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Abstract − For obtaining the electromagnetic scattering 
characteristic of a complex target efficiently, GRECO 
(Graphical Electromagnetic COmputing) is 
implemented by a programmable pipeline of a modern 
GPU (Graphics Processing Unit). The speed of the 
simulation can be improved up to 20 times compared 
with the raw GRECO. The ray tracing algorithm based 
on a GPU is implemented to obtain the multiple 
reflection contribution of a target with concave 
structure. This approach will redound to research works 
such as radar target identification and Inverse Synthetic 
Aperture Radar (ISAR) imaging. 
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I.  INTRODUCTION 

 
GRECO (GRaphics Electromagnetic COmputing) 

is an effective method for computing the 
high-frequency radar cross section (RCS) of complex 
targets based on physical optics (PO), and physical 
theory of diffraction (PTD) [1]. In this paper, an 
accelerated version of the GRECO method is 
implemented by the programmable pipeline of a 
modern GPU (Graphics Processing Unit), the speed of 
the simulation can be improved up to 20 times 
compared with the base GRECO. Furthermore, the ray 
tracing algorithm based on the GPU is implemented to 
obtain the contribution of multiple reflection of a target.  

Compared with the raw GRECO, the GPU 
accelerated GRECO has higher efficiency and enhanced 
ability to simulate the multiple reflection of a complex 
target with concave structure. 

With the development of GPU and the creation of 
the new feature of programmability, researchers begin 
to transfer some of the processing stages in the graphics 
output pipeline or some graphics algorithms from the 
CPU (Central Processing Unit) to the GPU. Except for 
those graphics-only applications, GPU finds 
applications in general purpose computations in other 
fields, and it has become a hot topic for research in 
recent years. In the electromagnetics filed, the FDTD 
method has been implemented based on the GPU for 
higher efficiency [2]. 

In some applications such as computational 
electromagnetics and signal processing, the speed of the 
CPU can not meet the requirement of efficiency. One 

can use other high-speed processing unit like DSP 
(Digital Signal Processing) or HPC (High Performance 
Cluster) system, but DSP or HPC system is very 
expensive and limited in application. By contrast with a 
general CPU, a GPU consists of higher-bandwidth 
memory and more floating-point hardware units. For 
example, current GPU such as the Nvidia 6800 Ultra 
has a peak performance of 40 Gflops and a memory 
bandwidth of 35.2 Gbytes per second, compared to 6.8 
Gflops and 6 Gbytes per second for a 3-GHz Pentium 4 
CPU. Furthermore, GPU performance for graphics 
applications throughput has been increased from 2 to 
2.5 times a year. This growth rate is faster than Moores 
law as it applies to CPUs, which corresponds to about 
1.5 times a year. In a GPU, there are several vertex 
pipelines using MIMD (Multiple Instructions Multiple 
Data), and fragment pipelines using SIMD (Single 
Instruction Multiple Data) to provide the ability for 
high-speed parallel data processing. So the GPU can be 
treated as a parallel vector machine that is suitable for 
some kinds of numerical computations [3], [4]. 

The function of the fixed pipeline of graphics 
hardware used in raw GRECO is to obtain the shadow 
of different parts of a complex target in the rendering 
process. Based on the raw GRECO, the programmable 
pipeline of a GPU can be applied to implement GRECO 
method without a rendering process. The customized 
vertex and fragment shaders for RCS computing can be 
compiled and linked into the GPU pipeline to substitute 
some functions of the fixed-pipeline [5]. Since most of 
the time-consuming computation in raw GRECO is 
used to obtain the scattering contribution of the small 
facets represented by the pixels on the screen, thus it 
can be implemented by the parallel fragment shader to 
accelerate the simulation. In this paper, the vertex and 
fragment shaders are applied to the raw GRECO 
method based on prior work to obtain the mono and 
bistatic RCS of complex targets [6]. The GPU-based 
ray tracing algorithm is implemented to obtain the 
contribution of multiple reflection of a target with 
concave structure. The paper is focused on the 
combination of GRECO and GPU programming, the 
GRECO and related techniques will not be discussed 
here, its details can be found in [1] and [7].  

Compared with the raw GRECO, the main 
advantages of GPU-based GRECO are: 
1) Higher efficiency, where the speed can be improved 
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up to 20 times compared with the raw GRECO. 
2) Ability to simulate multiple reflection of the complex 
targets (see section II.C), this feature is not involved in 
raw GRECO. 

The development of GPU-based GRECO is part of 
the work for the target echo simulation for radar target 
identification and Inverse Synthetic Aperture Radar 
(ISAR) imaging. High speed simulation is required for 
obtaining the wide-band and wide-angle scattering 
response of many complex targets, it is the main 
motivation of the work. 

 
II.  METHODOLOGY 

 
In GRECO, the procedures of RCS prediction are: 

1) Read the 3D model files created by CAD software. 
2)  Render the 3D model in the frame-buffer of a 
graphics card. 
3) Obtain the depth information of each pixel. 
4) Obtain the surface normal of each pixel using two 
different lighting configurations. 
5) Map the depth information to the real depth of the 
target. 
6) Obtain the scattering contribution of each pixel 
using PO/PTD. 
7) Obtain the total scattering contribution by 
accumulating the contribution of each pixel coherently. 

 

In the procedures mentioned above, normal vector 
computation, depth mapping, scattering simulation of 
each pixel, and final accumulating are done in the CPU. 
There are three massive data exchanges between main 
memory and video memory: two for color information 
of two different lighting configurations and one for 
depth information. In the CPU, massive floating point 
operations are needed for computing the normal vector 
and scattering contribution of each pixel on the target 
surface based on serial processing mechanism, that is, 
many loop operations are needed in the raw GRECO. 
Using the programmable pipeline of the GPU, the 
normal vector and depth can be accessed directly by 
using built-in variables of shading languages such as Cg 
(C for Graphics, released by Nvidia) and GLSL 
(Graphics Library Shading Language) [8], so the two 
different lighting configurations and depth mapping are 
needless. Thus scattering contribution of each pixel can 
be obtained rapidly based on parallel processing 
mechanism of fragment shader, and the final total 
scattering contribution can be obtained by a parallel 
reduction process in the GPU [9]. The detailed 
procedures are explained as follows. 

 
A.  PO Simulation by Shader 

Figure 1 represents the procedures of the GPU’s 
fixed-pipeline (solid line) and the programmable 
pipeline (dashed line). Some functions of the 

fixed-pipeline can be replaced by the programmable 
pipeline using vertex shaders and fragment shaders. 
Vertex shaders can be used to specify a general 
sequence of operations to be applied to each vertex and 
its associated data, and the fragment shaders can be 
used to specify the operations on fragment values and 
its associated data. 

 
Fig.1. GPU pipeline. 

 
In GRECO, the main time for the RCS prediction 

is spent on the electromagnetic computation, while the 
geometric model manipulations are left to the graphics 
hardware. Raster element is applied to discrete the 
target surface natively, and automatic culling technique 
is used to remove the shadowed parts of the target. 
With the rapid development of graphics hardware 
especially the programmable pipeline of the GPU, 
GRECO can be implemented entirely in the GPU. The 
key procedures of GPU accelerated GRECO are: 
1) Write the user-defined vertex shaders and fragment 
shaders for RCS computation based on PO/PTD. 
2) Compile and link the shaders, and then embed the 
shaders to the GPU pipeline. 
3) Start up the general drawing process and store the 
scattering results of each pixel in the frame buffer. 
4) Obtain total scattering contribution by the reduction 
technique that will be described in section II.D. 

 

For GPU accelerated GRECO, the 3D geometrical 
transformation, including normal transformation can be 
implemented in a vertex shader. The scattering results 
of each pixel can be obtained directly in a fragment 
shader by equation (5) in [1], then it can be written into 
the R component and G component of RGB (Red, 
Green, Blue) by render-to-texture technique, where R 
and G components represent the real part and imagery 
part, respectively. Finally, the reduction technique can 
be applied to obtain the total scattering contribution. 
 
B.  Diffraction of Edge 

In [1], the Element Edge Wave (EEW) is applied 
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to obtain the edge diffraction contribution. The 
geometrical parameters such as the normal vectors of 
two facets that construct the edge, edge inner angle and 
the direction of the edge should be obtained correctly. 
The method used in [1] can obtain the edge information 
on the condition that two facets are all illuminable. It 
will fail when one of the facets that construct the edge 
is shadowed. 

In [10] and [11], the complete edge information is 
obtained from the model information stored in the 3D 
model file based on some principles of computer 
graphics. It is found that the edge diffraction can be 
obtained by the GPU programming. The primary issue 
is how to obtain the edge information with the shadow 
between model and edges must be considered, and the 
second issue is how to pass the edge information to the 
fragment shader for diffraction computation using PTD 
or ILDC (Incremental Length Diffraction Coefficient) 
[7]. 

The 3D facet model is constructed by a number of 
triangles with a certain topological relationship. For a 
regular 3D model, the common edge exists in the 
adjacent facets. If the angle between two normal 
vectors of two facets is larger than the predefined 
threshold, the common edge needs to be considered for 
diffraction; otherwise, the two facets are treated as 
locating on the smooth surface. This is similar to 
normal averaging in computer graphics [8]. 

Through the preprocessing of the model 
information, edge information such as normal vectors, 
edge direction, and inner angle of each edge can be 
obtained for edge diffraction computation later. These 
parameters are dependent, the edge direction and inner 
angle can be obtained by the cross product and dot 
product of two normal vectors respectively. The normal 
vector of one illuminable facet, edge direction and inner 
angle are sufficient for edge diffraction computation. In 
paper [11], three display lists [8] are used to store the 
normal vector, edge direction and inner angle 
respectively. In order to eliminate the shadowed edge, 
the “dark” model (r,g,b=0,0,0) can be rendered with 
lighting disabled before the edges are rendered. In this 
paper, only one display list is used to store the three 
parameters for edge diffraction by eliminating the 
shadowed edges and pass this edge information to the 
fragment shader. 

In OpenGL, the main color and secondary color 
can be assigned for each vertex of a 3D model and each 
color has four components named RGBA (Red, Green, 
Blue, and Alpha). In the rendering procedure of an edge, 
the RGBA of the main color can be used to store the 
normal vector n of illuminated facet and the inner angle 
α, that is, R = n.x, G = n.y, B = n.z, and A = α, while 
the RGB of the secondary color can store the edge 
direction. Eliminating the shadowed edges can be 
implemented by the “dark” model mentioned above. 

Figure 2 illustrates the rendering result of a missile 
model with shadowed edges that are eliminated. The 
smooth part of the model, such as the fuselage and 
wings, is full dark as the background, while the edges 
of the wings are rendered with the geometrical 
parameters passed to the fragment shader by main color 
and secondary color for diffraction computation. When 
all information for diffraction computation is available, 
the EEW method can be implemented in the fragment 
shader for edge diffraction. 

 

 
Fig. 2. Rendering result of edges. 

 
C.  Multiple Reflections 

Multiple reflections play an important role in the 
scattering of complex targets. The Shooting and 
Bouncing Ray (SBR) technique has been developed for 
RCS prediction for a target with concave structure [12]. 
The software Xpatch based on SBR has been released 
by ASIC Inc. Ray tracing is the core algorithm of SBR. 
In order to obtain multiple reflection contribution, the 
ray propagation paths of incident wave and reflected 
wave need to be recorded to obtain the amplitude and 
phase of each ray that bounced between different parts 
of the target surface. All contributions from scattering 
and iterative multiple reflection should be accumulated 
in the direction in which the receiver is located. 

Conventional ray tracing algorithm computes light 
intensity and color components of the scene. The 
coherence of light is not considered in conventional ray 
tracing because the phase of the light is not important 
for rendering scene in computer graphics. However, it 
is as important as the amplitude in the EM scattering of 
complex targets. Thus the modifications should be 
applied to conventional ray tracing algorithm for 
obtaining the multiple reflections’ contribution. The 
differences between conventional ray tracing and SBR 
in EM scattering are: 
1) Conventional ray tracing calculates the amplitude of 
light. As for the EM scattering, both the amplitude and 
phase are to be calculated. 
2) The light amplitude in a conventional ray tracing is 
obtained by the Phong lighting model, while the 
amplitude and phase of the EM scattering are obtained 
by physical optics, geometrical optics, and PTD. 
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3) Refraction must be considered in conventional ray 
tracing while there is no refraction contribution from 
metal target surface for EM scattering computation. 
 

To obtain the multiple reflections’ contribution, the 
propagation paths bounced between different parts of 
the complex target should be recorded including the 
sequences of the intersections between the radar beam 
and the facets of the target. It is very time-consuming 
because massive intersection tests are needed to be 
computed. 

In order to accelerate the ray tracing by GPU, 
Purcell mapped the vertices of the complex model to 
three textures and constructed a texture representing the 
linked list which stores the triangles of the model 
surface [13]. Thus, the ray tracing algorithm can be 
implemented by the GPU. The GPU accelerated ray 
tracing for EM scattering is implemented in the 
fragment shader based on Purcell’s work in this paper. 
The algorithm flow chart is shown in Fig. 3. 

 
Fig. 3. Ray tracing for multiple reflection. 

 
The algorithm can be divided into five parts and 

implemented by fragment shader, except the ray tube 
initialization is preprocessed in the CPU. The method 
provided by Didier Badouel is applied to obtain fast 
ray-polygon intersection [14] and the Proximity Clouds 
algorithm is applied to scene traversal [15]. The 
performance of the 3D traversal is important to the 
efficiency of the algorithm. BSP (Binary Space 
Partition) tree, Adaptive octree, KD tree, and SEADS 
(Spatially Enumerated Auxiliary Data Structure) [16] 
etc., can be adopted to store the 3D scene data for 
acceleration of traversal [17]. In this paper, the SEADS 
method is applied to fast traversal due to the following 
reasons: 
1) It is simple for parallel processing. 
2) The time for each data access is constant and with 
linear time complexity. 
3) Easy code for hardware implementation. 
 

The ray tracing algorithm is very complicated; it is 
a hot topic in computer graphics, the detailed 
procedures of the ray tracing accelerated by the GPU is 
not described here. It should be noted that if the depth 
of tracing is reduced to 1, the algorithm degenerates to 
GRECO. 

D.  Reduction 
When shaders for PO/PTD and multiple 

reflections are applied to scattering computing, the 
contribution of each pixel is stored in RG components 
of the current texture and has to be accumulated to 
obtain the total scattering contribution. Traditionally, 
the RGB components can be read back to the main 
memory and then accumulated by CPU. It is 
time-consuming because of long time loop operations 
for accumulation and massive data exchanges between 
video memory and main memory, for example, if the 
viewport is 1024 by 1024, this means that there is 
1024×1024 = 1048576 accumulation operations that are 
needed to obtain the final total contribution. 
Additionally, it is slow to read the RGB components 
from video memory to main memory. If the 
accumulation can be implemented in GPU without the 
massive data exchanges and loop operations, higher 
execution efficiency will be obtained. 

After investigating the parallel mechanism of the 
fragment shader, it is found that the parallel reduction 
technique is suitable for acceleration of accumulation [9] 
in GPU. After several reduction processes, only one 
complex number that represents the total contribution is 
needed to be read back to the main memory resulting in 
no massive data exchange. 

In computer graphics, reduction technique is 
mainly applied to obtain the maximum value or 
accumulation of the floating point numbers stored in 
texture. Here, texture can be treated as a 2D array that 
stores the scattering contribution of each pixel. The 
maximum value in a 2D array can be obtained by the 
procedure shown in Fig. 4. 

 

 
Fig. 4. Reduction for obtaining the maximum. 

 
For obtaining the maximum of the 4 by 4 array, 

the maximums of 4 subregions with the elements {84, 
64, 88, 97}, {83, 97, 93, 99}, {98, 80, 70, 82}, and {81, 
86, 85, 87} should be first obtained, and then a new 
array can be created with the elements {97, 99, 98, 87} 
that are the maximums of 4 subregions. 

The same procedure can be applied to the new 
array for obtaining the final maximum of the array, that 
is, 99. For obtaining the accumulation result of the 
array, similar procedure can be applied. 

In the implementation of reduction by the GPU, 
the accumulation can be applied to a 2 by 2 subregion 
of the texture, then a new texture can be constructed 
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with 1/4 the size of the current texture. Iteratively, the 
final accumulated result can be obtained. This operation 
limits the size of the texture to the integer number that 
is power of 2 but it is suitable for parallel processing in 
fragment shader. In this paper, the size of the texture is 
set to 210 = 1024, only 10 reduction operations are 
needed to obtain the total contribution without massive 
data exchanges from video memory to main memory 
and large amount of loop operations (up to 1048576). 

Jinwook Kim provided a reduction example on the 
web and helped us to implement the reduction easily 
[18]. The reduction procedure for computing the RCS 
of a missile model is illustrated as shown in Fig. 5. 

 
Fig. 5. Reduction for RCS accumulation. 

 
The R and G components of the images in Fig. 5 

represent the real and imaginary parts of the scattering 
contribution of each pixel, respectively. The size of the 
first image is 1024×1024. After one reduction operation, 
the size of the image is reduced to 512×512 and the 
accumulation results of each 2 by 2 subregion are 
obtained. The final accumulation result is obtained after 
10 iterative reduction operations and stored in a 1×1 
array. 

 
III.  EXAMPLES 

 
In order to compare the simulation speed, the RCS 

of a scaled missile model (1:8) is simulated by raw 
GRECO and the GPU accelerated GRECO. The view 
port for computing is 1024 by 1024, f = 10GHz, aspect 
angle is from 0◦ to 360◦ with an angle step of 0.25◦, that 
is, 1441 RCS results are calculated. The CPU in our 
platform is an Intel Pentium 4 with clock frequency 2.8 
GHz and the GPU is provided by Nvidia GeForce 6600 
GT graphics card. The time for raw GRECO is 390 s 
and that for GPU accelerated GRECO is only 19 s. The 
speed of the simulation is improved up to 20 times. The 
RCS of the model is also measured by CATR (Compact 
Antenna Test Range) system and the results that are 
smoothed by 10-point adjacent average are shown in 
Fig. 6. 

For illustration of multiple reflection contributions, 
the RCS of a dihedral constructed with two 1m × 1m 
metal planes is simulated with the depth of tracing set 
to 2. The result shown in Fig. 7 agrees well with that 

shown in [7]. The time for computing the RCS in the 
aspect angle range [-60◦, 60◦] with step 1◦ is about 
100s. 

Furthermore, the wide-band, wide-angle scattering 
data of complex targets are simulated by the GPU 
accelerated GRECO to obtain the high resolution range 
profile and ISAR image. Figure 8 is the turntable ISAR 
image of a Boeing 737 model obtained by the simulated 
data at X-band with bandwidth 300 MHz. 

 
Fig. 6. Measured and simulated RCS of the missile 
model. 

 
 

Fig. 7. Simulated RCS of dihedral. 
 

 
 

Fig. 8. Turntable ISAR image of a Boeing 737 model. 
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IV.  CONCLUSION 
 

The programmable pipeline of a modern GPU is 
applied successfully to the implementation of a GPU 
accelerated GRECO method with multiple reflection 
contribution included. The speed of simulation is 
improved up to 20 times compared with the raw 
GRECO. The GPU accelerated GRECO method has 
been used to simulate radar echo for different radar 
systems and the wide-band wide-angle scattering data 
of different targets for constructing the database for the 
radar target identification. Further improvement on 
simulation speed can be obtained by a more powerful 
GPU and better algorithms with the rapid development 
of computer graphics. 
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