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Abstract − Computing the far-field transient response of a 
two-dimensional geometry requires a convolution of 
near-field currents with a two-dimensional far-field 
impulse response. In this work, a purely time domain 
implementation is derived and its accuracy is 
demonstrated. This method is applicable to EMI, 
radiation, and scattering problems. 
 

I. INTRODUCTION 
 

The finite difference time domain technique (FDTD) 
is a robust and proven technique for full-wave 
electromagnetic analysis of complex microwave, antenna, 
and scattering geometries. Often, the quantity of interest 
is not near-field quantities, which are directly computed 
by the time marching scheme. Instead, far-field radiation 
or scattering quantities are desired. 

In order to compute these far-field quantities, various 
transform techniques have been successfully applied in 
both three dimensions [1-4] and two dimensions [5-6]. 
When angular patterns at a few discrete frequencies are 
of interest, a single frequency transform is appropriate 
and easily computed in either two or three dimensions 
using a running Fourier transform and proper weightings. 
Far-field patterns are then computed using a post 
processing operation. 

When a broadband or transient far-field result is 
desired at a few discrete angles, a purely time-domain 
near-field to far-field transform is appropriate. In three 
dimensions, this process is straight forward in theory, 
though implementation requires a bit of bookkeeping. In 
two dimensions, the time-domain near-field to far-field 
transform is complicated by the two-dimensional Green’s 
function which is no longer of a simple exponential form.  

In [6], a hybrid time/frequency domain approach is 
derived for the two-dimensional time-domain transform. 
In this hybrid method, post processing accomplishes the 
complex Green’s function convolution. Specifically, a 
multi-step procedure consisting of a Fourier transform, a 
frequency domain multiplication, and finally an inverse 
Fourier transform produces the final time-domain result. 

In this paper, a more elegant approach is formulated 
which is accomplished entirely in the time domain. 
Efficiency is gained by using an extremely accurate 
approximation of the Green’s function’s time-domain 

impulse response and subsequent application of an 
efficiently implemented convolution sum. The accuracy 
of the method is proven against known analytic solutions. 
Furthermore, the discrete impulse response derived in this 
work has applications in other FDTD applications where 
1 jω  type impulse responses are present. 
 

II. FREQUENCY DOMAIN FORMULATION 
 

It is widely known that if a radiator or scatterer is 
surrounded by a closed surface S, the far-fields may be 
computed from vector magnetic and electric surface 
currents sM

G
 and sJ

G
 defined along the enclosing surface 

by - ˆ ×n E
G

 and ˆ ×n H
G

, respectively. The fields are most 
easily defined in terms of the intermediate radiation 
vectors defined as follow, 
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where 'rG is the vector from the origin to the surface 
current,  and rG is the unit vector to the far-field point. 

The vector components of the electric field in the far-
field are then given by, 
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where λ is the wavelength, k is the wave number ω µε , 
and η is the free-space wave impedance. 
 

III. HYBRID TIME 2D FORMULATION 
 

In a three-dimensional FDTD code the 
implementation of equations (3) and (4) is typically 
accomplished by introducing the temporary summation 
variables ,W U

G G
 defined as, 
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Applying the Laplace transform, these become 
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W
G

and U
G

result in a discrete binning operation whereas 
contributions from each surface patch on the far-field 
transform surface is time-delayed and added 
appropriately to the appropriate time bin. At the end of 
the FDTD computation, the far-field components of the 
electric field are then simply given as,  

3 3 3D D DE W Uθ θ φη= − −                               (9) 
3 3 3D D DE W Uφ φ θη= − + .                           (10) 

In [6] it was shown that a simple relation exists 
between equations (9), (10), and their two dimensional 
counterparts, 
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The implementation of equation (11) in conjunction 
with equations (9) and (10) was accomplished in [6] as a 
three-step post processing operation. Specifically, once 
the far-field components Ez(t) and Eφ (t) are computed for 
all times of interest, a Fourier transform is applied to the 
time waveforms rendering a discrete frequency spectrum 
for the fields. Next, equation (11) is applied to each 
frequency component of interest. If a frequency spectrum 
alone is needed, no further processing is necessary. 
However, if the time-domain far-field is the quantity of 
interest, equation (11) must be applied to the entire 
frequency spectrum of the signal. Subsequently, the 
weighted frequency spectrum is transformed back to the 
time domain using the inverse Fourier transform. 
 

IV. A FULLY TIME-DOMAIN FORMULATION 
 

While the hybrid approach presented in the last 
section is simple and effective, a fully time-domain 
approach can be beneficial, particularly if the time-
domain far-field is of interest. To this end, consider the 
time-domain representation of equation (11), 
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These convolutions are quite costly in the present 
form which of course is the reason this form has been 
avoided. To minimize this cost, the impulse response of 
1 τ is required in a form amenable to a more efficient 

implementation. Specifically, an accurate exponential 
representation of the discrete impulse response is needed. 
In [2], Prony’s method was used to approximate this time 
domain discrete impulse response. However, in the 
course of the present work, it was found that this 
published expansion was not adequate. Therefore, a new 
expansion was generated using the TLS (total least 
squares) Prony method [7-8]. Using this approximation, 
equation (12) is accomplished in discrete form as, 
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the variables Ci  and ωi are defined in Table 1 and ∆t is 
the time step used in the FDTD computation 

Equation (13) is applicable to each field component 
with the summation variable of equation (14) is executed 
in tandem.  Note that this operation is accomplished after 
the simulation has been completed and does not add 
additional cost to the FDTD time stepping algorithm. 
 
Table 1. Time domain approximate expansion 
coefficients for the discrete impulse response. 
 

iC  iw  
2.8127012947e-002 -1.5342833368e-004 
3.0430608890e-002 -1.4566027270e-003 
3.6162010199e-002 -4.5530898790e-003 
4.7669826308e-002 -1.0919385763e-002 
6.7935155570e-002 -2.4433346192e-002 
9.8433658984e-002 -5.4569291616e-002 
1.3696192243e-001 -1.2389528094e-001 
1.6810710585e-001 -2.8723727545e-001 
1.5152191381e-001 -6.8432281745e-001 
6.3077757874e-002 -1.7514471961e+000 

 
 

The accuracy of this technique is directly impacted 
by the accuracy of this rational approximation. This 
accuracy is demonstrated in Fig. 1 where the impulse 
response for the time domain expression 1 τ  is 
demonstrated. This formulation is independent of time 
step. Note that the late time response (large n) is much 
improved over previously published approximations of 
the underlying discrete impulse response. 
 

V. RESULTS 
 

Initially, the accuracy of this method was proven by 
computing the monostatic scattering from a two-
dimensional perfectly conducting cylinder with a radius 

2 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008



of 0.25 meters. The FDTD problem size was 500 by 500 
cells and the cell size was 1.25 mm. These results were 
validated against a Mie series solution for the geometry. 
The accuracy of the method in this paper is demonstrated 
in Figs. 2 and 3. Note that the new formulation and the 
previous combined frequency/time domain method give 
near identical results. Figure 4 demonstrates the accuracy 
of the method across the entire bistatic angular sweep at 
300 MHz for the TMz polarization. Again the agreement 
is excellent.  
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Fig. 1. Discrete impulse response for far-field 
convolution. 
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Fig. 2. TMz monostatic backscatter for 0.25 meter PEC 
cylinder. 

 
 
Finally, the far-field radiation from an infinitely thin 

wire was computed. This geometry has an analytic 
solution also which is well known. Figure 5 demonstrates 
the accuracy of the present method for this practical 
geometry. 

 
VI. CONCLUSION 

 
In this paper, an efficient and compact method for 

computing the two-dimensional far-fields from an FDTD 
simulation was presented. The accuracy was 

demonstrated for a simple canonical test case. The 
coefficients generated for the time-domain solution of 
this problem are also applicable to commonly used high 
frequency surface impedance formulations and provide 
an accurate alternative to previously published 
approximations. 
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Fig. 3. TEz monostatic backscatter for 0.25 meter PEC 
cylinder. 
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Fig. 4. Bistatic TMz scattering from a PEC cylinder. 
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Fig. 5. Far-field of a long thin wire. 

3RODEN, JOHNS, SACCHINI: IMPROVED TIME-DOMAIN NEAR-FIELD TO FAR-FIELD TRANSFORMS



REFERENCES 
 
[1] A. Taflove and K. R. Umashankar, “Radar cross 

section of general three-dimensional structures,” 
IEEE Trans. Electromagnetic Compatibility, vol. 25, 
pp. 433-440, Nov. 1983. 

[2] J. H. Beggs, R. J. Luebbers, K. S. Yee, and K. S. 
Kunz, “Finite-difference time-domain 
implementation of surface impedance boundary 
conditions,” IEEE Trans. Antennas and Propagation, 
vol. 40, no. 1, Jan. 1992. 

[3] R. J. Luebbers, K. S. Kunz, M. Schneider, and F. 
Hundsberger, “A finite-difference time-domain near 
zone to far zone transformation,” IEEE Trans. 
Antennas Propagation, vol. 39, pp. 429-33, Apr. 
1991. 

[4] A. Taflove and S. C. Hagness, Computational 
Electrodynamics: The Finite Difference Time-
Domain Method, 3rd ed. , Norwood, MA, Artech 
House, 2005. 

[5] K. R. Umashankar and A. Taflove, “A novel method 
to analyze electromagnetic scattering of complex 
objects,” IEEE Trans. Electromagnetic 
Compatibility, vol. 24, pp. 397-405, Nov. 1982. 

[6] R. Luebbers, D. Ryan, and J. Beggs, “A two-
dimensional time-domain near-zone to far-zone 
transformation,” IEEE Trans. Antennas and 
Propagation, vol. 40, no. 7, July 1992. 

[7] J. J. Sacchini, W. M. Steedly, and R. L. Moses, 
“Two-dimensional prony modeling and parameter 
estimation,” IEEE Trans.  Signal Processing, vol. 41, 
no. 11, Nov. 1993. 

[8] M. A. Rahman and K. B. Yu, “Total least squares 
approach for frequency estimation using linear 
prediction,” IEEE Trans. Acoust. Speech Signal 
Processing, vol. ASSP-35, pp. 1440-1454, Oct. 
1987. 

 
 
Alan Roden is a Senior Project 
Leader with The Aerospace 
Corporation where his 
responsibilities include 
electromagnetic analysis and design 
for satellite systems. Previously, Dr. 
Roden worked with The Georgia 
Tech Research Institute in Atlanta 

Georgia, and the IBM Corporation in Research Triangle 
Park, NC.  He received his Ph.D. in Electrical 
Engineering from the University of Kentucky, Lexington, 
KY in 1997, his master’s degree in electrical engineering 
from North Carolina State University in 1989, and his 
B.S. from the University of Tennessee at Chattanooga in 
1984. Dr. Roden is a senior member of the IEEE and has 
published over 30 journal and conference papers.  
 

Steven L Johns was born in 
Spencer, Iowa, in 1966.  He received 
his B.S. degree in 1987, M.S. degree 
in 1989, and Ph.D. degree in 1999, 
all from the University of Southern 
California, and all in electrical 
engineering. From 1985 to the 
present he has been employed by 

The Aerospace Corporation and involved in the design 
and analysis of microwave, antenna, and radar systems.  
He is currently a Senior Project Engineer working in the 
Advanced Programs Office in Colorado Springs, 
Colorado.  He is a member of Tau Beta Pi and Eta Kappa 
Nu.  
 
 
   

Joseph J. Sacchini is currently a 
Senior Project Leader for The 
Aerospace Corporation, Chantilly, 
Virginia where he works on a 
variety of programs involving signal 
processing, radar, digital 
communications, and 
electromagnetics. Prior to joining 

The Aerospace Corporation, Dr. Sacchini worked for 
SAIC and The Analytical Sciences Corporation, both in 
Chantilly, Virginia. He received the B.E. degree from 
Youngstown State University in 1984, the M.S. degree in 
electrical engineering from the University of Dayton in 
1988, and the Ph.D. degree in electrical engineering from 
The Ohio State University in 1992.  He was on active 
duty with The US Air Force from 1983 to 1998. He 
retired from the Air Force in 1998. During his Air Force 
career, Dr. Sacchini was a Program Manager and 
Engineer on various programs involving radar, signal 
processing, digital communications, electronic warfare, 
automatic target recognition, and electromagnetics. He 
also was an Assistant Professor of Electrical Engineering 
at the Air Force Institute of Technology from 1992 to 
1996. His primary research interests are in radar signal 
processing, radar target identification, digital 
communications, and electromagnetics. Dr. Sacchini is a 
senior member of the IEEE, and a member of Tau Beta 
Pi, Phi Kappa Phi, and is registered in Ohio as a 
professional engineer. 
 

4 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008




