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Abstract − Statistical approaches to compare data for 
validation of computational electromagnetics have been 
used for several years. They provide an accepted means 
of obtaining a numerical value to quantify the data under 
consideration. However, the use and meaning of these 
‘numbers’ depends, by necessity, on the application. This 
paper provides an overview of some of the most widely 
applicable techniques, relating the output of these to 
visual assessment. It further includes comparison with the 
FSV (Feature Selective Validation) method allowing a 
triangulation between statistical approaches, visual 
approaches and heuristic approaches to validation. It is 
important that the decision to use or reject a particular 
technique for validation is based on a rational and 
objective selection approach. This paper suggests a 
framework to support this selection approach.  

  
Keywords: Validation, statistical analysis, and feature 
selective validation. 
 

I. INTRODUCTION 
 

The complexity of electromagnetic systems being 
analyzed and modeled can produce results which are, 
themselves, excessively complicated. This is particularly 
true when models tend ‘in the limit’ to replicate reality. 
Statistical electromagnetics is a topic that has become 
part of the general approach to study the results from 
these simulation activities. A standard starting point for 
statistical electromagnetics is [1]. A more recent 
contribution to the need for a better understanding and 
application of statistics in electromagnetics is [2] where 
the a priori assumption that there are unknown 
contributors to the model is acknowledged and these can 
be treated statistically. In both cases, these publications 
demonstrate the benefits to be gained by considering a 
statistical analysis under appropriate circumstances. 
However, correct application relies on appropriate 
selection and while there are obvious circumstances 
where one, or other, technique can be applied; there are 
many other circumstances where non-statistical 

approaches are more appropriate. This paper presents a 
short overview of statistical and non-statistical 
approaches for validation with the aim of helping those 
involved in validation make more appropriate selection of 
techniques to quantify the comparison of numerical data 
with experimental data or with other numerical models. 

Validation of numerical models involves determining 
whether the agreement of a simulation with experiments, 
other simulations or analytically resolvable systems is 
adequate. Identifying what ‘adequate’ means may, in 
practice, involve the following:  
• Expectations of agreement based on previous 

experience.  
• Accounting for known assumptions embedded in both 

or either the model or (e.g.) the experiments. 
• The end application to which the model is being used.  

Clearly, accounting for these does suggest that there 
will only rarely be an absolute pass/fail decision to be 
made and more frequently whether there is a high / low 
probability that the model is good enough. The concept of 
defining adequacy as part of a model validation 
framework is likely to become a more relevant and 
pertinent issue in the near future as concepts such as 
satisfactions [3-4] and error budgets in models become 
part of the language of modelers. 

The use of statistics in the validation of 
computational electromagnetics is not clearly defined. 
Hence, reviewing some of the statistical validation 
options does appear to be a relevant contribution to the 
debate on how best to perform quantitative validation. An 
example of the current state of the debate can be seen in 
the topic of modeling reverberation chambers, 
particularly in comparing models against experiments, 
where, one hand, [5] suggests that the nature of the 
reverberation chamber is such that the probability 
distribution of the fields is an appropriate way of 
comparing the models with measurements. On the other 
hand, [6] suggests that it is relatively straightforward to 
get statistical agreement even if there is total 
disagreement between the actual modeled and measured 
results.  
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This paper provides a general overview of some of 
the more widely used statistical techniques and compares 
them against a sub-set of visual assessments. Visual 
assessment, the “eye-balling” of graphs, is probably the 
most common, widespread and accepted approach to 
validation. It is important that any approach to quantify 
results for validation purposes is empathetic to this and 
not in opposition. Hence, the use of a set of comparisons 
for which a bank of visual assessments is available is 
seen as a reasonable starting point to analyze the potential 
contribution for a bank of possible statistical techniques. 
An increasingly popular heuristic approach, FSV (Feature 
Selective Validation) is reviewed and a simple approach 
to quantifying visual comparisons is also reviewed. 
 

II. TEST DATA 
 

In order to be able to discuss the various techniques 
later in this paper, some test data is required to illustrate 
the quality of the comparisons. The first column of Fig. 1 
shows three comparison graphs. Approximately 50 
engineers were asked their assessment of these 
comparisons using a six point rating scale which are 
presented in histogram form in column 2 of Fig. 1 (these 
results are a subset of those presented in [7], where 
further methodological details are also presented). The 
use of the terms for the histograms is based on common 
natural language descriptors. The visual rating scale used 
is presented in Fig. 2.  

A mean value was determined for these three 
comparisons by averaging the numerical scores from the 
survey. According to the visual assessment ‘Graph 4’ 
(average score 5.95) is the worst, ‘Graph 5’ is the best 
(average score 4.56) and ‘Graph 8’ is approximately mid-
way between the other two (5.36). This provides a 
benchmark to test candidate statistical approaches. In 
particular, agreement in rank-ordering the results would 
be expected from any technique used because, often, the 
absolute score is not as important as knowing whether 
one comparison is much better or worse than another 
comparison. 
 

III. STATISTICAL TECHNIQUES1 [9 - 12] 
 
III.1. Correlation and visually based approaches 

The most common approach to correlate two sets of 
data is the Pearson r correlation, which provides a 
numerical measure of how closely related two variables 
are.  

The Pearson Correlation Coefficient is calculated 
using equation (1), 

 

                                                 
1 All data has been generated using the SPSS statistical 
Software package 
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X = data set 1, 
Y = data set 2, 
n  = Total number of points in both data sets. 
 

An alternative correlation technique is the Spearman 
Rank Correlation. Which measures the association of the 
ranks of the two variables. The point at which the largest 
value of the data-set occurs would be given a rank of 1; 
the next largest point would be given a rank of 2 and so 
on. The Spearman Rank Correlation is then based on the 
difference between the ranks for the two data sets. No 
results are presented for this here, it is simply mentioned 
to demonstrate that even for something as apparently 
straightforward as correlation, there are a number of 
options open to the modeler. 

Correlation values have the range [-1,+1] with +1 
indicating a perfect positive correlation and -1 a perfect 
negative correlation (i.e. a change in one variable 
produces an opposite change in the other variable).  

A scatter-plot can be used to provide a visual 
indication of the correlation of the two sets of data. Here, 
the numerical values of the data sets are put into two 
columns; the notional independent axis information 
presented in the original data sets is ignored. These 
columns then form the x and y coordinates of the plotted 
graph. The closeness of the resulting data to a straight 
line indicates the level of association between the two 
data sets.  

Boxplots provide a summary of the data distribution 
for the individual data sets by determining the 
distribution of the data displaying a box representing the 
upper and lower quartiles of the distribution, with the 
median value given as a straight line within this box. 
Fences give the extremes and outliers are specifically 
highlighted. From here, outlier values can be removed. 
However, the removal of outliers may not be appropriate 
in electromagnetics as an outlier could represent a 
correct, but extreme; result such as a high Q resonance.  

The Pearson correlation coefficients for the three sets 
of data in Fig. 1 are given in Table 1. 
 
Table 1. Correlation coefficients (Pearson r) for the three 
comparisons above. 
 

 “Graph 4” “Graph 5” “Graph 8” 
Correlation 
Coefficient 0.022 0.383 0.040 

 
The scatterplots and boxplots are given in Fig. 3. 

“Data A” and “Data B” refer to the two data sets 
presented on each graph. 
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(a) Data and visual assessment of ‘Graph 4’ from [7]. 
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(b) Data and visual assessment of ‘Graph 5’ from [7]. 
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(c) Data and visual assessment of ‘Graph 8’ from [7]. 
 
Fig. 1. Original data for comparison and visual assessment based on approximately fifty responses. The Graph number 
refers to that used in [7]. The categories (x axis) in column 2 are 1- excellent, 2 - very good, 3 - good, 4 - fair, 5 - poor, 
and 6 - very poor. 
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Fig. 2. Visual rating scale (From [7, 8]). 
 

These statistics show some interesting properties. 
The rank ordering of the correlation coefficients is the 
same as the visual rank-ordering. However, the 
magnitude of the differences does not reflect the visual 
assessment. The generally low level of correlation could 
be seen to reflect the visual assessment. The scatterplots 
suggest that “Graph 8” is random, “Graph 4” has a 
slightly better association (the points are less randomly 
distributed across the graph) and “Graph 5” almost shows 
a hint of a positive gradient straight line. Interpretations 
of the scatterplots also support the visual assessment. The 
boxplots simply relate the data distributions with “Graph 
8” clearly showing the greatest agreement.  
 
III.2. Parametric tests  

It is inappropriate to make the assumption that the 
data has a normal probability distribution, an implicit 
requirement of parametric tests, i.e. tests which consider 
the comparison of data parameters, such as means. 
However, for large sample sizes, the Central Limit 
Theorem does allow parametric tests to be used. The 
most common of these, the Student’s t-test evaluates the 
difference in means for two groups. The resulting p-level 
gives a probability of error associated with rejecting the 
null hypothesis, i.e. the hypothesis that there is no 
difference in the two groups, when, in fact the hypothesis 
is correct. The results are summarized in Table 2. 

 
 

Table 2. t-test results for the three original data sets. 
 

 “Graph 4” “Graph 5” “Graph 8” 
t-parameter -56 4.7 0.7 

P value 0.000 0.000 0.473 
 

These values show that only the data in “Graph 8” 
are similar. It shows that “Graph 4” is the worst 
comparison. Of course, as the purpose of the t-test is to 
compare means of groups, the results will confirm what 
has been demonstrated in the Boxplots of Fig. 3 
  
III.3. Non-parametric tests 

Non-parametric tests make no assumptions about the 
normality or otherwise of the data. They take into account 
the shape of the distributions. Two popular tests in 
electromagnetics are the χ2 test and the Kolmogorov-
Smirnov (KS) test. The χ2 test measures the level of 
association between the two results. The KS test makes 
an assessment of whether there is sufficient evidence to 
reject the null hypothesis. It should, however, be noted 
that outliers can have a serious effect on the results. 

The χ2 test is based on a measure of the difference 
between two samples. The problem with this test is that it 
relies on dividing the square of the differences by the 
value of one of the data points and this results in the 
potential for different results depending on which data set 
is taken as a reference. The χ2 parameter for the three 
graphs is given in Table 3. 
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(a) Scatterplot and Boxplot for “Graph 4” from [7]. 
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(b) Scatterplot and Boxplot for “Graph 5” from [7]. 
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(c) Scatterplot and Boxplot for “Graph 8” from [7]. 

 
Fig. 3. Scatter plots and  Boxplots for “Graph 4”, “Graph 5” and “Graph 8”, respectively. 
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Table 3. χ2 parameter. 
 

 “Graph 4” “Graph 5” “Graph 8” 
χ2 75 20 149 

 
This surprisingly suggests that “Graph 8” is much 

worse than “Graph 4”. 
The KS test converts the data sets into distributions 

and compares those distributions, looking for the 
maximum difference. Commonly, it is used to compare a 
data set with a known distribution but has here been used 
to compare two independent data sets. The results are 
given in Table 4. “Graph 8” comes out as a clear best 
comparison. 
 
Table 4. KS-test results for the three original data sets. 
 

 “Graph 4” “Graph 5” “Graph 8” 
KS Z 

parameter 9.8 2.8 0.7 

P value 0.000 0.000 0.714 
 

IV. FEATURE SELECTIVE VALIDATION (FSV)  
 

FSV is not a canonical statistical technique. It is, 
however, an increasingly accepted heuristic technique 
that finds favor particularly in the EMC community for 
validation of computation electromagnetics and has been 
discussed in detail in [7-13]. It is presented here because, 
like statistical techniques, its aim is to quantify 
confidence in the comparison of the data sets fed into it. 
Correlation techniques do this through the value of the 
correlation coefficient, other techniques do this based on 
the p-values, FSV does this using a variety of inbuilt 
metrics, the most general of which being the Global 
Difference Measure. The FSV tool with which the 
following results has been computed can be download 
from the official FSV web page [14] or directly from 
[15]. 

In overview, FSV works by taking the two original 
data sets and low and high pass filtering each of these. 
The low pass data is differenced, as detailed in [14], to 
give the Amplitude Difference Measure (ADM) which 
measures the level of (dis)agreement of the data 
envelope. First and second derivatives of the low and 
high pass data are differenced (as in [14]) to give the 
Feature Difference Measure (FDM), which measures the 
level of disagreement of the finer detail and features in 
the original data. The ADM and FDM are then combined 
to give the GDM as in equation (2) 
 

22 FDMADMGDM +=              (2) 
 

As well as the single figure of merit given by the 
GDM, one particular useful feature of FSV is the 
confidence histogram, where the proportion of the GDM 

curve (on a point-by-point basis) is binned into the 
categories as noted in the visual rating scale of Fig. 2. 
The resulting probability density function has been shown 
to provide close analogue of the visual assessment of a 
group visual assessment. 

The GDM values are given in Table 5; the 
confidence histograms for the data of Fig. 1 is given in 
Fig. 4.  
 
Table 5. FSV (Global Difference Measure) results for 
original comparisons. 
 

 “Graph 4” “Graph 5” “Graph 8” 
GDM 5.26 4.41 4.67 
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Fig. 4. FSV (dashed bars) compared to visual evaluation 
(solid bars) for the data in Fig. 1 from [7]. (a) “Graph 4”, 
(b) “Graph 5”, and (c) “Graph 8”. 
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V. DISCUSSION 
 

This paper has presented a non-mathematical 
summary of some of the most widely used statistical 
techniques as applied to computational electromagnetic 
validation. In particular, the emphasis has been to take a 
set of results already visually assessed by engineers 
familiar with performing this task and applying the 
techniques to see whether agreement could be obtained 
between the statistical techniques and the visual 
assessment. It should be noted that a paper such as this 
cannot prove the applicability or otherwise of individual 
statistical techniques, it can highlight the range of 
techniques available and suggest which are possibly more 
suitable than others. 

All the comparisons used in this paper have shown a 
marked difference between the two components. In order 
to show how the tests compare when there is very little 
difference, by way of a ‘lower bound’, the data of Fig. 
5(a) was compared using the techniques discussed above. 
Fig. 5(b) shows the visual assessment and FSV 
assessment, Fig. 5(c) shows the scatter plot and Fig. 5(d) 
shows the box plots. The Pearson r correlation is 0.999, 
the χ2 value is 0.05 (irrespective of the order of variables) 
and the t-test value is 0.004. Clearly, there is little doubt 
as to the generally very high level of agreement between 
the two graphs irrespective of which method is used in 
the comparison. 
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(a) From [7]. 
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(b) From [7] - solid bar is visual assessment, dashed bar 

is FSV. 
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Fig. 5. Comparison of two data sets with very little 
difference. (a) Original data, (b) visual comparison 
compared to FSV comparison, (c) scatterplot, and (d) 
boxplots. 

 
Scatterplots and correlation demonstrated the same 

rank-ordering of the data as the visual assessment. The 
boxplots and t-test results were in agreement but did not 
agree with visual assessment. The χ2 test correctly 
identifies the best comparison whereas the KS test agrees 
with the t-test. In practice, the non-parametric tests are 
probably not well suited to large data sets [9] with 
parametric tests being more reliable due to the Central 
Limit Theorem. However, where there is a need to 
compare a data set with a known distribution, such as 
optimizing a reverberation chamber to produce a 
Rayleigh channel, then a χ2 or KS approach would be 
well suited. A difficulty with applying χ2 to two sets of 
data is that it relies on one ‘reference’ set. If using it to 
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compare models against measurements or models against 
models, the reference set must be unambiguous (for 
example, by changing the ‘reference’ set in the previous 
table, the χ2 parameter for “Graph 4” = 1386!) and the 
user must be aware of points that are very close to zero in 
the reference set as this can produce an unnecessarily 
dominating effect on the final value (for example, by 
changing the ‘reference’ set in the previous table, the χ2 
parameter for “Graph 4” = 1386!). 

In all cases, a real benefit derived from the 
application of a statistical approach to validation of 
computational electromagnetics is that it provides an 
objective starting point to discuss the comparisons and 
agree a conclusion. 
 

REFERENCES  
 
[1] R. Holland and R. St John, Statistical 

Electromagnetics, Francis, Philadelphia, PA, 1999. 
[2] D. Carpenter, “Statistical electromagnetics: an end-

game to computational electromagnetics,” IEEE Int. 
Symp. on EMC, pp.736 – 741, 2006. 

[3] H. Sasse and A. P. Duffy, “Satisficing in 
computational electromagnetics,” Applied 
Computational Electromagnetics Society Newsletter, 
vol. 21, no. 2, 2006. 

[4] A. Coates, H. Sasse, D. E. Coleby, A. P. Duffy, and 
A. Orlandi, “Validation of a three dimensional 
transmission line matrix (TLM) model 
implementation of a mode stirred reverberation 
chamber,” IEEE Trans. on EMC, in press. 

[5] P. Corona, J. Ladbury and G. Latmiral, 
“Reverberation chamber research – then and now: a 
review of early work and comparison with current 
understanding,” IEEE Trans. on EMC, vol. 44, no. 1, 
pp. 87 – 94, Feb. 2002.  

[6] C. Bruns and R. Vahldieck, “A closer look at 
reverberation chambers – 3D simulations and 
experimental verification,” IEEE Trans. on EMC, vol 
47, no. 3, pp. 612 – 626, Aug. 2005. 

[7] A. Orlandi, A. P. Duffy, B. Archambeault, G. 
Antonini, D. E. Coleby, and S. Connor, “Feature 
selective validation (FSV) for validation of 
computational electromagnetics (CEM). Part II – 
assessment of FSV performance,” IEEE Trans. On 
EMC,  vol. 48, no. 3, pp. 460 – 467, 2006. 

[8] D. E. Coleby and A. P. Duffy, “A visual 
interpretation rating scale for the validation of 
numerical models,” COMPEL: The Int. Journal for 
Computation and Mathematics in Electrical and 
Electronic Engineering, vol. 24, no. 4, pp. 1078 – 92, 
2005. 

[9] StatSoft Inc., Electronic Statistics Textbook, Tulsa, 
OK, Statsoft, USA, 2006.              
WEB: http://statsoft.com/textbook/stathome.html  

[10] D. G. Rees, “Essential Statistics, 4/e, 2000, Chapman 

and Hall / CRC, Boca Raton 
[11] J. Devore and R. Peck, Statistics – the exploration 

and analysis of data, 2/e, Duxbury Press, Belmont, 
California, 1993. 

[12] T. T. Soong, Fundamentals of probability and 
statistics for engineers, Wiley, Chichester, UK, 
1993. 

[13] A. P. Duffy, A. J. M. Martin, A. Orlandi, G. 
Antonini, T. M. Benson, and M. S. Woolfson, 
“Feature selective validation (FSV) for validation of 
computational electromagnetics (CEM). Part I – the 
FSV method,” IEEE Trans. on EMC, vol. 48, no. 3, 
pp. 449 – 59, 2006. 

[14] FSV official webpage: 
http://www.eng.dmu.ac.uk/~apd/FSV/FSV%20web/ 

[15] FSV downloads at: 
   http://ing.univaq.it/uaqemc/FSV_3_2_2/ 
 

97DUFFY, ORLANDI: REVIEW OF STATISTICAL METHODS FOR COMPARING TWO DATA SETS




