395

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

Electromagnetic Scattering Problems Utilizing a Direct, Parallel
Solver

William R. Dearholt! and Steven P. Castillo?

1 Box 1663, MS F644
Los Alamos National Laboratory
Los Alamos, New Mexico 87544
2 College of Engineering
New Mexico State University
Box 30001, MSC 3449
Las Cruces, New Mexico 88003

Abstract - Finite-element discretization of the vec-
tor wave equation is a common method of analyzing
the electromagnetic field scattered by an object. One
of the most challenging aspects of this research con-
cerns the solution of the system of equations resulting
from the finite-element analysis. Advanced solution al-
gorithms have enabled researchers to generate more re-
alistic computational models for scattering problems.
The work presented here represents what is believed
to be a unique parallel algorithm offering researchers
a method of solving large, sparse systems of equations
with advantages that are not found in previously pub-
lished works.

This research uses a parallel sparse matrix decom-
position algorithm to solve very large algebraic sys-
tems arising from the finite-element solution of elec-
tromagnetic scattering problems. This article provides
an overview of the scattering problem and how the di-
rect, parallel algorithm offers an efficient method of
solution.

I. INTRODUCTION

The solution of large, sparse, irregular systems
of equations is an important part of many computa-
tional tasks in science and engineering. In general,
such a system can be solved iteratively or directly.
The former path typically utilizes a Krylov-based
method with preconditioning while the latter is some
variation of Gaussian elimination. The convergence
of the iteration procedure depends not only on the
spectral content of the coefficient matrix but also on
the right-hand-side excitation as well. Convergence
difficulties have been reported in electromagnetics
scattering problems similar to those discussed in
this research [16]. In the case of problems with
many excitation vectors, Krylov methods lose their
advantage over Gaussian elimination methods since
the iterative procedure typically has to be repeated
for each right-hand side. The majority of the par-
allel, sparse matrix solvers are implemented with
an iterative algorithm. They have been easier to
code and they work well for many applications.
A number of public domain codes using iterative

techniques are available for download. For more
information on iterative solvers that are available
for public use, see references [2-5] or see the URL
http://www.netlib.org/utk/papers/iterative-
survey.

There are a number of parallel, direct solver algo-
rithms available for sparse irregular systems. One that
is currently being distributed is the PSPASES code
from the University of Minnesota [7]. PSPASES uses
a Cholesky algorithm for factorization of the coeflicient
matrix. A similar code is also available from the IBM
Watson Research Center [8]. The discussion of their
algorithm and a list of results were published in [9].

SUPERLU is a sparse matrix code that is avail-
able via the Gnu Public License. SUPERLU was ini-
tially a sequential code but was recently released to
run on distributed-memory computers. While results
are not available for problems with multiple excita-
tion vectors, runtimes have been published in a num-
ber of papers and conference proceedings including
[10, 11]. More information can be found at the URL
http://www.nersc.gov/ xiaoye/SuperLU/.

References [13, 14] discuss the algorithm used as a
basis for the numerical linear algebra in this paper. In
[13, 14] , timing results are shown for solution of elec-
trostatic problems. These papers summarize how the
original parallel Cholesky factorization algorithm was
modified to allow for indefinite and numerically non-
symmetric coefficient matrices. The solution domains
for these problems were quite simple. The one-way
dissection graph partitioning and the parallel LU fac-
torization algorithm used at the time were sufficient to
solve these problems. When more complex geometries
were discretized with tetrahedral elements however, it
was apparent that these methods of solution were not
adequate. One fundamental problem was the one-way
dissection algorithm used to subdivide the solution do-
main. The algorithm was not sophisticated enough for
the finite-element problem of interest and resulted in
poor load balancing. In addition, the early versions
of the present algorithm were only able to solve a sys-
tem with a single excitation vector which defeated the
purpose for using the direct solution method.

1054-4887 © 2007 ACES

II. COMPUTATIONAL
OLOGY

A parallel, computational algorithm for the direct
solution of large, sparse, irregular systems of equa-
tions generated by the finite-element method as ap-
plied to partial differential equations has been devel-
oped. The resulting linear systems may be definite
or indefinite but are structurally symmetric and may
contain many excitation vectors. The computer code
is called mp_solve. The mp_solve code is currently
used as a tool by researchers in science and engineer-
ing to solve these algebraic systems resulting from
finite-element discretizations of field equations in ar-
eas including bioelectromagnetics, semiconductor de-
vice modeling, fluid flow, remote sensing, electromag-
netic radiation, microwave circuit simulation and scat-
tering problems. The current implementation of the
mp_solve algorithm has the capability to solve a lin-
ear system for many excitation vectors as is commonly
done for electromagnetic scattering problems. The fo-
cus of the research presented here is the utilization of
the mp_solve software as a tool for solving large sys-
tems resulting from the finite-element discretization of
the vector wave equation. In the following section, the
computational techniques used in the mp_solve appli-
cation are described in detail.

METHOD-

A. Block LU Factorization of the System of
Equations

The goal of the mp_solve software is to solve the
linear system of equations,

Ax=Db (1)
where A is the coefficient matrix, b is the excitation
vector and x is the solution vector.

A reordering scheme can be applied to matrix A to
obtain the border-block diagonal matrix shown in Fig.
2. The border-block diagonal system is represented by
four submatrices,

B V

A= _
ZzT C

(2)

where B represents the diagonal blocks, V represents
the upper-right border block, ZT represents the lower-
left border block and C is the lower-right block.

The coefficient matrix A can be factored into upper
and lower triangular matrices,

A=1LU (3)
where,
Lg O
L= 4
[WT Lc] @

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

and,
U= Us G
0 Uc

The submatrices Lg and Ug and L¢ and Ug are the
factors of the submatrices B and C, respectively. The
upper and lower factors of the diagonal blocks are com-
puted,

: ()

i—1
Wij = bij— Y lijtn,j (6)

k=1

and, ,
bij — S0y Lijug,
l. — sJ k=1 "%J sJ A 7
= ™)
The submatrix C is found by computing,

C=C-Z"Uz'Lg'V. (8)

With a few algebraic manipulations, the modification
to submatrix C becomes,

ZTUR'L5'V = ZTUZ'L3'LsG = ZTG. (9)
To find the columns in the matrix G, solve the system
UG = G for each column g; of the matrix G and
finally write the modifications to submatrix C as,

C=C-17"G. (10)

Each column of ZT and G can be computed as they
are needed and no two-dimensional arrays need to be
stored thus cutting down significantly on memory re-
quirements. When the modifications are complete, the
subdomain-boundary block is factored using a block-
column wrapped, dense LU factorization algorithm.

B. Partitioning the Solution Domain

Prior to solving the system of equations on the par-
allel computer, the computational domain must be par-
titioned. The mesh connectivity data produced by the
mesh generator is used to produce a graph. Graph
partitioning software is then employed to subdivide
the graph of the elements into a specified number of
subdomains. The cuts (or subdomain boundaries) are
made through the graph so that approximately the
same number of elements are assigned to each subdo-
main while trying to minimize the number of elements
which fall on the subdomain boundaries. The process
of cutting the graph is repeated until the desired num-
ber of subdomains is obtained.

The graph formed by the elemental graph however
is not a representation of the nonzero structure of the
coefficient matrix. The unknowns in the problem are
associated with the edges (and faces) of the mesh. Fur-
ther work is needed to determine which edges (and
faces) from each element reside on each subdomain.

396

397

Once this is known, another graph is produced repre-
senting the edge (and face) connectivity for each sub-
domain. The adjacency data in these new graphs indi-
cate the locations of the nonzero entries in the coeffi-
cient matrix. This process results in a nested dissection
of the coefficient matrix.

Figure 1 illustrates a mesh of rectangular elements
partitioned into four subdomains. The edges which fall
on the subdomain boundaries are shown with thick
lines. The algorithm described in this research de-
pends on the coefficient matrix being stored in the
border-block diagonal form illustrated in Fig. 2. To
obtain this matrix ordering, the edges that reside on
the interior of each subdomain are numbered first and
those residing on the subdomain boundaries are num-
bered last. The interactions between edges on the inte-
rior of each subdomain form the four diagonal blocks
shown in Fig. 2. The interactions between interior
edges and subdomain-boundary edges form the border-
blocks on the upper-right and lower-left and the inter-
actions between subdomain-boundary edges form the
darkest block on the lower-right of Fig. 2. Note that
this ordering results in a matrix of the form shown in
equation (2) of the previous section. Details regard-
ing this border-block diagonal matrix ordering can be
found in George and Liu [2].

L

Subdomain Boundary

Fig. 1. Graph of solution domain partitioned into four
subdomains.

C. Implementation of the Solution Domain
Partitioner

The pre-processing phase of this application con-
sists of subdividing the finite-element mesh into the
number of subdomains desired by the user. The Chaco
(http://www.cs.sandia.gov/CRF /chac.html) graph
partitioner obtained from Sandia National Laboratory
is used to perform a partitioning into a specified
number of subdomains. Because of the recursive
partitioning of the graph that is performed by Chaco,
the number of processors required will be 2P where
p is the number of bisections performed by Chaco.

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

Fig. 2. Border-block diagonal system.

Alternative graph partitionings could be considered to
remove the power-of-two restriction although that has
not been explored in this research. Figure 1 shows the
graph of a matrix partitioned into four subdomains.

The order in which the unknowns are numbered is
of crucial interest for our application. One goal of
the nested dissection is to obtain a border-block di-
agonal system (see Fig. 2) which can be distributed
to the processors with the number of processors used
equal to the number of diagonal blocks. Each diagonal
block is mapped to a different processor. The data on
the off-diagonal borders is mapped to the same set of
processors depending on which processor the interior
unknowns reside on. The subdomain boundary block
is distributed among the same processors in a block-
column wrapped format. Figure 3 illustrates the distri-
bution of the block-columns of the subdomain bound-
ary block to all of the processors.

T TP T|T XTI PT TP TNT| @B
glalglala|g|glalalalalalalg|g
21218 2121212181218 2(8[2|2 8
Zz|Zz|Zz|Zz|lZ2|z2z|Z2|Z2|1Z2|2|2|1Z2|12|Z2 |2
c || |c]JE | |E |Sc]E |€|E |€]cE |€ |S
3131332121212 1212(12(213212(321|3
oc|o|o|O|Jo ||| |T |0 |O)JT|T|T
R RRRIR|R|RRR R (RR|IR|R|R
0|4|8|12|J1 |5 |9 |13]2 |6 |10{14]3 |7 |11
~<~— CPUO i CPU1 i CPU 2—=1<CPU 3—=

Fig. 3. Block-column distribution for the subdomain-
boundary block.

D. Implementation of the Parallel, Direct

Solver Application

The primary goal of this research was to develop
and implement a parallel, sparse solver for linear al-
gebraic systems. Figure 4 shows the program flow for
mp_solve. The grey-shaded boxes indicate operations
requiring interprocessor communications. The boxes
without shading indicate computations done in paral-
lel with no interprocessor communications necessary.

Read Mesh Data

Reorder Graph on
Diagonal Blocks

i

Assemble
Linear System

i

mp_solve
Parallel Solver

Print Output

Operations Requiring
Inter processor Communications

]

Fig. 4. Flowchart of the parallel application including
mp_solve.

One-Way Dissection Reordering The first op-
eration in this parallel application is a one-way dissec-
tion reordering of the graph representing the nonzero
structure of the diagonal blocks [2]. This is the sec-
ond reordering performed in the solution process; the
first being a global reordering for the purpose of ob-
taining a border-block diagonal system. The reason
for this second, local reordering on the diagonal blocks
is to minimize the number of nonzeros that have to
be stored in the global system. An example of the
border-block diagonal system produced by the graph
partitioning software prior to reordering the diagonal
blocks is shown in Fig. 5. This mesh was subdivided
into four subdomains hence the four diagonal blocks.
Using a one-way dissection reordering, the rows in each
diagonal block are permuted in such a way to move the
first nonzero closer to the diagonal. This reordering
minimizes the memory usage and computation time.
Figure 6 illustrates the results of reordering the rows
of the matrix shown in Fig. 5. The differing shades
of grey shown in both figures indicate nonzero matrix
entries assigned to different processors.

The graph of each diagonal block is cut into several
subgraphs as determined by the reordering algorithm.
The edges within each subgraph are numbered first and

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

1000 L L I I L L L
0 100 200 300 400 500 600 700 800 900 1000
Columns

Fig. 5. Nonzero pattern of a four-subdomain border-
block diagonal system.

0 \@\

1000 I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Columns

Fig. 6. Nonzero pattern of matrix shown in Fig. 5
after one-way dissection reordering for each subdomain
block.

those edges forming the cuts are numbered last. This
numbering scheme is analogous to the global reorder-
ing by the code which uses the Chaco graph partition-
ing software. This results in a border-block diagonal
pattern on each diagonal block. In the small exam-
ple matrix shown in Figs. 5 and 6, the total memory
needed to store all of entries in the global system was
reduced from 1,878,912 bytes to 710, 720 bytes due to
the one-way dissection reordering.

System Assembly The next function in the par-
allel application is the global system assembly. The
matrix assembly process inserts the coefficient matrix
and excitation vector(s) values in the locations speci-
fied by the one-way dissection reordering performed in
the previous step. Each processor fills only the part of
the global system assigned to it and no interprocessor
communication is necessary.

Different parts of the global coefficient matrix are

398

399

stored differently depending on the density of a partic-
ular portion of the system. First, consider the nonzero
entries in each reordered diagonal block. The edges
which fell on the interior of the subgraph during the
one-way dissection are numbered first so they form the
“diagonal” portion of each diagonal block. For each
row along this diagonal, all numbers are stored start-
ing with the first nonzero through up to the diagonal
including any intervening zeros. An accompanying ar-
ray of indices is used to access specific entries in the
envelope. The same index array is used to locate en-
tries in the coefficient matrix above the main diagonal
since it is assumed that the matrix is structurally sym-
metric. More information on this storage scheme can
be found in George and Liu [2].

The off-diagonal nonzeros in both the upper and
lower borders of each diagonal block are stored in a
compressed row-column format. These values repre-
sent interactions between edges on the interior of the
subgraph and on the boundaries between adjacent sub-
graphs. An index array is used to keep track of the
number of nonzeros in a row of the off-diagonal block
and an accompanying array indicates which columns
of the off-diagonal block contains the nonzero values.
No zeros are stored in the border block portions of the
coeflicient matrix since this part of the system is very
sparse. This method of storage closely follows that
found in [2].

The subdomain-boundary block is shown in black
in Fig. 2. This portion of the coefficient matrix is
stored in a dense, block-column wrapped format. The
number of the columns comprising a block is speci-
fied by the code accompanying the graph partitioning
software. Since this part of the coefficient matrix is
assumed to be dense, no special indexing arrays are
needed to keep track of nonzeros. The only information
needed for retrieving a particular block of the matrix
is a global-to-local mapping to determine which pro-
cessor is storing a particular block of columns. This
mapping can be computed easily on each processor
since it is known how many processors are in the job,
the number of columns per block and the number of
subdomain-boundary unknowns in the problem. Each
block of columns of the subdomain-boundary matrix
are distributed among all of the processors in the job
in a “round-robin” ordering as shown in Fig. 3.

mp_solve Software When the linear system is as-
sembled, the parallel solver mp_solve is called. The
solver software is passed the coefficient matrix and the
excitation vector(s) from the calling program. The
mp_solve function returns a matrix of solutions; one
column for each excitation vector. A flowchart show-
ing the sequence of steps is shown in Fig. 7 and a

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

detailed description of mp_solve is presented in the fol-
lowing section.

Linear System

Factor Diagonal
Blocks

|

Calculate and Distribute Subdomain-Boundary
Block Modification Vectors

|

‘ Factor Subdomain—-Boundary Block ‘

i

‘ Solve System (possibly multiple times) ‘

¢

Solution(s)

"1 Operations Requiring

-~ Interprocessor Communications

Fig. 7. Flowchart of the mp_solve algorithm.

The mp_solve function called after the global sys-
tem has been filled. It accepts the linear system as in-
put and returns the solution vector(s). The first com-
putation executed by mp_solve is the diagonal block
factorization. This factorization is shown mathemati-
cally in equations (6) and (7). This step is performed
in parallel with no interprocessor communications nec-
essary.

The next operation in the mp_solve code is deter-
mined by the number of processors used to solve the
problem. If a serial job was specified, i.e., one proces-
sor is used, then the forward and backward solves are
performed and the solution is returned to the calling
program. While the solution phase of the serial job
takes advantage of the sparsity of the system, the op-
erations are relatively simple and can be found in most
linear algebra texts.

If multiple processors are used to solve the problem,
then the solution process is more complicated. First,
modifications have to be performed on the subdomain-
boundary block prior to its factorization. The mod-
ification computations are outlined in equations (8)
through (10). To increase the efficiency of the modifi-
cation communications, a mapping of the modification
vectors to their destination processors is made prior
to beginning the computations. Once the communica-
tion pattern is known for each modification vector, the
computations take place and the data can be sent to
other processors as needed.

The next step in a multiple-processor job is to factor
the subdomain-boundary block into upper and lower
factors. The first part of the factorization function per-
forms some “bookkeeping” operations so that a map-
ping is made of which processor stores each column
and each block of columns The subdomain-boundary

block factorization algorithm utilizes the BLAS-3 func-
tions to enhance the computational performance. The
blocks typically contained 32 columns apiece which was
shown to run most efficiently on a Hewlett-Packard
parallel server in earlier timing tests. During the fac-
torization computations, local pivoting is performed to
ensure numerical stability.

When the factorization is complete, a parallel solu-
tion function is called to perform a forward and back-
ward solve for each excitation vector. One advantage
of the direct solver is the ability to solve for many ex-
citation vectors efficiently. The parts of the solution
computations involving the diagonal blocks are per-
formed completely in parallel but the portion of the
solution involving the subdomain-boundary block re-
quires a number of communication function calls. This
is due to the fact that the dense block is stored on all
of the processors in the job. Each processor performs
solution operations on the diagonal blocks for one ex-
citation vector, repeating the steps for each excitation
vector. The solution operations which take place on
the subdomain-boundary block handle as many exci-
tation vectors simultaneously as there are processors
in the job. Figure 8 illustrates the sequence of steps
taken to perform the solve on the subdomain-boundary
block for four excitation vectors.

Processor Number

o 1, 2, 3

First Step Lw—i 1 1
Seco e [|
nd Step L,,,,Lffff !
I I I
————f -
mase

S, -

Fourth Step _:”JL,,,J

rnse NN

Final Step

|| First Right-Hand Sice B8 mhird Right-Hand Side

Second Right-Hand Side B o RightHand side

Fig. 8. Subdomain-boundary block solve.

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

The first step in the parallel solution on the
subdomain-boundary matrix is that processor 0 starts
with the solve on the portion of the matrix in its mem-
ory. When CPU 0 has done all of the computations
it can on one row of the matrix, the data is passed to
CPU 1 and CPU 0 starts working with the next exci-
tation vector. When CPU 1 is done with its computa-
tions on the first right-hand side, that data is passed
to processor 2, processor 1 receives the data concern-
ing the second right-hand side and processor 0 begins
working on data associated with the third right-hand
side. These operations continue on the subdomain-
boundary block for all four excitation vectors until this
phase of the solve is complete. If there are more exci-
tation vectors than there are processors in the job, the
solution functions are called until all solutions have
been computed.

III. MATHEMATICAL DEVELOP-
MENT OF THE ELECTRO-
MAGNETIC SCATTERING
PROBLEM

The primary reason for the development of the
mp_solve algorithm is for solving large systems of
equations resulting from the finite-element analysis of
the vector wave equation. Electromagnetic scattering
problems arise when analyzing radar signature of air-
craft or missiles as well as when searching for buried
objects such as land mines or industrial waste. The fol-
lowing sections give an overview of the mathematical
derivations behind the scattering problem of interest
in this research.

A. Overview of the Finite-Element Derivation

Finite-element discretization of the vector wave
equation has been covered in a number of publica-
tions, therefore only a brief derivation will be shown
here [3, 17]. Begin with the vector wave equation,

VxptxE-pB%EE=0 (11)
and substitute £°+ E’ for E in equation (11) to obtain
the scattered field formulation,

V x 4, 'V x (E* + E*) — B2 (E' + E*) = 0. (12)
Collect the unknown scattered field on the left and

the known incident field on the right, equation (12)
becomes,

V x 7'V x B* — B26,E° = 826, B =V x i, 'V x E'.
(13)

400

Now apply the Method of Weighted Residuals using a
vector weighting function T to equation (13),

/ T (V x im\V x B* — B26,E)dV =
14
/ T-(B%&.E' =V x i 'V x EV)dV. (14)
14
The final governing equation is,
—%Tx (i'V x E%) -ds +
S
/ (a;'V x E®) - (V x T)dV
14
—,35/ T & E*dV = ﬁg/ T-&E'dV —
14 14
/ T (V x (A'V x B))dV,
14

(15)

A mesh generator is used to discretize the solution do-
main into finite elements,

v=> V. (16)
N.

where NN, is the number of elements. On each element,
the FEM approximation for the scattered field is,

N
E* =) N¢(E))F (17)
Jj=1

where N¢ is the number of unknowns on this par-
ticular element and Ny is the shape function. The
Galerkin Method stipulates that the weighting func-
tions are equal to the shape functions,

T, = N.. (18)

Substitute these summations into the volume integral
terms on the left side of equation (15) to obtain,

NG
Sy ([(Y %) (7 x Rp)ave-

N, j=1

g [N -ETdeVe> ,
Ve
i=1,.,NC.

(19)

The excitation vectors are computed by summing the
contribution of each element in the solution domain.
Using the right-hand side of equation (15),

2 Ne. =,.Ei dVe,—
;(ﬂ/v ¢ (6,)

/ Nf-(V x i, 'V x Ei)dl/;> yi=1,...,N¢ (20)
Ve

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

Substituting equations (19) and (20) into equation (15)
yields a linear system of equations of the form,

Ax =b. (21)

where A is the coefficient or stiffness matrix, b is the
vector representing the discretization of the forcing
function and x is the vector of unknowns.

The software developed for this research utilizes
first- and second-order tetrahedral finite elements. The
first-order tetrahedrons have one vector basis function
(and hence one unknown) lying along each edge. The
second-order tetrahedrons have two vector basis func-
tions along each edge and two vector basis functions on
each face for a total of twenty unknowns per element.
Detailed development of the elemental matrix entries
can be found in the computational electromagnetics
text by Peterson [17].

B. Mesh Termination

There are a number of methods available for ter-
minating computational domains for electromagnetic
scattering problems. Commonly-used techniques in-
clude radiation boundary conditions and integral equa-
tions terminations. In the past several years, attention
has been given to ficticious materials surrounding the
scatterer that causes the scattered wave to be attenu-
ated. These are often referred to as “Perfectly Matched
Layers” or PML for short. A PML layer is simple to
implement and when the material parameters are cho-
sen correctly, the PML is an effective mesh termination
technique. The material parameters for each element
in the PML are stored as diagonal tensors of the form,

a 0 O
[= € = 0 b 0 (22)
0 0 ¢

where a, b, and ¢ are complex. The outer surface of
the PML is terminated by a perfect electric conductor.
Further information and derivations can be found in a
number of publications including [16, 18, 19].

mp_fem Software The mp_fem application is a
parallel electromagnetic scattering code which utilizes
the mp_solve software. The sequence of steps in the
mp_fem code is shown in Fig. 4 with the only difference
being in how the entries in the linear system are filled.

The system assembly for mp_fem is done on an
element-by-element basis with the boundary condi-
tions and material properties accounted for as each el-
emental matrix is filled. When the elemental matrix
entries have been computed, the elemental matrix data
is assembled into the global system. Since mp_fem uses
the mp_solve software, the system storage scheme is
the same as described earlier with the diagonal blocks

stored in an envelope format, the off-diagonal blocks
stored in a compressed row-column format and the
subdomain-boundary block stored as a dense matrix.
No interprocessor communication is needed during ma-
trix assembly because the preprocessing software pro-
vides all of the elemental data needed for each pro-
cessor to completely build it’s portion of the global
System.

Currently, the mp_fem software contains code for
1st- and 2nd-order, vector-based tetrahedral elements
though other element types could be added. The finite-
element computations for the elemental matrix entries
closely follow those found in [17].

IV. RESULTS

This section outlines the results gathered from a
variety of electromagnetics problems using the mp_fem
software. The results serve two purposes: (1) to test
the efficiency of the parallel solver as a tool for solving
this class of problems and (2) to verify that this soft-
ware models the electromagnetic scattering problems
accurately. The efficiency of the parallel algorithm is
checked by running scaled and unscaled speedups. The
accuracy of the electromagnetics modeling is verified
by comparing the solution that mp_fem returns to the
solution of a problem with a known result.

A. Parallel Computer Architecture

A 256-CPU linux cluster housed at the University of
Michigan was used to obtain the results shown in this
section. Each node on the computer has two AMD
processors with a clock speed of 2 gigahertz. Each
CPU has access to one gigabyte of memory. The nodes
are interconnected with 2 gigabit/second Myrinet used
for interprocessor communication. The CPUs are al-
located to each user during a run so that only one job
runs on each CPU at a time. This eliminates the prob-
lems associated with swapping jobs among users while
attempting to get reliable parallel speedup results.

B. Parallel-Plate Waveguide

Three geometries were used to verify correct elec-
tromagnetic solutions. The first geometry of interest
is a parallel-plate waveguide with one end containing
PML. While this is not an electromagnetic scattering
problem, this simple geometry is convenient for veri-
fying the that the finite element operations are being
done correctly and for testing the parallel performance
of the code. Figure 9 illustrates the geometry for this
problem.

The top and bottom plates of the waveguide, at z =
0 and z = .2 m, are perfect electric conductor (PEC).
The right end of the waveguide (z > 1.2 m) is filled
with PML material which is backed by PEC at the

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

PML Material

Fig. 9. Parallel-plate waveguide.

z = 1.5 m plane. The diagonal terms for the material
tensor of the PML was chosen to be 1.5 — j1.5. The
natural boundary condition
H'" =0 (23)

is employed on the sides of the waveguide in the planes
y = 0and y = .2 m. For all of the results shown in this
section, the waveguide was excited at the plane z =0
by an incident field,

Ei = 3E,eP=® (24)
with a frequency of 300 MHz.

Several meshes of different densities were run to ver-
ify the results for first- and second-order tetrahedrons.
Figure 10 shows the magnitude and phase for the wave
propagating down the parallel plate waveguide. This
particular mesh has 360 first-order tetrahedrons and
682 edges. The edge length is specified in the mesh
generator to be 0.083333333 m or approximately 12
edges per wavelength.

14

12f B

. [RUEI . [RET .]
gosf T : R :]
o6l DR : [N : o
04f B
0.2 : : > -

0

. .
0 05 1 15
x (m)

N
S
3

Phase (degrees)
. =
5

° S

i
]
3

-200
0

x (m)

Fig. 10. Magnitude and phase plots for the first-order
mesh, parallel-plate waveguide.

Figure 11 illustrates the magnitude and phase results
using second-order tetrahedrons in the parallel-plate
waveguide. The edge length was again specified to be
0.083333333 m and, like the first-order mesh, there are
360 elements. However, due to the fact that there are
two basis functions for each edge and face in the mesh,
this problem has 3108 unknowns.

402

X (m)

Phase (degrees)
o

-100

-200

X (m)

Fig. 11. Magnitude and phase plots for the second-
order mesh, parallel-plate waveguide.

Several mesh densities were tested for both first-
and second-order meshes on the parallel-plate waveg-
uide in order to draw conclusions on accuracy. For
both element orders, mesh densities from six through
twenty edges per wavelength were run. The average
magnitude and phase error was computed from each
of a 1000 points longitudinally along the center of the
waveguide. For first-order elements at a mesh density
of six edges per wavelength, the magnitude error was
approximately 1.5% and the phase error was approx-
imately 40%. These numbers decreased, respectively,
to .28% and 2% at a mesh density of twenty edges
per wavelength. The second-order elements performed
considerably better as expected. At a mesh density of
six edges per wavelength, the error in both the mag-
nitude and phase was approximately 1%. At a mesh
density of twenty edges per wavelength, the error de-
creases to about 0.05% for the magnitude and to 0.1%
for the phase.

Unscaled Speedup The first test of the scalabil-
ity of the mp_fem algorithm is the unscaled speedup. In
this test, a problem of a fixed size is run on an increas-
ing number of processors. However, as the number
of subdomains is increased, the amount of time spent
on operations involving the subdomain-boundary block
increases so dramatically that there is no longer a ben-
efit to using more CPUs.

The first-order mesh using the parallel-plate waveg-
uide geometry was run using a fixed problem size of
72,330 tetrahedral elements containing 81,249 edges.
The first test was run with one processor and increased
by a power-of-two until 32 CPUs were used to solve the
problem. The runtimes for the 32-CPU job indicate
that partitioning this mesh into more subdomains did
not decrease the runtime so no further tests were con-
ducted. Figure 12 illustrates the runtimes in seconds

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

for all of the jobs in this test.

T
~6~ Matrix Assembly

—— Diagonal Block Factorization
—+— Modification

—+ SB-Block Factorization

-5 Solve

—— mp_solve

——_Total Time

10003 - -

600 1

Time (seconds)

400 - 1

5 10 15 20 25 30
Number of Processors

Fig. 12. Wall-clock times for fixed problem size, 1st-
order mesh, parallel-plate waveguide.

A similar unscaled timing test was run on the waveg-
uide geometry using second-order tetrahedrons. This
mesh is constructed of 10,422 elements which are com-
posed of 74,322 edges and faces. Similar to the first-
order unscaled test, this problem was run on one CPU
and then the problem was decomposed by a power of
two until 32 processors were used. Because the total
runtime was increasing when 32 processors were used,
no further unscaled tests were done. Figure 13 illus-
trates the runtimes in seconds for all of the jobs in the
test.

1400

T T

&~ Matrix Assembly

—<— Diagonal Block Factorization
—+ Modification
—#— SB-Block Factorization
1200 —&- Solve

. . s . %~ mp_solve

~¥- Total Time

1000

«

3

3
T

Time (seconds)

@

3

3
T

5 10 15 20 25 30
Number of Processors

Fig. 13. Wall-clock times for fixed problem size, 2nd-
order mesh, parallel-plate waveguide.

The scaling problems appear when modifying and
factoring the subdomain-boundary block on multi-
processor runs. Both of these operations require exten-
sive interprocessor communications. The modification
portion of the solver executes as many forward and
backward solves as there are subdomain-boundary un-
knowns. In addition, interprocessor communications

are necessary to send the modification vector to the
appropriate processor to execute the subtraction in
equation (10). For both orders of finite elements, the
modifications performed worst on four processors and
then proceeded to have a shorter runtime as more pro-
cessors were added. As the size of the diagonal blocks
decreased, the execution time for the forward and back-
ward solves decreased substantially. While the number
of interprocessor communications increased, the time
required to perform the communications did not offset
the gains made by the faster solve times. This results
in a net improvement in the modification time as the
number of processors in the job increases.

The subdomain-boundary block factorization time
increases for both first- and second-order elements.
This is a result of having a larger subdomain-boundary
block as the solution domain is subdivided more times.
In addition, increasing the number of CPUs increases
the interprocessor communication needed to carry out
the factorization. For jobs running on 16 or fewer pro-
cessors, the subdomain-boundary block factorization
time remains under 15% of the total runtime. How-
ever, on jobs distributed over 32 CPUs, the factoriza-
tion time increase to over 50% of the total runtime.

Additional unscaled speedups were performed on
larger waveguide problems to confirm performance
data. Tests were done so that there were approxi-
mately the same number of unknowns for both 1st- and
2nd-order tetrahedral meshes. The 1st-order mesh had
477,274 edges requiring a minimum of 16 processors.
Tests were also run on this mesh for 32 and 64 sub-
domains. Because the runtime increased on 64 proces-
sors, no further tests were run. The results are shown
in Fig. 14.

11000

. .
~6~ Matrix Assembly
— Diagonal Block Factorization
10000 |- —+— Modification

—— SB-Block Factorization

—8- Solve

9000 —6— mp_solve

—%— Total Time

8000:-:-+

7000
Bt P N 5 I
6000

5000

Time (seconds)

4000

3000 (R LR R R R ST

2000%~ - 3 E S O S

1000

i L T
20 25 30 35 40 45 50 55 60
Number of Processors

Fig. 14. Wall-clock times for fixed problem size,
1st-order mesh, parallel-plate waveguide (477,274 un-
knowns).

A similar test was done on a large parallel-plate
waveguide geometry using 2nd-order elements. This

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

mesh resulted in 469,192 edges and faces. Due to mem-
ory limitations, the problem could not be run on fewer
than eight processors. This mesh was not successfully
run on 64 processors because the subdomain-boundary
block became too large and the computers operating
system started to swap memory with disk space. Fig-
ure 15 illustrates the timings for the 2nd-order waveg-
uide runs.

18000 T T
w - [e~ Matrix Assembly
: | = Diagonal Block Factorization
—+— Modification
16000 —# SB-Block Factorization
.| -5~ Solve
T -0 o| =o— mp_solve
14000+ I o o7 _Total Time

12000

10000

Time (seconds)

8000
6000
4000

2000

10 15 20 25 30
Number of Processors

Fig. 15. Wall-clock times for fixed problem size,
2nd-order mesh, parallel-plate waveguide (469,192 un-
knowns).

Another way to examine the unscaled speedup is to
consider the decrease in the runtime as the number of
processors increase. Ideally, using two processors on a
job should result in a runtime of half of that needed for
solving the same problem on one processor. Likewise,
running a problem on four processors should result in
a runtime of one quarter of that required if the same
problem was assigned to only one CPU. Figure 16 il-
lustrates the unscaled speedup for the small first- and
second-order parallel-plate waveguide results shown in
Fig. 12 and 13.

Note that the plots in Fig. 16 for both 1st- and
2nd-order elements, the speedup obtained from the
mp_fem software differs greatly from the optimal un-
scaled speedup. For instance, in the 1st-order mesh, as
the number of processors is increased from 1 CPU to
2 CPUs, ideally, the CPU time should divide in half.
The speedup obtained through from the parallel soft-
ware is only 0.66. The gain for 2nd-order problems is
even worse with a speedup of only about 0.71 when
spreading the problem over two processors.

There are a couple of likely causes in this lack of
efficiency. The first problem is load imbalance (dis-
cussed below). The other problem is a lack of scal-
ability in the portions of the code dealing with the
subdomain-boundary block. In both unscaled speedup
tests of the waveguide problem, the factorization of
the subdomain-boundary block increases as the num-

405

— 1st-Order Mesh
—— 2nd-Order Mesh
0.9 —o- Ideal Speedup

Unscaled Speedup

0 L L L L L L

15 20
Number of Subdomains

Fig. 16. Unscaled speedup for the 1st- and 2nd-order
meshes, parallel-plate waveguide.

ber of subdomains increase. While the other opera-
tions such as the diagonal-block factorization and the
modification of the subdomain-boundary block do not
scale optimally, their decreasing runtimes do not have
the impact on the overall runtime that the factoriza-
tion of the subdomain-boundary block has. A torus-
wrapped ordering for the subdomain-boundary block
shows promise for improving scalability in this part of
the code [20].

Scaled Speedup Another measure of parallel ef-
ficiency is the scaled speedup. In this series of runs, the
problem size is increased proportionally to the num-
ber of processors in a job; i.e. if the problem size is
doubled, then the number of processors is also dou-
bled. Ideally, the execution time for each problem in
the series of runs should remain constant no matter
how large the problem. Due to increased communica-
tion costs as more CPUs are added to each run, the
execution time is rarely ever constant.

The first scaled tests that were run involved the
parallel-plate waveguide geometry meshed with first-
order tetrahedrons. Figure 17 shows the scaled
speedup for the first-order tetrahedrons. Each proces-
sor in each step in the test sequence was loaded with
approximately 20,000 edges. Table 1 shows the prob-
lem sizes for each of the runs used for the first-order
scaled speedup tests.

The second scaled speedup tests involved the same
geometry but used the second-order elements. Figure
18 shows the scaling that was achieved in this sequence
of runs. Table 2 shows the size of the problem for each
run.

The diagonal-block factorization is a parallel oper-
ation that requires no inter-processor communication.
For the scaled speedups, there were approximately the

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

T

—6- Matrix Assembly SIS e d

3500|-| 2 Diagonal Block Factorization N :]
—+— Modification

—#— SB-Block Factorization

-5 Solve s : o

3000 || & mp_solve]
5~ Total Time

2500 1

(seconds)
0
8
8
8
T
;

ime

Ti

1500 L R

1000 -, 1

10 20 40 50 60

30
Number of Processors

Fig. 17. Wall-clock times for scaled problem size, 1st-
order mesh, parallel-plate waveguide.

Table 1. Problem sizes for the first-order scaled
speedup tests.
Number of | Number of | Number of
Processors Elements Unknowns
1 15,000 21,500
2 30,000 39,980
4 60,000 79,640
8 120,000 158,960
16 240,000 317,600
32 480,000 634,880
64 960,000 1,269,440

10 20 40 50 60

30
Number of Processors

Fig. 18. Wall-clock times for scaled problem size, 2nd-
order mesh, parallel-plate waveguide.

same number of edges on each CPU so the factoriza-
tion time was kept relatively constant as shown in both
Figs. 17 and 18.

The modification of the subdomain-boundary block
requires considerable communication as well as many

Table 2. Problem sizes for the second-order scaled
speedup tests.
Number of | Number of | Number of
Processors FElements Unknowns
1 2,880 20,768
2 5,940 42,426
4 11,880 84,468
8 23,760 168,552
16 47,520 336,720
32 95,040 673,056
64 190,080 1,345,728

forward and backward solves. The size of the diago-
nal blocks are kept nearly constant so the forward and
backward solve times increase only slightly. This in-
crease is due to that fact that with more processors
in the job, more interprocessor communication is nec-
essary to perform the forward and backward solves in
the subdomain-boundary block.

The subdomain-boundary block factorization time
increases as the number of unknowns in that part of
the matrix increases. As the number of CPUs and
the size of the subdomain-boundary block increases,
the computation time and the communication time in-
crease. This results in the rising curve shown in the
subdomain-boundary block factorization time in both
Figs. 17 and 18.

Another way of analyzing the scaled speedup data
is to consider parallel efficiency. Hennigan defines the
scaled speedup as,

5 px TAN)
T(p,pN)
where N is the number of unknowns in the system and
p is the number of processors in the job [3]. Hennigan
then goes on to define the parallel efficiency as,
p— SS
p P

Figure 19 illustrates the parallel efficiency of the
mp_fem algorithm for both 1st- and 2nd-order elements
in the parallel-plate waveguide geometry. The run-
times shown in Figs. 17 and 18 were used to calculate
the efficiency.

For a perfect scaled speedup, the efficiency is 1.0 for
any number of processors and the corresponding prob-
lem size. Due to load imbalances and interprocessor
communications however, the efficiency is rarely ever
optimal. These problems along with the poor scalabil-
ity of the subdomain-boundary block modification and
factorization result in efficiencies that are less than one
and continue to get worse as more processors are added
to the job.

(25)

(26)

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

— 1st-Order Mesh
—< 2nd-Order Mesh
0.9 —©- Ideal Efficiency i

Parallel Efficiency
o o

o

L L L L L L
10 20 30 40 50 60
Number of Subdomains

Fig. 19. Parallel efficiency for the 1st- and 2nd-order
tetrahedral meshes.

Load Balance Obtaining a good load balance
across all of the processors in a job is a primary concern
of the graph partitioning software. Good load balanc-
ing means that each CPU will have the same number of
computations so that no processor is sitting idle while
other processors continue to work. Poor load balanc-
ing has a direct effect on parallel performance and can
cause the parallel efficiency of an algorithm to be re-
duced considerably. While it is not possible to show
here the load balance for every problem, a few decom-
positions are given.

The four-subdomain decomposition used in the un-
scaled speedup for the first-order element waveguide
simulations is a matter of interest. Table 3 shows the
load balancing results and diagonal-block factorization
times for this decomposition.

Table 3. Load balance for four-subdomain decomposi-
tion of parallel-plate waveguide.

Processor | Number of | Envelope Memory
Number Equations Size Usage (MB)
1 19,764 2,978,154 93.3
2 20,030 2,868,948 95.5
3 20,292 3,675,486 121.3
4 20,489 3,026,150 100.5

It is evident from the table that while the number of
equations on each processor vary by less than 3%, the
envelope size varies by almost 22%. Since the speed of
the factorization of the diagonal blocks depend on the
size of the envelope, the processor with the largest en-
velope size in this problem requires 1.6 times the execu-
tion time to factor the matrix on its memory than the
processor with the smallest envelope. For this prob-
lem, processor 2 sat idle for 135 seconds while pro-
cessor 3 finished factoring its portion of the matrix.

406

407

This idle time accounts for approximately 18% of the
total runtime for this problem. While only the dis-
crepancies in the diagonal-block factorization times are
shown here, modification of the subdomain-boundary
block is also negatively effected by poor load balancing.
The modification to the subdomain-boundary block re-
quires many calls to a linear solve function that is de-
pendent on the envelope size (see equations (9) and
(10)). When the size of the envelope differs greatly
among the processors, the time to perform these solves
differs resulting in some processors sitting idle. The
factorization of the subdomain-boundary block is not
affected by load imbalance since the columns are dis-
tributed in a block-column wrapped manner to all of
the processors in the job. Any differences in the num-
ber of columns assigned a processor has a negligible
impact on the factorization time.

The load imbalance illustrated here points to the
need for more thorough investigation into graph par-
titioning software issues as well as the need to explore
alternatives to using the one-way dissection reordering
on the diagonal blocks.

C. Perfectly Conducting Cylinder

The first electromagnetic scattering problem of in-
terest is an infinite perfectly conducting cylinder. This
is a standard “textbook” problem with a well-known
series solution composed of Bessel and Hankel func-
tions.

<

Cylinder Radius=0.25m

0.9m R - - - oX
K 1 |
0.3m »‘ ! 3.0m ! ‘** 0.3m

D PML Material

Fig. 20. Perfectly conducting cylinder.

The geometry consists of a box containing a cylinder
with a diameter of 0.5 m. The center of the cylinder
lies at the origin (see Fig. 20). The interior of the box
is 3.0 m long so as to capture the standing wave in the
incident (—z direction) and the shadow (+z direction)
regions of the solution domain. A layer of artificial

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

absorber (PML) 0.3 m thick is placed at the edges of
the box surrounding the cylinder. The PML regions
are shown in grey. The top and bottom planes of the
box, at z = —0.45 m and z = +0.45 m, are covered in
PEC.

For the tests run in this section, the cylinder was
illuminated by an incident plane wave of the form,

Ei = 3E,eP=® (27)

at a frequency of 300 MHz.

Two initial tests were done with first- and second-
order tetrahedral elements to ascertain that the physics
is being modeled accurately. The first-order test was
run with 66,213 first-order elements and 86,824 edges.
The electric field was sampled in two directions shown
by the heavy dashed lines in Fig. 21. The scale in Fig.
21 is the same as that shown in Fig. 20.

A
|
:
, o~ N
Yoo o .
Phi ! 1 X
Direction \\ 7
I
1 Field Sampling Cuts
|
! ——
I

[T T T

1 Radial [! P

1 Direction | } |

[e .i._‘, e e - - -y
|
|

Fig. 21. Field sampling lines on the PEC cylinder.

The field in the radial direction is computed at 1000
places along the x-axis of the box containing the cylin-
der. The magnitude and phase components of the total
field are shown in Fig. 22. The solid line is the solution
computed using the mp_fem software while the dashed
line represents the series solution.

The field in the ¢ direction is computed at 360 angles
(one-degree increments) in a constant radius centered
about the cylinders axis. The field points are computed
at constant distance of 0.4 m from the center of the
cylinder. The magnitude and phase components of the
total field are shown in Fig. 23. The solid line is the
solution computed using the mp_fem software while the
dashed line represents the series solution.

There are a couple of important considerations when
determining how dense to make a mesh. The first issue
is that the electric field has to be modeled correctly.

IE,) (vim)

0
x(m)

100

Phase (degrees)
o

-100

-200 L
-15

Fig. 22. Magnitude and phase plots for the first-order
mesh, cylindrical scatterer (radial direction).

15

IE, | (Vim)

S L I S I
0 50 100 150 200 250 300 350
phi (degrees)

100

Phase (degrees)
o

-100

=200 L
250 300 350

150 200
phi (degrees)

Fig. 23. Magnitude and phase plots for the first-order
mesh, cylindrical scatterer (phi direction).

This issue was addressed with the parallel-plate waveg-
uide and it was found that reasonably accurate answers
were obtained using 12-14 edges per wavelength. Un-
fortunately, while a mesh with this density produces
good answers on a rectangular geometry, it does not
accurately model the curvature of the cylinder. The
mesh generator used in this research allows a person
to choose a different mesh densities in different places
in the computational domain. For results shown in
Figs. 23 through 25, a mesh density of 16 edges per
wavelength was used near the surface of the cylinder
while along the edges of the PML box, a mesh density
of about 12 edges per wavelength was used.

Figure 24 shows the total field along the x-axis for
the second-order mesh. The solid line is the field com-
puted by the mp_fem software and the dashed line is
the field computed using the series solution. In many
places on the plot, they are indistinguishable.

Figure 25 shows the total field in a circle around

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

IE,) (vim)

0
x(m)

Phase (degrees)
L =
5

° S

7 7

,ﬂ

]

3
T

-200 L
-15 -1 -05 0

Fig. 24. Magnitude and phase plots for the second-
order mesh, cylindrical scatterer (radial direction).

the cylinder at a distance of 0.4 m away from the cen-
ter. Again, the solid line is the field computed by the
mp_fem software and the dashed line is the field com-
puted using the series solution. On both plots, these
lines are generally superimposed.

[E,| (V/m)

L S |
200 250 300 350
phi (degrees)

I
0 50 100 150

100

Phase (degrees)
o

-100

-200
200 250 300 350

50
phi (degrees)

I
0 50 100 1!

Fig. 25. Magnitude and phase plots for the second-
order mesh, cylindrical scatterer (phi direction).

Multiple Excitation Vectors One of the
strengths of a direct solver is the ability to amortize
the high matrix factorization costs over the time re-
quired to perform a large number of solves for mul-
tiple excitation vectors. In this finite-element applica-
tion, each new excitation vector represents a new angle
from which the incident field illuminates the scatterer.

Two meshes were run for the purpose of obtain-
ing the runtime statistics for multiple right-hand sides.
The first-order mesh consisted of 125,000 tetrahedral
elements containing 175,877 edges surrounding a cylin-
drical scatterer. The incident waves illuminated the

408

409

cylinder from 360 angles at 1° increments. The time
needed to solve for each excitation vector is shown in
Fig. 26. In each of the three decompositions shown for
first-order elements, the total solution time for 360 ex-
citation vectors remained less than 40% of the overall
wall-clock runtime for the mp_fem code.

The second-order mesh had approximately 28,000
elements containing 201,890 unknowns. The cylin-
der was illuminated at 1° increments from 360 angles.
The time for each solve is shown by the upper line in
Fig. 26. The percentage of the total runtime spent on
solving for each excitation vector increased from ap-
proximately 26% on the 8-subdomain decomposition
to 41% on the 32-subdomain decomposition. This in-
crease in the percentage of runtime spent on the solve
is primarily a reflection of the decrease in the over-
all runtime since the time required to solve for each
right-hand side increases only slightly between 16—
and 32—subdomain decompositions.

15

T T
—+ 1st-Order Mesh, 157,877 Unknowns
—©- 2nd-Order Mesh, 201,890 Unknowns

o
)

Solve Time per Excitation Vector (s)
o
T
I

L L L L L
10 15 20 25 30
Number of Subdomains

Fig. 26. Wall-clock times for each solve for multiple ex-
citation vectors, 1st- and 2nd-order meshes, cylindrical
scatterer.

D. PEC Sphere

The second electromagetic scatterer of interest is
the perfectly conducting sphere. Similar to the last
problem, electromagnetic scattering from a sphere has
a known series solution. The geometry for this prob-
lem is shown in Fig. 27. The PEC sphere is placed in
a box with the center of the sphere at the origin. Un-
like the cylindrical scatterer which can be modeled in
two dimensions, the sphere is a true three-dimensional
scattering problem and therefore the scatterer must
be surrounded on all sides by absorbing material. The
shaded areas in Fig. 27 around the sphere represent
the PML absorber.

The interior of the box is 3.0 m long so as to capture
the standing wave in the incident region (—z direction)

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

o

.3m

1

il

Sphere Radius=0.25m

o
w
3

o

~ w

3

r
0.3m 91 1 3.0m

1 ‘e 0.3m

[] ML materia
Fig. 27. Perfectly conducting sphere.

and the shadow (+=z direction) region of the solution
domain. The sphere has a diameter of 0.5 m. A layer of
artificial absorber (PML) 0.3 m thick is placed at the
edges of the box surrounding the sphere. The PML
regions are shown in grey in Fig. 27. For this set
of results, the sphere was illuminated by the incident
field,

Ei = 3E,eP=" (28)
at a frequency of 300 MHz.

After the runs were completed, the magnitude and
phase computations for the total field were performed
at 1000 points along the bold, dashed line in the radial
direction shown in Fig. 28. In addition, another set
of field computations were taken in the ¢ direction at
360 angles.

%

-

PRI
BINZU.
\ /\

Field Sampling Cuts

Fig. 28. Field sampling line on PEC sphere geometry.

Two meshes were run to verify that the code was cor-
rectly modeling the electromagnetic scattering prob-
lem. The first problem was a first-order mesh with

284,092 elements and 350,109 edges. The average edge
length was approximately 32 edges per wavelength.

Phase (degrees)
o
T

100

-200 L 1 L
-15 -1 -0.5 0 0.5 1 15

Fig. 29. Magnitude and phase plots for the 1st-order
mesh, spherical scatterer (radial direction).

[E, | (v/m)

2

I I I I I I
[50 100 150 200 250 300 350
phi (degrees)

Phase (degrees)

I I I I I I
50 100 150 200 250 300 350
phi (degrees)

Fig. 30. Magnitude and phase plots for the 1lst-order
mesh, spherical scatterer (phi direction).

The solid lines in Figs. 29 and 30 are the fields in the
radial and phi directions computed using the results of
the mp_fem software. The dashed line in both plots are
the field values computed using the Legendre solution.
It is evident from the figures that the results obtained
from the mp_fem software are very close to the series
solution.

The second verification mesh for this geometry in-
volved 2nd-order elements. The mesh density was set
to 8 edges per wavelength resulting in 37,161 elements
and 244,452 unknowns. The results for this run are
shown in Fig. 31.

Similar to previous plots, the solid line is the field
pattern computed using the mp_fem software and the
dashed line is the field pattern computed using the se-
ries solution. Clearly, using a mesh with only eight

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

0
x(m)

Phase (degrees)
\

°

7

-200 L
-15 -1 -05 0 05 1 15

Fig. 31. Magnitude and phase plots for the 2nd-order
mesh, spherical scatterer (radial direction).

edges per wavelength is not sufficient to model the
spherical geometry. While the phase plot is very accu-
rate, this coarse mesh does not resolve the field well in
the incident side of the sphere. A considerable amount
of computational resources were required to obtain this
solution. The problem was run on 16 CPUs and re-
quired approximately 12 GB of memory. For compar-
ison purposes, a lst-order mesh with a density of 8
edges per wavelength requires about 750 MB of mem-
ory. Due to memory limitations, no other 2nd-order
meshes were run with the spherical scatterer.

V. CONCLUSIONS

The purpose of this research was to develop a par-
allel, direct solver and use it as a tool for use for elec-
tromagnetic scattering simulations. While the use of
the finite-element method (FEM) is well known and
has been documented extensively, the simulations of
interest to researchers are often limited by the lack of
memory and processing power. One goal of this re-
search was to develop a parallel software application
which would alleviate some of the constraints imposed
by other available software and to include some ca-
pabilities not found elsewhere. While it is recognized
that the scaling properties of the mp_solve software are
not optimal, it has shown to be a useful tool in solving
common problems of interest to the electromagnetics
research community.

A. The Parallel Solver

This research revolves around the parallel solver
which was specifically developed for use with the scat-
tering problems of interest. Several features were built
into this code which are not found in other software
packages including the ability to handle numerically
unsymmetric matrices, complex numbers and multiple

410

411

excitation vectors. Local pivoting is also included in
the subdomain-boundary block factorization function
to help improve numerical stability.

As was illustrated in the results section of this disser-
tation, the parallel algorithm scaling is less than ideal
as the problem size or the number of processors are
increased. A more sophisticated approach to the par-
titioning problem might produce better load balances
with certain geometries. In addition, the simple block-
column LU factorization used here had a severe impact
on the runtime and on the parallel scaling.

While poor scaling is a serious drawback to any par-
allel algorithm, the mp_solve software remains a useful
tool. The mp_solve software has been used to solve
linear systems containing up to 1.35 million unknowns
in just over an hour on 64 processors. An engineer or
scientist can expect to use this software to solve large
problems in a reasonable time.

B. The Electromagnetic Scattering Simula-
tion Software

Software has been developed to find solutions to the
vector wave equation using the finite-element method.
While this is a well-documented area of research in the
electromagnetics community, a few words are in order
here concerning the results.

The two orders of vector tetrahedral elements used
offered both advantages and disadvantages. Code de-
velopment for the first-order elements was relatively
easy and the answers were found to be reasonably ac-
curate; often within 10% of the accepted solutions. In
addition, the memory requirements were considerably
less than those required by the second-order elements.

If more accuracy is necessary, the second-order ele-
ments offer a substantial improvement for a given mesh
density. Several of the scattering problems discussed
in the previous section had accuracies within 1% of the
accepted solutions. This increase in accuracy does not
come without cost however. One problem with second-
order elements is the memory required for a given mesh
density. Experience in this research has shown that the
second-order elements require seven to ten times more
memory for a particular mesh density than the first-
order elements. The memory consumption associated
with the second-order elements limited the tests that
could be run with this code. This problem was par-
ticularly evident when using second-order elements to
mesh curved surfaces.

Another aspect of this research which warrants com-
ment is the use of the Perfectly Matched Layer (PML)
absorbing boundary condition. The PML was proven
to be quite effective as shown by the accuracy of the
results. While this research did not focus on find-
ing optimal values for the PML material parameters,
those used by Hennigan worked well in the scattering

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

problems shown in the results section [3]. The PML
domain termination conditions are easy to implenent
and avoid the need for the dense matrix computations
associated with the boundary-element method of so-
lution domain termination. They also did not require
the spherical terminating surface necessitated by the
radiation boundary conditions.

VI. ACKNOWLEDGEMENTS

Several government agencies and private companies
contributed financial support and provided access to
the computers necessary to see this project through.
The National Aeronautical and Space Administration
(NASA) sponsored this research through a Gradu-
ate Research Fellowship, Grant #5-50117 and through
NASA/JPL FAR Grant #959913. CPU time was
provided for this work by the Maui High Perfor-
mance Computing Center (MHPCC), Start-up Grant
#UNIVY-0279-U00 and by the National Partnership
for Advanced Computing Infrastructure at the Univer-
sity of Michigan. Dr. Abijit Bose of The University of
Michigan was instrumental in helping me obtain access
to their parallel computer. The Hewlett-Packard Cor-
poration provided a parallel server at no cost to our
department. Much of the code used in this research
was developed on this machine.

References

[1] D. B. Davidson, “Large, parallel processing re-
visited: a second tutorial,” IEEE Antennas and
Propagation Magazine, vol 34, pp. 9-21, 1992.

[2] A. George and J. Liu, Computer Solution of
Large, Sparse Positive Definite Systems, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1981.

[3] G. L. Hennigan, Open-Region Electromag-
netic Finite-Element Scattering Calculations in
Anisotropic Media on Parallel Computers, Doc-
toral Dissertation, New Mexico State University,
1999.

[4] Y. Saad, A. Malevsky, G. C. Lo, S. Kusnetsov,
M. Sosonkina, and I. Moulitsa, A Portable Li-
brary of Parallel Sparse Iterative Solvers, Uni-
versity of Minnesota, 1999.

[5] S. Balay, W. Gropp, L. C. McInnes, and
B. Smith, The Portable, Extensible Toolkit
for Scientific Computation, Argonne Na-
tional Laboratory, 1999. URL:http://www-
fp.mcs.anl.gov/petsc

[6] R. Tuminaro, J. Shadid, S. Hutchinson, L. Pre-
vost, and C. Tong, A Massively Parallel Iterative

DEARHOLT AND CASTILLO: EM SCATTERING PROBLEMS UTILIZING DIRECT PARALLEL SOLVER

[10]

[11]

[12]

[13]

[14]

[15]

Solver Library for Solving Sparse Linear Sys-
tems, Sandia National Laboratory, 1999. URL:
http://www.cs.sandia.gov/CRF /aztecl.html

A. Gupta, M. Joshi, G. Karypis, V. Ku-
mar, and F. Gustavson, Scalable Parallel
Direct Solver Library for Sparse Symmet-
ric Positive Definite Systems, University
of Minnesota, 1999. URL: http://www-
users.cs.umn.edu/mjoshi/pspases/index.html

##people

A. Gupta, M. Joshi, and V. Kumar, Wat-
son Symmetric Sparse Matriz Package,
IBM Watson Research Center, 1999. URL:
http://www.research.ibm.com/mathsci/ams
/ams_ WSSMP.htm

A. Gupta, M. Joshi, and V. Kumar, “A Highly
Scalable, Parallel Algorithm for Sparse Matrix
Factorization,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no. 5, pp. 502-
520, May 1997.

J. Demmel and X. Li, “Making Sparse Gaus-
sian Elimination Scalable by Static Pivoting,”
Proceedings of Supercomputing ‘98, Orlando,
Florida, November 1998.

X. Li and J. Demmel, “A Scalable Sparse Direct
Solver Using Static Pivoting,” Proceedings of the
Ninth SIAM Conference on Parallel Processing
for Scientific Computing, 1999.

J. Demmel, S. Eisenstat, J. Gilbert, X. Li,
and J. Liu, “A Supernodal Approach for
Sparse Gaussian Elimination,” Technical Report
UCB//CSD-97-943, Computer Science Division,
U.C. Berkeley, 1997.

W. Dearholt, S. Castillo and G. L. Hennigan,
“Solution of Large, Sparse, Irregular Systems on
a Massively Parallel Computer,” Third Interna-
tional Workshop, IRREGULAR ’96, Santa Bar-
bara, CA, August 1996, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1996.

W. Dearholt, S. Castillo and V. Bokil, “So-
lution of Large, Sparse Systems on a Parallel
Computer,” Conference Proceedings, IEEE An-

tennas and Propagation Conference, Baltimore,
MD. July 1996.

M. Hagger and L. Stals, Domain Decom-
position on Unstructured Grids, Department
of Mathematics, University of Bath, Claver-
ton Down, Bath, BA2 T7AY, England, URL:
http://www.maths.bath.ac.uk/parsoft/doug

[16] J. Tang, K. Paulsen, and S. Haider, “Perfectly
Matched Layer Mesh Terminations for Nodal-
Based Finite-Element Methods in Electromag-
netic Scattering,” IEEFE Transactions on Anten-
nas and Propagation, vol. 46, pp. 507-517, April
1998.

[17] A. Peterson, S. Ray, and R. Mittra, Com-
putational Methods for Electromagnetics, IEEE
Press. New York, NY 1997.

[18] J. Y. Wu, D. M. Kingsland, J. F. Lee and
R. Lee, “A Comparison of Anisotropic PML
to Berenger’s PML and Its Application to the
Finite-Element Method for EM Scattering,”
IEEE Transactions on Antennas and Propaga-
tion, vol 45, pp. 40-50, January 1997.

[19] Z. Sacks, D. Kingsland, R. Lee, and J. F. Lee, “A
Perfectly Matched Anisotropic Absorber for Use
as an Absorbing Boundary Condition,” IEEE
Transactions on Antennas and Propagation, vol
43, pp. 1460-1464, December 1995.

[20] B. A. Hendrickson and D. E. Womble, “The
torus-wrap mapping for dense matrix calcula-
tions on massively parallel computers,” Tech.
Rep. SANDY2-0792, Sandia National Laborato-
ries, 1992.

Will Dearholt received the B.S.E.E., M.S. and
Ph.D. degrees from New Mexico State University in
1992, 1996 and 2003, respectively. He has been em-
ployed by NASA, IBM and Los Alamos National Lab-
oratory as both a summer intern and a cooperative ed-
ucation student. He was an instructor at NMSU from
1997 to 2002. Dr. Dearholt received the NASA Gradu-
ate Research Fellowship in 1998 which funded the ma-
jority of the work described in this paper. Since grad-
uating from New Mexico State University in 2003, he

412

413

has been a Technical Staff Member at Los Alamos Na-
tional Laboratory in Los Alamos, New Mexico working
on mesh generation and geometric modeling for prob-
lems of interest to the computational physics commu-
nity. Dr. Dearholt is a member of IEEE, ACES and
Eta Kappa Nu.

Steven Castillo received the B.S.E.E. degree from
New Mexico State University, Las Cruces, in 1982, and
the M.S. and Ph.D. degrees in Electrical Engineer-
ing from the University of Illinois, Urbana, in 1984
and 1987, respectively, where he conducted research
in electromagnetic analysis of high speed digital cir-
cuits. He has been employed at White Sands Missile
Range, NASA Johnson Space Center, and Bell Tele-
phone Laboratories. Since 1987, he has been on the
faculty at New Mexico State University and is now an
NMSU Regents Professor in the Klipsch School of Elec-
trical and Computer Engineering where he served as
Department Head from 1998 until 2004. He began his
duties as Dean of Engineering July 1st, 2004. He has
conducted research in computational methods in elec-
tromagnetics, electromagnetic theory and the solution
of partial differential equations on parallel computers.
Dr. Castillo is a member of the IEEE Antennas and
Propagation, Electromagnetic Compatibility, and the
Microwave Theory and Techniques societies. He cur-
rently serves on several boards and external commit-
tees including the Advisory Committee on Cyber In-
frastructure for the National Science Foundation, the
board of directors for the Center of Excellence for Haz-
ardous Materials, the Computational Sciences review

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

panel at Sandia National Laboratories, and the Ad-
vanced Simulation and Computing Program review at
Sandia National Laboratories. He is a past Associate
Editor of the IEEE Antennas and Propagation Trans-
actions. He is a member of Eta Kappa Nu, Tau Beta
Pi, Phi Kappa Phi and Sigma Xi and received the Na-
tional Science Foundation Presidential Young Investi-
gator Award in 1991.

