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Abstract— The numerical phase mismatch across
FDTD lattice layers with different sets of update equa-
tions has been investigated. A predictive equation of
numerical reflections across high-order/low-order layers
has been derived. Based on this equation the standard
Yee (S22) update equations have been modified to allow
their implementation around PEC boundaries and other
special situations in an otherwise global high-order
implementation, while keeping spurious reflections at
the hybrid interface to a practical minimum and in-
dependent of the traversing wave direction. S22 Phase
matching has been developed and verified in both S24

and M24 high-order hybrid algorithms.

Keywords— FDTD, Numerical Dispersion, High-Order
Schemes, Phase-Matching, Electrically Large Struc-
tures.

I. INTRODUCTION

SEVERAL FDTD algorithms have been developed
over the past decade to minimize the loss of phase

coherency in wave solutions due to numerical disper-
sion. Shlager and Schneider [1] compared some of the
more prominent low-dispersion algorithms and com-
pared their phase coherency for both single-frequency
and wideband use. While some of the analyzed algo-
rithms that restricted their stencils to a single Yee cell
did extremely well for single-frequency use [2] and [3],
it was the two-dimensional extended-stencil M24 al-
gorithm [4] that excelled in both single-frequency and
wideband suitability. The M24 algorithm utilizes mul-
tiple weighted Ampere’s and Faraday’s loop integrals
over extended FDTD stencils as demonstrated in Fig. 1.
In comparison, the S24 algorithm (second-order in time
and fourth-order in space finite differences) which will
also be discussed in this present work is a special case
of the M24 algorithm when the outermost loop integral
in Fig. 1 is omitted and K1 is set to −1/8.

The main challenge to such extended-stencil algo-
rithms, however, is porting the wealth of FDTD tools
that were developed over the decades for the standard
single-cell Yee algorithm (S22 for second-order differ-
encing in both time and space). It was suggested in

[4] that this challenge could be simply resolved by
introducing minimal S22 buffer zones where needed in
an otherwise global M24 implementation. Haussmann
in [5], however, demonstrated experimentally that such
an approach would cause measurable reflections at the
interface between the high-order and low-order zones.
Another approach pursued by Georgakopoulos et al. in
[6] was using a fine-meshed S22 buffer zone that would
better match its dispersion characteristics to a coarsely-
meshed S24 zone. Both works, however, left open
the questions as to the extent of interface reflections
at oblique wave incidence angles as well as to the
optimum mesh size ratio between the high-order and
low-order zones.

Recently, Celuch-Marcysiak and Rudnicki [7] and [8]
developed a methodology for predicting numerical re-
flections at normal and oblique angles of incidence
across dissimilarly gridded homogeneous zones and
went on to validate them using FDTD simulations.
In this present work this same methodology will be
applied to derive appropriate equations to predict the
reflection coefficient across similarly gridded homo-
geneous zones but with varying differencing schemes
(in particular, S24/S22 and M24/S22 interfaces) and
quantify the limitations of using S22 buffer zones
within high-order FDTD implementations. As in [8],
the effect of nonorthogonality of wave polarization to
propagation direction (wavenumber vector) [9] will be
accounted for. Furthermore, new update equations for
the S22 buffer zone will be developed and validated
that will utilize single-cell depth normal to the interface
plane and extended-cell depth tangentially to eliminate
cross-interface reflections while still being usable near
PEC boundaries and other special situations. In effect,
realizing optimum phase matching (minimal interface
reflections) without the need for S22 subgridding.

II. FDTD RENDITION OF PLANE WAVES

When an FDTD algorithm attempts to propagate
a plane wave it introduces two types of numerical
dispersion-related errors that are of interest to us
here. The first is the error in the rendered numerical
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Fig. 1. Multiple weighted Ampere’s loops for updating
a centered Ez node in the M24 algorithm. A uniform
Δx = Δy = h is assumed and K3 = 1 − K1 − K2.

wavenumber that causes the accumulation of phase
error as the wave traverses the numerical domain. This
error is a function of the propagation angle and resolu-
tion factor (number of FDTD cells per wavelength, R)
and is well documented in the literature. The other type
of error is the one that affects the polarization of the
propagating wave. It was demonstrated in [9] and [10]
that as the wave bounces around in the FDTD lattice the
orthogonal Ē and H̄ vectors form a numerical Poynting
vector that is not parallel to the propagation direction

β̄ = āxβx + āyβy + āzβz (1)

but rather to

P̄ = āxDx + āyDy + āzDz, (2)

where Dx, Dy and Dz are discrete operators dictated by
the FDTD algorithm of interest, and βx, βy and βz are
the numerically rendered wavenumber components that
can be derived from the algorithm’s dispersion relation.

A. Discrete Operators

The standard S22 algorithm in 2–D implementations
has the discrete operators

Dx =
sin βxh

2

h/2
and Dy =

sin βyh
2

h/2
. (3)

The M24 algorithm, on the other hand, has the update
equations [4] (see Fig. 1)

ε
∂Ez

∂t
=

K1

3h

(
Hx|j− 3

2
− Hx|j+ 3

2

+Hy|i+ 3
2
− Hy|i− 3

2

)

+
K2

6h

⎛
⎜⎜⎜⎝

Hx|i−1,j− 3
2

+ Hx|i+1,j− 3
2−Hx|i−1,j+ 3

2
− Hx|i+1,j+ 3

2

+Hy|i+ 3
2 ,j−1 + Hy|i+ 3

2 ,j+1

−Hy|i− 3
2 ,j−1 − Hy|i− 3

2 ,j+1

⎞
⎟⎟⎟⎠

+
K3

h

(
Hx|j− 1

2
− Hx|j+ 1

2

+Hy|i+ 1
2
− Hy|i− 1

2

)
, (4)

μ
∂Hx

∂t
=

K1

3h

(
Ez |j− 3

2
− Ez |j+ 3

2

)
+

1 − K1

h

(
Ez|j− 1

2
− Ez|j+ 1

2

)
, (5)

μ
∂Hy

∂t
=

K1

3h

(
Ez |i+ 3

2
− Ez |i− 3

2

)
+

1 − K1

h

(
Ez|i+ 1

2
− Ez|i− 1

2

)
(6)

where non-staggered indices are omitted for cleaner
notation and K3 = 1 − K1 − K2. These K parameters
are chosen through an optimization routine that will
ensure minimal dispersion error across all angles of
propagation in the numerical lattice. The corresponding
discrete operators are given by

Dy
x = K3

sin βxh
2

h/2

+ (K1 + K2 cosβyh)
sin 3βxh

2

3h/2
, (7)

Dz
x = (1 − K1)

sin βxh
2

h/2
+ K1

sin 3βxh
2

3h/2
, (8)

Dx
y = K3

sin βyh
2

h/2

+ (K1 + K2 cosβxh)
sin 3βyh

2

3h/2
, (9)

Dz
y = (1 − K1)

sin βyh
2

h/2
+ K1

sin 3βyh
2

3h/2
. (10)

The operator notation for the M24 algorithm is slightly
different than that of the S22’s as an x, y or z superscript
on the discrete operator denotes its restricted applica-
bility to that particular field component. On the other
hand, the S22 operators are linear; Dy

x = Dz
x = Dx and

Dx
y = Dz

y = Dy .
When K1 and K2 are substituted with −1/8 and

zero, respectively, equations (4) to (10) produce the
corresponding update equations and discrete operators
for the S24 algorithm. In particular, the latter will be
linear;

Dx =
9
8

sin βxh
2

h/2
− 1

8
sin 3βxh

2

3h/2
, (11)

Dy =
9
8

sin βyh
2

h/2
− 1

8
sin 3βyh

2

3h/2
. (12)

B. Dispersion Relations

The generalized dispersion relation for FDTD algo-
rithms can be conveniently written in the form [5]

μεD2
t = Dy

xDz
x + Dx

yDz
y + Dx

z Dy
z (13)
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with

Dt = − sin ωΔt
2

Δt/2
, (14)

provided that

Dz
yDx

z Dy
x = Dy

zDz
xDx

y . (15)

This latter condition is not a problem for 2-D algorithms
with nonlinear operators as is the case with the M24
algorithm since Dx

z = Dy
z = 0. For linear-operator

algorithms (S22 and S24), equation (13) can be reduced
to

μεD2
t = D2

x + D2
y + D2

z . (16)

Direct substitutions of equations (3) and (11) to (12)
into (16), and equations (7) to (10) into (13) will
produce the dispersion relations for the S22, S24 and
M24 algorithms.

C. Stability Criteria

The maximum allowable time step before the onset of
numerical instability for FDTD algorithms with linear
discrete operators and second-order differencing in time
is given by,

Δt ≤ 2
√

με√
(D2

x + D2
y + D2

z)max

(17)

while for 2-D such algorithms with nonlinear operators
it is given by,

Δt ≤ 2
√

με√(
Dy

xDz
x + Dx

yDz
y

)
max

(18)

where the “max” condition exists at βxh = βyh = π or
its odd multiples. These two inequalities will provide
the well known S22 and S24 stability criteria,

ΔtS22 ≤ h

c
√

2
and ΔtS24 ≤ (6/7)h

c
√

2
(19)

as well as

ΔtM24 ≤ h

c
√

2
3√

(3 − 4K1)(3 − 4K1 − 2K2)
. (20)

In hybrid S24/S22 or M24/S22 implementations the
corresponding S24 or M24 time steps need to be used
to avoid instability since they would be slightly smaller
than the S22’s maximum time step. Finally, it should
be mentioned here that

√−1 factors have been omitted
from all the discrete operators since they would even-
tually cancel out for our purposes here.

x

y

θP
i

Ēi × H̄i

Ēi

H̄i

θi

θr
θt

β̄i
1

β̄r
1

β̄t
2

Zone 1 (S24 or M24) Zone 2 (S22)

Fig. 2. Interpretation of a plane wave interaction with
a planar interface separating two similarly gridded ho-
mogeneous zones with different FDTD schemes. Field
nodes on the y-axis are assumed part of zone 2.

III. NUMERICAL REFLECTION COEFFICIENT

Let us assume a planar interface in a standard FDTD
lattice is being traversed at an oblique angle of in-
cidence from left to right with the medium at both
sides of the interface being free space (see Fig. 2).
Let us also assume that S22 update equations are used
in the right zone including field nodes coinciding with
the planar interface itself. In the left zone we will be
using the update equations of the algorithm under study
(S24 or M24). In either zone of this FDTD lattice the
relationship between the direction of propagation and
wavenumber is governed by,

β̄ = āxβx + āyβy = āxβ cos θ + āyβ sin θ (21)

where θ could be θi, θr or θt (incidence, reflection
or transmission angles) and β could be β1 or β2,
the numerical wavenumbers which are the solutions of
the dispersion relations corresponding to either zonal
algorithm. From equation (2) we can write

P̄ = āxP cos θP + āyP sin θP (22)

where, again, θP could be θP
i , θP

r or θP
t and is

calculated from

θP = tan−1 Dy

Dx
. (23)

A θ = θP = 0 means both propagation and Poynting
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vectors are normal to the interface. Since we are using
uniform space meshing in both zones we can assume
that θr = θi and θP

r = θP
i , with the latter being due to

numerical dispersion symmetry around θ = 0. Also, at
the planar interface (x = 0), boundary conditions will
force

β1y = β2y (24)

since both zonal algorithms share the same field nodes
at the interface and the incident, transmitted and possi-
bly reflected field amplitudes are related by Ei

1o+Er
1o =

Et
2o. We will also be using Er

1o = ΓEi
1o where Γ is the

desired numerical reflection coefficient.
The S22 update equation for the Ez field node at the

interface (say, at the x = 0 and y = 0 location) is

Ez|n+ 1
2

0,0 − Ez |n−
1
2

0,0 =
Δt

εh

(
Hy|n1

2 ,0
− Hy|n− 1

2 ,0

−Hx|n0, 1
2

+ Hx|n0,− 1
2

)
.

(25)
Assuming that each of the above field nodes has the
form ej(ωt−βxx−βyy) we can replace them, each (after
eliminating common terms) with

Ez|n±
1
2

0,0 → (1 + Γ)Ei
1oe

±jωΔt/2, (26)

Hy|n1
2 ,0 → − (1 + Γ)Ei

1o

η
cos θP

t e−jβ2xh/2,(27)

Hy|n− 1
2 ,0 → −Ei

1o

η
cos θP

i ejβ1xh/2

+
ΓEi

1o

η
cos θP

i e−jβ1xh/2, (28)

Hx|n0, 1
2

→ Ei
1o

η
sin θP

i e−jβ1yh/2

+
ΓEi

1o

η
sin θP

i e−jβ1yh/2, (29)

Hx|n0,− 1
2

→ Ei
1o

η
sin θP

i ejβ1yh/2

+
ΓEi

1o

η
sin θP

i ejβ1yh/2 (30)

where η is the dispersion-immune intrinsic wave
impedance [9]. Assembling these substitutions into
equation (25) and simplifying we get

j2h(1 + Γ)
cΔt

sin(ωΔt/2) =

− (1 + Γ) cos θP
t e−jβ2xh/2

+ cos θP
i

(
ejβ1xh/2 − Γe−jβ1xh/2

)
+ j2(1 + Γ) sin θP

i sin(β1yh/2). (31)

Splitting the reflection coefficient into its real and
imaginary parts (Γ = Γr + jΓi) and decoupling the

complex equation we can write,[ −(1 + Γr) cos θP
t cos β2xh

2

+(1 − Γr) cos θP
i cos β1xh

2

]
=

Γi

[ − 2h
cΔt sin ωΔt

2 + cos θP
t sin β2xh

2

+ cos θP
i

(
cos β1xh

2 + sin β1xh
2

) ] (32)

and

Γi

[
cos θP

t sin
β2xh

2
+ cos θP

i cos
β1xh

2

]
= (33)

(1 + Γr)
[ − 2h

cΔt sin ωΔt
2 + 2 sin θP

i sin β1yh
2

+ cos θP
t sin β2xh

2 + cos θP
i sin β1xh

2

]
.

Equations (32) and (33) are satisfied by a real-valued
Γ which reduces (32) (when Γi = 0) to

(1−Γr) cos θP
i cos

β1xh

2
−(1+Γr) cos θP

t cos
β2xh

2
= 0
(34)

from which the closed-form expression of the numerical
reflection coefficient can be written as,

Γ =
1 − κ

1 + κ
with κ =

cos θP
t cos β2xh

2

cos θP
i cos β1xh

2

. (35)

For any incidence angle θi, β1x and β1y are obtained
from the left zonal dispersion relation. β2x is then
calculated from the right zonal dispersion relation after
setting β2y = β1y , which would also yield θt. This is
followed by finding θP

i and θP
t using equation (23),

then finally Γ is calculated from equation (35).

IV. S24/S22 HYBRID ALGORITHM IN 2-D

Starting with the hybrid S24/S22 algorithm let us first
observe the deviations of the polarization angle from
the propagation angle, θP − θ, as a function of the
incidence angle θi in both zones (Fig. 3). As shown,
grid symmetry aligns both angles when the incidence
angle is either zero or π/4. At other angles, however,
the deviation in the S22 zone reaches as high as 25 times
that in the S24 zone at the uniform resolution of R = 10
cells per wavelength. Furthermore, as θi → π/2 the
boundary condition (24) forces an exaggerated error in
both transmission angles, θt and θP

t as shown in Figs. 3
and 4. Figure 5 compares the numerical reflection
coefficient at different resolution factors versus angle
of incidence (solid lines). It is clear from the figure
that spurious reflections can become problematic as the
incidence angle goes beyond 80◦ unless fine meshing
is used which negates the computational efficiency
advantage of the high-order S24 algorithm.

To solve this problem of increasing reflections near
grazing angles, the S22 algorithm in the right zone is
modified so that second order differencing is maintained
for ∂/∂x and a fourth order differencing is applied
to ∂/∂y as demonstrated in Fig. 6. This approach
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Fig. 3. Deviation between propagation and polarization
angles in both incidence and transmission zones. R =
10 cells per wavelength.

Incidence Angle, θi

T
ra

ns
m

is
si

on
A

ng
le

,
θ t

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

Fig. 4. Effect of boundary conditions at the x = 0
interface on the transmission angle. R = 10 cells per
wavelength.
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Fig. 5. Numerical reflection coefficient vs. θi

across an S24/S22 hybrid algorithm interface before
(solid) and after (dashed) tangential phase matching
at the resolution factors (from top to bottom), R =
5, 10, 20, 30, 40, 50, 100.

(a) (b)

Fig. 6. FDTD stencil extents at the S24/S22 interface
before (a) and after (b) tangential stretching in the S22

zone for phase matching purposes.

has the advantage of single-cell interface-normal depth
for modeling physical discontinuities and an extended
interface-tangential cell that matches the numerical
wavenumbers along that direction. The correspond-
ing update equations for the y−stretched algorithm in
zone 2 are given by,

ε
∂Ez

∂t
=

Hy|i+ 1
2
− Hy|i− 1

2

h

−
27(Hx|j+ 1

2
− Hx|j− 1

2
)

24h

+
Hx|j+ 3

2
− Hx|j− 3

2

24h

μ
∂Hy

∂t
=

Ez|i+ 1
2
− Ez|i− 1

2

h

μ
∂Hx

∂t
= −

27(Ez|j+ 1
2
− Ez|j− 1

2
)

24h

+
Ez|j+ 3

2
− Ez |j− 3

2

24h
(36)

and the discrete operators which would replace those of
equation (3) are

Dx =
sin βxh

2

h/2
, (37)

Dy =
9
8

sin βyh
2

h/2
− 1

8
sin 3βyh

2

3h/2
. (38)

The corresponding dispersion relation is obtainable
from equation (16) and the stability limit is governed
by,

Δt ≤ h

c
√

2

√
72
85

(39)

a slightly more relaxed condition than that of the left
zone’s S24 algorithm ensuring stability when the latter
is enforced. Figure 5 (dashed lines) demonstrates the
advantage gained in the form of vanishing reflections
at near-grazing incidence angles.

It must be remembered that the numerical reflection
coefficient (35) was derived using the S22 update equa-
tion (25) at the interface. The corresponding expression
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Fig. 7. Numerical reflection coefficient vs. θi

across an M24/S22 hybrid algorithm interface before
(solid) and after (dashed) tangential phase matching
at the resolution factors (from top to bottom) R =
5, 10, 20, 30, 40, 50, 100.

for the above phase-matched S24/S22 interface must be
derived from,

Ez |n+ 1
2

0,0 = Ez|n−
1
2

0,0 +
Δt

εh

(
Hy|n1

2 ,0 − Hy|n− 1
2 ,0

)

− Δt

24εh

(
27Hx|n0, 1

2
− 27Hx|n0,− 1

2−Hx|n0, 3
2

+ Hx|n0,− 3
2

)
(40)

which necessitates an additional substitution to equa-
tions (26) to (30);

Hx|n0,± 3
2
→ (1 + Γ)Ei

1o

η
sin θP

i e∓j3β1yh/2. (41)

Completing the substitutions into equation (40) will
only affect the term containing β1y in (31), leaving
(32) and the Γi term in (33) intact and in a manner
that maintains equation’s (35) validity for predicting the
numerical reflection coefficient across the interface in
the present case.

V. M24/S22 HYBRID ALGORITHM

As in the case of the S24/S22 interface, variations in
the M24 algorithm’s dispersion behavior versus propa-
gation angle compared to those of the S22 algorithm
cause serious spurious numerical reflections at near
grazing angles at the interface as demonstrated in Fig. 7
(solid lines). To remedy these high reflections the S22

algorithm in the right zone needs to be replaced by one
that maintains single cell normal depth but has matching
tangential dispersion characteristics to the left zone M24
algorithm. A logical choice would be to apply the M24
development methodology using concentric flat (one
cell depth along the x-axis) Ampere’s and Faraday’s
loops. However, such an approach would be an overkill

and is unnecessary, considering that in real applications
the right zone would be only one cell deep negating the
need for low dispersion for all propagation angles save
for the tangential direction to the interface. A simpler
and more practical scheme is to use again an elongated
S22 algorithm as in the previous case, except that a
tuning parameter is introduced to be used for phase
matching with the left M24 zone,

ε
∂Ez

∂t
=

Hy|i+ 1
2
− Hy|i− 1

2

h

+
Kb

3h
(Hx|j− 3

2
− Hx|j+ 3

2
)

+
1 − Kb

h
(Hx|j− 1

2
− Hx|j+ 1

2
)

μ
∂Hy

∂t
=

Ez|i+ 1
2
− Ez |i− 1

2

h

μ
∂Hx

∂t
=

Kb

3h
(Ez |j− 3

2
− Ez|j+ 3

2
)

+
1 − Kb

h
(Ez |j− 1

2
− Ez |j+ 1

2
). (42)

The corresponding discrete operators are

Dx =
sin βxh

2

h/2
, (43)

Dy = (1 − Kb)
sin βyh

2

h/2
+ Kb sin 3βyh

2

3h/2
, (44)

with the dispersion relation obtainable from equation
(16) and the stability limit governed by

Δt ≤ h

c

1√
1 + (1 − 4Kb/3)2

. (45)

The choice for the tuning parameter Kb will be based
on an optimization routine that will minimize the nu-
merical reflection coefficient (equation (35) is valid for
this case too) for the particular resolution factor R
used in the simulation. Table 1 lists the K1 and K2

parameters for the left zone at several R values along
with matching Kb values for the right zone that will
eliminate spurious reflections at the interface as shown
in Fig. 7 (dashed lines).

VI. NUMERICAL VALIDATION

To verify the effectiveness of the modified update
equations (36) and (42) at eliminating reflections off
the S24/S22 and M24/S22 interfaces, FDTD simulations
were performed where a point sinusoidal source was
initiated very near the interfaces (4 cells away) to
highlight near-grazing wave incidence. The simulations
were run once with high-order update equations for
the left zone and S22 update equations for the right
zone, and again with the former applied to both zones.
Figure 8 highlights the absolute difference between the
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Table 1. K1 and K2 values for the left zone M24
algorithm with corresponding Kb values for a phase-
matched right zone S22 algorithm.

R K1 K2 Kb

5 −0.144932 0.1020689 −0.0933211

10 −0.116193 0.0734445 −0.0793836

20 −0.110322 0.0678920 −0.0763555

30 −0.109283 0.0669205 −0.0758122

40 −0.108922 0.0665844 −0.0756233

50 −0.108756 0.0664296 −0.0755362

100 −0.108535 0.0662238 −0.0754201

FDTD cells along yFDTD cell along x 0
20

40
60

80
100

0

50

100
0

0.005

0.01

0.015

0.02

0.025

Fig. 8. Isolated numerical reflections at the interface of
a typical hybrid S24/S22 algorithm. R = 10 at 1 GHz.

two simulation runs for the S24/S22 case isolating net
numerical reflections off the interface.1 Note in this fig-
ure the increasing reflection noise levels as the surface
wave propagates further away from the source location
along the interface. In comparison, Fig. 9 demonstrates
the total absence of this interface hugging reflection
noise due to the implementation of equations (36) in
the right zone. Figures 10 and 11 demonstrate a similar
accomplishment for the M24/S22 case. Table 2 sum-
marizes a comparison between these measured after-
modification reflections and those predicted in Figs. 5
and 7 showing reasonable agreements, especially in the
M24/S22 case.

Finally, reflection noise levels could be further re-
duced by using a soft-start sinusoidal source. For ex-
ample, using Furse et al.’s raised cosine ramp function
[11],

r(t) =

⎧⎨
⎩

0, t < 0
1
2

(
1 − cos ωt

2α

)
, 0 ≤ t ≤ αT

1, t > αT
(46)

1Only the upper-left quadrant data of Fig. 2 are shown as the
reflections were symmetric across the x-axis.
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Fig. 9. Elimination of tangential reflections due to
S22 phase-matching with the S24 scheme in a hybrid
S24/S22 algorithm. R = 10 at 1 GHz.
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Fig. 10. Isolated numerical reflections at the interface
of a typical hybrid M24/S22 algorithm. R = 10 at
1 GHz.
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Fig. 11. Elimination of tangential reflections due to
S22 phase-matching with the M24 scheme in a hybrid
M24/S22 algorithm. R = 10 at 1 GHz.
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Table 2. Comparison of predicted and measured
numerical reflections after phase-matching the high-
order and low-order schemes in the hybrid algorithms
discussed in this work. R = 10 at 1 GHz.

Algorithm Predicted Γmax Measured Γmax

S24/S22 −62 dB −55 dB

M24/S22 −54 dB −57 dB
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Fig. 12. Filtering out high-frequency content of the
reflection noise in the phase-matched hybrid M24/S22

algorithm by replacing the abruptly-starting sine source
with a smooth-starting ramped-cosine source.

with T = 2π/ω and α chosen as 1.5, we can re-
place the sin(ωt) source in the FDTD simulations with
r(t) cos(ωt). Such a substitution would effectively filter
out the high frequency content of the reflection noise
as demonstrated in Fig 12.

VII. CONCLUSION

The phase velocity mismatches across hybrid high-
order/low-order FDTD implementations cause unac-
ceptably growing reflections across the hybrid interface
when the traversing wave is at near grazing incidence
angles. A predictive equation of the ensuing numerical
reflections has been derived, investigated and used along
with the dispersion relations of both the high-order and
low-order schemes to modify the latter and match its
tangential (to the interface) phase velocity to that of
the former. Numerical experiments have demonstrated
that this modification has completely eliminated the ex-
cessive interface-hugging reflection noises and reduced
them to the same level as the axial reflection noises.
These experiments have been performed for the S24/S22

and M24/S22 hybrid algorithms with good agreement
between predicted and measured reflections after the
phase-matching algorithm modifications. In practical

applications this innovation allows efficient use of thin
(one cell deep) S22 buffer zones where needed in an oth-
erwise global high-order implementation for modeling
electrically large structures with high phase accuracy.
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