
Abstract − The small dimensions of Radio Frequency 
Micro-ElectroMechanical Switches (RF MEMS) raise 
significant modeling challenges in terms of accuracy and 
solver efficiency. This paper introduces a practical RF 
MEMS switch analysis based on an extended finite 
element-boundary integral (EFE-BI) method with an 
iterative solver incorporating a new sparse-matrix 
preconditioner whose large eigenvalues are very close to 
those of the original matrix. This sparse preconditioner is 
key to successfully solving the ill-conditioned EFE-BI 
matrix. The smaller condition number and almost 
positive-definite eigenvalue spectrum after 
preconditioning leads to fast convergence. Specific RF 
MEMS simulations are presented to demonstrate the 
accuracy and effectiveness of the methodology and 
solution process.  

I. INTRODUCTION 

RF MEMS switches have demonstrated low on-state 
insertion loss, high off-state isolation, and very linear 
behavior over a broad frequency range [1] and [2]. 
Despite their excellent characteristics, they generally 
suffer from low power-handling capability, with most 
switches operating well below 1W [2]. This limitation is 
due to the complex interactions among electromagnetic 
losses, heat transfer, and mechanical deformations of the 
switch. To better understand the associated failures, a 
multiphysics model was proposed in [3]. However, the 
work in [3] employed an approximate two-dimensional 
modeling of the RF current though the switch. As such it 
was not sufficiently rigorous in characterizing the edge 
current behavior which is critical for the heat dissipation 
process. Toward the goal of developing a more accurate 
and reliable analysis of RF MEMS, we proposed in [4] 
and [5] a more robust and efficient analysis method 
referred to as the extended finite element-boundary 
integral (EFE-BI) method.  

Of importance in our EFE-BI analysis was the 
treatment of very small features associated with the 
MEMS switches. For example, at 2 GHz, the beam length 
corresponds to an electrical size of λ/1500 to λ/250 and a 
gap of λ/150,000 to λ/50,000. Because of these small 
features, the resulting hybrid matrix system is highly ill-
conditioned and the matrix entries (viz. the integrals 

defining the matrix entries) are difficult to be accurately 
evaluated. Standard implementations of the finite element 
(FEM) and moment methods (MoM) employ integrations 
based on the Gaussian quadrature formulae for evaluating 
the matrix entries. However, for the small RF MEMS 
dimensions, these standard integral treatments were 
found to lead to ill-conditioned matrices with erratic 
changes in the output of the observable quantities. In [6] 
we proposed a set of semi-analytic evaluations of the 
matrix entries for the resulting EFE-BI hybrid system. 
However, a good preconditioner is still needed to ensure 
convergence, especially for frequencies below X band (10 
GHz).  

Many authors have explored preconditioning 
matrices for ill-conditioned matrix systems [7], [8], and 
[9]. Although the standard diagonal (DP) and block-
diagonal preconditioners (BDP) can partially overcome 
convergence issues, they are still not reliable for RF 
MEMS modeling. In this paper, we present a highly 
efficient and reliable analysis of RF MEMS systems 
based on a new preconditioner referred to as the Large-
Eigenvalue-Sparse Preconditioner (LESP). This 
preconditioner is implemented within the Generalized 
Minimal Residual iterative solver (GMRES) and is 
shown to significantly reduce the condition number and 
lead to almost positive-definite preconditioned matrix for 
RF MEMS switches. The reader is referred to [4], [6] and 
[10] for details related to the formulation of the EFE-BI 
and the element evaluations. Here, we focus only on the 
preconditioning approach and the relevant results. The 
reader is also referred to [9] and [11] for a review of 
iterative solvers and pre-conditioners. Other 
preconditioners for RF applications are mentioned in [7] 
and [12]. However, our particular application relates to 
the unique issue of RF MEMS switches where the entire 
geometry is λ/250 or less in size.  

II. PRECONDITIONING OF THE HYBRID 
MATRIX SYSTEM 

A simplified RF MEMS switch is illustrated in Fig.1. 
As it is well known, the RF MEMS switch beam 
experiences shape deformation during its dynamic 
operation. The conventional FE-BI [13] with rectangular 
gridding cannot track this deformation with sufficient 
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geometrical accuracy. For this purpose in [4], we 
introduced an extended FE-BI analysis method (EFE-BI) 
for RF MEMS switches. The EFE-BI employs the 
moment method to model the beam and the usual FE-BI 
for the substrate and conducting sections on the boundary 
of the same substrate. As a result, the beam mesh is 
separated from the FE-BI section of the model. It can 
therefore be readily re-meshed as the beam curves. This 
approach allows for full flexibility in modeling the 
deformed 3D surfaces while reducing the computational 
expense. The typical EFE-BI matrix takes the form [4] 
and [6]  

1 1
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n m
SS S S S 22 1 2 2
n
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where FEMA  and 1 1S SA represent the FE-BI system for the 
fixed volume V1 enclosed by S1  as shown in Fig. 1. As 
usual, FEMA  is a very sparse submatrix whereas 1 1S SA  is 
dense. Similarly, 1 2S SA  and 2 1S SA  are the dense matrices 
representing the interaction between the beam and the BI 
enclosing the substrate, whereas 2 2S SA  is a dense 
submatrix representing the discrete method of moments 
system. The small sizes discussed above lead to near-
zone integrals in the various submatrices of equation (1). 
These integrals can be efficiently evaluated using the 
semi-analytic integrations [6]. However, the resulting 
matrices are still ill-conditioned (Fig. 2).  

Given the small number of unknowns due to the 
electrically small size of RF MEMS switch, GMRES 
(without restart) [8] and [11] is a good choice for solving 
equation (1). A description of the GMRES algorithm is 
given in [11] and [14]. We also note that available 
commercial software typically converges rather slowly or 
never at frequencies below ~50 GHz due to the extremely 
small MEMS dimension. This highlights the need for a 
preconditioner, but also points to the need for improved 
methods to carry out a reliable analysis of RF MEMS 
switches. The next paragraphs describe the construction 
of the proposed LESP. We then proceed to demonstrate 
the solution effectiveness of the entire EFE-BI approach 
for RF MEMS analysis. 

It is well known that a good preconditioner is sparse 
and should have eigenvalues close to the larger ones of 
the original matrix. This approach generates a 
preconditioner that is a highly sparse matrix, but 
incorporates the critical elements of the original matrix. 
A preconditioner 

LESPA  can be applied to equation (1) as 
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n
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Fig. 1. RF-MEMS simplified model. 
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Fig. 2. Matrix condition number versus frequency 
(75*50*2 um). 
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actually generate 1{ }S S1 1

NZA , the matrix elements within 

each row of { }S S1 1A are sorted with respect to their 
modulus and the 1NZn  elements with the largest modulus 
are included to form the preconditioning matrix 

1{ }S S1 1
NZA . Typically, most elements of 1{ }S S1 1

NZA are 
located in a band around the main diagonal, but edge 
numbering can make some of the large elements 
distributed over the entire extent of the square matrix.  A 
similar procedure is applied to submatrices S S1 2A , S S2 1A , 
and S S2 2A . Unlike the conventional preconditioners, our 
approach includes the high modulus elements from the 
submatrices S S1 2A  and S S2 1A . For simplicity, in this 
paper, the same NZ from each row of the original matrix 
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is selected to construct the preconditioner matrix, and an 
optimal NZ is found to achieve the best compromise 
between convergence versus CPU cost.   

III. NUMERICAL APPLICATION 

In this section, we present examples that demonstrate 
the efficiency of the LESP preconditioner. As a solver we 
used the general minimal residual algorithm (GMRES) 
with Krylov subspace methods [13] because it converges 
monotonically and (generally) gives the smallest residual 
errors among other Krylov subspace methods. The 
dimensions of the considered example are given in Fig. 3, 
and we note that the glass substrate was meshed using 
brick elements to reduce the number of unknowns. 
However, triangular surface (S2) elements were used to 
model the MEMS beam to accurately represent of the 
deformed beam surface. Beam thickness and conductivity 
were modeled using the resistive sheet model [13]. 

Figure 4 shows the construction of LESP.  
Specifically the original EFE-BI matrix is shown at the 
top of the figure with the corresponding preconditioner 
given at the bottom. We also remark that the elements in 
the beam are all in the near zone with respect to each 
other and are therefore strongly coupled. Thus, we found 
it necessary to include the entire BI matrix (marked in 
black in Fig. 4 (b)) to construct the preconditioner. This 
process was later found to ensure convergence in all 
cases.  

A convergence rate comparison using different 
preconditioners with GMRES is shown in Fig. 5. We 
observe that the matrix condition number is very high 
( 103.694 10× ) and therefore LESP preconditioner is 
needed to obtain fast convergence.  

 
 

 
 

Fig. 3. RF-MEMS switch for our modeling. 

 

From Fig. 5, it is seen that LESP leads to faster 
convergence as compared to the diagonal/block 
preconditioner. In addition, LESP has an optimized 
number of high-coupling terms which generate the best 
convergence (here NZ = 10 for the 50 GHz case). As can 
be expected, the value of NZ is dependent on the 
geometry. The mesh size and expansion function also 
affect the number of the near zone elements to be 
included in the preconditioner. 

Figure 6 presents the convergence rate versus 
frequency. As seen, more iteration is needed to obtain the 
same convergence as the frequency is reduced. At the 
same time, the optimized NZ rises due to the much higher 
coupling among the matrix elements. It is also interesting 
to point out that the convergence rate is much better at 
the beginning of the iteration process. However, it 
reaches a relatively stable rate at lower frequencies. At 
higher frequencies, the convergence rate is slower at the 
start, but is more consistent and reaches the convergence 
criteria more quickly. 

 

 
                    
 
 

(a) Original EFE-BI matrix. 
 

 
 

 
(b) Preconditioner. 

 

Fig. 4. Profile of the EFE-BI and preconditioner matrices. 
 
 

To better understand the preconditioner's influence on 
convergence, Fig. 7 shows the eigenvalue spectrum 
before and after preconditioning. Specifically, we show 
the spectrum when NZ = 1 (same as the diagonal 
preconditioner) and 15 (optimal) at 30 GHz. It is seen in 
Fig. 7 (a) that for NZ=15, most of the eigenvalues are 
closer to those of the original matrix. Nevertheless, of 
importance is that after preconditioning (Fig. 7 (b)): (1) 
the eigenvalue spectrum cluster becomes tighter and the 
convergence is faster since the condition number is 
proportional to the ratio of the maximum to minimum 
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eigenvalues (as compared to the NZ = 1 case); (2) the 
preconditioned matrix with the optimized LESP leads to 
an almost all-real and positive eigenvalue spectrum 
(implying an almost positive-definite system).  

 

Fig. 5. Convergence versus iteration number for the     
preconditioned EFE-BI matrix. 
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Fig. 6. Convergence versus frequency using an optimal 
number of non-zero rows (NZ is given in the 
parenthesis). 

 
 

To compare the proposed LESP with the diagonal 
and block preconditioner, we repeated the example at 50 
GHz (1241 unknowns) on an Intel Pentium-IV® [2-9]. It 
was found that at each iteration, LESP (NZ = 10) took 
1.92 sec, whereas the diagonal preconditioner took about 
the same time of 1.914 sec. However, LESP (NZ = 10) 
was 4.2 times faster in reaching the normalized residual 
norm (set to 0.005) as compared to the diagonal 
preconditioner and 3 times faster as compared to the 
block preconditioner (NZ = 20) due to the fewer 
iterations. At the same time, the memory requirements 
were reduced dramatically since the needed storage per 
iteration rises linearly with the iteration count [15].  

Using the preconditioner discussed above, we 
simulated the model in Fig. 3 at 5 GHz. The current is 
shown in Fig. 8. As seen, it compares well to the static 
approximation. 
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(a) Eigenvalues of the original and the preconditioning 

matrices with NZ = 1 and NZ = 15. 
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(b) Eigenvalues after preconditioning. 
 

Fig.7. Eigenvalue spectrum distribution. 
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Fig. 8. Current density versus beam width (f = 5 GHz). 
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IV. CONCLUSION 

The extremely small dimensions of RF MEMS 
switches inevitably lead to highly ill-conditioned matrix 
systems for RF analysis. Consequently, poor convergence 
is experienced when the RF MEMS switches are modeled 
via the conventional FE-BI method. In this paper, we 
presented a new preconditioner (LESP) to solve the 
matrix system generated via the extended FE-BI method. 
This new preconditioner preserves the matrix elements 
consisting of the largest eigenvalues associated with the 
original matrix. After preconditioning, the resulting 
system is almost positive-definite, implying fast and 
reliable convergence. Using the proposed preconditioner 
we were able to reliably predict the behavior of RF 
MEMS switches over a broad range of frequencies (500 
MHz – 50 GHz). 
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