
Accelerated GRECO Based on a GPU

1 Yang ZhengLong, 1 Jin Lin, and 2 Li WeiQing

1 Nanjing Research Institute of Electronics Technology, China
2 Computer Science and Tech. Institute, Nanjing University of Science. and Technology, China

Abstract − For obtaining the electromagnetic scattering
characteristic of a complex target efficiently, GRECO
(Graphical Electromagnetic COmputing) is
implemented by a programmable pipeline of a modern
GPU (Graphics Processing Unit). The speed of the
simulation can be improved up to 20 times compared
with the raw GRECO. The ray tracing algorithm based
on a GPU is implemented to obtain the multiple
reflection contribution of a target with concave
structure. This approach will redound to research works
such as radar target identification and Inverse Synthetic
Aperture Radar (ISAR) imaging.

Key words − EM scattering, GRECO, and GPU.

I. INTRODUCTION

GRECO (GRaphics Electromagnetic COmputing)

is an effective method for computing the
high-frequency radar cross section (RCS) of complex
targets based on physical optics (PO), and physical
theory of diffraction (PTD) [1]. In this paper, an
accelerated version of the GRECO method is
implemented by the programmable pipeline of a
modern GPU (Graphics Processing Unit), the speed of
the simulation can be improved up to 20 times
compared with the base GRECO. Furthermore, the ray
tracing algorithm based on the GPU is implemented to
obtain the contribution of multiple reflection of a target.

Compared with the raw GRECO, the GPU
accelerated GRECO has higher efficiency and enhanced
ability to simulate the multiple reflection of a complex
target with concave structure.

With the development of GPU and the creation of
the new feature of programmability, researchers begin
to transfer some of the processing stages in the graphics
output pipeline or some graphics algorithms from the
CPU (Central Processing Unit) to the GPU. Except for
those graphics-only applications, GPU finds
applications in general purpose computations in other
fields, and it has become a hot topic for research in
recent years. In the electromagnetics filed, the FDTD
method has been implemented based on the GPU for
higher efficiency [2].

In some applications such as computational
electromagnetics and signal processing, the speed of the
CPU can not meet the requirement of efficiency. One

can use other high-speed processing unit like DSP
(Digital Signal Processing) or HPC (High Performance
Cluster) system, but DSP or HPC system is very
expensive and limited in application. By contrast with a
general CPU, a GPU consists of higher-bandwidth
memory and more floating-point hardware units. For
example, current GPU such as the Nvidia 6800 Ultra
has a peak performance of 40 Gflops and a memory
bandwidth of 35.2 Gbytes per second, compared to 6.8
Gflops and 6 Gbytes per second for a 3-GHz Pentium 4
CPU. Furthermore, GPU performance for graphics
applications throughput has been increased from 2 to
2.5 times a year. This growth rate is faster than Moores
law as it applies to CPUs, which corresponds to about
1.5 times a year. In a GPU, there are several vertex
pipelines using MIMD (Multiple Instructions Multiple
Data), and fragment pipelines using SIMD (Single
Instruction Multiple Data) to provide the ability for
high-speed parallel data processing. So the GPU can be
treated as a parallel vector machine that is suitable for
some kinds of numerical computations [3], [4].

The function of the fixed pipeline of graphics
hardware used in raw GRECO is to obtain the shadow
of different parts of a complex target in the rendering
process. Based on the raw GRECO, the programmable
pipeline of a GPU can be applied to implement GRECO
method without a rendering process. The customized
vertex and fragment shaders for RCS computing can be
compiled and linked into the GPU pipeline to substitute
some functions of the fixed-pipeline [5]. Since most of
the time-consuming computation in raw GRECO is
used to obtain the scattering contribution of the small
facets represented by the pixels on the screen, thus it
can be implemented by the parallel fragment shader to
accelerate the simulation. In this paper, the vertex and
fragment shaders are applied to the raw GRECO
method based on prior work to obtain the mono and
bistatic RCS of complex targets [6]. The GPU-based
ray tracing algorithm is implemented to obtain the
contribution of multiple reflection of a target with
concave structure. The paper is focused on the
combination of GRECO and GPU programming, the
GRECO and related techniques will not be discussed
here, its details can be found in [1] and [7].

Compared with the raw GRECO, the main
advantages of GPU-based GRECO are:
1) Higher efficiency, where the speed can be improved

321

1054-4887 © 2007 ACES

ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

up to 20 times compared with the raw GRECO.
2) Ability to simulate multiple reflection of the complex
targets (see section II.C), this feature is not involved in
raw GRECO.

The development of GPU-based GRECO is part of
the work for the target echo simulation for radar target
identification and Inverse Synthetic Aperture Radar
(ISAR) imaging. High speed simulation is required for
obtaining the wide-band and wide-angle scattering
response of many complex targets, it is the main
motivation of the work.

II. METHODOLOGY

In GRECO, the procedures of RCS prediction are:

1) Read the 3D model files created by CAD software.
2) Render the 3D model in the frame-buffer of a
graphics card.
3) Obtain the depth information of each pixel.
4) Obtain the surface normal of each pixel using two
different lighting configurations.
5) Map the depth information to the real depth of the
target.
6) Obtain the scattering contribution of each pixel
using PO/PTD.
7) Obtain the total scattering contribution by
accumulating the contribution of each pixel coherently.

In the procedures mentioned above, normal vector
computation, depth mapping, scattering simulation of
each pixel, and final accumulating are done in the CPU.
There are three massive data exchanges between main
memory and video memory: two for color information
of two different lighting configurations and one for
depth information. In the CPU, massive floating point
operations are needed for computing the normal vector
and scattering contribution of each pixel on the target
surface based on serial processing mechanism, that is,
many loop operations are needed in the raw GRECO.
Using the programmable pipeline of the GPU, the
normal vector and depth can be accessed directly by
using built-in variables of shading languages such as Cg
(C for Graphics, released by Nvidia) and GLSL
(Graphics Library Shading Language) [8], so the two
different lighting configurations and depth mapping are
needless. Thus scattering contribution of each pixel can
be obtained rapidly based on parallel processing
mechanism of fragment shader, and the final total
scattering contribution can be obtained by a parallel
reduction process in the GPU [9]. The detailed
procedures are explained as follows.

A. PO Simulation by Shader

Figure 1 represents the procedures of the GPU’s
fixed-pipeline (solid line) and the programmable
pipeline (dashed line). Some functions of the

fixed-pipeline can be replaced by the programmable
pipeline using vertex shaders and fragment shaders.
Vertex shaders can be used to specify a general
sequence of operations to be applied to each vertex and
its associated data, and the fragment shaders can be
used to specify the operations on fragment values and
its associated data.

Fig.1. GPU pipeline.

In GRECO, the main time for the RCS prediction

is spent on the electromagnetic computation, while the
geometric model manipulations are left to the graphics
hardware. Raster element is applied to discrete the
target surface natively, and automatic culling technique
is used to remove the shadowed parts of the target.
With the rapid development of graphics hardware
especially the programmable pipeline of the GPU,
GRECO can be implemented entirely in the GPU. The
key procedures of GPU accelerated GRECO are:
1) Write the user-defined vertex shaders and fragment
shaders for RCS computation based on PO/PTD.
2) Compile and link the shaders, and then embed the
shaders to the GPU pipeline.
3) Start up the general drawing process and store the
scattering results of each pixel in the frame buffer.
4) Obtain total scattering contribution by the reduction
technique that will be described in section II.D.

For GPU accelerated GRECO, the 3D geometrical
transformation, including normal transformation can be
implemented in a vertex shader. The scattering results
of each pixel can be obtained directly in a fragment
shader by equation (5) in [1], then it can be written into
the R component and G component of RGB (Red,
Green, Blue) by render-to-texture technique, where R
and G components represent the real part and imagery
part, respectively. Finally, the reduction technique can
be applied to obtain the total scattering contribution.

B. Diffraction of Edge

In [1], the Element Edge Wave (EEW) is applied

322ZHENLONG, LIN, WEIQING: ACCELERATED GRECO BASED ON A GPU

to obtain the edge diffraction contribution. The
geometrical parameters such as the normal vectors of
two facets that construct the edge, edge inner angle and
the direction of the edge should be obtained correctly.
The method used in [1] can obtain the edge information
on the condition that two facets are all illuminable. It
will fail when one of the facets that construct the edge
is shadowed.

In [10] and [11], the complete edge information is
obtained from the model information stored in the 3D
model file based on some principles of computer
graphics. It is found that the edge diffraction can be
obtained by the GPU programming. The primary issue
is how to obtain the edge information with the shadow
between model and edges must be considered, and the
second issue is how to pass the edge information to the
fragment shader for diffraction computation using PTD
or ILDC (Incremental Length Diffraction Coefficient)
[7].

The 3D facet model is constructed by a number of
triangles with a certain topological relationship. For a
regular 3D model, the common edge exists in the
adjacent facets. If the angle between two normal
vectors of two facets is larger than the predefined
threshold, the common edge needs to be considered for
diffraction; otherwise, the two facets are treated as
locating on the smooth surface. This is similar to
normal averaging in computer graphics [8].

Through the preprocessing of the model
information, edge information such as normal vectors,
edge direction, and inner angle of each edge can be
obtained for edge diffraction computation later. These
parameters are dependent, the edge direction and inner
angle can be obtained by the cross product and dot
product of two normal vectors respectively. The normal
vector of one illuminable facet, edge direction and inner
angle are sufficient for edge diffraction computation. In
paper [11], three display lists [8] are used to store the
normal vector, edge direction and inner angle
respectively. In order to eliminate the shadowed edge,
the “dark” model (r,g,b=0,0,0) can be rendered with
lighting disabled before the edges are rendered. In this
paper, only one display list is used to store the three
parameters for edge diffraction by eliminating the
shadowed edges and pass this edge information to the
fragment shader.

In OpenGL, the main color and secondary color
can be assigned for each vertex of a 3D model and each
color has four components named RGBA (Red, Green,
Blue, and Alpha). In the rendering procedure of an edge,
the RGBA of the main color can be used to store the
normal vector n of illuminated facet and the inner angle
α, that is, R = n.x, G = n.y, B = n.z, and A = α, while
the RGB of the secondary color can store the edge
direction. Eliminating the shadowed edges can be
implemented by the “dark” model mentioned above.

Figure 2 illustrates the rendering result of a missile
model with shadowed edges that are eliminated. The
smooth part of the model, such as the fuselage and
wings, is full dark as the background, while the edges
of the wings are rendered with the geometrical
parameters passed to the fragment shader by main color
and secondary color for diffraction computation. When
all information for diffraction computation is available,
the EEW method can be implemented in the fragment
shader for edge diffraction.

Fig. 2. Rendering result of edges.

C. Multiple Reflections

Multiple reflections play an important role in the
scattering of complex targets. The Shooting and
Bouncing Ray (SBR) technique has been developed for
RCS prediction for a target with concave structure [12].
The software Xpatch based on SBR has been released
by ASIC Inc. Ray tracing is the core algorithm of SBR.
In order to obtain multiple reflection contribution, the
ray propagation paths of incident wave and reflected
wave need to be recorded to obtain the amplitude and
phase of each ray that bounced between different parts
of the target surface. All contributions from scattering
and iterative multiple reflection should be accumulated
in the direction in which the receiver is located.

Conventional ray tracing algorithm computes light
intensity and color components of the scene. The
coherence of light is not considered in conventional ray
tracing because the phase of the light is not important
for rendering scene in computer graphics. However, it
is as important as the amplitude in the EM scattering of
complex targets. Thus the modifications should be
applied to conventional ray tracing algorithm for
obtaining the multiple reflections’ contribution. The
differences between conventional ray tracing and SBR
in EM scattering are:
1) Conventional ray tracing calculates the amplitude of
light. As for the EM scattering, both the amplitude and
phase are to be calculated.
2) The light amplitude in a conventional ray tracing is
obtained by the Phong lighting model, while the
amplitude and phase of the EM scattering are obtained
by physical optics, geometrical optics, and PTD.

323 ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

3) Refraction must be considered in conventional ray
tracing while there is no refraction contribution from
metal target surface for EM scattering computation.

To obtain the multiple reflections’ contribution, the
propagation paths bounced between different parts of
the complex target should be recorded including the
sequences of the intersections between the radar beam
and the facets of the target. It is very time-consuming
because massive intersection tests are needed to be
computed.

In order to accelerate the ray tracing by GPU,
Purcell mapped the vertices of the complex model to
three textures and constructed a texture representing the
linked list which stores the triangles of the model
surface [13]. Thus, the ray tracing algorithm can be
implemented by the GPU. The GPU accelerated ray
tracing for EM scattering is implemented in the
fragment shader based on Purcell’s work in this paper.
The algorithm flow chart is shown in Fig. 3.

Fig. 3. Ray tracing for multiple reflection.

The algorithm can be divided into five parts and

implemented by fragment shader, except the ray tube
initialization is preprocessed in the CPU. The method
provided by Didier Badouel is applied to obtain fast
ray-polygon intersection [14] and the Proximity Clouds
algorithm is applied to scene traversal [15]. The
performance of the 3D traversal is important to the
efficiency of the algorithm. BSP (Binary Space
Partition) tree, Adaptive octree, KD tree, and SEADS
(Spatially Enumerated Auxiliary Data Structure) [16]
etc., can be adopted to store the 3D scene data for
acceleration of traversal [17]. In this paper, the SEADS
method is applied to fast traversal due to the following
reasons:
1) It is simple for parallel processing.
2) The time for each data access is constant and with
linear time complexity.
3) Easy code for hardware implementation.

The ray tracing algorithm is very complicated; it is
a hot topic in computer graphics, the detailed
procedures of the ray tracing accelerated by the GPU is
not described here. It should be noted that if the depth
of tracing is reduced to 1, the algorithm degenerates to
GRECO.

D. Reduction
When shaders for PO/PTD and multiple

reflections are applied to scattering computing, the
contribution of each pixel is stored in RG components
of the current texture and has to be accumulated to
obtain the total scattering contribution. Traditionally,
the RGB components can be read back to the main
memory and then accumulated by CPU. It is
time-consuming because of long time loop operations
for accumulation and massive data exchanges between
video memory and main memory, for example, if the
viewport is 1024 by 1024, this means that there is
1024×1024 = 1048576 accumulation operations that are
needed to obtain the final total contribution.
Additionally, it is slow to read the RGB components
from video memory to main memory. If the
accumulation can be implemented in GPU without the
massive data exchanges and loop operations, higher
execution efficiency will be obtained.

After investigating the parallel mechanism of the
fragment shader, it is found that the parallel reduction
technique is suitable for acceleration of accumulation [9]
in GPU. After several reduction processes, only one
complex number that represents the total contribution is
needed to be read back to the main memory resulting in
no massive data exchange.

In computer graphics, reduction technique is
mainly applied to obtain the maximum value or
accumulation of the floating point numbers stored in
texture. Here, texture can be treated as a 2D array that
stores the scattering contribution of each pixel. The
maximum value in a 2D array can be obtained by the
procedure shown in Fig. 4.

Fig. 4. Reduction for obtaining the maximum.

For obtaining the maximum of the 4 by 4 array,

the maximums of 4 subregions with the elements {84,
64, 88, 97}, {83, 97, 93, 99}, {98, 80, 70, 82}, and {81,
86, 85, 87} should be first obtained, and then a new
array can be created with the elements {97, 99, 98, 87}
that are the maximums of 4 subregions.

The same procedure can be applied to the new
array for obtaining the final maximum of the array, that
is, 99. For obtaining the accumulation result of the
array, similar procedure can be applied.

In the implementation of reduction by the GPU,
the accumulation can be applied to a 2 by 2 subregion
of the texture, then a new texture can be constructed

324ZHENLONG, LIN, WEIQING: ACCELERATED GRECO BASED ON A GPU

with 1/4 the size of the current texture. Iteratively, the
final accumulated result can be obtained. This operation
limits the size of the texture to the integer number that
is power of 2 but it is suitable for parallel processing in
fragment shader. In this paper, the size of the texture is
set to 210 = 1024, only 10 reduction operations are
needed to obtain the total contribution without massive
data exchanges from video memory to main memory
and large amount of loop operations (up to 1048576).

Jinwook Kim provided a reduction example on the
web and helped us to implement the reduction easily
[18]. The reduction procedure for computing the RCS
of a missile model is illustrated as shown in Fig. 5.

Fig. 5. Reduction for RCS accumulation.

The R and G components of the images in Fig. 5

represent the real and imaginary parts of the scattering
contribution of each pixel, respectively. The size of the
first image is 1024×1024. After one reduction operation,
the size of the image is reduced to 512×512 and the
accumulation results of each 2 by 2 subregion are
obtained. The final accumulation result is obtained after
10 iterative reduction operations and stored in a 1×1
array.

III. EXAMPLES

In order to compare the simulation speed, the RCS

of a scaled missile model (1:8) is simulated by raw
GRECO and the GPU accelerated GRECO. The view
port for computing is 1024 by 1024, f = 10GHz, aspect
angle is from 0◦ to 360◦ with an angle step of 0.25◦, that
is, 1441 RCS results are calculated. The CPU in our
platform is an Intel Pentium 4 with clock frequency 2.8
GHz and the GPU is provided by Nvidia GeForce 6600
GT graphics card. The time for raw GRECO is 390 s
and that for GPU accelerated GRECO is only 19 s. The
speed of the simulation is improved up to 20 times. The
RCS of the model is also measured by CATR (Compact
Antenna Test Range) system and the results that are
smoothed by 10-point adjacent average are shown in
Fig. 6.

For illustration of multiple reflection contributions,
the RCS of a dihedral constructed with two 1m × 1m
metal planes is simulated with the depth of tracing set
to 2. The result shown in Fig. 7 agrees well with that

shown in [7]. The time for computing the RCS in the
aspect angle range [-60◦, 60◦] with step 1◦ is about
100s.

Furthermore, the wide-band, wide-angle scattering
data of complex targets are simulated by the GPU
accelerated GRECO to obtain the high resolution range
profile and ISAR image. Figure 8 is the turntable ISAR
image of a Boeing 737 model obtained by the simulated
data at X-band with bandwidth 300 MHz.

Fig. 6. Measured and simulated RCS of the missile
model.

Fig. 7. Simulated RCS of dihedral.

Fig. 8. Turntable ISAR image of a Boeing 737 model.

325 ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007

IV. CONCLUSION

The programmable pipeline of a modern GPU is
applied successfully to the implementation of a GPU
accelerated GRECO method with multiple reflection
contribution included. The speed of simulation is
improved up to 20 times compared with the raw
GRECO. The GPU accelerated GRECO method has
been used to simulate radar echo for different radar
systems and the wide-band wide-angle scattering data
of different targets for constructing the database for the
radar target identification. Further improvement on
simulation speed can be obtained by a more powerful
GPU and better algorithms with the rapid development
of computer graphics.

REFERENCES

[1] J. M. Rius, M. Ferrando, and L. Jofre, “High -

frequency RCS of complex radar targets in
real-time,” IEEE Trans. on Antennas and
Propagat., vol. 41, no.9, pp. 1308–1318, Sep.
1993.

[2] M. M. Okoniewski, S. E. Krakiwsky, L. E. Turner,
“Graphics processor unit (GPU) acceleration of
finite-difference time-domain (FDTD) algorithm,”
ISCAS 2004, IEEE, pp. 265–268, 2004.

[3] D. Goddeke, GPGPU–basic math tutorial,
Technical report, FB Mathematik, Universitat
Dortmund, http://www.mathematik/ unidortmund.
de/~goeddeke/gpgpu, Nov. 2005.

[4] W. Enhua, “State of the art and future challenge on
general purpose computation by graphics
processing unit,” Journal of Software(In Chinese),
vol. 15, no. 10, pp. 1493–1504, Oct. 2004.

[5] R. J. Rost, OpenGL Shading Language, Addison
Wesley, 2004.

[6] Y. ZhengLong, J. Lin, N. JingLing, and F. Dagang,
“Bistatic RCS calculation of complex target by
Greco,” Journal of Electronics (In Chinese), vol.
32, no. 6, pp. 1033–1035, June 2004.

[7] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar
Cross Section, Artech House, 1985.

[8] R. S. Wright and Jr. B. Lipchak, OpenGL Super
Bible, Third Edtion. Sams Publishing, 2005.

[9] R. Fernando, GPU GEMS, Programming
Techniques, Tips, and Tricks for Real-Time
Graphics, Pearson Education, Inc., 2005.

[10] Y. ZhengLong, F. DaGang, and L. TieJun,
“Modification of software for computing EM
scattering of complex targets,” System Engineering
and Electronics (In Chinese), vol. 24, no. 4, pp.
86–89, April 2002.

[11] Q. DeHua, W. BaoFa, and L. TieJun,
“Improvements of edges detecting and diffraction
field computing in GRECO,” Journal of

Electronics (In Chinese), vol. 31, no. 8, pp.
1160–1163, Aug. 2003.

[12] H. Ling and R. Bhalla, “Three-dimensional
scattering center extraction using the shooting and
bouncing ray technique,” IEEE Trans. on Antennas
and Propagat., vol. 44, no. 11, pp. 1445–1453,
Nov. 1996.

[13]T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan,
“Ray tracing on programmable graphics
hardware,” ACM Transactions on Graphics, vol.
21, no. 3, pp. 703–712, July 2002.

[14] D. Badouel, An Efficient Ray-Polygon Intersection,
Academic Press Professional, Inc., San Diego, CA,
USA, pp. 390–393, 1990.

[15] D. Cohen and Z. Sheffer, “Proximity clouds-an
acceleration technique for 3D grid traversal,” The
Visual Computer, vol. 11, no. 1, pp. 27–38, 1994.

[16] A. Fujimoto, T. Tanaka, and K. Iwata, “Arts:
Accelerated ray-tracing systems,” IEEE Comput.
Graph., vol. 6, no. 4, pp. 16–26, 1986.

[17] D. F. Rogers, Prodedural Elements for Computer
Graphics, 2nd Edition. McGraw-Hill Press, 1998.

[18] J. Kim, GPGPU reduction example, http://web.
imrc. kist.re.kr/~jwkim/GLSL/reduction.zip, 2005.

Yang ZhengLong was born in Gansu
province, China. He received Ph.D. in
electromagnetics and microwave
technology at Nanjing University of
Science and Technology (NUST) in
2002, then joined Nanjing Research
Institute of Electronics Technology. His

main research interests are computational
electromagnetics and radar imaging.

Jin Lin was born in Jiangxi province,
China. He received the master degree
and Ph.D. in electronic engineering at
Beijing University of Aeronautics and
Astronautics (BUAA) in 1989 and 2003,
respectively. He is the supervisor of
R&D Center of Nanjing Research

Institute of Electronics Technology and the member of
IEEE and senior member of CIE (Chinese Institute of
Electronics). His main research interests are radar
system and microwave antenna.

Li WeiQing was born in Hebei
province, China. He received Ph.D. in
Computer Sci. and Tech. Inst. at NUST.
His main research interests are
computer graphics, virtual reality and
system simulation etc.

326ZHENLONG, LIN, WEIQING: ACCELERATED GRECO BASED ON A GPU

