0 ≤ t ≤ 2π,

(x, y) = γj (cos(t) + 0.65cos(2t)− 0.65, 1.5sin(t))

where γj , j = 1, · · · , 4, are random real numbers.
When we analyze the convergence in Fig. 6 we see, as

in the case of circular cylinders, a very fast convergence.
In Fig. 7 we give the result of the far field against

the incidence angle for various number of grid points.

Fig. 6. The absolute value of the far field against the
number of grid points for Fig. 5. Here we use θ = 0 and
α = 0.

V. CONCLUSION

We have developed an efficient numerical algorithm
for the computation of scattered fields for two dimensional
parallel dielectrics. The numerical simulations show very
good results compared to existing methods. Our future
work will be to apply this method for analyzing photonic
bandgaps and to the three dimensional objects.

Fig. 7. The absolute value of the far field against the
incident angle α for the geometry in Figure 5 using the
BEM for two grid points (‘o’), six grid points (dots) and
eight grid points (solid line). Here we use θ = 0, ε1 = 1.5,
ε2 = 2.3 ε3 = 1.9 and ε4 = 0.5.
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Abstract − A systematic design method of near field 
dielectric windows for 2D conformal fed arrays was 
previously developed. This developed design yielded 
simultaneously well-behaved element patterns in both 
axial and circumferential polarization. The method 
includes dimensioning of the window thickness to 
maximize the radial decay rate of the radome induced 
surface waves, followed by inclusion of a sufficiently 
large gap to decouple the surface waves from the array 
face. This methodology has been successfully extended to 
3D with circumferential polarization according to the 
previously established guidelines and has provided smooth 
patterns in the circumferential plane, but limited the scan 
in the axial plane. Here we will investigate the case with 
axial polarization and compare the available useful scan 
volume to that of circumferentially polarized excitation. 

 
I. INTRODUCTION 

  
The suitability of a near field protective dielectric 

radome for a curved phased array antenna has been judged 
by the acceptability of the element patterns in the presence 
of the radome [1]. Such a dielectric radome in the near 
field of a curved phased array antenna may cause 
significant deterioration of the element pattern, which 
manifests itself in pronounced dips (10-20 dB) and a large 
ripple off broadside in the element pattern. These 
undesirable effects are due to guided waves induced by the 
radome [1]. 

 A practical approach to reduce these effects is to 
separate the radome somewhat from the radiating elements 
and adjust the air gap to produce a compensating effect 
which smoothes out the element pattern [1]. This method 
has been extended to evaluate a systematic design method 
of shaping the element patterns in the presence of a near 
field radome by adjusting the radome thickness, and the 
distance of the radome from the array elements in order to 
smooth out the element patterns [1, 2]. This method is 
particularly relevant to protective dielectric windows for 
missile phased arrays [3-5]. 

 This approach has been extended for 3D structures 
for the circumferential polarization case in [2]. Direct 
evaluation of the element patterns for the 3D-optimized 
window geometries, and the results have indicated that a 
significant reduction of guided wave effects is possible. 
The elements spacing is not smaller than 0.5 λ, and the 
compensation is accomplished by an adjustable air gap as 

well. By appropriately designing the radome [6], it was 
possible to scan a phased array beam efficiently in the 
E-plane (circumferential plane), but the cost is the 
appearance of a blind spot caused by the presence of the air 
gap, which limits the H-plane scan (axial-scan in this 
case). The location of this dip is predictable from the 
planar dispersion curves of a dielectric slab spaced from 
and parallel to a ground plane. Cross polarization is 
encountered off the principal planes due to polarization 
coupling at the dielectric-air interfaces. The amount of 
cross polarization increases with decreasing θ, i.e. 
increasing elevation angle from broadside. When the near 
field radome is spaced away from the radiating elements, 
the principal polarization is still dominant in the shadow 
region but may be highly rippled due to the presence of 
low attenuation guided waves. With a proper choice of 
parameters, the level of the shadow region-element pattern 
ripple may be reduced without an excessive air gap size.  

 In the present paper, these ideas have been extended 
further to arrays scanning in the axial or near the axial- 
direction, when the coupling between longitudinal section 
electric ‘LSE’ and longitudinal section magnetic ‘LSM’ 
polarizations by the dielectric layer are present. The 
method of radome design for the axially 
polarized-rectangular waveguide elements is pursued here 
according to the guidelines established in [1] and will be 
compared to that of the circumferentially polarized case 
presented in detail in [2]. 

 
II. ANALYSIS 

 
 The model, shown in Fig. 1, is very similar to the one 

used for the circumferentially polarized case [2], with one 
exception that the orientations of the radiating waveguides 
are different. Both structures are comprised of uniformly 
spaced infinite arrays of open-ended rectangular 
waveguides in a rectangular lattice embedded in a 
perfectly conducting circular cylindrical surface of radius 
ρ surrounded by a concentric lossless dielectric sleeve 
radome. Therefore, the formulation of the two different 
polarizations is very similar until we apply the boundary 
conditions at the surface of the conducting cylinder. 
Therefore, we will summarize here the main analysis 
steps, but for more details refer to [2].  

The structure has N elements in a ring and the axial 
inter-ring spacing is d. A single waveguide is excited 
while all others are match-terminated [3-5]. The dielectric 
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loaded feed waveguides solely propagate a TE10 mode and 
include identical matching networks with parameters 
appropriate to a chosen circumferential and axial 
progressive element phasing (ν,ζ). A single mode 
waveguide aperture approximation should be sufficient to 
account for dominant mutual coupling effects. 
 

 
Fig. 1. Circular Array Geometry of a dielectrically covered 
circular array of infinite axial slits on a large conducting 
cylinder.  
 
A.  Formulation   

As in the absence of the dielectric radome [2], the 
electric fields radiated by an element in a 
match-terminated cylindrical array with a concentric 
sleeve radome are formally given by, 

 
1

0

( ) ( , , ),
2

N
d

d

d
E r d E r

N

π

π
ν

ζ ν ζ
π

−

−
=

= ∑∫             (1) 

 
where )(rE  is the E-field in the radial unit cell for the 
steering phase (ν,ζ). As for a given set of (ν,ζ), the 
problem reduces to determining the field radiated by a 
rectangular waveguide into a sectored-waveguide whose 
walls are characterized by “phase shift" walls. 

For the sake of analysis, it is sufficient to consider 
only the transverse to ρ  field components E and H, and in 
each radially homogeneous region, these fields can be 
represented in terms of a complete set of LSM(`) (Hz = 0) 
and LSE(``) (Ez = 0) modes. 

A (m,n) LSM or LSE mode has the form [3], 
 

 (',")(',") (',")
,, ,( ) ( ) ( , )

m nm n m n
E r v e zν ζν ζ ν ζ ρ φ=               (2) 

   (',")(',") (',")
,, ,( ) ( ) ( , )

m nm n m n
H r i h zν ζν ζ ν ζ ρ φ=  ,             (3) 

2;m nmN n
d
πν ν ζ ζ= + = +  ,          (4) 

where 
, 0, 1, 2,...m n = ± ±  

',"
,m n

iν ς and ',"
,m n

vν ς satisfy the Bessel’s differential equation 

(as given in Appendix A1 of [2]). Additionally, for an e jω t 
time dependence, the orthogonal vector mode functions 
are, 

' ( )
, 2( ) m n

m n

j zm n
oo

n

e z e ν φ ζ
ν ζ

ν ζ φ
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− +−
= +

             (5) 
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1( ) m n

m n
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o

h e ν φ ζ
ν ζ φ
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− +−

=   ,                     (6) 

and 
" ( )

, 2

1( ) m n

m n

j z
o

n

e e ν φ ζ
ν ζ φ

ρκ
− +=  ,                 (7) 

" ( )
, 2 0

( ) m n

m n

j zm n
o

n

h z e ν φ ζ
ν ζ

ν ζ φ
ρκ

− +−
= +  ,          (8) 

 
where ( , , )oo o

zρ φ are the cylindrical unit vectors.  

Upon utilizing the following representations, 
 

ρζνζνζνζν /; "
,

"
,

'
,

'
, nmnmnmnm

vVvV ==           (9) 
"

,
"

,
'

,
'

, ;/
nmnmnmnm

iIiI ζνςνζνζν ρ == .        (10) 
 
Expressions for the radial modal transmission line in 

the ith layer (see Fig. 1) are given in Appendix A.  
Both the total voltage V

m nν ζ ρ,
(",') ( ) and the total current 

I
m nν ζ ρ,

(",') ( ) at any radial distance ρ or the 
forward-traveling (+) and backward-traveling (-) voltages 
and currents given by V

m n

i
ν ζ,
(",')( )± and I

m n

i
ν ζ,
(",')( )±  will be 

expressed in terms of Vo(ν,ζ), and Io ( , )ν ζ  as shown in 
section III. Wherein Vo(ν,ζ) and Io(ν,ζ) are the dominant 
feed waveguide voltage and current just below the feed 
aperture. 

In our analysis, the total voltages and currents at the 
cylindrical conducting surface given by V

m n oν ς ρ,
" ( )+ , 

'
, ( )

m n oVν ζ ρ + , "
, ( )

m n oIν ζ ρ + , and '
, ( )

m n oIν ζ ρ +  are related to 
the forward-traveling waves in the exterior region (i.e.in 
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layer  i=3)  given by the unknowns I
m nν ζ,

"( )+3 and V
m nν ζ,
'( )+3 . 

This relationship is determined by using the boundary 
conditions at the various air-dielectric interfaces at ρ1 and 
ρ2, the transmission of both the LSM and LSE modes 
across the two layers i.e. i=1 and i=2, and the radiation 
condition at ρ → ∞.   The various mode transmission 
and coupling through the two dielectric layers and their 
associated coupling at the air-dielectric interfaces at ρ1 and 
ρ2 are expressed by an overall transmission matrix T12 as 
shown by equation (11), and the T12 matrix elements are 
given in Appendix B, 
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(11)

  
 

where expressions for "
3nZ and '

3nY  are given in Appendix 

A, and (1,2) ( )nH x is Hankel function of order n, type 1 or 
2, and argument x .  
    

III. ACTIVE ADMITTANCE FOR AXIAL 
POLARIZATION 

 
The single mode aperture approximation, for an 

axially polarized feed waveguide aperture, requires that in 
the unit cell,   

,
( ) 0

m n oE
ν ζφ ρ = .                            (11)      

Therefore equations (2) and (10) imply, 
 

V V
m n m no

n m
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κ ρ
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"
,

'( ) ( )+ +=
1

2  .            (12) 

 
Matching the tangential field components, assuming 

that the aperture is only slightly curved, the single mode 
aperture approximation requires that the following 
relations to be satisfied in the Galerkin’s sense, 
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where Sf is the feed guide aperture, and Vo(ν,ζ) and Io(ν,ζ) 
are the TE10 modal voltage and current respectively. 

Employing Galerkin’s procedure, one has, from 
equation (14), 
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and 
 β = 2π/N,                                (17)  

 
also, equation (15) yields, 
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Upon expressing I

m n oν ζ ρ,
" ( ) and I

m n oν ζ ρ,
' ( )  as 

functions of Vo(ν,ζ), we finally can find the ratio of  
Io(ν,ζ)/Vo(ν,ζ) which is the active admittance Ya(ν,ζ). 

 
A.  Active Reflection Coefficient 
 

 To maximize the broadside element gain and 
preserve the circular symmetry of the array, identical 
networks are included in all feed waveguides to match the 
array for in phase excitation of all elements (ν=0, ζ=0), 
where the active reflection coefficient Γa(ν,ζ).at the input 
to the matching network is, 
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 From the equivalent network of Fig. 2, it is apparent 
that for the (ν,ζ) excitation, the TE10 modal voltage 
Vo(ν,ζ) at the aperture is related to the incident voltage 
Vinc and is given by, 
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where Yo is the admittance of the TE10 feed waveguide 
mode. 
 

 
Fig. 2. The matching network. 
 
B.  Element Pattern 

The exterior unit cell voltages V
m nν ζ ρ,

" ( )2
+

 
and V

m nν ζ ρ,
' ( )2

+  are calculated in terms of Vinc upon 
utilizing Appendix C and equation (20). 

The expression for the far field of a singly excited 
element in a mutually coupled environment is given by 
[2], 
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with 

V k nT k Vo
inc( , cos ) ~ ( , cos )ν θ ν θ=           (23)  

Equations (21-23) are formally valid for both 
polarizations, provided appropriate expressions for 
V Vk oν θ, cos

" / ,  and V Vk oν θ, cos
' /  are used. For the axial 

polarization these are numerically obtained using 
Appendix C. 

C.  Element Gain Amplitude 
 

The total element power gain is given by, 
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where ηo=120π ohms and Gφ and Fφ are given by, 
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where 

Ga'(0,0) =Re[Ya(0,0)]
ab
cd

8

2π
.                  (27) 

 
 Similar expressions can be derived for the 

circumferential components such as cross-polarization 
upon replacing θ  by φ  in equation (26). 

 
IV. NUMERICAL RESULTS AND DISCUSSION 

 
The numerical results for rectangular waveguide 

cylindrical array element patterns in the presence of a near 
field dielectric radome (window) are presented for 
nominally axial element polarization. These results stress 
the aspects relevant to blind spot free, conformal near field 
radomes. They indicate a significant influence of guided 
waves and illustrate the extent of validity of the design 
method of [l] for dielectric windows to reduce these 
deleterious effects. In addition to the guided wave effects, 
the polarization aspects of the element pattern as 
influenced by the curvature and the presence of the radome 
are considered. 

As in the two and 3D dimensional arrays of [l, 2], the 
element amplitude patterns are presented for 
representative values of array parameters and the results 
are grouped in such a way to exhibit the significant trends. 
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A. Effect of Gap Size 
 

Figures 3-13 present element patterns (kορο = 50, a/λ 
= 0.435, b/λ = 0.2, c/λ = d/λ = 0.5) for waveguides 
oriented so as to produce axial polarization as shown in 
Fig. 1. The dielectric constant is εr = 2.56 unless otherwise 
stated.  

In all cases the field (voltage) element patterns were 
normalized to the unit cell gain 2/4 λπ dc , and a single 
mode aperture approximation was used. The numerical 
results stress the element gain pattern-aspects that are 
relevant to the blindspot-free conformal array design. 

An extremely close similarity has been found between 
the normalized gain pattern in the θ=90° cut and the 
H-plane patterns in the two-dimensional arrays with a 
similar geometry. Therefore, in order to save computer 
time, we have replaced, unless otherwise stated, the θ=90° 
H-plane cuts by the 2-D results [1]. When the dielectric 
window overlays the array face (tg = 0), and td/λ = 0.2, the 
H-plane element pattern (see Fig. 3) does not exhibit 
blindspots, but is slightly rippled, which might be 
acceptable. However, the element pattern deteriorates with 
θ off the principal H-plane. The large ripple is due to the 
coupling to the cross-polarized guided waves, which are 
absent for θ = 90º.  

 In order to reduce this effect, an air gap is introduced, 
and Fig. 3 shows different situations arising as the air gap 
is increased. Consider first the θ = 90º (H)-plane case, 
where it is initially seen that the patterns deteriorate and 
blindspot dips appear upon introducing the air gap (see the 
two cases tg/λ = 0.25 and 0.4). However for tg/λ = 0.5 at 
the θ = 90º, the pattern already becomes very smooth 
because of the surface wave decoupling. In order to 
facilitate understanding of the main features of the θ = 90º 
(i.e. H-plane) element pattern with the inclusion of an air 
gap, the assumption of the validity of the planar 
approximation will be adopted, as in the 2-D case. 

  To exhibit the element pattern for small departures 
from the θ = 90º cut, Fig. 6 shows conical cuts of θ = 85º 
for tg/λ = 0.2, 0.4 and 0.5 which exhibit only minor 
changes from the respective θ = 90º patterns, meanwhile 
the cross polarization level is small. Consequently, the 
design method is also applicable for small departures from 
θ = 90º. 

With the aid of Figs. 4 and 5 and equation (28), one 
may estimate the radial surface wave decoupling away 
from the curved dielectric sheets towards the array face. A 
20dB wave decoupling was calculated to be 20 dB for tg/λ 
= 0.5; which is seen to be sufficient for koρo = 50. 

Continuing further, for θ = 60º (Figs. 7 and 8), the 
gain drops with decreasing values of θ, but for tg/λ = 0.5 
we have already a smooth element pattern in the principal 
polarization. However, as expected, the amount of 
cross-polarization increases. 

Figure 9 shows smooth element patterns for the θ = 
45º in the case of td/ λ = 0.2 and tg/ λ = 0.5. Thus, the 
design method applies here, as well, but it is not possible 
to scan much beyond θ = 45º, 

 

 
 
Fig. 3. Effect of air gap size “tg/λ" on element gain patterns 
for different gap sizes (tg/λ=0, 0.2, 0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56, for 
θ=90° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.25 gain case, a 
0.4 for the tg/λ=0.4 case, and a 0.6 for the tg/λ=0.5 case to 
separate their respective performances. 
 

 
 
Fig. 4a. Effect of air gap size on surface wave propagation 
for εr=2.56. 
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Fig. 4b. Effect of air gap size on surface wave propagation 
for εr=4. 
 
 

 
 
Fig. 5. Grating lobe diagram. 

 
Because of the E-plane dip at θ = 32º (from the axis), as 
predicted from Figs. (4, 5) and from the condition (28) for 
a blindspot in a planar array.  
 

 
 
Fig. 6. Effect of air gap size “tg/λ" on element gain patterns 
for different gap sizes (tg/λ=0, 0.2, 0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56, for 
θ=85° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.2 gain case, a 
0.4 for the tg/λ=0.4 case, and a 0.4 for the tg/λ=0.5 case to 
separate their respective performances. 
 

 
 
Fig. 7. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for 
θ=60° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.5. 
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B. Effect of radome thickness 
 

For td/ λ = 0.3 and θ = 60º, Fig. 11 shows the element 
pattern for tg/λ= 0.2 and a smooth element pattern for tg/ λ 
= 0.5. The latter case corresponds to the optimized 
geometry found in [l]. 
 

 
Fig. 8. Effect of air gap size “tg/λ" on the element gain 
patterns relative to the uncovered case for koro=50, 
a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for θ=60° 
cuts. 
 

 
 
Fig. 9. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for 
θ=45° cuts. 

C. Effect of Radome Dielectric Constant εr  

 

Figure 12 illustrates the situation for εr = 4.05 and td/ λ 
= 0.2. In this case, the radome is no longer electrically 
thin, and in the absence of an air gap (tg = 0), the principal 
H-plane θ = 90º exhibits a dip due to a TE surface wave. 
However, for tg/ λ = 0.55, the θ= 90º cut is acceptable. For 
θ =60º, tg/ λ = 0.3 gives rise to a rippled pattern, but tg/ λ= 
0.55 is again sufficient to produce a smooth pattern (see 
Fig. 13).  
 

Fig. 10. Effect of air gap size “tg/λ" on the element gain 
patterns relative to the uncovered case for koro=50, 
a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for θ=45° 
cuts.  
 

 
Fig. 11. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.2, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.3, εr=2.56 for 
θ=60° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.5. 
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Fig. 12. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.0, and 0.55) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=4.05 for 
θ=90° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.55. 
 

 
Fig. 13. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.3, and 0.55) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=4.05 for 
θ=60° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.55. 
 

V. CONCLUSION 
 

 This paper extends the ideas of [l] for shaping the 
element patterns of conformal arrays scanning in two 
planes in the presence of a near field, dielectric radome. 
The spacing is not smaller than 0.5 λ, and the 
compensation is accomplished by an adjustable air gap. 
The gap compensation method works fairly well. The axial 
scan is limited by the E-plane dip, which can be predicted 

from the planar surface wave dispersion curves. Axial 
polarization allows further scanning along the axis as 
compared to that of the circumferential polarization which 
is limited by the H-plane dip that is closer to broadside to 
that of the axial case. However, cross-polarization is the 
main problem for axially polarized excitation and is 
present off the principal planes even without the radome. 
From the data shown, it appears that the cross-polarization 
slightly worsens in the presence of a radome. For a 
sufficiently large departure from the principal planes, the 
cross polarization level exceeds that of the principal 
polarization even in the lit region, limiting the extent of the 
excited arc in an active array and the extent of additional 
phase scanning in the azimuthal direction. This 
polarization is more suitable for applications where the 
desired scan sector is larger in the axial direction than in 
the circumferential direction 

 
APPENDIX 

 
A. Radial Transmission Line 
 

In view of equation (9), i
m nν ς,

" and v
m nν ς,

' satisfy the 
Bessel’s differential equation and therefore one has the 
following expressions for the radial modal transmission 
line in the ith layer (see Fig. l), 
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But, for i=3 and ρ ρ≥ 2 , we have only forward 
traveling waves, 
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where κn3 = κn1 and Zn3 = Zn1, and H xn
( , ) ( )1 2 denotes the 

Hankel function of the first or second type with argument 
x and order n. 
 
B. Transmission Matrix T12 
 

The various voltages and currents in the i-layer at 
ρ i−

+
1 can be related to those at ρ i

− using the following 
transmission representation, 
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where ∆2
"  is given by, 
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And similarly Ai
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'  are deduced by 
first dividing all the above terms for the (``) case by 
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where ∆2
'  is given by, 

    
' ' (2) ' (1)

(2) (1) ' '

[ ( ) ( )

4( ) ( )]

m m

m m

i ni ni i ni i

ni i ni i ni
ni i

Z H H

jH H Z

ν ν

ν ν

κ ρ κ ρ

κ ρ κ ρ
πκ ρ

∆ = −

− =
    (B1.6) 

 
C. Boundary Conditions and The Coupling Matrix Pi,i+1 
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On the other hand, the continuity of EΦ and HΦ at 

ρ1 and ρ2 yields via equations (2), (3) and (9) the 
following, 
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The coupling matrix Pi,i+1 is given by,  
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Repeating for i=1 and i=2, we can find the overall 
transmission from ρ0

+  to ρ2
−  given by, 
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where 
 

T ABCD P ABCD P12 1 12 2 23= .        (C1.6) 
 
Repeating for i=1 and i=2, we can find the overall 
transmission from ρ0

+  to ρ2
−  given by, 
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where 
 

T ABCD P ABCD P12 1 12 2 23= .         (C1.8) 
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Abstract − The work presented in this paper refers to the 
synthesis of the radiation pattern of intelligent antennas by 
the artificial neural networks (ANN) based on linear 
antennas array supplied with coaxial lines. The method of 
synthesis implemented for this type of antennas makes it 
possible to approach with an optimal desired radiation 
pattern specified by a gauge with modifying amplitude, 
phase excitation and sources space distribution. The 
approach used is based on geometry of the antennas and 
the artificial neural networks (ANN) which are able to 
model the linear antennas array. Our principal 
contribution in this paper is the extension of a synthesis 
model of the radiation pattern. The developed synthesis is 
based on the neural networks technique.  
 

I. INTRODUCTION 
 

Intelligent antennas take advantage of both     
antenna and propagation technologies. It has the potential 
to reduce multipath interference, increase signal to noise 
ratio, and introduce frequency reuse within a confined 
environment. Several challenges remain however in the 
development of intelligent antennas and one of these is 
the availability of efficient radiating elements interfacing 
with the beamformer. 

The interest of these systems is their capacity to be 
reacted automatically to a complexes environment whose 
interference is known a priori. They make it possible to 
reduce the side-lobes levels existing in there interference 
direction, while maintaining the main lobe in useful 
direction.  

These systems based on antennas network, devices to 
calculate the angles of arrivals AOA and numerical tools 
for synthesis which allot weights to the elements of the 
antenna network in order to optimize the output signal 
according to preset control technique for the formation of 
the ways and the cancellation of interfering.  

An adaptive antenna network can thus be defined 
like a network able to modify its radiation pattern thanks 
to software of synthesis ready to answer the desired 
specifications [1-3].  

The intelligent antennas systems require in general 
the coefficients of the network in real time what is not 
possible with a traditional method of synthesis. We adapt 
a new method of synthesis based on neural model. This 
tool presents a great performance at the level of   its 
speed of convergence.  

The use of the patch elements to produce an 
electromagnetic radiation goes back to the Fifties, but the 
application of this phenomenon for the first realization of 
antennas dates only from the beginning of the Sixties ten, 
when the need to conform of the networks appeared, in 
particular for the missiles.  

Various analytical and numerical methods of 
optimization (Fourier, Dolph-Tchebycheff, Woodward-
Lawson, relieving, Newton, general synthesis method…) 
[4-6] were developed and applied to synthesize the 
radiation patterns of antennas networks.  

Recently, severe optimisation techniques such as 
neural network were developed to optimize general 
results.  

In this paper, we will present the method of neural 
networks which will be applied to the synthesis of linear 
antennas array.  
 

II. PROBLEM OF SYNTHESIS 
 

The antenna synthesis was reduced to seek excitation 
and / or the space distribution on an axis of a certain 
number of elements fixed yet. For the representation of 
the radiation patterns, there are two types of 
conformations [1, 7, 8]:   

-A conformation in a plan, for example the two 
principal plans E and H   In this case, the discretization 
goes only on the direction θ   the other direction φ is 
fixed.  

-A conformation in all space (θ, φ). In this case the 
couple (θ, φ) is discretized [1].  

 
Let’s consider a one-dimensional network with Px 

elements laid out regularly in each direction (OX). Their 
radiation pattern is ),( ϕθF . 
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where  
  
f (θ,φ) : radiation pattern element. 
X m  : co-ordinates of the element m. 
W m : complex weights an order m. 
K 0 : wave numbers.  
 

For a symmetrical one-dimensional network with 
(2Nx elements, the radiation pattern of a network is,   
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According to this expression, we can notice that the 

expression of the synthesized radiation pattern is, 
 

),().,(),( ϕθϕθϕθ fRSxFSF =               (3)  
                                                                          
with  ),( ϕθRSxF  is the array factor.  

( )ϕθ ,SF : characterize the radiation pattern of a 
linear antenna’s array with Nx elements spaced of ∆x 
following OX. (Fig. 1) 

 

 
 

Fig. 1. Linear antenna array.  
 

When the desired radiation pattern ( , )Fd θ ϕ  is 
specified using a gauge, the synthesized radiation pattern 
must hold within the limits fixed by this gauge.  

The gauge can be defined in all space, part of space 
or only in some plans. An example of projection of gauge 
is given on Fig. 2, with the various parameters which 
make it possible to describe it, characterizing the desired 
radiation pattern starting from gauge (Fig. 2).   

 
Fig. 2. Gauge characterizing the desired radiation pattern. 

 
As the network is symmetrical, it is possible to 

exclusively optimize the radiation pattern by taking 
account the excitation of a quarter source of the linear 
antenna array. The excitation of the other sources is then 
obtained by symmetry. In order to limit the computing 
time, we defined the gauge only in the plan θ =90°. 
 

III. ANTENNA DESIGN 
 

A.  Elementary Antenna  
The produced elementary antenna [9] is rectangular 

(Fig. 3) and is active in the band (f=2.18GHz). The 
excitation is carried out starting from a coaxial cable 
whose central heart is welded with the ribbon of 
excitation and the base plate in the plan of mass. The 
substrate retained for our study is Plexy Glass whose 
characteristics are as follows the εr=2.5± 0.02, tgδ=2 10-2 
with 1=Hz, the thickness of dielectric the h=6mm.  
 

 
 

Fig. 3. Patch geometry. 
 

 
Fig. 4. Coefficient of reflection of each element. 
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The measurement of S11 shows a good adaptation to 
the frequency 2.45 GHz, as shown in Fig. 4.    
 
B. Antenna Array 

The prototype is composed by a network of 8 
elements in plan E, band 2.45 GHz, on a plexy Glass 
substrate, thickness h=6mm, shown in Figs. 5 and 6. Each 
element is connected by a coaxial cable.  

 

 
 

 
 
Fig. 5. Antenna array (wx= wy =72 mm, f=2.45 GHz, ∆x= 
0.5 λ, N=8 and   h=6mm). 

 
 

 
 
Fig. 6. Antenna array- E plan with a Wilkinson 
technology. 

 
In certain cases, the gauge must be satisfied with 

weights answering certain technological limitations. 
These constraints are very often constraints of dynamics 
on the excitations and these constraints are not-linear. To 
illustrate our matter, one gives the example of a 
symmetrical network of 8 sources with which one must 
synthesize a gauge and obtain weights realized with a 
Wilkinson technology. In our study one will replace this 
technology by a neuronal networks model.  

Thus, one proposes to make the synthesis of 
realizable weights thanks to the use of neural networks.  

 
IV. SYNTHESIS OF RADIATION PATTERN 

 
A. Amplitude Synthesis 

1) Directing beam: The synthesis of a directing beam 
of linear antennas array [1, 4] consists in determining the 
excitation amplitude according to OX so the vectors 
Axi=[ax1,ax2,....,axNx] which allows the synthesized 
radiation pattern ( )ϕθ ,SF  to approach ( )ϕθ ,dF . 
By considering a strictly periodic space distribution of 
step ∆x according to OX positions Xi of the sources 
becomes [5], 
 

Xi = (i-1/2) ∆x               i =1, Nx    .                   (4) 
                  

Figure 7 shows the synthesis result of radiation 
pattern of linear antenna array with 8 elements with unit 
excitation amplitude A xi = [1, 1..., 1].  

It is very difficult to approach the desired radiation 
pattern with this uniform excitation. That’s why we to 
approach with Dolph-Tchebycheff method. Then we will 
use the artificial neural network ANN for our synthesis.  
 

 
Fig. 7. Rectangular plot of beam pattern magnitude of an 
8-element linear pointing at φ0=90° with ∆x=0.5λ. 

 
The synthesized radiation pattern ( )ϕθ ,SF  and 

desired ( )ϕθ ,dF  are presented at the following Fig. 8.  
We will use the algorithm of Dolph-Tchebycheff for 

the synthesis to minimize side lobe- level which 
resembles the shape of Beam pattern (linear cosinus 
function combination). Then we will have the same form 
for all the lobes with various side-lobe levels (-20dB, -
30dB, -40dB, -50dB, - 60dB), shown in Fig. 9.  
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Fig. 8. Rectangular Plot of Beam pattern Magnitude of an 
8-element linear with Dolph-Tchebycheff amplitude 
distribution pointing at φ0=90°with ∆x=0.5λ. 
 

 
Fig. 9. Side-lobes levels (20 dB, 30 dB, 40 dB, 50 dB, 60 
dB pointing at φ0=90°with ∆x=0.5λ. 
 

Figure 10 shows the result of excitation synthesis 
using the Dolph-Tchebycheff method with various side-
lobes levels NLSlim = -60 dB, -50 dB, -40 dB, - 30 dB, -
20 dB [5].  

 

 
Fig. 10. Synthesized excitations with Dolph-Tchebycheff 
method of an 8-element linear pointing at φ0=90°with 
∆x=0.5λ. 

2) Multibeam: A multi-beam is necessary to cover 
several sources simultaneously, with possible total 
angular field sweeping of the radiofrequency [3].  

We present two examples of synthesis with 2 & 3 
beams (Figs. 11 and 12)  

 
Fig. 11. Polar plot of three beams patterns. Magnitude of 
an 8-element linear array. Pointing at φ0=60°, 96°, 144 ° 
with ∆x=0.5λ. 

 
Fig. 12. Polar plot of two beams patterns. Magnitude of 
an 8-element linear array. Pointing at φ0=60°, 96° with 
∆x=0.5λ. 
 

Figures 11 and 12 show the synthesis result [3, 10] of 
radiation pattern of linear antennas array with 8-elements 
and ∆x=0.5λ. Figure 11 presents the radiation pattern of 3 
beams pointing at (60°, 96°, and 144°). Figure 12 
presents the radiation pattern of 2 beams pointing at (60°, 
96°). Figure 13 shows the radiation patterns of 2 beams 
patterns at (60°, 144°) and a zero at (96°) of an 8-element 
linear with ∆x=0.5λ. 

 
Fig. 13. Polar plot of two beams patterns. Magnitude of 
an 8-element array pointing at φ0=60°, 144° and a zero at 
96° with ∆x=0.5λ. 
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B. Amplitude & Space Distribution Synthesis  
This approach is based on the design of linear 

antennas array in which [9] we affect the 2 parameters 
amplitude & space distribution of the sources [8]. The 
idea is to find the 2 vectors X = [∆x1, ∆x2,.... ∆xNx] & Axi= 
[ax1, ax2,...., axNx] permitting optimized radiation 
pattern ( )ϕθ ,dF .  

The method of synthesis is based [1] on the space 
distribution of the sources and the amplitude of excitation 
to optimize the desired radiation pattern. 

According to Fig. 14, we notice that radiation pattern 
is function of the distance between patches: the radiation 
pattern is directing and main lobe increases in-3dB 
increases when we decrease the distance between 
patches.  

 

 
Fig. 14. Rectangular Plot of Beams patterns Magnitude of 
a 8-element linear pointing at φ0=90°with ∆x=0.25λ, 
∆x=0.5λ, and ∆x=0.75λ. 

 
Figure 15 shows the 2 synthesised ( )ϕθ ,SF  and 

desired radiation pattern ( )ϕθ ,dF and the whole neural 
networks training [11] with 8-elements. 

 

 
Fig. 15. Rectangular plot of synthesized beams patterns, 
magnitude and desired patterns of an 8-element linear 
pointing at φ0=90°with (NLSlim=-40dB, ∆x=0.5λ). 
 

We notice, according to Fig. 15, that radiation 
patterns are contained within the limits imposed by the 
gauge.  

C.  Phase Synthesis 
The radiation patterns depend on excitation levels 

[12] which control the side-lobes level and the maximum 
oscillation amplitude of the main-lobe, [9] in different 
zones constituting the forming plan (gauge). The angular 
fields’ specifications are necessary for the gauge. In that 
case, we consider 15 angular fields that start from T1 to 
T15, as shown in Fig. 16.  

- For diagrams composed by 3 main-lobe, we define 
all angular zones from T1 to T15. 

- For diagrams composed by 2 main-lobe or 1 main-
lobe and zero, there are T1=T2=T3=T4=T5=T6.  

-  For diagrams composed by only 1 main-lobe T1 = T2 
= T3 =T4=T5=T6=T7=T8=T9=T10.   

 

 
Fig. 16. Specifications. 
 

The synthesis depend on amplitude and (or) phase 
and in certain cases on amplitude and position of patches.  
In present case, we are interested in phase synthesis. 
Figure 17 shows the radiation patterns of a linear 
antennas array composed by 8 patches using different 
angular fields starting from T1 until T15 (φ0 = 12°, 24°, 
36°, 48°, 60°, 72°, 84°, 96°, 108°, 120°, 132°, 144°, 156°, 
168°, 180°) and depicted by ∆ x=0.5λ. Results given 
with total sweeping in angular space are presented in Fig 
17.  

 

 
Fig. 17. Rectangular Plot of Beams patterns Magnitude of 
a 8-element linear pointing at (φ0=12° ,24° ,36° ,48° ,60° 
,72° ,84°, 6°, 108°, 120°, 132°, 144°, 156°, 168°, 
180°with  ∆x=0.5λ) . 

O° 18O° 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
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D. Simulation and Measurement Examples 
Table 1 shows the simulation results of the proposed 

approach when it is used with prescribed steering and null 
design. Table 2 shows the simulation results of the 
proposed approach when it is used with prescribed 
multiple steering lobes. 
 

Table 1. Excitations for different steering lobes 
and interference nulling. 
 

Synthesized excitations (phases) 

 
-10o 

(steering) 
and –10o 

(interfering) 

-40o 
(steering) 

and 0o 
(interfering) 

-50o 
(steering) 
and -10o 

(interfering) 

 φ φ φ 
1 -145 -42 223 
2 -60 94 32 
3 -37 -173 158 
4 -8 -69 -79 
5 8 69 79 
6 37 173 -158 
7 60 -94 -32 
8 145 42 -223 

 
As Figs. 18 to 20 indicate, we can observe the 

performance of our algorithm. These figures show good 
agreement between the simulation and the measurement 
results in terms of accuracy, efficiency and reliability of 
the model. We can see that a broad null (lower than –30 
db) is easily available. It is interesting to notify that the 
method allows the control of nulling level to the 
detriment of the adjacent side lobes energy, which is 
pushed up. Also, solutions with 2 or 3 lobes can be 
reached with acceptable solutions. 

 
Table 2. Excitations for different multiple steering 
lobes. 

 

Synthesized excitations (phases) 
 -50o and  –

20o 
-30o and 

30o 
-40o, 20o and 

50o 

 φ φ φ 
1 240 5 95 
2 50 185 315 
3 180 180 279 
4 310 360 126 
5 50 360 234 
6 180 180 81 
7 310 175 45 
8 120 355 265 
 
 This method does not only hold the examples 

presented above, but also appears to be general for all 
cases of synthesized desired characteristics of steered 
beams. 

 
Fig. 18. Two steering lobes at (-50° and -20°). 

 
Fig. 19. Two steering lobes at (-30° and 30°). 

 
Fig. 20. Three steering lobes at (-40°, 20°, and 50°). 
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V. SYNTHESIS BY ARTIFICIAL NEURAL 
NETWORKS 

 
The artificial neural networks ANN is a numerical 

approach inspired of the structure and behaviour of the 
biological neural. They are composed by inter-connected 
units which we call formal or artificial neural able to 
fulfil certain particular and special functions [7, 9].  

The ANN allows approaching the nonlinear 
relationship with significant degrees complexity. The 
input cells are intended to collect information which is 
transformed by hidden cells to the output cells.  

This network is composed by 1 or more hidden 
layers. In general, we use a sigmoid activation function, 

 
)exp(1

1
)(

x
xg

−+
= .                         (5)                                

 The phase iϕ  and amplitude Ai are calculated 
according to the direction of arrival of the signal carries 
out us to form a neural network made up of 2 neurons at 
the entry and 8 neurons at the exit (8 patchs). Several 
simulations were made, the optimal network obtained 
after the adjustment of the various parameters [3, 13]. 
The neural networks used in the study of this antenna are 
the continuous linear neural networks that’s the activation 
function is a linear with threshold.  

The calculation expression of the new values of 
synaptic weights connecting the neurons is given by the 
following relation [14], 
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with 
η : coefficient of training or the grain of 

adaptation.  
EK  : the quadratic error. 
W ij : weight associated with the connection of 

neuron i towards the neuron j. 
 

Figure 21 shows the result of synthesis with the 
artificial neural networks ANN of radiation pattern 
pointing at 108° of a linear antennas array with a sides-
lobes level - 40 dB (Fig. 22) [7]. One notes that the 
synthesis makes it possible to strongly reduce the 
maximum sides-lobes levels.  

Figure 23 shows the system; in fact, it consists of a 
linear antennas array and neuronal model.  

The calculated quadratic error EK, by this 
comparison is returned to the network for retro-
propagation. This training is directed because the 

completely known state can be imposed like exit wished 
on the network after each step of calculation. 

 

 
Fig. 21. Neural network topology. 

 
Fig. 22. Rectangular Plot of synthesized Beam pattern 
Magnitude of a 8-element linear pointing at φ0=108°with 
(NLSlim=-40dB, ∆x=0.5λ). 

 

 
 

 
Fig. 23. Identification of a neural model of a dynamic 
system (forced training). 
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VI. CONCLUSION  
 

The intelligent antenna is a powerful technique to 
reduce multi- user interference and increase system 
capacity. In this paper, we developed two approaches of 
synthesis of intelligent antennas starting from a technique 
of total optimization based on the neural networks , by 
action on the excitation in amplitude, phase and on the 
localization of the sources by using the specification of 
the angular fields starting from T1 to T15 to sweep the 
totality of the angular space by an intelligent way and 
reduce the existing level of side-lobe in the interference 
direction, while maintaining main lobe in useful direction 
[6]. 

Results given by our approach prove the ability of 
intelligent system to distinguish desired signals from 
others and minimize the side-lobe level while maintaining 
main lobe in desired direction. 

The artificial neural network ANN structure presents 
interesting results in synthesis of linear antennas array 
and permits a simultaneously electrical and geometrical 
control of the network.  Due to the stochastic aspect of 
this method and for each execution algorithm, the results 
are not always identical but similar.  

The artificial neural networks (ANN) is characterized 
by a slow total convergence compared to deterministic 
methods. However, the method speed depends on electric 
and geometrical parameters of the network.  
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Dielectric Superstrate 
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Abstract − An elliptical spiral antenna embedded 
between a grounded dielectric substrate and superstrate is 
designed using a curved segment moment method 
employing complex images, which is driven by a 
marginal distribution optimisation algorithm. The spiral 
parameters together with substrate and superstrate 
permittivity and thickness values are optimised for low 
axial ratio and maximum gain and bandwidth. It is shown 
that the superstrate improves the bandwidth of the spiral.  
 

I. INTRODUCTION 
 

Spiral antennas can offer wide bandwidths, high 
efficiencies, squinted beams and circularly polarised 
radiation [1]. Previously the authors have developed a 
new Method of Moments (MoM) technique for the 
analysis of printed Archimedian, logarithmic and 
eccentric spirals that uses curved segmentation along the 
spiral arm, rather than the faceted approximations 
obtained with linear segmentation strategies, [2, 3]. The 
requirement of fewer curved segments gives the model a 
speed advantage which becomes increasingly important 
when the code may need to be run many times under an 
optimisation routine such as a Genetic Algorithm (GA) 
for example [4]. Printed spirals are useful as alternatives 
to patch antennas, and radomes can offer protection 
against the elements and also increase bandwidth. The 
authors have recently reported a curved segment analysis 
technique for embedded spiral design, employing the 
statistically based Optimisation using Marginal 
Distributions (OMD) technique to independently vary the 
permittivity and thickness of the dielectric substrate and 
superstrate for optimum axial ratio [5]. To expedite 
analysis a more efficient method is employed to calculate 
the Sommerfeld type potential functions required to 
compute the MoM impedance matrix. These Sommerfeld 
integrals are reformulated as closed-form complex image 
terms [6], whose coefficients are then evaluated using the 
Generalised Pencil of Functions (GPOF) technique [7]. 

Here we extend the analysis in [5] by applying it to 
an elliptical rather than Archimedian spiral, and also by 
optimising the spiral parameters in addition to the 
substrate and superstrate properties. Elliptical spirals can 
be used as conformal antennas and for tailoring radiation 

patterns to specific requirements by altering the aspect 
ratio of the ellipse. Further, the spiral is also optimised 
for gain and bandwidth as well as axial ratio, and the 
effect of the superstrate on performance is considered. 
 

II. THEORY 
 

The theory presented here is intended to complement 
that in [5], so that only field equations which are specific 
to this particular spiral geometry are developed, to 
facilitate direct computation.  A printed elliptical spiral is 
shown in Fig. 1a with a dielectric superstrate. In Fig. 1b, 
the electric field tangential to a thin wire contour  
located in a planar Cartesian co-ordinate frame by 

),( yxρ  due to a current, 
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and '∆ is the segment length. The terms G  and Π are 
the potential (Green’s) functions which couple sources to 
fields in the presence of planar layered dielectric media.   

The MoM impedance matrix element linking curved 
source sinusoid n to curved test sinusoid m is then, 
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The elliptic spiral function is given by,  
                              

)y KxKa yxo ˆsinˆcos)(( φφφρρ ++=             (4) 
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and the vector ρ  therefore locates a point on the spiral 

contour , with source and field points differentiated by 
primes, as shown in Fig 1b. Kx and Ky denote spiral 
stretching constants in the x and y directions respectively 
and a is the spiral constant.   

The vector derivatives in equation (2) are obtained 
through, 
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Substitution of equation (4) in equations (5) and (6) 

allows equation (2) to be finally written for the elliptical 
spiral as,                 
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Since the spiral is segmented in equal values of ∆  in a 
Galerkin type MoM procedure with integration along ˆ , 
a root solver or interpolation procedure is required in 
equation (6) to obtain values of φ  corresponding to 
values of  in the numerical integration interval. To 
facilitate this for the elliptical spiral equation (6) can be 
written, 

∫=
φ

φ
0

2 dF                        (8) 

The terms G  and Π  are evaluated using the GPOF 
technique after reformulation as complex image terms. 
Since these functions are independent of the spiral 
contour, their description in [5] is applicable here, and is 
therefore not repeated. Once the spiral currents have been 
determined using the MoM, parameters such as input 
impedance, gain and axial ratio can be evaluated. The far 
field of the elliptical spiral is given by, 
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   (b) 
Fig. 1.  Spiral geometry. 
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and θ  is the spherical co-ordinate angle from the z-axis 
in Fig. 1, and  again zxG ,  are defined in [5].         

To optimise the parameters of the designs considered 
here, the Optimisation using Marginal Distributions 
(OMD) algorithm is used [9]. Briefly, with reference to 
Fig. 2, OMD is a stochastic search algorithm that uses 
statistical information derived from the optimisation 
process to guide its search for an optimum design.  

In this work, seven parameters are optimised to 
produce an elite set containing candidates with axial 
ratios closest to unity and high gains over wide 
bandwidths, as evaluated using the MoM code. These 
parameters are: substrate and superstrate thickness and 
permittivity, 

 
     Begin

Generate random substrate, 
superstrate and spiral parameters 
according to uniform distribution 
between limitis in Table 2

Evaluate and rank F  (equation 13) for 
each new design at 6 GHz and 6.25GHz

Introdue low level 
Gaussian mutation

Generate new substrate, 
superstrate and spiral 
parameters

Is the best design 
satisfactory?

      FinishUpdate elite     
set

YesNo

     Begin

Generate random substrate, 
superstrate and spiral parameters 
according to uniform distribution 
between limitis in Table 1

Evaluate and rank P (equation 14) for 
each new design at 6 GHz and 6.25GHz

Introdue low level 
Gaussian mutation

Generate new substrate, 
superstrate and spiral 
parameters

Is the best design 
satisfactory?

      FinishUpdate elite     
set

YesNo

 
Fig. 2. OMD flowchart. 

 
2121 BB εε ,,,  respectively; spiral constant, 

stretching constant and maximum winding angle 
myKa φ,,  respectively )( 1Kx = . The seven marginal 

probability density functions ).(),(),( 211 BPPBP ε  etc 
associated with the elite set have peaks corresponding to 
concentrations of elite candidates in the search space. 
When it comes to generating a new antenna design, the 
thickness of the substrate, B1 for example will be chosen 
using a random number generator with probability 

density function matching P(B1). A similar procedure will 
then be used to choose the other six parameters. In this 
way it is ensured that the values chosen for the new 
population are most likely to be close to the more often 
occurring values of the elite set. The performance of each 
member of the new population is then evaluated using the 
fitness criterion, 

     
2121Rm XXRR1AGGP −+−+−+−=        (14) 

 
where mG  is greater than the highest anticipated gain, G 
denotes antenna gain, RA  axial ratio, and R, X the input 
resistance and reactance at the two evaluation 
frequencies. The separation of these frequencies is 
judiciously chosen to potentially increase the bandwidth 
while not being so large as to compromise the optimised 
gain and axial ratio. Candidates are then ranked in order 
of lowest P factor, with superseded elite set members 
being removed so as to maintain a constant elite set 
membership. 
 

III. RESULTS 
 

Table 1 details the imposed limits on the 
optimisation parameters, which were chosen heuristically 
to obtain the best chance of good performance for a 
manageable size. For instance, if the substrate 
permittivity were allowed to increase further, surface 
wave loss could make the antenna less efficient. Table 2 
shows the final optimised values of these parameters.  
 

Table 1. Optimisation limits.  
 

1B  
/cm 

2B  
/cm 

1rε
 

2rε
 

a cm
/rad 

mφ
 

Ky 

Upper 
limit 

 0.5 0.01   2   2 0.07   8 1.1 

Lowe
r limit 

 1.5   0.5   5   5 0.11 17 2. 

 
Table 2. Optimised spiral parameters ((a) with 
superstrate, (b) without superstrate). 

 1B  
/cm 

2B  
/cm 

1rε
 

2rε  a cm 
/rad mφ  Ky 

(a) 1.47 0.33 4.2 4.29 0.103 11.98 1.24 

(b) 0.74 - 3.1 - 0.088 10.95 1.84 

 
These were obtained by running the MoM code with 

25 curved segments per arm (to ensure convergence) at 
6GHz and 6.25GHz, using a population and elite set size 
of 40 candidates over 7 generations.  A single run of the 
MoM code took 2.5 mins on a Pentium 4 2.8GHz 
processor, so that a complete optimisation run took 23 
hours.  For each spiral 250o .=ρ cm and the wire radius 
is 0.03 cm. 
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Designs were optimised both with and without a 
superstrate to allow comparisons of the best performance 
one might expect using otherwise identical optimisation 
criteria. Figure 3 shows impedance bandwidth plots, and 
the spiral with superstrate has much more uniform input 
impedance.  Our MoM code is also compared with a 
control using CST Microwave Studio [10]. 
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Fig. 3. Input impedance of optimised spiral in Table 2; 
(a) with and (b) without superstrate. 

 
The convergence of input impedance with number of 

curved segments is shown in Fig. 4 and a main advantage 
of using curved segmentation is the more rapid 
convergence obtained compared with linear 
segmentation. 

The current distribution along a spiral arm in Fig. 5 
is predominantly a travelling wave, although interference 
between the incident and reflected waves is apparent 
towards the end of an arm with the superstrate, where 
relative magnitudes are similar.  
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Fig. 4. Convergence of input impedance of spiral with 
number of curved basis functions; (a) with and (b) 
without superstrate at 6 GHz. 

 
Radiation patterns are shown in Fig. 6, where the 

peak values of θE  and φE are similar, for the spiral with 
a superstrate, suggesting a low axial ratio and good 
circular polarization, although the time phasing also 
needs to be considered. Note also the narrower beam 
width in the o90=φ  cut, especially without a 
superstrate, corresponding to the direction of the major 
axis of the ellipse along the y axis, which indicates how 
the pattern can be shaped in orthogonal planes using 
elliptical spirals.  

The plots in Fig. 7 confirm a successful design with 
low axial ratio and useful gain. As can be seen from the 
summary Table 3, the spiral with superstrate has slightly 
higher gain and significantly wider axial ratio bandwidth 
compared with the printed spiral. 
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Fig. 5. Current distribution along optimised spiral arm; 
(a) with and (b) without superstrate at 6 GHz. 
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(b) o90=φ  
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dB
-30 -25 -20 -15 -10 -5 0

-30

-25

-20

-15

-10

-5

0

-30-25-20-15-10-50
-90

-60

-30

0

30

60

90

Εθ
EΦ

 
 

(d) 90oφ =  
 

Fig. 6. Radiation patterns as a function of θ  of optimised 
spiral lying in x-y plane with major axis along y direction; 
(a) and (b) with superstrate, (c) and (d) without 
superstrate at 6 GHz. 
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Fig. 7. Axial ratio and gain of optimised spiral (a) with 
and (b) without superstrate.    
 
Table 3. Optimised spiral performance ((a) with 
superstrate, (b) without superstrate). 

            3dB Bandwidth    Gain 
dBi 

    Gain        Axial ratio 
(a)     6.8      16%               > 46%  
(b)     6.2      20%                 25% 

 

 
IV. CONCLUSION 

 
A printed spiral with a dielectric superstrate has been 

optimised for gain, axial ratio and bandwidth, by varying 
four environmental and three spiral parameters, using 
original efficient MoM code under an OMD optimiser. 

The benefits of the superstrate are a significant 
broadening of the impedance and axial ratio bandwidths 
with, a slight increase in gain, and protection of the spiral 
element. These must be considered against the 
disadvantage of increased bulk or weight of the antenna 
with the 0.33cm thick superstrate. The elliptical spiral 
design gives a further benefit of differential pattern 
shaping in the two principal planes. 
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Abstract − In this paper a new UWB antenna structure is 
introduced for EMC applications. This antenna is the 
skeletal form of the teardrop antenna. As the frequency 
decreases, the usual teardrop antenna is not applicable 
since the weight of such antenna as well as its ground 
dimension considerably increases and such antenna does 
not have a good resistance against the wind. The 
performance of the proposed antenna is compared with 
another member of wire UWB antennas' family which is 
called wire biconical antenna. The results show that the 
proposed antenna, in comparison to the wire biconical 
one, has considerably better VSWR especially in the 
lower band of operation. 
 

I. INTRODUCTION 
 

Recently, ultra-wideband (UWB) technology has 
attracted attention for use in communication and sensing 
applications in the commercial domain. Various antennas 
have been developed to be used for UWB systems, such 
as double-ridged waveguide horn, log periodic, biconical 
and monocone antennas and so forth [1-4]. None of these 
antennas, however, simultaneously meet omnidirectional 
and low-VSWR requirements. The teardrop antenna       
[5, 6] is a good candidate for the aforementioned 
applications for high frequencies. When the frequency of 
operation decreases, say 100 MHz, It will be no longer 
reasonable to construct the teardrop antenna since the 
antenna becomes too massive and occupies a large space 
because of its ground plane. Moreover, such antenna has 
not a good resistivity against the wind. 

To overcome the aforementioned drawbacks a new 
antenna structure is proposed. The geometry of the 
antenna is shown in Fig. 1. 

 

 
Fig. 1. Geometry of the skeletal teardrop antenna. 

The antenna consists of a straight wire of corner 
angle α  which is measured from the antenna axis 
connected to a sector of a circle with radius R. The angle 
α  and radius R should be chosen such that the straight 
wire is tangent to the circle as shown in Fig. 2. The wires 
then construct a cage by rotating the n single wire loop 
around the antenna axis. The choice of loop numbers will 
be discussed later. 

In order to design the antenna, simulations are made 
using FEKO (a MOM based software) which is a good 
candidate for simulation of wire structures. 

 

 
Fig. 2. Side view of the skeletal teardrop antenna and its 
parameters. 

 
II. THE ANTENNA DESIGN CONSIDERATIONS  

  
A. The Antenna Height  
 

  Assume that the antenna is set to operate at the 
frequency band fl to fh, where fl and fh are the lower and 
higher frequency of operation, respectively.  The height h 
(see Fig. 1) should be chosen such that h=λl/2 , where λl 
is the wavelength of the lowest frequency of operation. 
For EMC applications where a higher VSWR is also 
acceptable, the antenna can be used for frequencies lower 
than fl. 
 
B. Implementation of an Axial Conductor 
 

  Two possible forms of the skeletal teardrop antenna 
are shown in Fig. 3, where in one of them an axial 
conductor is implemented (Fig. 3a) while in the other the 
axial conductor is not used (Fig. 3b). 
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Fig. 3. Two forms of the skeletal teardrop antenna: (a) with an 
axial conductor (b) without an axial conductor. 

 
Figures 4a and 4b are the S11 of skeletal teardrop 

antennas, with a 50-Ohm input impedance, with and 
without axial conductors respectively with different 
values of α . As it can be seen in Fig. 4a, the resonant 
frequencies of the antennas are slightly lower than the 
resonant point of their axial dipoles i.e. 75 MHZ. This 
makes sense because the current at the endpoint of the 
skeletal tear drop antenna in this case is not zero and the 
dipole antenna acts like the disk loaded antennas [7-9] 
where the resonant frequency of such antennas is slightly 
lower than their single dipole. As it can be seen in the 
figures, there are two resonant points within the band of 
operation which the first one occurs at fr1 and the second 
one occurs at 3fr1 which in both cases the peak current 
occurs at the feed point like a dipole antenna. However in 
the presence of the axial dipole, a perturbation is 
generated at the feed point by superposition of the 
currents of the dipole and the wire loops which might be 
in phase or out of phase. Therefore, it is recommended 
that the axial dipole is not included in the antenna. 
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Fig. 4. S11 of the skeletal teardrop antenna with, h=2m 
and n (number of loops) =6: (a) with an axial conductor 
(b) without an axial conductor. 

 
When the number of wire loops, n, or the value of α  

changes the resonant frequency of the antenna with axial 
dipole is also changed because the current distribution on 
the axial dipole depends on α and n. This behavior also 
can be seen in Fig. 4a. 

Comparison of the figures shows that for operation at 
wider bandwidths it is better that the antenna is used 
without an axial conductor. Thereafter in this paper, all 
simulations are made in the absence of an axial 
conductor. 

 
C. The Corner Angle α 
 

The S11 of a 6-loop skeletal teardrop antenna with 
h=2m for various corner angles α  is shown in Fig. 5. 

As it can be seen in Fig. 5, by increasing the value 
ofα , the lower band of operation is not changed 
considerably, while the S11 of the antenna is improved 
within the band of operation. 
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Fig. 5. The S11 of a 6-loop skeletal teardrop antenna with 
h=2m for various corner angles α . 
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D. The Number of Wire Loops 
 

When the number of loops increases, the antenna 
bandwidth is not changed considerably, however, the S11 
within the frequency of operation is improved. Figure 6 
shows the S11 of a skeletal teardrop antenna with   α = 70o 

and h = 2m with different numbers of wire loops. 
However, it should be noted that when the number of 
loops increases, the resistivity of the structure against the 
wind will be decreased and its weight will be increased. 
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Fig. 6. S11 of a skeletal teardrop antenna with 70=α and 
h=2m for different numbers of wire loops. 
 

It is obvious from the figure that a skeletal teardrop 
antenna with more wire loops gives a better frequency 
response for higher frequencies, However, the lower band 
of operation slightly increases. The optimum value of n 
with the given antenna parameters is n=8.  

 
E. The Radius of the Antenna Wires 
 

The radius of the antenna wires also affects the 
antenna performance. Figure 7 shows the S11 of the 
antenna is slightly improved for higher wire radii 
although the lower frequency of operation is not changed.  

 

0 50 100 150 200
−40

−35

−30

−25

−20

−15

−10

−5

0

frequency−MHz

|S
1
1
| 
d
B

r=3mm
r=6mm
r=10mm

 
Fig. 7. Effect of the wire radius on the skeletal teardrop antenna 
with 70=α  and n =6. 

III. COMPARISONS AND RESULTS 
 

To show the performance of the proposed structure, 
we compare the antenna with a member of UWB wire 
antennas called wire biconical antenna [10, 11]. The 
geometry of the antenna is shown in Fig. 8. 

 
Fig. 8. Geometry of the wire biconical antenna.  

 
The dimensions of the wire biconical antenna are 

chosen exactly the same as those are in [7]: h/2=692 mm, 
h1=257 mm and h2=140 mm. The height of the skeletal 
teardrop is chosen equal to that of the wire biconical i.e. 
h/2= 692 mm, and α = 70o.The radius of the wires in both 
antennas is r=3mm and the number of wire loops is n=8 
for both antennas. 

Figures 9a and 9b show the imaginary and real parts 
of the input impedance of the wire biconical antenna and 
the skeletal teardrop antenna for the aforementioned 
geometry, respectively. 

It is obvious from the figures that the wire biconical 
antenna has larger impedance variations than that of the 
skeletal teardrop. Moreover, to achieve better S11, the 
wire biconical antenna demands the use of a 1:n balun 
[10, 11] while there is no need for the skeletal teardrop 
antenna to use such a balun since the its input impedance 
is near  50Ω . 

Figures 10a shows the S11 of the wire biconical 
antenna for different line impedances (by using different 
1: n baluns) and Fig. 10b is the S11 of the skeletal 
teardrop antenna for 50Ω line impedance. 

If the acceptable frequencies of operation are those 
whose corresponding S11 values are below -10dB, 
according to Fig. 10a, the lowest possible frequency of 
operation for the wire biconical antenna is 120 MHz and 
this is achieved by using a 1:4 balun when the line 
impedance is 200Ω , while the lowest frequency of 
operation for the skeletal teardrop is 75 MHz (Fig. 10b). 
Therefore, the operation bandwidth of the skeletal 
teardrop is considerably better than that of the wire 
biconical antenna.  
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 (b) 

Fig. 9.  Imaginary and real parts of the input impedance 
of (a) the wire biconical antenna and (b) the skeletal 
teardrop antenna. 
 

The radiation pattern and the maximum gain values 
of the two antennas at different frequencies are compared 
in Figs. 11a and 11b. 
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Fig. 10.  S11 of (a) the wire biconical antenna for different input 
impedances and (b) the skeletal teardrop antenna. 
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(b) 
Fig. 11. the radiation patterns of (a) the wire biconical 
antenna and (b) the skeletal teardrop antenna at different 
frequencies. 

 
Figure 11a shows the radiation pattern of the wire 

biconical antenna and Fig. 11b shows the radiation 
pattern of the skeletal teardrop antenna at 3 different 
frequencies. As it can be seen, there is no considerable 
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difference between the radiation patterns and the 
maximum gain values of the two antenna structures. 

 
IV. CONCLUSION 

 
A new skeletal antenna structure was proposed in 

this paper. This antenna structure is the skeletal form of 
the conventional teardrop antenna which is used at 
microwave frequencies. The skeletal form is preferred to 
its continuous one at low frequencies due to difficulties of 
practical considerations of the continuous form. The 
performance of the antenna was compared to another 
wire-cage antenna called wire biconical antenna. The 
results show that with the same dimensions, the operation 
bandwidth (especially at lower frequencies) of the 
proposed structure is considerably better than that of the 
wire biconical antenna. Therefore, with the same 
frequency of operation the skeletal teardrop antenna can 
be much smaller than the wire biconical antenna (nearly 
half). Moreover, unlike the wire biconical antenna, there 
is no need for the proposed antenna to use a 1:n balun.  

 
REFERENCES 

 
[1] S. Sadat, M. Houshmand, and M. Roshandel, 

“Design of a microstrip square-ring slot antenna 
filled by an h-shape slot for UWB applications,” 
Progress In Electromagnetics Research, PIER 70, 
191-198, 2007.  

[2] C. Burns, P. Leuchtmann, and R. Vahldieck, 
“Analysis and simulation of a 1-18 GHz broadband 
double-ridged horn antenna,” IEEE Transactions on 
Electromagnetic Compatibility, vol. 45, Feb. 2003.  

[3] D. J. Muller, and K. Sarabandi, “Design and analysis 
of a 3-Arm spiral antenna” IEEE Transactions on 
Antennas and Propagation, vol. 55, no. 2, Feb. 2007 

[4] A. S. Turk, “Ultra-wideband TEM horn design for 
ground penetrating impulse radar systems,” 
Microwave and Optical Technology Letters, vol. 41, 
Issue 5, pp. 333-336, April 2004. 

[5] T. Taniguchi and T. Kobayashi, “An omnidirectional 
and low-VSWR antenna for ultra-wideband wireless 
systems,” IEEE conference, 2002 

[6] T. Taniguchi and T. Kobayashi, “An omnidirectional 
and low-VSWR antenna for the FCC-approved UWB 
frequency band,” IEEE conference, 2003 

[7] C. A. Balanis, Antenna Theory, Analysis and Design, 
John Wiley and Sons, 1997. 

[8] T. A. Milligan, Modern Antenna Design, John Wiley 
and Sons, 2005. 

[9] A. A. Eldek, “Design of double dipole antenna with 
enhanced usable bandwidth for wideband phased 
array applications,” Progress In Electromagnetics 
Research, PIER 59, 1-15, 2006. 

[10] B. A. Austin, and A. P. C. Fourie, “Characteristics of 
the wire biconical antenna used for EMC 

measurements,” IEEE Transactions on 
Electromagnetic Compatibility, vol. 33, no. 3, Nov. 
1991 

[11] S. M. Mann and A. C. Marvin, “Characteristics of 
the skeletal biconical antenna as used for EMC 
applications,” IEEE Transactions on 
Electromagnetic Compatibility, vol. 36, no. 4, Nov. 
1994. 

 
 
 

Alireza Mallahzadeh was born in 
Bushehr, a beautiful city in the south 
of Iran in 1977. He received the B.S. 
degree in electrical engineering from 
Isfahan University of Technology, 
Isfahan, Iran, in 1999 and the MSc. 
degree in electrical engineering from 
Iran University of Science and 
Technology, Tehran, Iran, in 2001, 

and the Ph.D. degree in electrical engineering from Iran 
University of Science and Technology, Tehran, Iran, in 
2006. He is a member of academic staff, Faculty of 
Engineering, Shahed University. He is interested in 
numerical modeling, antennas and microwaves. 
 
 
 

Reza Pazoki received the B.S. and 
M.S. degrees from Iran's KNT and 
IUST universities in 2002 and 2004 
respectively,and currently he is a 
Ph.D. student at the Iran's university of 
science and technology(IUST). He has 
publications including FDTD, ADI-
FDTD, slot antennas, biconical 
antennas and power dividers. 

 
 

 
Shaya Karimkashi is currently 
working toward Ph.D. degree at the 
University of Mississippi. His research 
interests include reflector antennas, 
dielectric resonator antennas, array 
antennas and optimization algorithms 
in electromagnetics. He holds a MSc. 
in communications engineering from 

University of Tehran, Iran. 
 

356MALLAHZADEH, PAZOKI, KARIMKASHI: NEW UWB SKELETAL ANTENNA



Modelling of Coupled Microstrip Antennas Integrated with EBG 
Structure Using an Iterative Method 

 
 1 H. Zairi, 1 A. Gharsallah, 1 A. Gharbi, and 2 H. Baudrand 

 
1 Electronics unit LPMM Laboratory, Dep. Of Physics, Faculty of Sciences of Tunis, Tunisia 

2Electronics Laboratory, ENSEEIHT of Toulouse, Toulouse, France 
 
 
Abstract − An efficient iterative method based on the 
wave concept is used to analyse Electromagnetic Band-
Gap (EBG) structures. It is demonstrated that the 
integration of EBG structure reduces the unwanted 
mutual coupling between array elements and interfaces 
with on board systems. The principle of the iterative 
method consists of establishing a relationship between 
incident and reflected waves in order to characterize the 
studied structure. A technique of coupling pixels-mode is 
introduced to model vertical connections used in EBG 
structure. The reflected and transmission coefficients are 
determined. The numerical results are compared with 
published data. 
 

I. INTRODUCTION 
 

Microstrip antennas are widely used in a broad range 
of applications from communication systems (radars, 
telemetry, and navigation) to biomedical systems, 
primarily due to their simplicity, conformability, and low 
manufacturing cost [1]. The demand of even increasing 
frequencies and decreasing cost in many applications 
requires innovative design with a high integration level of 
active components and radiating elements. In this case, 
several configurations have been proposed in the 
literatures to realise novel radiofrequency system 
architecture. 

There are two technologies which have been mainly 
pursued to achieve microstrip antenna on high dielectric 
substrate with optimum performance. The first one is 
based on the micromachining technique [2], while the 
second approach introduces the concept of 
electromagnetic band-gap structures. 

This paper characterizes microstrip antennas 
integrated with electromagnetic band-gap (EBG) 
structures whose surface-wave dispersion diagram 
presents a forbidden frequency range around the desired 
antenna’s operative frequency. Moreover, the surface 
wave increases the unwanted mutual coupling between 
array elements and interference with on-board systems. 
The analysis method is an iterative method which is 
based on the wave concept. It consists of generating a 
relationship between incident and reflected waves. This 
approach is used with success with planar circuits in 
several studies [3-4]. The method has the advantages of 

simplicity and not involving basic functions and inversion 
of matrices, as used in other numerical methods. 
Therefore, this approach has the potential of analysing 
larger structures than other classical techniques. The total 
CPU time has been considerably reduced. Our goal is to 
solve the limitation of the iterative method in the 
modelling of 2.5D structures. In this paper an original 
formulation is proposed to characterize complex EBG 
structures including a lot of Via–holes (Fig. 1). It consists 
in technique of coupling incident and reflected waves 
with the modes of the via-hole.  

The EBG structure presented in Fig. 1 consists of 
four parts: a ground plane, a dielectric substrate, metallic 
patches, and connecting vias. This structure exhibits a 
distinct stop-band for surface-wave propagation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. EBG structure (a) top view and (b) side view. 

(a) 

Microstrip patch 

Via-hole 

(b) Ground 
Plane 

Microstrip 
patch 

Via-hole 

Substrate 
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II. FORMULATION 
 

A. Formulation of the Iterative method for planar 
circuits 
 
The formulation of the iterative method for planar circuits 
has been described in [5-7]. It is based on the wave 
concept, which is introduced by writing the tangential 
(plane Ω) electric and magnetic fields, in terms of 
incident ( A ) and reflected ( B ) waves (Fig.1). It leads to 
the following set of equations, 

( )0
0

1
2i i i i

i
A E Z J

Z
= +                        (1) 

( )0
0

1
2i i i i

i
B E Z J

Z
= − ,                        (2) 

where nxiHiJ =  is the current density, being n  the 

normal to the plane Ω oriented as the incident waves iA . 

iZ0  is the characteristic impedance of the medium i 
(i=1,2). It is equal to, 

rio
ooiZ
εε

µ
=

 

A set of coupled equations summarizing the 
continuity and integral relations is applied to the waves 
A  and B , 

ˆ
mn mnA B= Γ                                (3) 

0
, , ,

ˆ
x y x y x yB SA B= +                          (4) 

where B0 denotes the global excitation wave on the 
source sub-domain. Amn and Bmn are the waves in spectral 
domain and Ax,y , Bx,y are respectively the incident and the 
reflected waves in spatial domain. 

The scattering operator Ŝ , which takes into account 
the boundary conditions in the spatial domain (Et1=Et2 
and J1+J2=0 on the dielectric, Et1=Et2=0 on the metal and 
finally E1=E2=Eo on the source) is expressed as follow, 
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where, 
Hm=1 on the metal and 0 elsewhere. 
Hd=1 on the dielectric and 0 elsewhere. 

Hs=1 on the source and 0 elsewhere. 
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The reflection operator Γ̂ , which takes into account 
the environment’s reaction in the spectral domain is 
defined as, 

1 ,ˆ
1 ,

YZ oi m n i
i YZ oi m n i

α
α

α
−

=Γ +
                        (6) 

with 
,

Y
mn i
α  is the admittance of the mode α =TE,TM k0 

is the wave number in the free space. 
The implementation of the iterative process consists 

of establishing a recursive relationship between the waves 
in the two regions 1 and 2, using the reflection operator in 
the spectral domain and the boundary conditions required 
on the interface plane Ω(Fig. 2 (a)).  

A 2D-FFT in waveguide environment known as fast 
modal transformation (FMT) [3] is used to pass from 
spatial domain (equation (4)) to spectral domain 
(equation (3)) and vice versa.  

A successive set of iterations is considered to 
determine a relationship between ( iAα , iBα )n+1 , 
( iAα , iBα )n corresponding to the (n+1) and n iteration. A 
schematic description of the iterative technique is 
illustrated in Fig. 2(b). 

 
B. Modelisation of the via-hole 
 

To analyse the EBG structure presented in Fig.1 we 
need to model the via-holes which connect the micro-
strip patches to the ground plane. In order to resolve this 
problem, it is possible to introduce the technique of 
coupling pixels-fundamental mode [5]. Coupling pixels-
fundamental mode [5]. 

We consider only one cell of the EBG structure 
witch is composed by one metallic patch, the via-hole and 
the ground plane. The via-hole is connected to the ground 
plane with the centre conductor embedded vertically and 
terminated on the patch surface.  

The purpose is to determine the relationship between 
B1,B2, and B3 and A1, A2, and A3 on the cells of the 
interfaces patch-via and via-ground plane. 

We suppose that there are four metallic pixels on the 
discontinuity plane (P1) and four cells on the 
discontinuity (P2) which are connected to the via-hole. 
The current density distribution is illustrated in Fig. 3. 

The current density J on the sub-domain via-hole 
witch composed by four pixels is given by equation (7), 

JJJJJ =+++ 4321 .                   (7) 
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Fig. 2. (a) Iterative process and (b) schematic description 
of iterative process.   
 

The expression of the vector J which characterizes 
the current distribution on the pixels of the discontinuity 
(via hole-patch) is given by equation (8), 

T
yxJ ),()1,1,1,1,1,1,1,1(

8
1

−−−−=  .             (8)                       

In order to model the discontinuities (via-hole –plane 
P1), we assume that only fundamental mode can be 
propagated in via-hole and the other modes are 
evanescent. The passage from four cells characterizing 
the current density J  to modes and vice versa can be 
considered as multi-port network depicted in Fig. 5.  
 

 
 

Fig. 3. Current distribution on sub-domain via-hole. 
 

 
Fig. 4. Microstrip patch connected to the ground plane 
with via-hole. 
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Fig. 5. Coupling of Cells-Modes , Modes-Cells in the   
discontinuities between the via hole and the planes P1 
and P2 .  
 

Where A, B and a, b are respectively the waves on 
the pixels of the discontinuity via-patch and the 
fundamental mode witch propagate in the via-hole. 

The symbol Q is a two-network port which 
characterizes the via-hole, using the theory of 
transmission line. The scattering matrix of this two-port 
network is given by, 
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where k0 and h are respectively  the wavenumber in the 
free space and the length of the via-hole. 

Thus, the relationship between waves a2, a3, b2, and 
b3,   may be given by, 
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3 3
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S
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.                     (9)                                             
The multi-port network assures the coupling 

between waves A, B and a,b. The expression of the 
matrix M characterizing the multi-port network is 
demonstrated in reference [7]. It is given by the following 
equation, 
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.                          (10)     

Therefore, the relationship between incident and reflected 
waves is given by equations (11) and (12),  
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                  (12) 

In region 1 (free space), we suppose that we have a 
metal domain, it is possible to establish: B1 = -A1.   

According to equations (9) and (10), we can deduce 
the relationship between incident and diffracted waves on 
the cells of the interfaces patch-via and via-ground plane,  
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vŜ  is the scattering matrix on sub-domain via-hole. 
Equation (9) is applied to each patch of the EBG 

structure of Fig.1. 
Finally, the global diffraction operator of the 

structure which takes into account all the sub-domains 
(metal, dielectric, source and via-hole) is given by the 
equations (5) and (14).  

At the kth iteration it is possible to calculate the 
electric field iE  and current density iJ  at the interface 
plane Ω (Fig. 2(a)) from equations (1) and (2). From that 
we can deduce the reflected and transmission coefficients 
of the EBG structure. The iterative process is stopped 
when the convergence of coefficients is reached. 

 

III. APPLICATIONS 
 

In order to validate the presented theory we proposes 
to study the effects of EBG structures on the mutual 
coupling of two micro-strip antennas:  

 
A. Mutual Coupling Reduction Using the rectangular 
EBG Structure 
 

Figure 6, presents a coupled microstrip antennas on a 
dielectric substrate with h=2mm and εr= 10.2. The 
antenna’s size is 7mmx4mm, and the distance between 
the antennas is 38.8mm. The EBG structure is inserted 
between the antennas to reduce the mutual coupling.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. EBG structure inserted between two microstip 
antennas. 
 
Antennas are excited by coaxial probe feed [8, 9]. 

Three different cases are analysed and their patch 
sizes are 2, 3 and 4 mm, respectively. The gap between 
patches is constant at 0.5 mm in all three cases. 

The mutual coupling results are shown in Fig.7. The 
mutual coupling is reduced only when the 3mm EBG 
case is used. In the case of 2mm the band gap is higher 
than the resonant frequency 5.8 GHz. In the case of 4mm 
the band gap is lower than the resonant frequency. 
Therefore, in both cases the mutual coupling is not 
reduced and is still strong.  

The simulation mutual coupling results are compared 
with published data in Fig.8. Without the EBG structure, 
the antennas show a strong mutual coupling level of –16 
dB. If the EBG structures are employed, the mutual 
coupling level is reduced. The resonant frequency 5.8 
GHz falls inside the EBG band gap so that the surface 
waves are suppressed. Consequently, the mutual coupling 
is greatly reduced. 
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38.8mm 
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3mm 

3mm 
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Fig. 7. Mutual coupling versus frequency of three 
different cases: patch sizes are 2, 3 and 4 mm, 
respectively. 
 

 
Fig. 8. Mutual coupling versus frequency. 
 

Figure 9 shows the return loss of the EBG case, as 
well as the antennas without the EBG structure. It is 
observed that in both cases, antennas resonate around the 
same frequency. 

The simulated results obtained with our method are 
compared (Figs. 8 and 9) with published data in the 
reference [5]. As shown, a good agreement is obtained. 

With our approach the CPU time is considerably 
reduced, only 30 second per point of frequency is 
required to simulate the structure of Fig.6, on a Pentium 4 
CPU/ 2.4 GHz equipped personal computer that has 256 
MB of internal memory. 
 

 
Fig. 9. Return loss of the antennas. 

Four columns of Fork-like EBG patches are inserted 
between the coupled antennas to reduce the mutual 
coupling (Fig. 10). 

The Fork-like EBG patch (Fig.11) has the following 
dimensions: W=3.5mm; s=1.5mm; D=1mm; and 
Lp=Ls=0.5mm, the distance between the adjacent patches 
(G) is 0.5mm. 

 

 
 
Fig. 10. Micro-strip antennas separated by the Fork-like 
EBG structure.  

 
Fig. 11. Dimensions of one unit of the fork-like EBG 
structure. 
 

The simulated mutual coupling results obtained with 
the iterative method are shown in Fig.12.  
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Without the EBG structure, the antennas show a 
strong mutual coupling of -16 dB. When the metal 
patches EBG structure is employed, the mutual coupling 
is reduced to -21 and when the fork-like EBG is used the 
mutual coupling is reduced to -23 at 5.8 GHz, which 
proves that the surface wave is suppressed and 
demonstrates the capability of the fork-like EBG structure 
to reduce the mutual coupling. It also demonstrates that 
the EBG band gap of the Fork-like structure is deeper 
than the one of EBG patch structure. 
 

IV.  CONCLUSION 
 

The formulation of an iterative method is developed 
to analyse different EBG structures. A technique of 
coupling pixels-fundamental mode has been successfully 
applied for the modelisation of the via-holes. As 
applications, the electromagnetic band-gap structure is 
inserted between the antenna elements to reduce the 
mutual coupling. This mutual coupling reduction 
technique can be used in various antenna array 
applications. Numerical results show good agreement 
with those obtained from the FDTD in [5]. Also 
compared is the mutual coupling of microstrip antennas 
with different shapes of EBG structures. 
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