
Practical Implementation of a CPML Absorbing Boundary for GPU
Accelerated FDTD Technique

1M. J. Inman, 1A. Z. Elsherbeni, 2J. G. Maloney, and 2B. N. Baker

1 Department of Electrical Engineering
University of Mississippi, University, MS 38677-1848, USA

atef@olemiss.edu , mjinman@olemiss.edu

2 Georgia Tech Research Institute
Georgia Institute of Technology, Atlanta, GA 30332, USA
jim.maloney@gtri.gatech.edu , brad.baker@gtri.gatech.edu

Abstract − The use of graphical processing units (GPU)
has been recently documented for the implementation of
the FDTD technique; however, little has been reported
about the necessary additions to three dimensional FDTD
codes to make the technique more useful for fast antenna
analysis and design. This paper details the addition of a
convolutional perfectly matched layer absorbing
boundary (CPML) to a three dimensional GPU
accelerated FDTD code.

Keywords: FDTD, PML, CPML, and GPU.

I. INTRODUCTION

The use of a graphical processing unit (GPU) to
accelerate the nested loops for updating the field of a
three dimensional FDTD code has been documented in
literature over the past few years [1-3]. What has been
absent is the implementation of all the additional features
of electromagnetic simulation that allow the FDTD
technique to be so useful to the antenna engineer. These
features include, but are not limited to, a functioning
absorbing boundary, a plane wave injection method,
discrete feeds for driven antennas, sub-cell models, linear
and non-linear circuit element models, and near to far-
field transformation for radar cross-section (RCS) and
antenna pattern analysis. The goal of this paper is to add
the first item in the list, a PML absorbing boundary, to a
GPU-accelerated code without giving up too much of the
speed advantage provided by the use of the GPUs. Since
the convolutional PML [4] relies on the same triple-
nested loops as the standard 3D FDTD, as well as having
several other benefits [5], it seemed to be a promising
candidate to implement in a GPU FDTD code. This paper
addresses the benefits of implementing the CPML in a 3D
FDTD code executed on a GPU. The details of how to
construct a GPU FDTD code is not within the scope of
this paper as this can be found in [1-3].

II. CPML FORMULATION

The CPML formulation was chosen both for its
simplicity, as well as the straightforward nature of its
implementation [5]. Both the standard PML [6] and its
Uniaxial [7] formulation require the PML region to be
updated separately from the rest of the computational
domain. These formulations also possess a two-step
update procedure and a complicated set of coefficients to
allow general materials to be present in the PML region.
The CFS-PML is favorable due to the fact that all cells in
the PML are updated in the normal FDTD loop, so all
general materials are handled. After the normal loop of
updating the field components, the convolutional term is
added to the appropriate fields for each face that has PML
present on it. This is also a two step process, but the first
step is simply the normal FDTD update process.

For the sake of completeness, this section will detail
the formulation of CPML used in the GPU accelerated
code described in this paper. The derivations for all
equations, as well as a much better descriptions of both
the CFS-PML and the CPML, are given in [8]. The first
step in building the CPML is to set the field updating
coefficients correctly. The coefficients are scaled
spatially from the edge of the computational domain. All
of the following equations describe a CPML that
attenuates waves traveling toward the lower z boundary.
The two important terms are the complex frequency
shifted term, a, and the PML conductivity term, σ which
are given as,

max
(1)()

m

z
iPML ua u a

iPML
− −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (1)

max()
m

z
uu

iPML
σ σ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (2)

16 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

1054-4887 © 2008 ACES

In equations (1) and (2), u is the integer representing
the location from the lower z boundary, and iPML is the
number of PML cells (which is set to 10 for the results
presented here). The term m is the order of the
polynomial taper, which was set to 4. The polynomial
tapers are applied to a maximum values for a and σ,
which are defined as,

max 2 /10o oa Fπε= (3)

max
z o o

0.8(m+1)
/

σ
µ ε

=
∆

. (4)

Equation (3) is taken directly from [7], while

equation (4) is chosen as a good fit for most problems.
The Fo term is the center frequency of the excitation
pulse in the frequency domain. For this case, a derivative
of a Gaussian is used as the source waveform. The
spatially scaled terms are then used to create the bz and cz
coefficients such that,

() ()
()()

z z
t

o z o

u a u
u

zb u e

⎛ ⎞
−∆ +⎜ ⎟

⎝ ⎠=

σ
ε κ ε (5)

2
()() ()

() () () ()
z

z z
z z z z

uc u b u
u u u a u

σ
σ κ κ

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

. (6)

As mentioned previously, all cells in the

computational domain, the PML cells included, are
updated with the standard FDTD update equations. For
the lower z boundary example, the Ex and Ey terms are
then modified by a convolutional “correction” term to
apply the PML. These terms are given in equations (7)
and (8). They are then added into the Ex and Ey terms as
given in equations (9) and (10). The CEXH term in
equations (9) is the usual magnetic coefficient for the Ex
update equation. Likewise for the CEYH term in
equations (10). These terms are defined in equations (11)
and (12) as a function of the permittivity and conductivity
of the material at individual points and are separated by
direction,

()
(, ,) () (, ,)

() (, ,) (, , 1)
xz z xz

z

E i j u b u E i j u
c u Hy i j u Hy i j u

Ψ = Ψ +

 − −
 (7)

()
(, ,) () (, ,)

() (, ,) (, , 1)
yz z yz

z

E i j u b u E i j u

c u Hx i j u Hx i j u

Ψ = Ψ +

 − −
,(8)

(, ,) (, ,)
(, ,) (, ,)

x x

xz

E i j u E i j u
CEXH i j u E i j u

= −
 Ψ

, (9)

(, ,) (, ,)

(, ,) (, ,)
y y

yz

E i j u E i j u

CEY H i j u E i j u

= +

 Ψ
, (10)

0
0

(, ,) (, ,)(, ,) ex
rx

tCEXH i j u t i j ui j u σε ε
ε

∆
=

∆
+

 ,(11)

0
0

(, ,) (, ,)
(, ,) ey

ry

tCEYH i j u t i j u
i j u

σ
ε ε

ε

∆
=

∆
+

.(12)

The magnetic CPML update process proceeds

similarly. The one difference that should be noted is that
the spatially scaled coefficients are shifted by the usual ½
cell characteristic of the Yee cell [9]. The update
equations for the magnetic field are given by,

()
(, ,) () (, ,)

() (, , 1) (, ,)
xz z xz

z

H i j u b u H i j u
c u Ey i j u Ey i j u

Ψ = Ψ +

 + −
(13)

()
(, ,) () (, ,)

() (, , 1) (, ,)
yz z yz

z

H i j u b u H i j u

c u Ex i j u Ex i j u

Ψ = Ψ +

 + −
,(14)

()
(, ,) (, ,)

(, ,)
x x

xz

H i j u H i j u
CHXE H i j u

= −

 Ψ
, (15)

()
(, ,) (, ,)

(, ,)

y y

yz

H i j u H i j u

CHY E H i j u

= +

 Ψ
, (16)

0
0

(, ,) (, ,)(, ,) mx
rx

tCHXE i j u t i j ui j u σµ µ
µ

∆
=

∆
+

,(17)

0
0

(, ,) (, ,)
(, ,) my

ry

tCHYE i j u t i j u
i j u

σ
µ µ

µ

∆
=

∆
+

.(18)

17INMAN, ELSHERBENI, MALONEY, BAKER: PRACTICAL IMPLEMENTATION OF CPML FOR GPU FDTD

III. GPU IMPLEMENTATION OF THE CPML

Efficient implementations of basic FDTD technique
on GPU’s have been documented in the past, however,
including absorbing boundary conditions can present a
few challenges. Certain common boundary types such as
Mur or Liao may not have easy implementation due to
the nature of the time and spatial dependency of their
updating equations, especially for higher orders absorbing
boundaries. Furthermore, this problem gets to be more
complicated for three dimensional problems where the
3D to 2D translation [3] is necessary for storage inside
the GPU card as seen in Fig. 1. Because of this
translation, the various x, y, and z boundaries inside the
domain are scattered amongst the various tiles. Thus
applying the boundary conditions on the individual
boundaries becomes very complicated.

On the contrary, the CMPL boundary condition can
be implemented with a much easier procedure since

CPML can be represented by FDTD-like arrays. In most
efficient C and FORTRAN implementations of CPML,
the coefficients (ψ, b, c) and the processing loops operate
only on the boundary locations, however since the
coefficients in non-boundary areas would be zero, the
coefficients and processing loops can be extended to
cover the entire domain. While unnecessary in C and
FORTRAN implementations, this becomes necessary in
the GPU code as the boundaries are scattered throughout
the 2D translated arrays. This allows for a much simpler
updating function as it can be applied over the entire
domain without having to worry in the GPU section
where exactly the boundary locations are. Figure 2 shows
the location of the various boundaries once the 3D
domain has been decomposed into a 2D tiled domain.
The program will calculate and populate the various
coefficients necessary to implement the CPML boundary
in these regions only.

Fig. 1. 3D to 2D translation via tiling.

Fig. 2. Locations of the boundaries in the 2D texture.

1
2
3
4
5

1 3 5

2 4 6

50 100 150 200 250 300 350 400

10

20

30

40

50

50 100 150 200 250 300 350 400

10

20

30

40

50

50 100 150 200 250 300 350 400

10

20

30

40

50

X Boundaries

 Z Boundaries

Y Boundaries

18 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

The updating equations were implemented in GPU
kernels as simple functions that would first calculate the
necessary ψ terms, then apply the correcting terms to the
E and H field components. The entire process is
integrated easily into the GPU program with only minor
changes in the precalculation of the b and c terms before
the GPU performs the time steps.

IV. RESULTS

The GPU program was tested against a known
FORTRAN based FDTD code with CPML to insure
accuracy and proper operation. Both the GPU and CPU
based codes were run on Intel Dual-Core 2.8 GHz
systems with an Nvidia 8800 GTX video card with 768M
of RAM. In the progression of time steps a derivative of a
Gaussian waveform is injected from a point source at the
center of the domain and progresses outward before being
absorbed by the CPML layers and finally only very small
reflections of the CPML remains. The source waveform
is defined as,

()
()2

0
2

02

2()
t t

s t t t e τ

τ

−

= − (19)

where

2.1
40 min(, ,)

c
x y z

τ
π

=
∆ ∆ ∆

, (20)

 0 4.5t τ= . (21)

Figure 3 shows the Ez field component at a plane cut

containing the source point for various time steps to show
proper operation of the GPU based program.

Figure 4 shows the Ez field component at an
observation point 10 cells from the source point over 500
time steps. The wave is injected from approximately 40
to 150 time steps while the reflection of the CPML
boundary can be seen at approximately 225 time steps
into the simulation. The maximum magnitude of this
reflection was calculated to be less than 0.3%. This
reflection is higher than standard FORTRAN codes due
to the numerical precision of the GPU.

With the PML having been verified, several test
cases were run to present the full functionality and verify
real simulation results. The two cases presented here are
the well known microstrip patch antenna and filter [10].
Figure 5 shows the layout for the simple microstrip patch
antenna.

The patch was simulated on both the GPU and CPU
based systems for 3000 time steps. Figure 6 shows both
the time domain and frequency domain results. The

results show good comparison overall to the reference
data [10] with minor difference due to the actual
implementation of the codes and the numerical precision
of the GPU.

Fig. 3. Ez plane cuts at various time steps.

0 50 100 150 200 250 300 350 400 450 500
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Ez vs Time Steps at Observation Point

Time Steps

E
z

Fig. 4. The Ez field component at the observation point
over 500 time steps.

The second test case simulates a microstrip filter.
The simulation was also run on the GPU systems for
3000 time steps. Figure 7 shows the layout of the simple
microstrip filter while Fig. 8 shows the results from this
filter. Again good agreement is shown between the GPU
results and the reference data [10].

19INMAN, ELSHERBENI, MALONEY, BAKER: PRACTICAL IMPLEMENTATION OF CPML FOR GPU FDTD

Fig. 5. Layout for patch antenna.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10-9

-5

0

5

10

15
x 10-3

Time

C
ur

re
nt

Current at Port 1

GPU
Matlab

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10-9

-0.4

-0.2

0

0.2

0.4

0.6

Time

V
ol

ta
ge

Voltage at Port 1

GPU
Matlab

Fig. 6. Patch antenna verification results.

Fig. 7. Microstrip filter layout.

Dimensions are in mm
εr = 2.2
dx = 0.389, dy = 0.4, dz = 0.265
nsteps = 3000

x

z

0.794

10 cells

10 cells AirBz2

AirBz1

AirBx1 AirBx2

10 cells 10 cells

20dy

10dy

15dx 15dx

2.462.09

Outer
boundaries

ABC

x

y

AirBy

15dy

10

AirBy2
10

source

Port

7.9

16

 10d

20d

2.4

Outer
boundaries

ABC

x

y

source

Port

20d

10d

5.6
2.5

20.3

Port

x

z

0.794

10 cells

10 cells AirBz2

AirBz1

AirBx1 AirBx2

10 cells 10 cells

Dimensions are in mm
εr = 2.2
dx = 0.4064, dy = 0.4233, dz = 0.265
nsteps = 3000

0 2 4 6 8 1 0 12 1 4 1 6 18 20
-25

-20

-15

-10

-5

0

5
S 1 1 a t P o rt 1

G P U
C P U

20 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

0 2 4 6 8 10 12 14 16 18 20
-40

-30

-20

-10

0

10
Sheen Based Microstrip Filter - S Parameters

S11
S21

Fig. 8. Microstrip filter results.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800
3D FDTD-CPML Runtime vs Iterations Patch Antenna

Number of Iterations

R
un

tim
e

(s
ec

on
ds

)

Optimized CPU Implentation
DirectX 9.0c-ATI x1900
DirectX 9.0c-NVidia 8800

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35
3D FDTD-CPML Speedup Factor vs Iterations Patch Antenna

Number of Iterations

S
pe

ed
up

 F
ac

to
r

DirectX 9.0c-NVidia 8800
DirectX 9.0c-ATI x1900

(b)

Fig. 9. Fortran CMPL vs. GPU CPML implementation
results for various time steps with 500000 cell
configuration, (a) run time; (b) speed up factor.

Figure 9 shows runtime and speedup results for both
an optimized CPU and GPU code for the patch antenna
test configuration of approximately 500000 cells. The
GPU code was run on both an ATI x1900 and NVidia
8800 GPUs, while the CPU code was run on a Dual Core

Pentium 2.8 GHz processor. The runtime results show a
near linear trend for this case as the number of time steps
is increased. The speedup factors for this case show that
as the number of time steps is increased the maximum
speedup factor asymptotically approaches a limit of 26
for the GPU on the NVidia 8800 and 6.4 for the ATI
x1900.

V. CONCLUSIONS

The GPU based code outlined in this paper has

shown good performance compared to a known
FORTRAN code in implementing a three dimensional
FDTD simulation with a CPML boundary condition.
While the speedup factors gained in this GPU code is less
than that has been shown without a boundary condition, it
still offers a significant gain in speed over purely CPU
based FDTD solvers. As the domain size is increased, the
speedup factor slightly decreases due to the fact that the
CPML coefficients and updates has to be implemented
over the entire domain rather than in sections as it is in
the FORTRAN code. It is expected that the current
implementation would yield higher speed factor when
new generation of GPUs are used.

REFERENCES

[1] M. J. Inman, A. Z. Elsherbeni, and C. E. Smith

“GPU programming for FDTD calculations,” The
Applied Computational Electromagnetics Society
(ACES) Conference, Honolulu, Hawaii, 2005.

[2] M. J. Inman and A. Z. Elsherbeni, “3D FDTD
acceleration using graphical processing units,” The
Applied Computational Electromagnetics Society
(ACES) Conference, Miami, Florida, 2006.

[3] M. J. Inman and A. Z. Elsherbeni, “Programming
video cards for computational electromagnetics
applications,” IEEE Antennas Propagation Mag.,
vol. 47, no. 6, pp. 71-78, 2005.

[4] J. A. Roden, and S. D. Gedney, “Convolutional PML
(CPML): An efficient FDTD implementation of the
CFS-PML for arbitrary media,” Microwave Optical
Tech. Let., vol. 27, pp. 334-339, 2000.

[5] S. D. Gedney, “Scaled CFS-PML: It is more
accurate, more efficient, and simple to implement.
why aren’t you using it?,” IEEE Antennas and
Propagation Society International Symposium, vol.
4B, pp. 364-367, July 2005.

[6] J. P. Berenger, “A perfectly matched layer for the
absorption of electromagnetic waves,” Journal of
Computational Physics, vol. 114, pp. 195-200, 1994.

[7] S. D. Gedney, “The perfectly matched layer
absorbing medium,” Advances in Computational
Electrodynamics: The Finite Difference Time
Domain, A. Taflove, Editor, Artech House, New
York, pp. 263-340, 1998.

21INMAN, ELSHERBENI, MALONEY, BAKER: PRACTICAL IMPLEMENTATION OF CPML FOR GPU FDTD

[8] S. D. Gedney, “Perfectly Matched Layer Absorbing
Boundary Conditions,” in Computational
Electrodynamics: The Finite Difference Time
Domain, third edition, A. Taflove, and Susan C.
Hagness, Editors, Artech House, Norwood, MA, pp.
295-313, 2005.

[9] K. S. Yee, “Numerical solution of initial boundary
value problems involving Maxwell’s equations in
isotropic media,” IEEE Trans. Antenna Propagation,
vol. AP-14, pp. 302-307, May 1966.

[10] D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A.
Kong, “Application of three-dimensional finite-
difference time-domain method to the analysis of
planar microstrip circuits,” IEEE Trans. Microwave
Theory and Techniques, vol. 37, no. 7, pp. 849-857,
July 1990.

Matthew Joseph Inman received his
B.S. in Electrical Engineering in 2000
and his Masters in Electromagnetics in
2003 from the University of
Mississippi. He currently is currently
pursuing Ph. D. studies in
electromagnetics there. He is currently
employed at the University as a
research assistant and graduate
instructor. His interests involve
electromagnetic theories, numerical
techniques, antenna design and

visualization, as well as teaching a number of undergraduate
courses.

Atef Z. Elsherbeni – Biography can be found on page 61

22 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

