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A Perspective on the 40-Year History of 
FDTD Computational Electrodynamics 

 
Allen Taflove 

 
Department of Electrical Engineering and Computer Science 

Northwestern University 
Evanston, IL 60208 

 
 

Abstract — This paper arises from an invited plenary 
talk by the author at the 2006 Applied Computational 
Electromagnetics Society Symposium in Miami, FL 
(The 71 original slides can be downloaded at  
http://www.ece.northwestern.edu/ecefaculty/

taflove/ACES_talk.pdf).  This paper summarizes 
the author’s perspectives on the history and future 
prospects of finite-difference time-domain (FDTD) 
computational electrodynamics on the occasion of the 
fortieth anniversary of the publication of Kane Yee’s 
seminal Paper #1.  During these four decades, advances 
in basic theory, software realizations, and computing 
technology have elevated FDTD techniques to the top 
rank of computational tools for engineers and scientists 
studying electrodynamic phenomena and systems. 
 

I.  INTRODUCTION 

In May 1966, Kane Yee published the first paper to 
delineate the space and time discretizations of 
Maxwell’s equations which form the basis of the finite-
difference time-domain (FDTD) method [1].  As of 
March 7, 2006, according to a search conducted by the 
author on the ISI Web of Science , Yee’s paper had 
been cited 2441 times since its publication.  This large 
number of citations is a quantitative measure of the 
seminal nature of Yee’s insights, which opened the 
door to an entirely novel approach to computational 
electrodynamics relative to the other techniques being 
used by engineers and scientists in 1966.  As shown in  
Fig. 1, the growth in FDTD-related publications 
continues unabated to the present time. 

 

            
 Fig. 1. Yearly FDTD-related publications.  Data source for years 1966–96: Shlager and Schneider [2].   
  The 2005 data point is an estimate based upon a Web of Science  search by the author. 
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II. HISTORY OF FDTD TECHNIQUES FOR MAXWELL’S EQUATIONS 
 
We can begin to develop an appreciation of the basis, technical development, and possible future of FDTD 
numerical techniques for Maxwell’s equations by first considering their history.  Table 1 lists some of the key initial 
publications in this area, starting with Yee’s seminal paper [1]. 
 

Table 1  

Partial History of FDTD and Related Techniques 
 

1966 Yee [1] introduced the basic FDTD space grid and time-stepping algorithm.   
1975 Taflove and Brodwin reported the correct numerical stability criterion for Yee s algorithm [3];  sinusoidal  
 steady-state Yee-based solutions of 2-D and 3-D electromagnetic wave interactions with material  
 structures [3, 4];  and Yee-based bioelectromagnetics models [4]. 
1977 Holland [5] and Kunz and Lee [6] applied Yee s algorithm to EMP problems. 

1977, Engquist and Majda [7] and Bayliss and Turkel [8] reported second-order accurate absorbing boundary  
1980 conditions (ABCs) for grid-based time-domain wave-propagation schemes 

1980 Taflove coined the FDTD acronym and published validated models of sinusoidal steady-state  
 electromagnetic wave penetration into a 3-D metal cavity [9].   

1981 Mur reported a second-order accurate ABC for Yee s grid [10] based upon the Engquist-Majda theory.   

1982, 3 Taflove and Umashankar [11, 12] reported a phasor-domain near-to-far field transformation which  
 permits calculating the far fields and radar cross-section of 2-D and 3-D structures. 

1984 Liao et al. [13] reported a novel space-time extrapolation ABC that is less reflective than Mur s ABC.   
1985 Gwarek introduced an lumped equivalent-circuit formulation [14]. 

1986 Choi and Hoefer modeled waveguide structures [15]. 

1987, 8 Kriegsmann et al. and Moore et al. published the first articles on ABC theory in IEEE  Trans. Antennas  
 and Propagation  [16, 17]. 

1987, 8, Contour-path subcell techniques were introduced by Umashankar et al. to model thin wires and wire  
1992 bundles [18];  by Taflove et al. to model penetration through cracks in metal screens [19];  and by  
 Jurgens et al. to conformally model smoothly curved surfaces [20]. 

1987, Finite-element time-domain (FETD) and finite-volume time-domain (FVTD) meshes were introduced by 
1990 Cangellaris et al. [21], Shankar et al. [22], and Madsen and Ziolkowski [23]. 

1988 Sullivan et al. published a 3-D model of sinusoidal steady-state electromagnetic wave absorption by a 
 complete human body [24]. 

1988 Zhang et al. modeled microstrips [25]. 

1989 Fang [26] introduced higher-order spatial derivatives. 

1990, 1 Kashiwa and Fukai [27], Luebbers et al. [28], and Joseph et al. [29] modeled frequency-dependent 
 dielectric permittivity. 

1990, 1 Maloney et al. [30], Katz et al. [31], and Tirkas and Balanis [32] modeled antennas. 

1990 Sano and Shibata [33] and El-Ghazaly et al. [34] modeled picosecond optoelectronic switches. 

1991 Luebbers et al. [35] introduced the time-domain near-to-far field transformation. 

1991-4 Optical pulse propagation in nonlinear media was reported, including temporal solitons by Goorjian and 
 Taflove [36];  beam self-focusing by Ziolkowski and Judkins [37];  and spatial solitons by Joseph and 
 Taflove [38]. 

1991-8 Digital processing of windowed FDTD time-waveforms was introduced by several groups [39-43] to allow  
 extracting the underlying resonant frequencies and quality factors.  

1992 Sui et al. modeled lumped circuit elements [44]. 

1993 Toland et al. modeled tunnel diodes and Gunn diodes exciting cavities and antennas [45]. 

1994 Thomas et al. [46] reported SPICE subgrid models of embedded electronic components.  

1994 Berenger introduced the extraordinarily effective perfectly matched layer (PML) ABC for 2-D grids [47],  
 which was later extended to 3-D grids by Katz et al. [48] and to dispersive waveguide terminations by  
 Reuter et al. [49].  

1995, 6 Sacks et al. [50] and Gedney [51] introduced a physically realizable, uniaxial perfectly  matched layer 
 (UPML) ABC. 
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Table  1 (continued)  

Partial History of FDTD Techniques for Maxwell’s Equations 
 

1995, 8 Hybrid FDTD-quantum mechanics models of two-level and four-level atoms were introduced by several  
2002, 4 groups [52-55] to model ultrafast optical interactions and lasing phenomena. 

1996 Krumpholz and Katehi [56] introduced the multiresolution time-domain (MRTD) technique based upon  
 wavelet expansion functions. 

1996, 7 Liu [57, 58] introduced the pseudospectral time-domain (PSTD) method, which permits coarse spatial  
 sampling approaching the Nyquist limit. 

1997 Ramahi [59] introduced complementary operators method (COM) analytical ABCs. 

1997 Dey and Mittra [60] introduced a simple, stable, accurate contour-path technique to model curved metal  
 surfaces.  

1998 Maloney and Kesler [61] introduced several novel means to analyze periodic structures. 

1999 Schneider and Wagner [62] reported a rigorous analysis of grid dispersion. 

1999, Namiki [63] and Zheng, Chen, and Zhang [64] introduced 3-D alternating-direction implicit (ADI) FDTD  
2000 algorithms with provable unconditional numerical stability. 

2000 Roden and Gedney introduced the convolutional PML (CPML) ABC [65]. 

2000 Rylander and Bondeson introduced a provably stable FDTD-FE hybrid technique [66]. 

2002-6 Hayakawa et al. [67] and Simpson and Taflove [68, 69] reported models of the entire Earth- 
 ionosphere waveguide for extremely low-frequency geophysical phenomena.  

2003 DeRaedt introduced the unconditionally stable, “one-step” FDTD technique  [70].  

 
III. TECHNOLOGY DEVELOPMENT THEMES 

 
In addition to the chronological summary provided in Table 1, it is useful to organize the past 40 years of FDTD 
developments according to their primary technology-development themes.  These are summarized in Table 2, 
referencing the key initial publications listed in Table 1. 
 

Table 2  

Primary FDTD Technology Development Themes 
 

     • Absorbing boundary conditions    

 – Engquist-Majda one-way wave equation, 
  1977 [7]  

  – Bayliss-Turkel outgoing wave annihilators, 
  1980 [8] 

 – Liao et al. extrapolation of outgoing waves 
  in space and time, 1984 [13] 

 – Berenger perfectly matched layer, 1994 [47] 

 – Uniaxial perfectly  matched layer, 1995-6 [50, 51] 

 – Roden and Gedney convolutional perfectly 
  matched layer, 2000 [65] 

 
    

 

 
 
 
 
 
 
 

   •  Numerical dispersion 

 –  Fang higher-order spatial derivatives, 
1989 [26]  

 –  Krumpholz and Katehi MRTD, 1996 [56]  

 – Q. H. Liu PSTD, 1996-7 [57, 58] 

 – Schneider and Wagner analysis for Yee 
FDTD, 1999 [62] 

 
   •  Numerical stability 

 –  Taflove and Brodwin analysis, 1975 [3]  

 – Unconditionally stable ADI techniques,  
1999-2000 [63, 64] 

 – DeRaedt “one-step” FDTD technique, 
2003  [70]. 

   •  Digital signal processing 

 –  Umashankar and Taflove, phasor-domain 
near-to-far field transformation, 1982, 83 
[11, 12]  

 – Luebbers et al. time-domain near-to-far field 
transformation, 1991 [35] 

 – Extraction of underlying resonant 
frequencies and quality factors from 
windowed FDTD time-waveforms 1991-8 
[39-43]. 

   • Conforming grids 

 — Locally conforming contour-path subcell  
  techniques, 1987, 88, 92, 97 [18-20, 60] 

 —  Globally conforming grids, 1990 [22, 23] 

  — Rylander and Bondeson stable hybrid  
FETD / FDTD, 2000 [66] 
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Table 2  (continued)  

Primary FDTD Technology Development Themes 
 
 

     •  Dispersive and nonlinear materials 

 — Linear dispersions, 1990,91 [27-29] 

 —  Nonlinearities, yielding self-focusing and  
  temporal and spatial solitons, 1991-4 [36-38] 

 
 

 
IV. CURRENT AND EMERGING FDTD APPLICATIONS 

 
This section illustrates current and emerging FDTD computational electrodynamics modeling applications over the 
frequency range from about 1 Hz to 6 1014 Hz (i.e., extremely low frequencies to daylight). 

A.  Extremely Low Frequency Models of the Earth-Ionosphere Waveguide 

 FDTD has been recently applied to model extremely low frequency (ELF) electromagnetic wave propagation 
within the Earth-ionosphere waveguide.  Fig. 2 illustrates the most advanced gridding technique used in such 
studies, and sample results for antipodal wave propagation around the Earth calculated using a high-resolution grid 
with space cells spanning only about 40 km over the entire surface of the planet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Fig. 2. FDTD model of the Earth-ionosphere waveguide.  Top: geodesic grid [69].  Bottom: snapshots 
  of impulsive wave propagation around the Earth (the complete video can be downloaded at  
  http://www.ece.northwestern.edu/ecefaculty/taflove/3Dmovietext@gif.avi)  

   •  Multiphysics coupling to Maxwell s equations 

 –  Charge generation, recombination, and 
transport in semiconductors, 1990 [33, 34]  

 –  Electron transitions between multiple energy 
levels of atoms, modeling pumping, 
emission, and stimulated emission 
processes, 1995, 1998, 2002, 2004 [52-55] 
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B.  Wireless Personal Communications Devices 

 Figs. 3-5 illustrate how FDTD has been applied to provide accurate, high-resolution models of cellphones [71].  
Here, the grid-cell size is as fine as 0.1 mm to resolve fine geometrical details. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 3.  FDTD model of the Motorola T250 cellphone [71].  Top: physical phone and the FDTD CAD model.   
   Bottom: agreement of measured and FDTD-calculated near-surface electromagnetic fields at 1.8 GHz. 
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 Fig. 4. Agreement of the measured and FDTD-calculated specific absorption rate (SAR) at 1.8 GHz for 
  the cellphone of Fig. 3 positioned adjacent to a standard phantom head model [71]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 5. FDTD-calculated SAR at 1.8 GHz for the cellphone of Fig. 3 positioned adjacent to a realistic  
  head model derived from tomographic scans of a volunteer subject [71].  The head model has  
  121 slices (1 mm thick in the ear region, 3 mm thick elsewhere), wherein each slice has a  
  transverse resolution of 0.2 mm. 
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C.  Ultrawideband Microwave Detection of Early-Stage Breast Cancer 

 Fig. 6 illustrates how FDTD has been applied to model a proposed ultrawideband (UWB) microwave technique 
for early detection of breast cancer [72].  Here, FDTD was used to model the breast tissues and an antenna system 
consisting of impulsive sources and receptors located at the surface of the breast.  In the case shown, a 2-mm 
diameter malignant tumor was assumed to be embedded 3 cm within a realistic breast model derived from 
tomographic scans of a volunteer subject.  The impulsive excitation had spectral components primarily in the 1-10 
GHz range.  FDTD-calculated data for the backscattering response observed at the antenna was post-processed to 
derive the image shown.  From Fig. 6, we see that the proposed UWB microwave technique yields a cancer 
signature which should be readily detectable, i.e., 15 dB to 30 dB stronger than the clutter due to the surrounding 
normal tissues.  This is very encouraging, since a small malignancy of this type would almost certainly not be 
detectable using x-ray mammography. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 6. Calculated image of a 2-mm diameter malignant tumor embedded 3 cm below the surface of a  
  model of the female human breast [72].  This image was derived by post-processing FDTD data  
  for the backscattering of ultrawideband electromagnetic wave pulses radiated by an antenna system  
  located at the surface of the breast.  The breast model was assembled from tomographic scans of a  
  volunteer subject.  The presence and location of the small tumor is easily discerned.  Such a cancer  
  would almost certainly not be detectable using x-ray mammography. 
 

 

Calculated image 
of tumor 

Simulated 
2-mm tumor 

dB 
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D.  Ultrahigh-Speed Bandpass Digital Interconnects 

 Fig. 7 illustrates how FDTD has been applied to model proposed ultrahigh-speed substrate integrated 
waveguide (SIW) interconnects for digital circuits [73].  Each SIW would be implemented in a multilayer circuit 
board by inserting two parallel rows of vias to connect adjacent ground planes.  With no center conductor required, 
high-characteristic-impedance operation is possible and copper losses can be significantly reduced relative to 
stripline interconnects.  Furthermore, sharp bends up to 90˚ are possible with negligible reflections and little overall 
impact on the signal transmission.  Fig. 7(top) is a photograph of a prototype straight SIW constructed and tested at 
Intel Corporation in summer 2005 [73].  Measurements confirmed the FDTD predictions (Fig. 7(bottom)) that both 
straight and bent SIWs exhibit 100% bandwidths with negligible multimoding, for this prototype, 27 GHz – 81 GHz.  
In ongoing work, half-width folded SIWs are predicted by FDTD to have even larger (115%) bandwidths.  Board-
level interconnects using this technology could stream digital data at rates 10 – 50 times greater than possible today, 
which would satisfy Intel’s needs for the next decade. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Fig. 7. FDTD-calculated S21 transmission versus frequency for the prototype substrate integrated waveguide 
  board-level digital interconnect shown at the top [73].  FDTD predicts little difference in the S21 
  characteristic over the entire 100% bandwidth if a 90˚ bend is inserted (see inset for a snapshot  
  visualization of the electric field within the bend, showing a clean pattern with no multimoding). 
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E.  Micron/Nanometer Scale Photonic Devices:  Category 1 (Linear) 
 
 Currently, FDTD is routinely applied by the photonics community to analyze and design micron- and 
nanometer-scale devices operating at infrared through visible-light wavelengths.  Fig. 8 illustrates one recent 
application of 3-D linear FDTD modeling to design a microcavity laser [74].  This electrically driven, single-mode 
device employs a photonic bandgap defect-mode cavity and operates at room temperature with a low threshold 
current.  The physics of electromagnetic wave confinement by the cavity is properly simulated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  Application of 3-D FDTD modeling to design a photonic bandgap defect-mode microcavity laser [74]. 
 
 

 Fig. 9 illustrates a recent application of 3-D linear FDTD modeling to analyze the transmission of 532-nm 
wavelength light through a 200-nm diameter hole in a 100-nm thick gold film [75].  This illustrates the capability of 
a dispersive FDTD algorithm to properly model the formation of a plasmon mode at the surface of the gold film, 
which enhances the transmission of the normally incident light through the small hole. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  Application of 3-D FDTD modeling to analyze enhanced light transmission through a sub-micron hole 
    in a gold film due to the formation of a plasmon mode at the surface of the film [75]. 

Schematic view 

FDTD-calculated E-field intensity 
of monopole mode (log scale) 

Top view of fabricated sample 

Experiment 

 = 532 nm 

FDTD 
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F.  Micron/Nanometer Scale Photonic Devices:  Category 2 (Macroscopic Nonlinearity and Gain) 

 The incorporation of material nonlinearity and gain is an emerging area in FDTD modeling of micron- and 
nanometer-scale photonic devices.  One approach incorporates nonlinearity and/or gain in the macroscopic 
description of the dielectric polarization or the index of refraction.  Such nonlinearity and gain can be either 
independent or dependent upon the optical wavelength.  Fig. 10 illustrates the first reported application of nonlinear 
FDTD modeling to simulate the propagation and interaction of spatial optical solitons [38].  Here, parallel, co-
propagating, equal-amplitude spatial solitons having a dielectric wavelength of 528 nm in a glass medium exhibit a 
periodic coalescence or “braiding” if the optical carriers are assumed to be in phase.  If the optical carriers are 
assigned a relative phase of , FDTD modeling shows that the spatial solitons either immediately diverge to infinite 
separation or coalesce once before diverging.  Such phenomena can form the basis of an ultrafast all-optical switch. 
 

 
 
 
 
 
 
 
 
 
 
 

 Fig. 10. Application of 2-D nonlinear FDTD modeling to analyze the periodic “braiding” of 
  co-phased spatial optical solitons in glass [38].  The solitons propagate from left to right. 
 

 
 

 Fig. 11 illustrates an interesting recent application of 2-D nonlinear FDTD modeling to analyze the operation of 
a proposed low-power all-optical switch implemented in the crossing junction of photonic crystal defect-mode 
waveguides [76].  Here, the control signal perturbs the refractive index (and thereby the resonant frequency) of a 
defect-mode cavity at the intersection of the waveguides.  This flips the cavity’s transmission of the signal from 
stopband to passband, permitting the signal to reach the output port.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 11. Application of 2-D nonlinear FDTD modeling to analyze a proposed all-optical switch [76].   

(a) control input is absent, yielding low signal output 

 

(b) control input is present, yielding high signal output 
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G.  Micron/Nanometer Scale Photonic Devices:  Category 3 (Semiclassical Models) 

 A second, more rigorous and more flexible approach to incorporate nonlinearity and gain in optical media 
involves time-stepping concurrently with the normal FDTD field updates a set of auxiliary differential equations 
which describes the behavior of individual atoms and their electrons.  Phenomena of interest here include electron 
transitions between multiple energy levels of atoms that involve pumping, emission, and stimulated emission 
processes [52-55].  With this technique, quantum phenomena are coupled to the classical Maxwell’s equations, 
yielding what may be called a semiclassical model.   

 Fig. 12 illustrates recent modeling results for electron population inversion and lasing output vs. time obtained 
using the semiclassical four-level-atom FDTD model reported in [55].  This laser is assumed to have a one-
dimensional, optically pumped, single-defect, distributed Bragg reflector cavity with three layers of refractive 
indices alternating between n = 1.0 and 2.0, with thickness 375 nm and 187.5 nm, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 12. Top:  electron population density probability showing the inversion between Levels 1 and 2;   
  Bottom:  intensity output of the pump and laser output signals [55]. 
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H.  Biophotonics:  Category 1 (Optical Interactions with Small Numbers of Living Cells) 

 Another important emerging application for FDTD modeling involves analyzing optical scattering by human 
biological cells and tissues.  Such analyses are currently playing a key role in developing novel medical techniques 
for detecting precancerous conditions in the cervix and colon, with potential additional early detection applications 
for pancreatic, esophageal, and lung cancers.  Fig. 13 illustrates the goal: to unambiguously distinguish normal cells 
from distressed cells when conventional optical microscopy fails. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Similar conventional microscope images: (a) normal HT-29 cells; (b) distressed chemically treated cells. 
 
 

 Fig. 14 illustrates applying FDTD to evaluate the sensitivity of optical backscattering and forward-scattering to 
small, random, refractive-index fluctuations spanning nanometer length scales [77].  Here, the spectral / angular 
distribution of scattered light from a randomly (and weakly) inhomogeneous dielectric sphere is compared to that for 
the homogeneous sphere of the same size and average refractive index.   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 14. FDTD-computed optical scattering signatures of a 4-μm-diameter sphere with average refractive index 
  navg =  1.1:  (a) homogeneous sphere;  (b) random index fluctuations ( n = ±0.03; ~50 nm) within sphere. 
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 From Fig. 14, we see that that there exists distinctive features of the backscattering spectral / angular 
distribution for the inhomogeneous case of Fig. 14(b) despite the fact that the inhomogeneities for this case are weak 
(only 3%) and much smaller (only about 50 nm) than the diffraction limit at the illuminating wavelengths.  In 
contrast, the forward-scattering signature in Fig. 14(b) exhibits no distinctive features.   

 These FDTD models have supported laboratory optical backscattering measurements of rat colon tissues treated 
with the carcinogen AOM [78].  As shown in Fig. 15, only two weeks after application of the AOM, the treated 
colon tissues exhibited perturbed backscattering spectra apparently caused by the formation of subdiffraction tissue 
inhomogeneities akin to those in Fig. 14(b).  Note that these could not be seen under a microscope.  In fact, these 
precancerous changes could not be detected by any existing pathology technique.  These findings led to the 
development of a preclinical instrument which has shown excellent sensitivity and specificity in initial trials with 
several hundred human subjects [79].  Currently, these trials are being greatly expanded.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 15. Typical measured backscattering spectral / angular distributions for rat colon tissues [78]. 
 

 Current FDTD modeling work in this area has shifted toward spectral analysis of individual backscattered 
pixels so that highly localized changes within a single biological cell can be investigated.  First, as illustrated in Fig. 
16, the near-to-far field transformation was augmented to yield a backscattered amplitude image [80]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16. Agreement of measured / FDTD-calculated backscattered amplitude images of 6-μm dielectric sphere [80]. 
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 Next, assuming a normally incident plane wave, FDTD was used to calculate the optical spectra of individual 
pixels within the backscattered amplitude image of a rectangular layered material slab.  Referring to Fig. 17, each 
layer of the slab was assumed to have a thickness in the order of 25 nanometers, with sub-micron lateral 
“checkerboard” inhomogeneities near the diffraction limit.  As shown in this figure, it was determined that the 
backscattered spectra at pixels centered within each checkerboard square were highly correlated with those for a 
material slab having the same nanometer-scale layering, but no lateral variations (i.e., a 1-D illumination geometry) 
[81].  This yields additional evidence that nanometer-scale inhomogeneities can cause pronounced alterations of 
backscattering spectra.  Furthermore, it suggests means to deduce the local layering of an inhomogeneous material 
structure (such as a living cell) by analyzing the spectra of individual pixels within its backscattered amplitude image.  

 Finally, exploiting the insights developed via FDTD modeling, a microscope  system was constructed to acquire 
pixel-by-pixel backscattering spectra of individual living cells [81].  As shown in Fig. 18, this system was readily 
able to distinguish the normal HT-29 cells of Fig. 13 from their distressed, chemically treated counterparts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 17. FDTD-calculated spectra of four distinct pixels within the backscattered amplitude image 
  of a layered material slab [81]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18.  Normal HT-29 cells have different pixel backscattering spectra than those chemically treated [81]. 
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I.  Biophotonics:  Category 2 (Optical Interactions with Large Numbers of Living Cells) 

 Pseudospectral time-domain (PSTD) computational solutions of Maxwell’s equations introduced by Liu 
[57, 58] permit coarse spatial sampling approaching the Nyquist limit.  This characteristic of PSTD techniques 
permits modeling electromagnetic wave interactions in 3-D spatial regions spanning many tens of wavelengths.   
As a consequence, an important emerging biophotonics application of PSTD modeling involves analyzing light 
propagation through, and scattering by, large clusters of living cells;  in fact, much larger clusters than possible 
using traditional FDTD techniques.  Obtained directly from Maxwell’s equations, PSTD solutions are more rigorous 
than many approximate techniques that are widely used by the biophotonics community.  Hence, PSTD modeling 
affords new opportunities to advance a wide range of medical diagnoses and treatments that are based upon 
interactions of light with biological tissues. 

 Fig. 19 illustrates the accuracy of the Fourier-basis 3-D PSTD technique in calculating the differential scattering 
cross-section of a single dielectric sphere (diameter d = 8 μm, refractive index n = 1.2) [82].  The PSTD solution 
(wavelength 0 = 750 nm, grid resolution  = 83.3 nm, staircased surface) agrees very well with the Mie series over 
a range of about 105:1.  Fig. 20 illustrates the accuracy of this technique in calculating the total scattering cross-
section (TSCS) of a 20-μm cluster of 19 randomly positioned dielectric spheres (each d = 6 μm, n = 1.2) [82].  Here, 
the PSTD solution (  = 167 nm, staircased surfaces) agrees well with the results of a multi-sphere series expansion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19.  Validation of Fourier-basis PSTD for scattering by a single sphere [82]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20.  Validation of Fourier-basis PSTD for scattering by a 20-μm cluster of 19 dielectric spheres [82]. 
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 The capability of the Fourier-basis 3-D PSTD technique to accurately solve the full-vector Maxwell’s equations 
for closely coupled, electrically large objects opens up possibilities for accurately modeling optical interactions with 
clusters of biological cells.  Fig. 21 illustrates a generic example wherein information regarding the diameter of 
individual particles within a cluster is obtained from its PSTD-computed TSCS [82].  Fig. 21(top) graphs versus 
frequency the PSTD results (grid resolution  = 167 nm, staircased surfaces) for the TSCS of a 25-μm cluster of  
192 randomly positioned dielectric spheres (each d = 3 μm, n = 1.2).  Now, we perform a cross-correlation of this 
data set with the TSCS-versus-frequency characteristic of a single “trial” dielectric sphere of refractive index n = 1.2 
and adjustable diameter d.  We hypothesize that the maximum cross-correlation is achieved when the diameter of 
the trial sphere equals the diameter of the individual spheres comprising the cluster.  Indeed, Fig. 21(bottom) shows 
that the peak cross-correlation occurs when the diameter of the trial sphere is 3.25 μm, within 10% of the actual  
3 μm diameter.  Similar results have been reported for a variety of clusters of dielectric spheres [82]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 21. Top:  PSTD-calculated TSCS vs. frequency of a 25-μm cluster of 192 dielectric spheres   
  (d = 3 μm, n = 1.2).  Bottom:  Cross-correlation of the top TSCS data set with the TSCS-vs.- 
  frequency characteristic of a single trial dielectric sphere of the same refractive index (n = 1.2) 
  but adjustable diameter [82]. 
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V. FUTURE PROSPECTS 
 
During the past 40 years since Yee’s Paper #1, 
advances in FDTD theory and software and in 
general computing technology have elevated FDTD 
techniques to the top rank of computational tools 
for engineers and scientists studying electro-
dynamic phenomena and systems.  There is every 
reason to believe that the steady pace of these 
advances will continue.   

 In particular, the author believes that a large 
expansion of FDTD and related techniques will 
occur in four research areas which cover the 
frequency spectrum from ELF past visible light:  
(1) geophysics and related remote sensing of the 
Earth and its atmosphere;  (2) biophotonics;   
(3) nanometer-scale physics, especially interfacing 
with quantum electrodynamics;  and (4) inverse 
scattering.  Impacting these disparate areas is made 
possible by the extraordinary flexibility and 
robustness of FDTD and related grid-based time-
domain solutions of Maxwell’s equations, which 
arguably involve computational techniques which 
are the closest to how Mother Nature “solves” her 
electrodynamics problems. 
 

ACKNOWLEDGEMENTS 
 

The author recognizes the marvelous collaboration 
and warm friendship provided by Prof. Korada 
Umashankar during his all-too-brief lifetime.  The 
author also says a hearty “thanks!” to all of his 
undergraduate and graduate research students over 
the years;  to his project sponsors;  and to his 
current collaborators, Profs. Vadim Backman and 
Xu Li of Northwestern University. 
 

REFERENCES 
 

[1]  K. S. Yee, “Numerical solution of initial 
boundary value problems involving 
Maxwell’s equations in isotropic media,” 
IEEE Trans. Antennas Propagat., vol. 14, pp. 
302–307, 1966. 

[2]  K. L. Shlager and J. B. Schneider, “A Survey 
of the Finite-Difference Time-Domain 
Literature,” Chap. 1 in Advances in Computa-
tional Electrodynamics: The Finite-Difference 
Time-Domain Method, A. Taflove, ed., 
Norwood, MA: Artech House, 1998. 

[3]  A. Taflove and M. E. Brodwin, “Numerical 
solution of steady-state electromagnetic 
scattering problems using the time-dependent 

Maxwell’s equations,” IEEE Trans. 
Microwave Theory Tech., vol. 23, pp. 623–
630, 1975. 

[4]  A. Taflove and M. E. Brodwin, “Computation 
of the electromagnetic fields and induced 
temperatures within a model of the 
microwave-irradiated human eye,”  IEEE 
Trans. Microwave Theory Tech., vol. 23, pp. 
888–896, 1975. 

[5]  R. Holland, “Threde: a free-field EMP 
coupling and scattering code,” IEEE Trans. 
Nuclear Sci., vol. 24, pp. 2416–2421, 1977. 

[6]  K. S. Kunz and K. M. Lee, “A three-
dimensional finite-difference solution of the 
external response of an aircraft to a complex 
transient EM environment I:  The method  
and its implementation,” IEEE Trans. 
Electromagn. Compat., vol. 20, pp. 328–333, 
1978. 

[7]  B. Engquist and A. Majda, “Absorbing 
boundary conditions for the numerical 
simulation of waves,” Mathematics of 
Computation, vol. 31, pp. 629–651, 1977. 

[8]  A. Bayliss and E. Turkel, “Radiation 
boundary conditions for wave-like equations,” 
Comm. Pure Appl. Math., vol. 23, pp. 707–
725, 1980. 

[9]  A. Taflove, “Application of the finite-
difference time-domain method to sinusoidal 
steady-state electromagnetic penetration 
problems,”  IEEE Trans. Electromagn. 
Compat., vol. 22, pp. 191–202, 1980. 

[10]  G. Mur, “Absorbing boundary conditions for 
the finite-difference approximation of the 
time-domain electromagnetic field equations,” 
IEEE Trans. Electromagn. Compat., vol. 23, 
pp. 377–382, 1981. 

[11]  K. R. Umashankar and A. Taflove, “A novel 
method to analyze electromagnetic scattering 
of complex objects,”  IEEE Trans. 
Electromagn. Compat., vol. 24, pp. 397–405, 
1982. 

[12]  A. Taflove and K. R. Umashankar, “Radar 
cross section of general three-dimensional 
scatterers,” IEEE Trans. Electromagn. 
Compat., vol. 25, pp. 433–440, 1983. 

[13]  Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. 
Yuan, “A transmitting boundary for transient 
wave analyses,” Scientia Sinica (series A), 
vol. XXVII, pp. 1063–1076, 1984. 

17TAFLOVE: 40-YEAR HISTORY OF FDTD



 

  

[14]  W. Gwarek, “Analysis of an arbitrarily 
shaped planar circuit — A time-domain 
approach,” IEEE Trans. Microwave Theory 
Tech., vol. 33, pp. 1067–1072, 1985. 

[15]  D. H. Choi and W. J. Hoefer, “The finite-
difference time-domain method and its 
application to eigenvalue problems,” IEEE 
Trans. Microwave Theory Tech., vol. 34, pp. 
1464–1470, 1986. 

[16]  G. A. Kriegsmann, A. Taflove, and K. R. 
Umashankar, “A new formulation of electro-
magnetic wave scattering using an on-surface 
radiation boundary condition approach,” 
IEEE Trans. Antennas Propagat., vol. 35, pp. 
153–161, 1987. 

[17]  T. G. Moore, J. G. Blaschak, A. Taflove, and 
G. A. Kriegsmann, “Theory and application 
of radiation boundary operators,” IEEE 
Trans. Antennas Propagat., vol. 36, pp. 
1797–1812, 1988. 

[18]  K. R. Umashankar, A. Taflove, and B. Beker, 
“Calculation and experimental validation of 
induced currents on coupled wires in an 
arbitrary shaped cavity,” IEEE Trans. 
Antennas Propagat., vol. 35, pp. 1248–1257, 
1987. 

[19]  A. Taflove, K. R. Umashankar, B. Beker, F. 
A. Harfoush, and K. S. Yee, “Detailed FDTD 
analysis of  electromagnetic fields penetrating 
narrow slots and lapped joints in thick 
conducting screens,” IEEE Trans. Antennas 
Propagat., vol. 36, pp. 247–257, 1988. 

[20]  T. G. Jurgens, A. Taflove, K. R. Umashankar, 
and T. G. Moore, “Finite-difference time-
domain modeling of curved surfaces,” IEEE 
Trans. Antennas Propagat., vol. 40, pp. 357–
366, 1992. 

[21]  A. C. Cangellaris, C.-C. Lin, and K. K. Mei, 
“Point-matched time-domain finite element 
methods for electromagnetic radiation and 
scattering,” IEEE Trans. Antennas Propagat., 
vol. 35, pp. 1160–1173, 1987. 

[22]  V. Shankar, A. H. Mohammadian, and W. F. 
Hall, “A time-domain finite-volume treatment 
for the Maxwell equations,” Electromag-
netics, vol. 10, pp. 127–145, 1990. 

[23]  N. K. Madsen and R. W. Ziolkowski, “A 
three-dimensional modified finite volume 
technique for Maxwell’s equations,” 
Electromagnetics, vol. 10, pp. 147–161, 
1990. 

[24]  D. M. Sullivan, O. P. Gandhi, and A. Taflove, 
“Use of the finite-difference time-domain 
method in calculating EM absorption in man 
models,” IEEE Trans. Biomed. Engrg., vol. 
35, pp. 179–186, 1988. 

[25]  X. Zhang, J. Fang, K. K. Mei, and Y. Liu, 
“Calculation of the dispersive characteristics 
of microstrips by the time-domain finite-
difference method,” IEEE Trans. Microwave 
Theory Tech., vol. 36, pp. 263–267, 1988. 

[26]  J. Fang, Time-Domain Finite Difference 
Computations for Maxwell’s Equations, 
Ph.D. dissertation, EECS Dept., Univ. of 
California, Berkeley, CA, 1989. 

[27]  T. Kashiwa and I. Fukai, “A treatment by 
FDTD method of dispersive characteristics 
associated with electronic polarization,” 
Microwave Optics Tech. Lett., vol. 3, pp. 
203–205, 1990. 

[28]  R. Luebbers, F. Hunsberger, K. Kunz, R. 
Standler, and M. Schneider, “A frequency-
dependent finite-difference time-domain 
formulation for dispersive materials,” IEEE 
Trans. Electromagn. Compat., vol. 32, pp. 
222–229, 1990. 

[29]  R. M. Joseph, S. C. Hagness, and A. Taflove, 
“Direct time integration of Maxwell’s 
equations in linear dispersive media with 
absorption for scattering and propagation of 
femtosecond electromagnetic pulses,” Optics 
Lett., vol. 16, pp. 1412–1414, 1991. 

[30]  J. G. Maloney, G. S. Smith, and W. R. Scott, 
Jr., “Accurate computation of the radiation 
from simple antennas using the finite-
difference time-domain method,” IEEE 
Trans. Antennas Propagat., vol. 38, pp. 
1059–1065, 1990. 

[31]  D. S. Katz, A. Taflove, M. J. Piket-May, and 
K. R. Umashankar, “FDTD analysis of 
electromagnetic wave radiation from systems 
containing horn antennas,” IEEE Trans. 
Antennas Propagat., vol. 39, pp. 1203–1212, 
1991. 

[32]  P. A. Tirkas and C. A. Balanis, “Finite-
difference time-domain technique for 
radiation by horn antennas,” Proc. 1991 IEEE 
Antennas Propagat. Soc. Intl. Symp., vol. 3, 
pp. 1750–1753, 1991. 

 
 

18 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



 

  

[33]  E. Sano and T. Shibata, “Fullwave analysis of 
picosecond photoconductive switches,”  IEEE 
J. Quantum Electron., vol. 26, pp. 372–377, 
1990. 

[34]  S. M. El-Ghazaly, R. P. Joshi, and R. O. 
Grondin, “Electromagnetic and transport 
considerations in subpicosecond photo-
conductive switch modeling,” IEEE Trans. 
Microwave Theory Tech., vol. 38, pp. 629–
637, 1990. 

[35]  R. J. Luebbers, K. S. Kunz, M. Schneider, 
and F. Hunsberger, “A finite-difference time-
domain near zone to far zone transformation,” 
IEEE Trans. Antennas Propagat., vol. 39,  
pp. 429–433, 1991. 

[36]  P. M. Goorjian and A. Taflove, “Direct time 
integration of Maxwell’s equations in 
nonlinear dispersive media for propagation 
and scattering of femtosecond electromag-
netic solitons,” Optics Lett., vol.  17, pp. 180–
182, 1992. 

[37]  R. W. Ziolkowski and J. B. Jerkins, “Full-
wave vector Maxwell’s equations modeling 
of self-focusing of ultra-short optical pulses 
in a nonlinear Kerr medium exhibiting a finite 
response time,” J. Optical Soc. America B, 
vol. 10, pp. 186–198, 1993. 

[38]  R. M. Joseph and A. Taflove, “Spatial soliton 
deflection mechanism indicated by FDTD 
Maxwell’s equations modeling,” IEEE 
Photonics Tech. Lett., vol. 2, pp. 1251–1254, 
1994. 

[39]  W. L. Ko and R. Mittra, “A combination of 
FDTD and Prony’s methods for analyzing 
microwave integrated circuits,” IEEE Trans. 
Microwave Theory Tech., vol. 39, pp. 2176–
2181, 1991. 

[40]  J. A. Pereda, L. A. Vielva, and A. Prieto, 
“Computation of resonant frequencies and 
quality factors of open dielectric resonators 
by a combination of the finite-difference 
time-domain (FDTD) and Prony’s methods,” 
IEEE Microwave Guided Wave Lett., vol. 2, 
pp. 431–433, 1992. 

[41]  J. Chen, C. Wu, T. K. Y. Lo, K.-L. Wu, and J. 
Litva, “Using linear and nonlinear predictors 
to improve the computational efficiency of 
the FDTD algorithm,” IEEE Trans. 
Microwave Theory Tech., vol. 42, pp. 1992–
1997, 1994. 

[42]  V. Jandhyala, E. Michielssen, and R. Mittra, 
“FDTD signal extrapolation using the 
forward-backward autoregressive (AR) 
model,” IEEE Microwave Guided Wave Lett., 
vol. 4, pp. 163–165, 1994. 

[43]  S. Dey and R. Mittra, “Efficient computation 
of resonant frequencies and quality factors of 
cavities via a combination of the finite-
difference time-domain technique and the 
Padé approximation,” IEEE Microwave 
Guided Wave Lett., vol. 8, pp. 415–417, 1998. 

[44]  W. Sui, D. A. Christensen, and C. H. Durney, 
“Extending the two-dimensional FDTD 
method to hybrid electromagnetic systems 
with active and passive lumped elements,” 
IEEE Trans. Microwave Theory Tech., vol. 
40, pp. 724–730, 1992. 

[45]  B. Toland, B. Houshmand, and T. Itoh, 
“Modeling of nonlinear active regions with 
the FDTD method,” IEEE Microwave Guided 
Wave Lett., vol. 3, pp. 333–335, 1993. 

[46]  V. A. Thomas, M. E. Jones, M. J. Piket-May, 
A. Taflove, and E. Harrigan, “The use of 
SPICE lumped circuits as sub-grid models for 
FDTD high-speed electronic circuit design,” 
IEEE Microwave Guided Wave Lett., vol. 4, 
pp. 141–143, 1994. 

[47]  J. P. Berenger, “A perfectly matched layer for 
the absorption of electromagnetic waves,”  
J. Comp. Phys., vol. 114, pp. 185–200, 1994. 

[48]  D. S. Katz, E. T. Thiele, and A. Taflove, 
“Validation and extension to three 
dimensions of the Berenger PML absorbing 
boundary condition for FDTD meshes,” IEEE 
Microwave Guided Wave Lett., vol. 4, pp. 
268–270, 1994. 

[49]  C. E. Reuter, R. M. Joseph, E. T. Thiele, D. 
S. Katz, and A. Taflove, “Ultrawideband 
absorbing boundary condition for termination 
of waveguiding structures in FDTD 
simulations,” IEEE Microwave Guided Wave 
Lett., vol. 4, pp. 344–346, 1994. 

[50]  Z. S. Sacks, D. M. Kingsland, R. Lee, and J. 
F. Lee, “A perfectly matched anisotropic 
absorber for use as an absorbing boundary 
condition,” IEEE Trans. Antennas Propagat., 
vol. 43, pp. 1460–1463, 1995. 

 
 
 

19TAFLOVE: 40-YEAR HISTORY OF FDTD



 

  

[51]  S. D. Gedney, “An anisotropic perfectly 
matched layer absorbing media for the 
truncation of FDTD lattices,” IEEE Trans. 
Antennas Propagat., vol. 44, pp. 1630–1639, 
1996. 

[52]  R. W. Ziolkowski, J. M. Arnold, and D. M. 
Gogny, “Ultrafast pulse interactions with 
two-level atoms,” Phys. Rev. A, vol. 52, pp. 
3082–3094, 1995. 

[53]  A. S. Nagra and R. A. York, “FDTD analysis 
of wave propagation in nonlinear absorbing 
and gain media,” IEEE Trans. Antennas 
Propagat., vol. 46, pp. 334–340, 1998. 

[54]  Y. Huang, Simulation of Semiconductor 
Materials Using FDTD Method, M.S. thesis, 
Northwestern University, Evanston, IL, 2002. 

[55]  S.-H. Chang and A. Taflove, “Finite-
difference time-domain model of lasing 
action in a four-level two-electron atomic 
system,” Optics Express, vol. 12, pp. 3827–
3833, 2004. 

[56]  M. Krumpholz and L. P. B. Katehi, “MRTD:  
New time-domain schemes based on 
multiresolution analysis,” IEEE Trans. 
Microwave Theory Tech., vol. 44, pp. 555–
572, 1996. 

[57]  Q. H. Liu, The PSTD Algorithm: A Time-
Domain Method Requiring Only Two Grids 
Per Wavelength, New Mexico State Univ., 
Las Cruces, NM, Tech. Rept. NMSU-ECE96-
013, 1996. 

[58]  Q. H. Liu, “The pseudospectral time-domain 
(PSTD) method:  A new algorithm for 
solutions of Maxwell’s equations,” Proc. 
1997 IEEE Antennas Propagat. Soc. Intl. 
Symp., vol. 1, pp. 122–125, 1997. 

[59]  O. M. Ramahi, “The complementary 
operators method in FDTD simulations,” 
IEEE Antennas Propagat. Mag., vol. 39, pp. 
33–45, Dec. 1997. 

[60]  S. Dey and R. Mittra, “A locally conformal 
finite-difference time-domain algorithm for 
modeling three-dimensional perfectly 
conducting objects,” IEEE Microwave 
Guided Wave Lett., vol. 7, pp. 273–275, 1997. 

[61]  J. G. Maloney and M. P. Kesler, “Analysis of 
Periodic Structures,” Chap. 6 in Advances in 
Computational Electrodynamics: The Finite-
Difference Time-Domain Method, A. Taflove, 
(ed.), Norwood, MA:  Artech House, 1998. 

[62]  J. B. Schneider and C. L. Wagner, “FDTD 
dispersion revisited: Faster-than-light 
propagation,” IEEE Microwave Guided Wave 
Lett., vol. 9, pp. 54–56, 1999. 

[63]  T. Namiki, “3-D ADI-FDTD method — 
Unconditionally stable time-domain 
algorithm for solving full vector Maxwell’s 
equations,” IEEE Trans. Microwave Theory 
Tech., vol. 48, pp. 1743–1748, 2000.  

[64]  F. Zheng, Z. Chen, and J. Zhang, “Toward the 
development of a three-dimensional 
unconditionally stable finite-difference time-
domain method,” IEEE Trans. Microwave 
Theory Tech., vol. 48, pp. 1550–1558, 2000. 

[65]  J. A. Roden and S. D. Gedney, “Convolu-
tional PML (CPML):  An efficient FDTD 
implementation of the CFS-PML for arbitrary 
media,” Microwave Optical Tech. Lett., vol. 
27, pp. 334–339, 2000. 

[66]  T. Rylander and A. Bondeson, “Stable 
FDTD-FEM hybrid method for Maxwell’s 
equations,” Comput. Phys. Comm., vol. 125, 
pp. 75–82, 2000. 

[67]  M. Hayakawa and T. Otsuyama, “FDTD 
analysis of ELF wave propagation in inhomo-
geneous subionospheric waveguide models,” 
ACES J., vol. 17, pp. 239–244, 2002. 

[68]  J. J. Simpson and A. Taflove, “Three-
dimensional FDTD modeling of impulsive 
ELF propagation about the Earth-sphere,” 
IEEE Trans. Antennas Propagat., vol. 52, pp. 
443–451, 2004. 

[69]  J. J. Simpson, R. P. Heikes, and A. Taflove, 
“FDTD modeling of a novel ELF radar for 
major oil deposits using a three-dimensional 
geodesic grid of the Earth-ionosphere 
waveguide,“ IEEE Trans. Antennas 
Propagat., vol. 54, pp. 1734-1741, 2006. 

[70]  H. De Raedt, K. Michielsen, J. S. Kole, and 
M. T. Figge, “Solving the Maxwell equations 
by the Chebyshev method: A one-step finite 
difference time-domain algorithm,” IEEE 
Trans. Antennas Propagat., vol. 51, pp. 
3155–3160, 2003. 

[71]  N. Chavannes, R. Tay, N. Nikoloski, and N. 
Kuster, “Suitability of FDTD-based TCAD 
tools for RF design of mobile phones,” IEEE 
Antennas Propagat. Magazine, vol. 45, pp. 
52–66, Dec. 2003. 

20 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



 

  

[72]  E. J. Bond, X. Li, S. C. Hagness, and B. D. 
Van Veen, “Microwave imaging via space-
time beamforming for early detection of 
breast cancer,” IEEE Trans. Antennas 
Propagat., vol. 51, pp. 1690– 1705, 2003. 

[73]  J. J. Simpson, A. Taflove, J. A. Mix, and  
H. Heck, “Substrate integrated waveguides 
optimized for ultrahigh-speed digital inter-
connects,“ IEEE Trans. Microwave Theory 
Tech., vol. 54, pp. 1983-1990, 2006. 

[74]  H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, 
J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. 
Lee, “Electrically driven single-cell photonic 
crystal laser,” Science, vol. 305, pp. 1444–
1447, 2004. 

[75]  L. Yin, V. K. Vlasko-Vlasov, A. Rydh,  
J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, 
G. C. Schatz, D. B. Brown, and C. W. 
Kimball, “Surface plasmons at single 
nanoholes in Au films,” Applied Physics 
Lett., vol. 85, pp. 467–469, 2004. 

[76]  M. F. Yanik, S. Fan, M. Soljacic, and J. D. 
Joannopoulos, “All-optical transistor action 
with bistable switching in a photonic crystal 
cross-waveguide geometry,” Optics Lett., vol. 
28, pp. 2506–2508, 2003. 

[77]  X. Li, A. Taflove, and V. Backman, “Recent 
progress in exact and reduced-order modeling 
of light-scattering properties of complex 
structures,” IEEE J. Selected Topics in 
Quantum Electronics, Special Issue on 
Biophotonics, vol. 11, pp. 759-765, 2005. 

[78]  H. K. Roy, Y. Liu, R. Wali, Y. L. Kim, A. K. 
Kromine, M. J. Goldberg, and V. Backman, 
“Four-dimensional elastic light-scattering 
fingerprints as preneoplastic markers in the 
rat model of colon carcinogenesis,” Gastro-
enterology, vol. 126, pp. 1071–1081, 2004. 

[79]  H. K. Roy, Y. L. Kim, Y. Liu, R. K. Wali, M. 
J. Goldberg, V. Turhitsky, J. Horwitz, and  
V. Backman, “Risk-stratification of colon 
carcinogenesis through enhanced backscat-
tering (EBS) spectroscopy analysis of the 
uninvolved colonic mucosa,” Clinical Cancer 
Research, vol. 19, pp. 961–968, 2006.  

[80]  X. Li, “Synthesis of backscattering 
microscope amplitude images from FDTD-
computed near fields,” manuscript in 
preparation. 

 

[81]  Y. Liu, P. Pradhan, X. Li, Y. L. Kim, R. K. 
Wali, H. K. Roy, A. Taflove, and V. 
Backman, “Alteration of intracellular 
mesoscopic light transport in the earliest stage 
of carcinogenesis demonstrated by single-cell 
partial-wave spectroscopy,” manuscript in 
preparation. 

[82]  S. H. Tseng, A. Taflove, D. Maitland, and  
V. Backman, “Pseudospectral time-domain 
simulations of multiple light scattering in 
three-dimensional macroscopic random 
media,” Radio Science, vol. 41, RS4009, 
doi:10.1029/2005RS003408,  2006. 

 
 

Allen Taflove is a  professor in 
Northwestern University’s EECS 
Department.  He has helped to 
pioneer FDTD algorithms and 
applications since 1971.  His 
publications include more than 
115 journal papers and three 
editions (1995, 2000, and 2005) 

of the book Computational Electrodynamics:  
The Finite-Difference Time-Domain Method, which 
has become a standard reference in the FDTD field.   
He is listed by the Institute for Scientific 
Information as one of the most cited technical 
authors in the world. 

 

21TAFLOVE: 40-YEAR HISTORY OF FDTD



Miniature Antennas and Arrays Embedded within 
Magnetic Photonic Crystals and Other Novel Materials 

 
John L. Volakis, Kubilay Sertel, and Chi-Chih Chen 

 
ElectroScience Laboratory, Electrical and Computer Engineering Dept. 

The Ohio State University 
1320 Kinnear Rd., Columbus, OH 43212 USA; Email: volakis@ece.osu.edu 

 

Abstract  Engineered materials, such as new 
composites, electromagnetic bandgap and periodic 
structures have been of strong interest in recent years due 
to their extraordinary and unique electromagnetic 
behaviors. This paper will address how modified 
materials, inductive/capacitive lumped loads and low loss 
magnetic materials/crystals are impacting antenna design 
with the goal of overcoming miniaturization challenges 
(viz. bandwidth and gain reduction, multi-functionality 
etc.). Dielectric design and texturing for impedance 
matching has, for example, led to significant size 
reduction and higher bandwidth low frequency antennas. 
Examples showing a factor of 2 or more reduction in 
ultrawideband antennas will be shown and operating 
down to nearly 100MHz using a 6” aperture. A recently 
introduced new class of magnetic photonic crystals 
(MPCs) and Degenerate Band Edge (DBE), displaying 
spectral nonreciprocity are also introduced.  Studies of 
these crystals have demonstrated that MPCs exhibit the 
interesting phenomena of (a) drastic incoming wave slow 
down, coupled with (b) significant amplitude growth 
while (c) maintaining minimal reflection at the interface 
with free space. The phenomena are associated with 
diverging frozen modes that occur around the stationary 
inflection points within the band diagram. Taking 
advantage of the frozen mode phenomena, we 
demonstrate that individual antenna elements and linear 
or volumetric arrays embedded within the MPC and DBE 
structures allow for supergain effects that can lead to 
novel miniature (high sensitivity and high gain antennas 
and sensors) array configurations.  

 
I. INTRODUCTION 

Engineered materials, such as new composites, 
electromagnetic bandgap [1], [2], and periodic structures 
have attracted considerable interest in recent years due to 
their remarkable and unique electromagnetic behavior. As 
a result, an extensive literature on the theory and 
application of artificially modified materials has risen. 
Already photonic crystals have been utilized in RF 
applications such as waveguides, filters, and cavities due 
to their extraordinary propagation characteristics [3]-[8]. 

One of the most interesting properties associated with 
photonic crystals relates to their high Q resonances, 
achieved when a defect is introduced within the periodic 
structure. When an antenna element is placed within the 
high Q cavity, it is then possible to harness the high fields 
and generate exceptional gain. Experiments have already 
demonstrated this enhanced gain by placing small 
radiating elements into a cavity built around a photonic 
crystal. Specifically, Temelkuran, et.al. [7] and Biswas, 
et.al. [8] reported a received power enhancement by a 
factor of 180 at the resonant frequency of the cavity.  

More recently, computations using double-negative 
materials [9] illustrate that extraordinary gain can also be 
achieved when small dipoles are placed inside other 
exotic materials that exhibit resonance at specific 
frequencies [10]. However, an issue with the double 
negative and left-handed materials is their practical 
realization. In this paper, we present a new class photonic 
crystals  [9]-[18] fabricated from available material 
structures such as rutile, alumina, titanates and CVGs. Of 
importance is that these crystals exhibit much larger gain 
without requiring excessive volume. As such, they may 
be applicable for hand held devices. Of importance is also 
their greater bandwidth and improved matching (due to 
their resonance away from the band edge). Specifically 
(see Fig. 1), they combine the two unique properties of (i) 
minimal reflection at the interface of the periodic 
assembly forming the crystal, implying impedance 
matching, and (ii) wave slow down leading to 
miniaturization, and concurrently causing large amplitude 
growths within the material. The latter is of importance in 
realizing high gain antennas using smaller volumes.  
Recent computational examples have demonstrated a gain 
increase of as much as 15 dB for a small dipole placed 
within the crystal [14]. Experiments using periodic 
assemblies of FSS that realize the desirable band-diagram 
have also validated this gain increase. 

The paper discusses some of these successes and 
proceeds with a discussion on the challenges of 
fabricating high contrast materials, their loss properties, 
and their integration with printed antennas.  
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Fig. 1. Properties of the magnetic photonic crystals (MPC) and their related Degenerate Band Edge (DBE) crystals 
formed by a periodic array of 3-layer unit cells. MPCs require at least one layer of magnetic materials whereas the 
DBEs are non-magnetic and therefore easily realizable. Both, MPCs and DBEs require the presence of anisotropy to 
realize their unique band diagrams.  

The potential of fabricating printed microstrip lines 
that exhibit the same band diagram is a recent discovery 
that could lead to a variety of miniature microwave 
components as well as high sensitivity sensors.  We begin 
below by noting that even properly designed materials 
with embedded inductive loadings can have significant 
impact in reducing antenna size and improving bandwidth 
properties. These modifications can be easily done and 
can be integrated into existing systems without much 
increase in cost for their adaptation. 

 
II. MINIATURE ULTRAWIDEBAND ANTENNAS 
USNG INDUCTIVE AND MATERIAL LOADING 

Novel inductive loading within polymer structures 
has shown to be extremely effective in reducing antenna 
size, with particular emphasis on conformal installations. 
The motivation for using inductive loading comes from 
the need to emulate magnetic materials [21], [22]. By 
introducing inductive loading (capacitive loading is 
typically inherent to the structure), the antenna 
impedance can be matched as the antenna is miniaturized 
by increasing the dielectric loading. Our initial approach 
to implementing inductive loading was based on the 
artificial transmission line (ATL) miniaturization 
technique [21], [23]. The ATL concept of implementing 
inductive loading utilized distributed serial inductor 
elements to increase the inductance of the antenna. 
Avoiding use of chip inductors is critical since we need to 
suppress inherent losses. An alternative way to 
implement inductive loading is by coiling the spiral arm 
such that it resembles a helix as shown in Fig. 2 for a 6 
inch diameter spiral antenna. Here, the coiled section of 
the spiral arm has a rectangular cross section which 

allows us to control the inductance of the coil using the 
pitch, width and thickness of the coil separately. In this 
case, the thickness remains constant while the width and 
pitch are varied to create a smooth transition from the 
untreated portion to the inductive section of the spiral 
arm. 

 

 

Pitch
Width

Thickness

Pitch
Width

Thickness

6 inches

• Coil parameters for 6” diameter spiral
– Thickness is a constant 0.125” or 0.25”
– Width is tapered linearly from 156 mils to 

276 mils
– Pitch is tapered exponentially from 680 

mils to 34 mils  

Fig. 2. Implementing inductive loading within a spiral 
antenna by coiling the conductor as it concurrently spirals 
away from the center.  

 
 

We proceeded to use the concept of volumetric inductive 
loading via coiling [23], [24] to implement the wave slow 
down and miniaturization. The performance improvement 
is shown in Fig. 3, and shows that we have indeed 
achieved a 6” design that operates down to 130 MHz (-15 
dBic gain) that is only λ/15 in size, and 7.5 times smaller 
than the nominal λ/2 dipole. Of importance is that the 
frequency has shifted from 320 MHz down to 130 MHz 
with the same performance (nearly a factor of 2.5 
reduction in frequency performance). Remarkably, we are 
also seen to approach the theoretical limit of 
miniaturization for a given aperture size [23], [25], [26]. 
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 The inductively loaded 6” spiral shown in Fig. 2 was 
also manufactured and measured along with a composite 
metal-magnetic ground plane. The assembled antenna is 
shown in Fig. 4(a) and has a total thickness of 1.5”. The 
6” spiral was fabricated on a 0.25 inch thick Roger’s 
TMM4 substrate (εr = 4.5) using standard printed circuit 
board manufacturing technology. The measured realized 
gain is shown in Fig. 4(c) along with the measured gain 
of a non-miniaturized spiral antenna backed by a metallic 
ground plane. This plot clearly demonstrates the superior 
performance of the miniaturized spiral below 600 MHz. 
For these frequencies, the miniaturized spiral with ferrite 
backing is able to achieve 5-10 dBi more gain than the 
non-miniaturized spiral. Because the spiral is a frequency 
independent antenna, the antenna can be scaled to any 
aperture size to meet the desired specifications. For 
instance, Fig. 4 (b) also shows the analytical performance 
(free space) of the 6” aperture in addition to two scaled 
versions that are 9” and 12” in diameter. From Fig. 4(b), 
the 12” aperture is seen to operate down to 80 MHz at the 
-15 dBic gain and to 110 MHz at the -10 dBic gain point. 
Again, we also show the theoretical limit point for the 
12” aperture, and note that it is close to the achieved 
performance.  
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(c) 

Fig. 4. Display of fabricated antenna articles incorporating 
volumetric coiling within dielectric loading and over a 
magnetic-PEC ground plane; Top left: 6” fabricated 
antenna 1.5” thick; Bottom: measurement results with and 
without ferrite backing.  
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Fig. 5. Field compression within the MPC crystal: An 
incident pulse propagating towards right couples into the 
MPC and excites the frozen mode within the crystal. 

 
 

III. VOLUMETRIC CRYSTALS FOR HIGH GAIN 
NARROW BAND ANTENNAS 

 MPC and DBE crystals have been pursued because 
they allow for further miniaturization and higher gains. 
However, so far, their promise has only been 
demonstrated for narrowband antennas. In [14], we 
demonstrated that the so-called frozen mode can indeed 
be realized in finite thickness magnetic photonic 
assemblies (MPCs) using a practical combination of 
materials.  This mode is shown in Fig. 5. As displayed, 
the incoming pulse enters the periodic assembly (crystal) 
with very little reflection (15% of the field is typically 
reflected). Once in the crystal, it shows down, while it 
concurrently increases in amplitude by more than a factor 
of 10 for material with nominal losses.  
 
 
 

 
Fig. 3. Using coiling to shift antenna performance to 
lower frequencies. 

24 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



A realization of the MPC and DBE crystal is shown in 
Fig. 6 using two misaligned anisotropic dielectric layers 
and an isotropic layer built into a unit cell. It was shown 
in [18] that it is possible to achieve a four-fold amplitude 
increase in the coupled electric field amplitude using 20 
such unit cells to form a degenerate band edge (DBE) 
crystal which does not even require magnetic materials.  
As a direct consequence of this spatial focusing, the 
directivity and gain of a simple dipole antenna placed 
within the MPC crystal (see Fig. 7) was shown [14] to 
increase by 12.7 dB (~20 fold).  Also shown in Fig. 7 is 
the effect of material loss on the overall gain of the dipole 
embedded within.  A very slight loss of tan δ = 10-5 
reduces antenna gain by only 2 dB, and this gives much 
promise for the practical realization of those materials. 
 

 

Of even greater importance is the realization of 
significant gain using periodic assemblies forming the so 
called DBE crystal. The fabrication of the DBE crystal 
can be done without magnetic materials and even more 
importantly using an arrangement or stacks of Frequency 
Selective Surfaces (FSS) surfaces as displayed in Fig. 8. 
In doing so, we mimicked the anisotropy in the dielectric 
layers by printing very thin conducting strips on low-loss 
Rodgers RO4350 substrate and designed the DBE band 
structure with proper F-layer thicknesses and 
misalignment angles as shown in Fig. 8.  The Bloch band 
structure is shown in Fig. 9(a).  Using a Tx-Rx antenna 
pair and a network analyzer, our first experiment 
demonstrated the existence of the regular and degenerate 
band edges as plotted in Fig. 9(c). 

2”

10-40 units

A1 layer

F layer

0.02”

A2 layer
Rotated A1

1 unit
2”

φ
 

 

Fig. 6. MPA design: A1, A2 are two of the same 
anisotropic dielectric layers with φ being the 
misalignment angle between A1 and A2.  F is the 
Faraday rotation ferromagnetic layer. 
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Fig. 7. Demonstration of the field amplitude growth and antenna gain realization using the non-magnetic DBE 
crystals (periodic assemblies). 

 

 

Fig. 8. DBE design using PCB technology. 
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 Further, we proceeded to demonstrate the focusing 
effect of the DBE crystal via probing of the field 
amplitudes within each free-space layer as shown in Fig. 
10. These tests provided further verification of the field 
amplitude growth realization and possible miniaturization 
afforded by the proposed MPC and DBE materials. We 
are currently exploring the possibility of designing the 
anisotropic material layers via a careful combination of 
isotropic building blocks as outlined below. 
 
IV. FABRICATING PERIODIC ASSEMBLIES OF 

DBES AND MPCS 

 Practical MPCs consist of 10-40 unit cells, with each 
cell composed of two “A” layers rotated with respect to 
each other and one “F” layer, as shown in Fig. 6.  To 
realize the predicted gains, each layer needs to be made 
as a thin sheet, typically of dimensions 2”×2”× 0.02”, and 
a low dielectric loss tanδ, preferably <10-5.  Examples of 
possible sheet materials are rutile single crystals for the A 

layers, and Ca, V-doped Yttrium Iron Garnet ceramics 
(CVGs) for the F layer.  However the rutile crystals are 
not available with the desired 2” × 2” dimensions and 
their cost may prohibit practical realization.  In addition, 
the measured losses of commercially available rutile 
crystals are >10-4 while there is little opportunity to 
improve this number by modifying the composition.  The 
properties of commercially available CVG materials are 
promising but are yet to be explored for this application 
and further developed.  Little is also know about the 
compatibility and manufacturability of these materials 
into an operational device.  These factors have inhibited 
the realization of a prototype. To overcome these issues 
we have been working with Prof. Verweij (Material 
Science Dept. at The Ohio State University)1 on 
approaches as discussed below. 
                                                           
1 Information on material properties and choices listed here are credited 
to Prof. Verweij’s group at the Ohio State Univ.  
 

 
 (a) (b)  (c) 
Fig. 9. Experimental verification of the field behavior within a DBE; (a) Designed band structure 
showing the DBE behavior, (b) Setup for polarimetric thru-transmission measurements using the Agilent 
E8362B, 10 MHz - 20 GHz PNA Series Network Analyzer, (c) Transmission through the crystal (different 
band edges are indicated). 
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 (a)   (b) 
Fig. 10. Experimental verification of the DBE Field amplitude focusing: (a) Setup for field probing  
measurement using the Agilent E8362B, 10 MHz – 20 GHz PNA Series Network Analyzer, (b) Calculated 
vs. Measured electric field strength within the DBE crystal. 
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V. EXPLORATION OF STACKS FROM 
COMMERCIAL CERAMIC SHEETS 

 Recent investigations, carried out in close co-
operation with Prof. Verweij have demonstrated that fully 
functional MPCs and DBEs may well be realized through 
advanced ceramic processing.  It was found that use of 
anisotropic single crystals can be avoided by realizing 
artificial anisotropic dielectrics, exactly as in Fig. 11.  
The shown platelets consist of parallel arrangements of 
alternating ceramic beams.  The ceramic route towards 
the manufacturing of A layers starts with stacking 
alternating layers of two different ceramics with low tanδ 
and largely different dielectric constants, ε.  After an 
adhesion treatment, the stacks are sliced in perpendicular 
direction to form the "striped" composite A layer (Fig. 
12). 
 The two ceramic compositions chosen for the 
laminate were α-Al2O3 with reported best values of 
εr = 10 and tanδ = 2×10-5 [19] and TiO2 with reported 
best values of εr = 100 and tanδ = 6×10-5 [20]. Dense-
ceramic Al2O3 sheets are commercially available.  But 
since this is not the case for TiO2, commercially available 
Ba-titanate (TD82) substrates were obtained that have a 
similar εr ~ 82 but a higher loss of tanδ = 3.7×10-4 at 
2.13 GHz.  The stacks are shown in Fig. 12.  Without 
adhesive, they were found to have an anisotropic 
dielectric constant as predicted from mean field theory, 
and a loss tanδ ~ 9.3×10-4 at 8.36 GHz.  This higher loss 
is likely related to the presence of absorbed water on the 
individual layers and effects of the interfacial gaps due to 
less than perfect flatness of the platelets. 

 

 
The possibility to prepare striped layers was explored 

by Prof. Verweij’s group using an organic polymer 
adhesive, followed by lamination.  However, the organic 
adhesives were found to further increase the losses of the 
stacks to a tanδ ~ 1.9×10-3 for liquid adhesive (3M 4475) 
and 2.5 × 10-3 for double sided tape (3M 9492MP).  The 
laminates were cut into 1 mm thick slices with a thin 
diamond blade using oil cooling.  A first result is shown 
in Fig. 12a, but more focus is still necessary on avoiding 
deformation and in constructing materials that can exhibit 
loss tangents better than 10-5. 

 
VI. PRINTED CIRCUIT EMULATIONS OF 

ANISOTROPIC MATERIALS 

 Perhaps our most remarkable development in RF 
device miniaturization is the introduction of a novel pair 
of coupled printed microstrip lines (see Fig. 13) to 
emulate wave propagation within the usual DBE and 
MPC crystals. By adjusting the proximity of the 
microstrip lines or their width, emulation of the field 
growth and wave slow down can be done using standard 
of-the-shelf printed circuit technology.  We have 
demonstrated this novel phenomenon using numerical 
tools and were able to show how small changes in 
parameters can be used to generate various k-w diagrams 
as shown in Fig. 14. 
 We can, thus, emulate propagation within crystals 
using a simple and easily realizable pair of transmission 
lines that may be allowed to couple with each other to 
generate the effects of the off-diagonal entries in the 
constituent permittivity tensors of the layered structure. 
This idea was demonstrated in [28] where we emulated a 
DBE dispersion diagram using the microstrip unit cell 
shown in Fig. 13. We demonstrated that by simply 
varying the width of one of the microstrip lines, various 
dispersion characteristics such as regular band edge 
(RBE) and double band edge (DbBE) crystals can be 
realized (See Fig. 14). The results in Fig. 14 were 
obtained using the analytical transfer matrices for coupled 
and uncoupled segments of the structure shown in Fig. 13 

 

Fig. 12. 1 mm thick slices cut from (a) a commercial 
Al2O3|TD82 stack with organic adhesion and (b) a 
homemade Al2O3|TiO2 stack with self-aligned, reactive 
adhesion. 
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Fig. 11. Upper: geometry and theoretical dielectric 
tensor of two stacks, used for in-cavity dielectric 
measurements at the electro-science lab (ESL).  The 
white and brown layers are Al2O3 and TD82 respectively.  
Lower: anisotropic dielectric laminates from commercial 
Al2O3|TD82 substrates, stacked without adhesive, and the 
same dimensions. 
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and enforcing the periodicity condition on the 
corresponding four ports of the structure.  
 The increase in field value within the coupled lines 
was demonstrated numerically as in Fig. 15 and can be 
exploited for high sensitivity antenna design.  Two 
possible configurations are displayed in Fig. 16 and are 
the subject of future investigations. 
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Fig. 13. A simple equivalent microstrip circuit for the 
three layers of the DBE and MPC crystals (patent 
pending). 
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Fig. 14. Three distinct band edges can be realized by 
varying line #1 in Fig. 13.  
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Fig. 15. Field distribution under the microstrip lines for 
an excitation at the DBE frequency. 
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Fig. 16. DBE/MPC slot and patch antenna concepts. 
 

VII. CONCLUSION 

Material design capabilities offered by advances in 
dispersion engineering (including MPC/DBE crystals and 
negative index media) allow for unprecedented antenna 
and array designs possibilities.  In this paper, we 
presented various avenues for antenna design using 
engineered materials. We specifically focused on MPCs 
and DBEs that support modes which can be harnessed to 
satisfy tight antenna design requirements. We 
summarized the properties of the frozen modes supported 
by these crystals and validated the existence of these 
modes with measurements. The paper concludes with the 
introduction of a simple coupled transmission line 
approach that emulates the dispersion and slow wave 
modes within the MPC and DBE crystals. Given the 
manufacturing simplicity of the printed coupled lines, the 
associated printed structures hold a great promise for 
realizing the advantages of the frozen modes.  
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Abstract — A hybrid (PO/NF-FF) method is presented 
in this paper for estimating the blockage effects of 
complex structures on the performance of the spacecraft 
mounted reflector antennas.  The method estimates the 
blockage effect based on null-field hypothesis.  The main 
advantage of this method is its ease of implementation 
for different obstacle geometries.  The accuracy and 
functionality of the method is demonstrated by 
comparing the results of this method with other methods 
such as Method of Moments (MoM) and Direct (PO).  
An alternative definition of beam efficiency is adopted 
when the radiated power is available only in the forward 
radiation region.  As a case study, the method is used to 
evaluate the effects of side panels on the performance of 
a reflector antenna operating at K band.  A new 
parameter is also defined to represent the effects of 
absorbed power by panels.  This parameter may be used 
to estimate the contribution of absorbed power in 
increasing system noise temperature. 
 

Index Terms — Blockage effect, FFT, Hybrid 
methods, near field, Physical Optics, Reflector antennas. 
 

I. INTRODUCTION 
Recent technology advances in building large and 

light reflector antennas with reduced launch mass and 
stowed volume allows scientists to envision the use of 
large reflector antennas for spaceborne applications.  In 
many cases, the performance of the reflector can be 
affected by structures around the antenna which may 
potentially interfere with its radiated fields.  The 
situation may be even more critical for high-frequency 
radiometer applications in which the beam efficiency of 
the antenna can be degraded by any blockage effects.  
Furthermore, in many applications, the blocking object 
can have varied signature before and after development 
on the platform.  Therefore an initial assessment of these 
blockage effects in a reasonably fast fashion is essential 
for spaceborne platform designs. 

In general, several conventional methods have been 

considered for evaluating the effects of blocking objects 
on the performance of reflector antennas [1-4].  Using 
full-wave methods to analyze these effects can give 
accurate results.  However, they are impractical due to 
very large dimensions of the antenna and blocking 
obstacles relative to the wavelength.  Consequently, 
various types of approximations have been used to 
estimate the effect of large blocking objects.  Induced 
field ratio (IFR) hypothesis has been invoked in [1] to 
study the effect of feed-support struts of symmetric 
paraboloidal reflectors.  This hypothesis assumes that the 
currents at a point on the struts due to the plane-wave 
component of focal-region field are the same currents 
that would flow on an infinite, cylindrical structure of the 
same cross-section immersed in an infinite, free space 
plane wave with the same polarization and direction of 
incidence as the local geometrical ray incident upon that 
part of the struts as it emerges from the reflector.  So this 
method is effective when the blocking obstacle is in ray-
field regions and it is also limited to cylindrical strut 
structures.  Another competitive method is observation-
point-dependent shadowing technique which uses the 
null-field hypothesis [2, 3]. In this method, which is 
based on the GO approximation of the field, it is 
assumed that currents do not radiate in observation point 
directions which are shadowed by objects between the 
observer and the reflector. Thus, completely “dark” 
shadows are assumed to be contained within peripheries 
defined by geometrical rays.  However, this method is 
restricted to some simple geometries and it is difficult to 
apply it for more complex structures.  Another used 
method is to make the current zero in shadow regions 
caused by blocking objects [4]. This method is only 
useful when the blocking object is in front of the 
reflector and in the GO ray-field region.  

Therefore, for the scenarios in which there are 
several blocking objects with different geometries and 
locations, the objective is to use a method which is 
applicable to large structures and can give fairly accurate 
results for obstacle in arbitrary locations in the forward 
region of the reflector (not only GO ray-field region).  In 
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addition, since the shape of some of the obstacle may 
change during deployment on the platform, the method 
should be easily applied for arbitrary geometries. 

This paper addresses a hybrid PO/NF-FF method 
using near-field to far-field transformation combined 
with null-fill hypothesis to estimate the effect of complex 
structures on the far-field pattern and beam efficiency of 
reflector antennas. A preliminary presentation of 
technique was documented in a recent conference paper 
[5].  The main advantage of this method is that it can be 
potentially used for any arbitrary shape of blockages.  
The accuracy of the method is verified by comparing the 
results with Method of Moments (MoM). To estimate the 
blockage effects on the beam efficiency, an alternative 
definition of beam efficiency will be introduced based on 
the total forward radiated power in the near-field plane.  
Finally, the results will be shown for a case study in 
which the blockage effects of side antenna panels, for an 
antenna configuration presented in [6], is estimated on 
the performance of the reflector antenna. A new 
parameter, “Power Ratio”, will be also defined to 
represent the effects of absorbed power by obstacle.  
This parameter can be used to estimate the contribution 
of absorbed power in increasing system noise 
temperature. 

II. PO/NF-FF TRANSFORMATION METHOD 
The evaluation of far-field pattern of an antenna 

from its near-field measurements by means of a near-
field to far-field (NF-FF) transformation is well 
established and widely used [7]. There are several 
techniques for near-field measurements such as 
spherical, cylindrical, or planar measurements which 
have their own particular advantages depending upon the 
antenna and the measurement requirements.  The method 
introduced in this paper is based on planar-rectangular 
near-field construction. Fig. 1 shows a schematic 
algorithm of this method.  The field is calculated using 
Physical Optics (PO) on a finite rectangular plane 
through which the major portion of energy radiates.  The 
near-field data is then used to construct the far-field 
pattern of the antenna using a fast Fourier transform FFT 
algorithm [8]. To evaluate the blockage effect, according 
to the null-field hypothesis, it is only required to make 
the field zero at the locations of conductor objects or 
their effective shadow regions which block the field.  
This can be done by post processing of the near-field 
data and use the modified near-field data to construct the 
affected far-field pattern. The important advantage is that 
once the near-field data is obtained it can be used for any 
arbitrary masking object geometry, and it is not 
necessary to modify algorithms for each case. This is 
clearly an approximation with reasonably useful results 
for engineering applications. 
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Fig. 1. Schematic algorithm of PO/NF-FF hybrid method 
to estimate the blockage effect of complex structures on 
the performance of the reflector antennas. 
 

In general, this method can be used for any arbitrary 
object in GO field region by finding the projected 
shadow in the reference plane. For objects outside of GO 
field region the method is effective for planar structures 
by calculating the field at the location of the structure.  
For the cases where the objects are in different distances 
from the reflector, an iterative procedure can be invoked 
to estimate the effects of obstacles in different planes as 
shown in Fig. 2.  The fields are nulled at the location of 
objects in the first plane and far-field is constructed.  
This far-field data is used to perform Inverse FFT to 
construct the near-field in the second plane. This near-
field constructed data includes the effect of objects in the 
first plane.  By nulling the field for objects in the second 
plane the far-field can be constructed and this iterative 
procedure can be performed until the effects of all 
objects in different planes are considered. 

 

Z

x
Z

y

Reflector FFT (Step 1)

This near-field constructed data 
includes the effect of closer panels. 

FFT (Step 3)

IFFT (Step 2)

 
 
Fig. 2.  An iterative procedure to evaluate the blockage 
effects of objects at different distances. 

III. PO/NF-FF PERFORMANCE 

A. Accuracy of PO Near-Field Data 
To verify the accuracy of near-field data, the 

performance of a 2 m reflector fed by a dipole was 
simulated at 1.5 GHz using three different methods.  
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These dimensions allowed the problem to be solved by 
using Method of Moments.  Fig. 3 shows the geometry 
of the reflector. The problem was first solved using the 
Method of Moments code [9] and the far-field was 
calculated from the current on the reflector. Then, a 
diffraction analysis code [10] was used to calculate the 
far-field pattern of the reflector.  This code uses Physical 
Optics (PO) approximation of the current on the reflector 
and calculates the far-field directly from the PO current 
on the reflector.  The third approach is the proposed 
PO/NF-FF method.  The near-field data was simulated 
on a 30λ x 30λ plane in front of the reflector (Fig. 3b) 
and far-field pattern was constructed by performing FFT 
calculation. 

Fig. 4 shows the pattern of the reflector calculated 
by these three methods.  A very good agreement is 
observed between all methods up to 40o.  The 
discrepancy in sidelobe level after 40o is mainly due to 
the finite size of the near-field plane.  It has to be also 
mentioned that for this configuration, the valid angle for 
the far-field pattern of PO/NF-FF method is 65o and the 
pattern cannot be relied on beyond this angle [11]. 

 

 
Fig. 3. (a) Geometry of a 2 m reflector fed by a dipole at 
1.5 GHz and constructed near-field plane, (b) 
Constructed near field data. 
 

 

 
Fig. 4. Far-field pattern of a 2 m reflector fed by a dipole 
at 1.5 GHz using three different techniques, (a) E-plane, 
(b) H-plane. 
 

B. Evaluation of Blockage Effect 
A test scenario was also designed to evaluate the 

capability of the PO/NF-FF in predicting the effect of 
blocking objects.  As shown in Fig. 5, a rectangular strip 
is assumed to block a 79 cm reflector operating at 18.7 
GHz.  The effect of this blockage is simulated by two 
methods: In the first method the PO currents in the 
shadow region of the reflector are made zero and then 
the far-field pattern is simulated directly from the 
modified current on the reflector.  Since the blockage is 
in collimated field region of the reflector, the size of the 
shadowing region on the reflector was chosen to be equal 
to the actual size of the blockage.  Secondly, PO/NF-FF 
method was used by constructing the near field data in a 
8 x 8 meter window and nulling the field in the location 
of the strip and constructing the far-field from the 
modified near-field data.  One can observe a good 
agreement between patterns in Fig. 6 and the main 
features of the patterns are very similar. 

 
Fig. 5.  (a) A 79 cm reflector antenna operating at 18.7 
GHz blocked by a rectangular strip, (b) Near field data 
with blockage effect. 
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Fig. 6.  Far-field pattern of the K band reflector blocked 
by the rectangular strip, (a) Direct PO method, (b) 
PO/NF-FF method. 

IV. PO/NF-FF EVALUATION PARAMETERS 

A. Beam Efficiency 
Beam efficiency is one of the important parameters 

for characterizing the performance of reflector antennas 
used for radiometer applications.  For a given power 
pattern of a reflector-antenna system the beam efficiency 
may be defined as [12], 

 

powerradiatedTotal
beammaintheinradiatedPowerBE = . 

 

The total radiated power for a reflector can be 
calculated from the total power emitted from the feed 
including scattered field and feed spillover.  However, in 
the NF-FF transformation method, although choosing a 
large enough near-field plane gives a reasonable accurate 
result for far-field pattern, the total measurable power is 
the “total forward radiated power” and there is always a 
fraction of power which is not considered due to plane 
truncation or back scattering. So, it is necessary to define 
beam efficiency based on this forward radiated power to 
have a proper criterion to estimate the effect of blockage.  

Hence for this method, the beam efficiency is defined as 

planefronttheincapturedpowerfieldnearTotal
beammaintheinradiatedPowerBE FFT =

 
For high edge taper and large enough near-field plane, 
this number is almost equal to the value calculated based 
on the original definition.  This is verified by numerical 
examples in the following sections. 

B. Power Ratio 
In most practical cases, the field level is 

considerably low at the location of the blocking objects.  
Therefore no significant change is observed in far-field 
patterns.  However the power absorbed by these panels 
can contribute to increase the system noise temperature.  
Hence, to consider the effect of this absorbed power, a 
parameter defined as “Power Ratio” is introduced, 

planefronttheincapturedpowerfieldnearTotal
objectsblockingoflocationtheatpowerfieldNearRatioPower =

 

 It represents the ratio of the near field power at the 
location of blocking objects versus the total near field 
power captured in the front plane.  It has been suggested 
that this parameter should signify the black body 
radiations of the blocked areas in front of the antenna 
which can potentially contribute to overall system noise 
temperature.  An example of using this parameter will be 
demonstrated in the following sections. 

V. A CASE STUDY: A K-BAND RADIOMETER 
REFLECTOR 

The functionally of PO/NF-FF is demonstrated by 
calculating the effect of supporting struts and deployed 
side panels [6] on the performance of an offset parabolic 
radiometer reflector antenna. The antenna system 
configuration is shown in Fig. 7. The reflector has a 
diameter of 79 cm and the antenna operates at 18.7 GHz.  
The feed is Y polarized. The panels are dual polarized 
Ku band reflectarray for spaceborne radio altimeter. 

 
Fig. 7. Complex antenna system configuration operating 
at 18.7 GHz [6]. The panels are dual polarized Ku band 
reflectarray for spaceborne radio altimeter. 
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To verify the accuracy of the method, the far-field 
pattern is simulated using two methods.  First, it was 
calculated directly using Physical Optics (PO) and 
second, it was calculated by simulating near-field data by 
Physical Optics and this data was then used to construct 
the far-field pattern (PO/NF-FF). In NF-FF 
transformation, to construct the far-field, near-field data 
was calculated in a rectangular aperture with dimensions 
of 500λ x 500λ. The aperture lies in the same plane as 
the deployable side panels.  Shown in Fig. 8, the patterns 
are very similar in terms of directivity and side lobe 
profile. The beam efficiency values are calculated for 
both cases and as expected the values are similar.  BEFFT 
is 97.3% and it is slightly higher than BE (96.1%) due to 
the radiated field not captured in the near-field window 
and cause the total radiated power captured in the front 
window to be less than true total radiated power. 
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Fig. 8.  (Far-field pattern of the reflector (without struts 
effect) (a) PO method, (b) PO/NF-FF method. 

Next, the field is made zero at the location of 
supporting struts. The modified near-field pattern is 
shown in Fig. 9. The constructed far-field pattern from 
this near-field is now compared with measured far-field 
pattern in Fig. 10. The beam efficiency values are almost 
equal (94%) and the measured results confirm the 
performance of this method. 

 
 
 
 
 
 
 
 
 
Fig. 9.  (a) Near-field pattern of the reflector with strut 
blockage effect, (b) Enlarged center area. 
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Fig. 10. Far-field pattern of the reflector with struts 
effect, (a) simulation results using PO/NF-FF method, 
(b) measured far-field result from an early JPL 
measurement. 
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The effect of undeployed and deployed booms and 
reflectarray panels were investigated. Fig. 11 shows the 
geometry of the deployed panels while Fig. 12 shows the 
modified near-field pattern and far-field pattern of the 
antenna. It should be noted that the near-field data with 
strut blockage effect were used for all these cases and it 
was modified for different blocking geometries. 
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Fig. 11. Geometry of the deployed boom and panels on 
both sides of the reflector [6]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12.  Near-field and far-field simulated patterns of the 
reflector incorporating the effects of (a) Undeployed 
booms, (b) Deployed booms and panels. 
 

No noticeable change is observed in far-field 
patterns due to blockage effects since the field level is 
very low at the location of blocking objects. This 
resulted to define the power ratio parameter, as discussed 
earlier, to indicate the contribution of absorbed power by 
blocking objects to overall system noise temperature.  
For this application, the power ratio was calculated with 
respect to the total power in (8 x 8) meter near field 
plane.  The values for different cases are given in Table 
1.  For a given antenna system configuration it would be 

the user’s responsibility to determine what the accepted 
value for the power ratio should be in order to consider 
the blocking effects insignificant. 

 
Table 1. Power Ratio for different blockage cases. 

Case Power Ratio 
Undeployed Boom 4.1711e-5 
Deployed Boom 3.8546e-5 
Panels 3.4332e-8 
Deployed Boom + Panels 3.8580e-5 

VI. CONCLUSIONS 
A Hybrid PO/NF-FF transformation method was 

utilized in this paper to provide an initial estimate of the 
effects of complex blockage structure on performance of 
reflector antennas.  The method estimates the blockage 
effect based on the null-field hypothesis.  The radiated 
near-field data of the reflector was simulated under PO 
approximation and the fields were made to zero in the 
location of blocking objects. An FFT routine was then 
used to construct the far-field from the modified near-
field data.  The advantage is that once the near-field data 
is constructed, the data can be post processed for any 
arbitrary shape blockage object. For obstacles in 
different distances, an iterative procedure can be used to 
incorporate the effect of all of them on the radiation 
performance.  The accuracy of the PO near field data was 
verified when the far-field pattern constructed by this 
method was compared with the results from Method of 
Moments and direct Physical Optics method. An 
alternative definition of beam efficiency was adopted 
when the radiated power was available only in the 
forward region. To evaluate the functionality of the 
method, the effect of blocking of a strip in the center of 
the reflector was simulated by using PO/NF-FF and 
direct PO method.  The result showed a very good 
agreement in main features. 

Lastly, as a case study, the effects of deployed and 
undeployed reflectarray panels and booms on 
performance of an 80-cm reflector antenna were 
investigated.  Since the panels were located in the low 
intensity field region, no significant changes were 
observed in the far-field. Therefore, a parameter called 
“power ratio” was defined to signify the effects of the 
blocking objects in front of the antenna on the overall 
system parameters.  This parameter gives the ratio of the 
power absorbed in the location of blocking panels versus 
the total captured power in the front plane.  This power 
may potentially contribute to increase the noise 
temperature of the antenna system. 

This case study showed the capability and 
usefulness of this hybrid PO/NF-FF method in predicting 

(a) 

(b) 
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the blockage effects of arbitrary geometries, on the 
performance of reflector antennas with a fair accuracy 
and in a reasonably fast fashion.  The method can be a 
viable tool in the initial design of spaceborne platforms 
for supporting reflector antennas.  Preliminary results 
obtained using this method could then be verified using 
more sophisticated approaches. 
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Abstract  In this paper we present several 
architectural enhancements to our previously published 
hardware-based FDTD acceleration platform.  This 
includes the addition of several new sources, including 
H-polarized point sources, voltage and current sources, 
Gaussian beams, and user-defined sources, such as 
waveguide mode profiles.  We also discuss the recent 
support for extending objects into the absorbing 
boundary, which minimizes non-physical back 
reflections.  With the addition of these features, the 
FDTD acceleration hardware has become a more robust 
and powerful tool, enabling the rapid simulation of a 
wider breadth of applications, including antennas, 
waveguides, and optics. 

 
Keywords  Finite Difference Methods, Simulation, 
Hardware Acceleration, Electromagnetic Analysis, 
FPGA. 
 

I. INTRODUCTION 
 

Although the need for advanced electromagnetic 
analysis in a variety of applications is readily apparent, 
the long runtimes associated with these simulations 
frequently limit what can be realistically modeled.  
Consequently, designers are often forced to artificially 
limit the scope of their simulations in order to analyze 
problems within a reasonable time frame.  Fortunately, 
with the advent of hardware-based FDTD solvers, many 
of these limitations have been overcome, resulting in 
more designers relying on acceleration hardware for  

 
 
solutions to their computational needs.  In [1, 2], we 
presented such a platform that demonstrated 
considerable improvements over software-based 
solutions in both speed and maximum problem size 
(Fig. 1).  Although a significant achievement, this 
platform was limited in the types of problems it could 
solve.  Specifically, the acceleration hardware was only 
capable of analyzing problems that incorporated either 
E-polarized point sources, uniform plane waves, or their 
temporally modulated variations.  While this did allow 
a variety of simulations to be performed, a host of 
applications remained that could not be modeled, as 
they required more advanced source types.  In this 
paper, we present our most recent architectural 
developments, which have focused on the incorporation 
of new source types.  Notable platform additions 
include support for H-polarized point sources, 
voltage/current sources, and the introduction of a 
connecting boundary, which enables support for both 
Gaussian beams and also user-defined sources, such as 
waveguide mode profiles.  We also discuss the recent 
support for extending objects into the absorbing 
boundary, which is vital to minimize non-physical back 
reflections associated with a variety of problems, 
including waveguides.  Despite numerous publications 
on FDTD acceleration hardware, a fully 3D, hardware-
based FDTD accelerator that encompasses such features 
has never been described until now [1-6]. 

39

1054-4887 © 2007 ACES

ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



 
 
Fig. 1. The FDTD hardware accelerator. This FPGA-
based board provides the platform for the acceleration 
architecture. It includes the largest FPGA on the market 
and supports up to 16 GB DDR SDRAM. This platform 
has demonstrated performance comparable to 100-node 
PC clusters. 
 

II. NEW SOURCE CONDITIONS 
 

The original FDTD acceleration platform only 
supported two source types:  single electric point 
sources and uniform plane waves. While the underlying 
hardware architecture was capable of quickly 
performing large simulations, the lack of support for 
more advanced source conditions prevented its 
application to numerous problems. For example, 
although the uniform plane wave source could be 
applied to many scattering problems, a spatially 
windowed plane wave (previously unsupported) was 
necessary to model “infinite” structures.  Similarly, 
although a single point source (E polarized) was 
sufficient to model simple radiation patterns, the 
hardware accelerator did not support impedance-
matched current sources and, thus, could not model 
many antenna structures.  To expand the capabilities of 
the hardware accelerator, several new source conditions 
have been added to the architecture.  In this section, we 
discuss four areas in which the hardware architecture 
has been enhanced, namely support for arbitrary 
magnitude and phase specification, magnetic field 
excitation, point source extensions, and the 
incorporation of a connecting boundary. These 
additions have directly enabled support for a wide range 
of sources, including magnetically polarized point 
sources, Gaussian beams, and guided mode profiles. 

 
A. Arbitrary Magnitude and Phase Specification 
 

Although the previous hardware design supported 
plane wave sources, their flexibility was limited.  For 
example, it was not possible to specify an arbitrary 
magnitude (or phase) at the various points along the 
wavefront and, thus, the solver was limited to uniform 
plane waves.  Although a temporal envelope function 
could be applied, spatially modulated waveforms, such 
as Gaussian beams, could not be implemented.  
Originally, uniform plane waves were supported 
because they were relatively easy to implement given 
that the magnitude along the phase front was constant.  

However, it was clear that more advanced waveforms 
would be required to support a wider array of problems.  
Thus, the hardware solver was extended such that both 
the magnitude and phase of each point could be 
represented as a function of position. 

Controlling the parameters of individual points was 
achieved by modifying the field update equations to 
incorporate both magnitude and phase terms in the 
source computation engine.  Although this provided 
accurate answers, it also had the unfortunate 
consequence of doubling the memory requirements of 
the simulator and severely limiting performance.  To 
remedy this, the incident field expressions were 
reformulated to use two new terms, dependant on the 
magnitude and phase, which have a limited range of [-1, 
1]. To understand where these terms came from, 
assume that the incident electric and magnetic fields 
can be written as 
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We can then expand the sine term in equation (2) 
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We can then rewrite equation (4) as 
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By limiting the range to [-1, 1], it was possible to 
compress the terms and store them in the same amount 
of memory as the previous architecture.  Specifically, in 
the previous design, a 32-bit floating-point value was 
used to store the source information.  In this updated 
design, the same memory footprint (32 bits) was used, 
but was subdivided into two 16-bit numbers (one for 
magnitude, one for phase).  By limiting the range of 
these values, there was no need for an exponent field 
(as would be required by a floating-point number) and 
the 16 bits could be used to accurately represent a 
decimal value with minimal precision loss as compared 
to a true floating-point representation.   
 
B. Magnetic Field Excitation 
 

In the previous acceleration architecture, sources 
were introduced by adding the incident electric field to 
the appropriate mesh points, as determined by a lookup 
table. However, the hardware lookup table and 
associated computational logic did not support the 
direct excitation of magnetic field components.  In the 
new architecture, this lookup table was expanded, as 
was the control and computational datapaths, to provide 
support for the introduction of magnetic incident fields 
(Table 1).  This extension directly enabled support for 
two additional source conditions: a magnetic point 
source (H polarized) and a connecting boundary, 
consisting of both electric and magnetic source fields.  
These new source conditions, as well as other point 
source additions, are now described.  
 
 
Table 1.  Hardware Lookup Table.  This table details 
the four coefficients (A-D) that must be stored for each 
material used in the simulation.  Entries are included for 
both electric and magnetic fields.  The newest lookup 
table entries, which support magnetic sources, are 
shaded. 
 

 Mat # A B C D 

0 Ae(0) Be(0) Ce(0) De(0) 

1 Ae(1) Be(1) Ce(1) De(1) E 

… Ae(…) Be(…) Ce(…) De(…) 

0 Ah(0) Bh(0) Ch(0) Dh(0) 

1 Ah(1) Bh(1) Ch(1) Dh(1) H 

… Ah(…) Bh(…) Ch(…) Dh(…) 
 
 

C. Point Source Extensions 
 

With respect to point sources, recall that the 
previous acceleration architecture only provided 
support for a single E-polarized point source.  In order 
to expand the capabilities of hardware platform, two 
primary point source extensions were incorporated, 
specifically, magnetically polarized point sources, as 
well as direct support for voltage and current sources. 

When modeling simple radiators, a magnetically 
polarized point source is of little value, as a 
corresponding E-polarized source could be used 
(assuming the structure’s impedance is known).  
However, the importance of such a source becomes 
readily apparent when simulating devices of higher 
complexity, where the electric and magnetic 
components of the source cannot necessarily be related 
by real impedance. For example, the characteristic 
impedance of active devices, such as power supplies, 
amplifiers, and transistors, may change over the 
duration of simulation.  In these cases, it would be 
impossible to model an equivalent source without using 
mathematically complex approximations, which would 
complicate the overall design and reduce the 
accelerator’s performance.  To this end, the acceleration 
architecture was modified to generate H-polarized point 
sources. 

Support for both E- and H-polarized sources was 
achieved by designing more generalized source 
computation engines that can be quickly switched to 
produce either electric or magnetic incident fields as 
needed.  At the end of each half timestep, central 
control instructs the source computation engines to 
reconfigure themselves to perform the appropriate field 
update.  This switch command is pipelined with the 
existing data and therefore does not impede the 
accelerator’s performance. 

After providing support for magnetic point sources, 
the hardware solver was then extended to provide direct 
support for voltage and current sources.  By specifying 
the source impedance, in addition to the time-domain 
waveform, Thévenin and Norton equivalents could be 
constructed that made use of the underlying support of 
the E- and H-polarized point sources [4, 7].  This 
capability is useful for simulating the operation of 
circuits, microwave amplifiers, and custom antennas 
designed for a matched input impedance. 

 
D. Connecting Boundary 
 

A connecting boundary is the cornerstone of the 
FDTD total-field/scattered-field (TF/SF) formulation 
and is used to introduce a variety of incident source 
conditions, as well as easily detect scattering from an 
object [4].  These scattered results can then be analyzed 
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using post-processing techniques, such as Fourier 
transforms, near-to-far field transformations, and also 
radar cross-section calculations.  Although the previous 
processing architecture supported a scattered-field 
formulation, which made determining the scattered 
fields quite easy, this formulation could not support 
extensions for more advanced sources, such as spatially 
modulated plane waves.  Thus, it became necessary to 
implement a connecting boundary within the hardware 
solver. 

The implementation of the hardware’s connecting 
boundary was achieved by modifying the preprocessing 
performed on the host PC.  Before a hardware 
simulation begins, the host analyzes the input 
parameters and loads the hardware accelerator’s on-
board memory with the appropriate runtime data.  In 
this manner, the host can construct an effective 
connecting boundary by calculating the particular 
magnitude and phase required at every point along the 
boundary such that the incident wave propagates 
forward, and the associated backward traveling wave is 
cancelled.  Specifically, two 32-bit floating-values are 
calculated along the connecting boundary before the 
simulation begins.  These additional computations add 
minimal overhead and do not affect performance as the 
bulk of the computational time occurs while iteratively 
solving the solution space over many thousands of time 
steps.   

By combining these updates with the recent 
addition of arbitrary magnitude and phase specification, 
the connecting boundary enabled support for a variety 
of additional source conditions, including Gaussian 
beams.  Not only does this extend the capabilities of the 
accelerated solver, it can also lead to a reduction of 
problem size.  For instance, applications such as optical 
filters, switches, and mode converters require the 
guiding of light from a waveguide onto another device.  
If the underlying platform cannot model the waveguide 
output directly (e.g., guided mode profile), it becomes 
necessary to simulate both the input waveguide along 
with the ultimate device under test.  This leads to much 
larger mesh sizes, which results in longer simulation 
times, as well as increased numerical dispersion.  
However, if the guided mode profile can be entered 
directly, modeling the source waveguide along with the 
device under test is no longer necessary.  Thus, by 
using the hardware’s connecting boundary capability, 
the input waveguide problem can be solved separately, 
using the result to apply a known guided source profile 
directly at the device. 

In this section we presented four areas in which the 
FDTD acceleration platform was extended, including 
arbitrary magnitude and phase specification, magnetic 
field excitation, point source extensions, and a 

connecting boundary.  The incorporation of these 
capabilities into the hardware solver enabled a much 
wider array of incident source conditions, such as 
voltage and current sources, Gaussian beams, and 
guided mode profiles, and thus directly provides 
support for a much broader application base, including 
advanced antenna and waveguide simulations.  The 
next step in this process was to enhance the capabilities 
of the absorbing boundary conditions in order to further 
broaden the domain of the accelerated solver. 

 
III. ADVANCED BOUNDARY CONDITION 

SUPPORT 
 

When performing FDTD simulations, an 
appropriate absorbing boundary condition is necessary 
to prevent the non-physical reflection of outward-going 
waves back into the observation region.  To this end, 
the original acceleration architecture incorporated 
Perfectly Matched Layer (PML) absorbing boundaries 
[8].  These boundaries “match” the outermost boundary 
layers to the background material of the computational 
space and then attenuate the outgoing fields.  
Unfortunately, if a material other than the background 
material were placed next to the boundary, such as the 
structure being simulated, the boundary nodes would no 
longer “match” the computational region and back 
reflections would occur.  Additionally, if the device 
being simulated is part of a larger system, it may be 
necessary to extend a piece of the device into the 
boundary to give the appearance that it is part of a 
complete system.  To resolve these issues, the hardware 
accelerator was modified to enable the extension of 
objects in the boundary layers.  This capability was 
achieved by allowing mesh material information to be 
stored with both computation and boundary nodes.  
Previously, mesh material information was only stored 
for nodes inside the computation region.  This was 
acceptable because nodes in the absorbing boundary 
were always assumed to be free space.  Additional 
storage has been added in the new architecture to 
maintain information about material properties in the 
absorbing boundaries.  Now, the acceleration engine 
can use this information to calculate the appropriate 
PML coefficients before they are used in the boundary 
updates. 

The new architecture allows any dielectric structure 
to be extended into the boundary to create the 
appearance of an infinite space.  Although an outward 
going wave may still be reflected after reaching the last 
absorbing layer, enough layers can be provided such 
that the magnitude of the reflection is inconsequential, 
as is the case in any software implementation.  Specific 
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applications that benefit from this implementation 
include optical waveguides, periodic structures, and 
substrates with etched defects.   

When coupled with the new source configuration, 
the extension of materials into the absorbing boundary 
enables much more efficient simulations for a variety of 
applications.  In the next section, we present two such 
applications, the design of a coupled resonator optical 
waveguide (CROW) and a structure exhibiting left-
handed behavior (LHM), and demonstrate the accuracy 
of the hardware accelerator.    

 
IV. RESULTS 

 
In order verify the accuracy of these platform 

additions, a CROW structure was modeled and 
compared against published results  [9].  A CROW 
structure is a common building block in many optical 
communication systems because of its ability to 
store/delay optical signals.  Unfortunately, the exact 
behavior of CROW structures is difficult to determine 
analytically and, thus requires computational methods 
for their analysis.  After extending the capabilities of 
the hardware platform, as described above, the 
accelerated solver could now be applied to such 
devices.  

The following example uses a CROW as a delay 
element.  The input and output waveguides run parallel 
to one another, but are separated by two ring resonators.  
This particular structure is made of silicon and placed in 
a free space environment.  A 16 layer PML boundary 
surrounds the computational space.  Because this 
structure is a component in a larger system, the input 
and output waveguides must be extended into the 
absorbing boundary.  The input wave is introduced at 
one end of the left waveguide using the new connecting 
boundary source condition.  The problem was simulated 
using a Gaussian modulated input pulse of bandwidth 
0.2% for 200,000 timesteps, which is equivalent to 
about 20 ps.  Fig. 2 shows the transient results at several 
points in the simulation.   

The hardware accelerator was able to solve this 
5.71 million node problem in 7.55 hours, corresponding 
to roughly 42 Mnps of sustained computational 
throughput (see [1, 2] for a detailed discussion of this 
performance measurement).  Fig. 2 clearly shows how 
the input pulse is placed on the output after a delay of 
several picoseconds, which is in agreement with the 
two-dimensional simulation results presented in [9]. 

Next, we simulated a twenty-ring resonator 
structure, with a computational region size of 49.61 
million FDTD nodes.  This simulation was performed 
for 450,000 time steps and required 147.6 hours of 

computation time.  Previously, such a simulation would 
have been impossible in a standard desktop computing 
environment.  The CROW achieved a delay of 15.78 ps 
delay (Fig. 3).  In comparing these results against those 
of the two-ring structure, note that the resonant 
frequency is the same, but the overall transmission 
efficiency has decreased, which is due to the increased 
propagation losses associated with additional rings, 
including bending loss, roughness loss, and coupling 
loss.  Furthermore, these simulations have revealed 
previously unknown scalability relationships that will 
simplify future CROW structure analyses [10].  A more 
thorough treatment of these results, including 
simulation data for five- and ten-ring structures, can be 
found in [10]. 
 

T=4ps T=5ps

T=6ps T=7ps

T=4ps T=5ps

T=6ps T=7ps

 
 

Fig. 2. Propagation through the 2-ring CROW structure.  
Here we see snapshots of the incident pulse as it travels 
through the ring resonators and, ultimately, to the 
output waveguide.  The delay from input to output 
directly corresponds to previously published results. 
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Fig. 3. Propagation through the 20-ring CROW 
structure. Here we see the input and output pulses 
associated with the 20-ring CROW.  Note that the 
output pulse is a delayed (and attenuated) version of the 
input pulse. 
 

Next, we modeled an LHM structure, which was 
composed of a periodic array of unit cells (Fig. 4).  
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Each unit cell consisted of an SRR structure patterned 
on one side of a dielectric substrate (εr = 3.4) (Fig. 5) 
and a metallic wire (0.5 mm × 1.0 mm × 20 mm) 
patterned on the other side of the substrate.  The 
thickness of the SRR, the wire, and the substrate were 
chosen to be 0.5 mm.  This unit cell, which measured 
20 mm × 20 mm × 20 mm, was then replicated twenty 
times in the YZ plane, ten times in the XY plane, and 
three times in XZ plane to form an array of 600 
SRR+wire pairs (lattice constant a = 30 mm).  This 
LHM structure was placed inside a two-dimensional 
waveguide formed by parallel, perfectly conducting 
plates, each 40.15 cm wide and 24 cm long, in order to 
provide vertical confinement and more accurately 
reflect a guided mode source. 

Ultimately, the computational domain for this 
structure measured 24 cm × 40.15 cm × 5 cm, or 481 × 
803 × 101 cells (~ 40 million nodes), not including the 
PML absorbing boundary region.  For an FDTD 
discretization of 0.5 mm, the corresponding timestep is 
9.63 x 10-4 ns.  The 20,000 timestep simulation required 
less than 2 GB of memory and approximately 5.5 hours 
of computation time on the Celerity™ accelerator card 
[2]. However, because the acceleration platform 
contains 16 GB of RAM, an LHM structure consisting 
of up to 4,700 unit cells could be simulated.   
 

z

y x

z

y x

 
Fig. 4. LHM structure.  This is a model (scaled down) 
of the LHM structure simulated on the hardware 
platform.  From this model, it is easy to see both the 
SRRs and the wires.   
 
 

To determine frequencies at which negative permittivity 
and permeability might exist, the transmission spectra 
of the LHM structure is measured to identify stopband 
frequency regions.  Once these frequency regions are 
identified, a continuous wave is used to examine the 
steady-state behavior of the LHM structure. For this 
particular LHM structure, a broadband, z-polarized 
windowed plane wave, propagating along the x-
direction, was used.  A point detector was placed at the 
far end of the LHM structure in order to measure the 

transmission spectra through the periodic array of 
SRRs.  Specifically, the point detector recorded the 
time-varying electric and magnetic field amplitudes, 
which were then normalized to the source.  The 
frequency response was then obtained by performing a 
Fast Fourier Transform (FFT) of the normalized data.  
Two simulations were performed:  one with the SRRs 
alone (without wires) and one with both SRRs and 
wires.  From these results, we see that the SRR 
structure, at resonance, has a stopband 38 dB down at 
2.75 GHz  (Fig. 6).  For both wires and SRRs together, 
a small passband exists between 3.75 GHz and 4.25 
GHz, near the resonance of the rings. 
 

10 mm

1 mm

1 mm 1 mm

10 mm

1 mm

1 mm 1 mm

10 mm

1 mm

1 mm 1 mm

10 mm

1 mm

1 mm 1 mm  
Fig. 5. A split-ring resonator.  Here we see the SRR 
used in the LHM model.  The length and width of each 
SRR was 10 mm, and the azimuthal inter-ring gaps 
were 1 mm. 
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Fig. 6. Transmission Spectra of SRRs and SRRs + 
Wires (LHM).  From these results, we see that the SRR 
structure, at resonance has a stopband 38 dB down at 
2.75 GHz, with regions of positive and negative 
permeability on both sides. For both wires and SRRs 
together, a small passband exists between 3.75 GHz and 
4.25 GHz, near the resonance of the rings.  
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To numerically demonstrate that the composite 
structure formed from the combination of SRRs and 
wires posses a negative index of refraction, we 
constructed a 26o prism and embedded the LHM 
structure within it.  By measuring the direction of the 
power leaving the prism, it is possible to calculate the 
index of refraction using Snell’s Law.   

The prism/LHM structure was simulated using a 
windowed plane wave source.  The frequency of the 
incident beam was varied according to the transmission 
spectra results previously obtained (Fig. 6).  
Specifically, simulations were performed at frequencies 
of 2.88 GHz, 3.0 GHz, 3.8 GHz, and 3.9 GHz.  The first 
frequency, 2.88 GHz, was chosen because it lies within 
the resonance band of the SRR structure.  Such a 
frequency finds the structure to be highly attenuating, 
and a positive index of refraction was seen.  Next, we 
shifted the frequency away from the resonance band of 
the SRRs to the edge of the stop band at 3.0 GHz.  At 
this frequency, the overall LHM structure is highly 
dispersive, but it still possesses a positive index of 
refraction.  The next frequency tested was 3.8 GHz, for 
which the structure is less dispersive and we note that 
the index of refraction has been slightly changed (n = -
1.4356).  Specifically, the wave front is now directed 
away from the surface of the prism, indicating a 
negative refraction index (Fig. 7).  Finally, the structure 
was excited using a 3.9 GHz source, for which the 
structure is less dispersive but with a positive index of 
refraction.   
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Fig. 7. Demonstrated Negative Refractive Index. Here 
we see the wave exiting the LHM/Prism structure.  
Notice that the wave front leaves the prism to the left of 
the normal, indicating negative refraction. 
 

 
V. CONCLUSION 

 
In this paper we presented several architectural 

additions to our previously published hardware-based 
FDTD acceleration platform, including H-polarized 
point sources, voltage and current sources, Gaussian 

beams, spatially windowed plane waves, and user-
defined sources, such as waveguide mode profiles.  We 
also discussed the recent support for extending objects 
into the absorbing boundary, which minimizes non-
physical back reflections.  With the addition of these 
features, the FDTD acceleration hardware has become a 
more robust and powerful tool, enabling the rapid 
simulation of a wide breadth of applications, including 
antennas, waveguide structures, and optics.  Ultimately, 
these features continue to demonstrate the capabilities 
of hardware-based acceleration tools for computational 
electromagnetics and prove, once again, the viability of 
such platforms for both academic and industrial 
applications.  
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Abstract — This paper presents a method of moments 

solution to scattering problems that involve 
inhomogeneous magnetic and dielectric bodies of 
arbitrary shapes. The volume equivalence principle was 
used to switch from an original problem that deals with 
an inhomogeneous magnetic and dielectric scatterer to a 
problem in free space with equivalent sources. The 
problem is described through a mixed potential 
formulation. The method of moments technique is then 
applied to achieve a numerical solution to the original 
problem. The volume of the scatterer is meshed by 
tetrahedral cells and face-based functions are applied to 
expand unknown quantities. Special attention is paid to 
the curl operation on vector potentials and corresponding 
volume integrals. The proposed formulation has been 
evaluated through some examples. 

I. INTRODUCTION 

The three-dimensional approach in solving particular 
electromagnetic scattering problems using the method of 
moments has been applied for the first time in the early 
1980's. In 1984 Schaubert et al. [1] used tetrahedral cells 
to calculate electromagnetic scattering by arbitrarily 
shaped inhomogeneous dielectric bodies. This was the 
first time that three-dimensional cells and the volume 
formulation have been used in the computation of 
scattering involving the method of moments. They have 
basically opened a door to a new area of inhomogeneous 
scatterers. In 1986 Schaubert and Meaney have improved 
the calculations [2], especially in the domain of 
computation time. Singular integrals resulting from 
integration in the vicinity of sources have been evaluated 
by isolating the singularity in an infinitesimally small 
sphere and then using the analytical approach described 
in [3]. Recent work by Kulkarni et al. published in 2004 
[4] compared face-based expansion functions used in [1] 
to the edge-based solenoidal basis functions used in [5], 
[6], and [7]. 

An extensive literature in this area shows a continuous 
interest in the method of moments technique in solving 
numerous theoretical and practical electromagnetic 
problems related to electromagnetic scattering. Many 
electromagnetic scattering problems have been solved 
using this approach. Most of them, however, deal with 
the two-dimensional meshing and expansion functions. 

These problems usually involve homogeneous scatterers 
and the surface integral formulation [8]. Induced 
polarization currents, be them electric and/or magnetic, 
are located at the surface of the scatterer and can be 
represented through two-dimensional functions (pulse, 
rooftop, etc). There is not enough effort put in solving 
electromagnetic scattering from inhomogeneous 
scatterers. There are only a few papers that deal with 
inhomogeneous dielectrics. Usually they are related to 
some conventional geometries such as the sphere, the 
cube, and the cylinder. Most of them utilize symmetry of 
the shape in order to reach the final solution. 

The main contribution of this paper is that it offers a 
generalized volume integral formulation for scatterers of 
arbitrary shape filled with an arbitrary magnetic and 
dielectric medium. The proposed formulation has been 
applied to numerous practical examples of scatterers 
illuminated by electromagnetic plane waves. Although 
this article presents data related to some symmetrical 
three dimensional scatterers, the approach is not limited 
to the shape of the scatterer in any sense. This is a 
significant generalization because previous work in this 
area dealt with scatterers of particular shapes. 
Furthermore, the developed solution does not put any 
limits on the geometrical assignment of material 
properties to the scatterer. It can be applied to 
multilayered scatterers, scatterers with materials assigned 
to different regions of the scatterer in a linear, 
exponential or any other fashion, etc. 

II. FORMULATION 

Assume that a source-free region containing an 
inhomogeneous magnetic and dielectric scatterer is 
illuminated by a plane electromagnetic wave. A magnetic 
and dielectric material is one that contains both magnetic 
and electric properties, i.e. both µr and εr of the material 
are not equal to 1. We can describe the electromagnetic 
behavior of the structure using Maxwell's equations 

 
)()(j)(∇ r0 rHrrE µωµ−=× ,          (1) 

)()(j)(∇ r0 rErrH εωε=× ,   (2) 
0)]()([∇ r0 =εε⋅ rEr ,   (3) 
0)]()([∇ r0 =µµ⋅ rHr     (4) 

where E(r) and H(r) are the complex valued phasors of 
the electric and magnetic fields respectively. We replace 
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the inhomogeneous scatterer by equivalent volume 
polarization currents J(r) and M(r)  and charges ρe(r) 
and ρm(r) given by 

 
)(1])([j)( r0 rErrJ −εωε= ,   (5) 

)(1])([j)( r0 rHrrM −µωµ= ,   (6) 









ε

∇⋅εε=ρ
)(

1)()()(
r

r0e
r

rErr ,   (7) 









µ

∇⋅µµ=ρ
)(

1)()()(
r

r0m
r

rHrr   (8) 

 
and switch from the initial problem that involves 
inhomogeneity to a simpler problem that involves 
equivalent sources in free space. In (7) and (8), ρe(r) and 
ρm(r) were obtained by using the equations of continuity 
 

)(
j
1)(e rJr ⋅∇
ω

−=ρ             (9) 

).(∇
j
1)(m rMr ⋅
ω

−=ρ                        (10) 

 
The scattered field (Es, Hs) can be obtained through the 
mixed potential formulation, which is 
 

0

s )()(V)(j)(
ε

×∇−∇−ω−=
rFrrArE ,         (11) 

0

s )(∇)(U∇)(j)(
µ

×+−ω−=
rArrFrH          (12)  

 
where A(r) and F(r) are the vector potential functions 
and U(r) and V(r) are the scalar potential functions: 
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where T is the volume of the scatterer from the initial 
problem, dτ' is the differential element of volume at r', r' 
is the position vector of the source point, and r is the 
position vector of the observation point.  

Replacing E in (5) by Es+Einc, replacing H in (6) by 
Hs+Hinc where (Einc,Hinc) is the incident field, 
substituting (11) and (12) into the resulting equations, 
and using 

 

)('
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1)(j)(
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r rD
r

rrJ
ε

−ε
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r rB
r

rrM
µ
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to eliminate J(r) and M(r) in favor of new unknowns D' 
and B', we obtain 

 

inc

r00
'1Vj EDFA =

εε
+

ε
×∇+∇+ω                   (19) 

.'1Uj inc

r00
HBAF =

µµ
+

µ
×∇−∇+ω       (20) 

 
As it is related to J in (17), D' reduces to the 

displacement vector D=ε0εrE when J satisfies (19). 
Similarly, B' reduces to the magnetic induction B=µ0µrH 
when H satisfies (20). 

III. APPLYING THE METHOD OF MOMENTS 
TECHNIQUE 

Equations (19) and (20) are two equations that cannot 
be solved analytically. Expanding the unknown 
quantities  D'(r) and B'(r) in terms of a set of face-based 
functions {fn(r)} on a tetrahedral mesh as described in 
[1] and testing with {fm(r)} as in Galerkin's method, (19) 
and (20) are transformed into the following set of 
equations: 

 

inc
m

r0
m

0
mmm
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         (22) 

 
where D' and B' are linear combinations of the fn's 
containing unknown coefficients Dn and Bn and, for 
arbitrary A and B, BA,  is the symmetric product of A 
and B defined to be the integral of their dot product over 
the volume of the scatterer. Equations (21) and (22) can 
be solved numerically for {Dn} and {Bn}. All the kinds 
of terms in (21) and (22) except those involving the curls 
of vector potentials are treated in [1], [3], and [9]. 

Consider the term involving the curl of the magnetic 
vector potential in (22). The vector potential A is given 
by (13) where J is given by (17) with 

 

∑
=

=
N

1n
nn )(D)(' rfrD            (23) 

 
where 
 










∈

∈
=

−

+

−

−

+

+

.  T   ,
3W

s

T   ,
3W

s

)(
n  n

n

n

n  n
n

n

n

rρ

rρ
rf        (24) 

 
In (24), Tn

+ and Tn
- are the two tetrahedrons that have the 

same face sn, Wn
± is the volume of Tn

±, ρn
+ is the vector 
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from the vertex of Tn
+ opposite sn to r, and ρn

- is the 
vector from r to the vertex of Tn

- opposite sn (Figure 1). 
 

 Fig. 1. Tetrahedral elements Tn
+ and Tn

- and notation. 
 
Using (13), (17), (23), and (24), and assuming that εr is 
constant in each tetrahedron, we obtain 
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where 
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where εrn

± is εr in Tn
±. Testing (25) with the function fm(r) 

yields 
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where 
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A similar derivation can be obtained for the term 
involving the curl of electric vector potential F. 

Let us now consider one of the integrals in (29): 
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where sm,i

+, i=1,…,4 are the four faces of the tetrahedron 
Tm

+ and ni
+ is the outward pointing unit normal vector to 

the face sm,i
+. 

If we now assume a fine mesh, then each of the four 
faces sm,i

+, i=1,…,4 is so small that the integral I1n
+(r) for 

r∈ sm,i
+ can be approximated by its value at the centroid 

of sm,i
+ at r= rm,i

c+. Hence, we can write 
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Similar derivations can be performed for the other three 
integrals in (29) and (30).  

Please note that the singularity resulting from r'=r 
encountered in the evaluation of I3n appears in expression 
(26) for I1n

±. So treating the singularity in expression (26) 
for I1n

± automatically takes care of it in the evaluation of 
I3n. 

IV. NUMERICAL RESULTS 

Numerical data obtained through the MATLAB 
implementation of the proposed formulation is given 
here. We considered two shapes of scatterers - a sphere 
and a cube. These bodies are illuminated by a θ-polarized 
plane electromagnetic wave incident from the direction 
where θ=180o and φ=0o (Einc=-âxEince-jkz). Results 
presented here are co-polarized and cross-polarized 
bistatic radar cross sections. 

We first investigated an inhomogeneous two-layer 
magnetic and dielectric sphere of radius R with k0R= k0r2 
=0.408 where k0 is the free-space wave number. The 
radius of the core is half the radius of the whole sphere. 
The two layers of the sphere are assigned different 
material properties. As a first step in developing a mesh 
the entire outer surface of the sphere had been 
approximated by a grid of 72 triangles that served as a 
starting point for a tetrahedral mesh. Then a tetrahedral 
mesh has been grown from the outer triangular surface 
into the sphere producing a total of 256 tetrahedra and 
548 faces. In order to achieve a better accuracy of the 
numerical results an additional refinement of the mesh in 
the close proximity to the outer surface has been 
undertaken, thus increasing the total number of tetrahedra 
to 520 and faces to 1184. Also, an additional refinement 
on the surface between the two layers with two different 
material properties has been performed. This surface 
contains surface charge and plays an extremely important 
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role in the way how this electromagnetic environment 
behaves. Refining the mesh in the close proximity to this 
surface resulted in a total of 928 tetrahedra and 2000 
faces. Finally, the radius of the sphere has been so 
adjusted that the total volume of the tetrahedral 
approximation of the sphere is equal to the actual volume 
of the initial sphere. All computations have been 
performed on a regular PC machine with a 64bit CPU 
and 1024MB of RAM. It took about 2 hours to perform 
all necessary computations and about 80MB to store all 
data of interest. 

 
Fig. 2. Bistatic radar cross sections of an inhomogeneous 
two-layered dielectric and magnetic sphere for 
k0R=0.408, various values of εr and µr, and number of 
tetrahedra=928. 

 
Numerical results obtained for this scattering model 

are compared to results derived from the Mie series 
expansion and given in [10]. As observed in Figure 2, 
there is a good agreement between the numerical data 
and the Mie series solution. We have also performed a 
convergence test where we increased the number of 
tetrahedral mesh cells. It has been observed that an 
increase in the total number of meshing cells and 
decrease in the cell size increases the accuracy of the 
numerical solution and that MoM computation results 
converge to the exact results. We have varied relative 
permeabilities and permittivities of the two layers and 
investigated the scattering from this body. Please observe 
that a change in the relative permeability parameter 
generally affects the radar cross section of the magnetic 
and dielectric scatterer. The inner spherical layer plays a 
less important role in this effect, as it is partially shielded 
by the outer spherical shell and is electrically smaller 
than the outer layer [11]. 

We also investigated an inhomogeneous magnetic and 
dielectric cube assigned different electric and magnetic 
properties in a chess-like pattern (black cubical cells are 

 
Fig. 3. Bistatic radar cross section σθθ of an 
inhomogeneous chess-like dielectric and magnetic cube 
(black inclusions εr=4 and µr=1 and white inclusions εr=1 
and µr=4) for d=0.2λ0 and number of tetrahedra=768.  

 
filled by a dielectric with relative permeability εr=4 and 
white cubical cells are filled by a magnetic with relative 
permittivity µr=4). The length of a side of the cube is 
d=0.2λ0 where λ0=2πk0. The center of the cube coincides 
with the origin of the coordinate system. Numerical 
results for this scattering model are given in Figure 3 and 
compared to the results obtained through the 
implementation of the FDFD formulation presented in 
[12]. As we can see there was a good agreement between 
our solution based on the MoM approach and results 
based on FDFD approach. 

 
Fig. 4. Bistatic radar cross section σθθ of an 
inhomogeneous dielectric and magnetic cube with 
several inclusions (dielectric, air, metal) for d=0.2λ0 and 
number of tetrahedra=768.  

 
The proposed MoM formulation is then applied to 

calculate co-polarized and cross-polarized bistatic radar 
cross-sections of a magnetic and dielectric cube with 
several inclusions. Figure 4 presents numerical results 
obtained for the case of an inhomogeneous magnetic and 
dielectric cube (εr=2, µr=2) with the length of a side 
d=0.2λ0 filled with several inclusions (metal, for -0.05λ0 
< x < 0, 0 < y < 0.05λ0, 0.05λ0 < z < 0.1λ0; air, for -0.05λ0 
< x < 0, -0.1 < y < -0.05λ0, -0.1λ0 < z < -0.05λ0; dielectric 
εr=4, for 0.05λ0 < x < 0.1λ0, 0.05λ0 < y < 0.1λ0, -0.05λ0 < 
z < 0). Results for cross-polarized bistatic radar cross 
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section of this scatterer have also been compared to 
results obtained through the implementation of [12] and a 
good agreement was observed. 

V. CONCLUSION 

This paper presents a numerical solution based on the 
method of moments for electromagnetic scattering from 
arbitrarily shaped three-dimensional inhomogeneous 
magnetic and dielectric scatterers. Cases that we studied 
here are a dielectric and magnetic sphere and a dielectric 
and magnetic cube. As observed, the radar cross sections 
change when the permittivity or permeability of the 
scatterer change. 

As noted we have used the volume equivalence 
principle. There is also the surface equivalence theorem. 
Consequently, surface integral equations may be derived 
from the surface equivalence principle and volume 
integral equations may be derived from the volume 
equivalence principle. The volume equivalence principle 
and corresponding volume integral equations that we 
used in our work have a number of advantages including 
the applicability to inhomogeneous scatterers and a better 
accuracy at resonances (compared to the surface 
approach). The volume equivalence principle and volume 
integral equations are therefore mostly used in problems 
involving penetrable inhomogeneous scatterers. 
Inhomogeneity as an essential property of a scatterer can 
not be entirely described by sources on its surface. That 
is why we need to put equivalent induced current and 
charge sources inside the scatterer and not only on its 
surface. This way sources become volumetric in their 
nature. As it can be observed we move from an original 
problem involving inhomogeneity to a problem involving 
induced sources in free space. The latter problem is much 
easier to be solved. Therefore, as a conclusion, the 
advantage of using the volume approach and volume 
integral equations over the surface approach and surface 
integral equations is their more general property and 
ability to deal with scatterers that are not homogeneous. 

The proposed solution is applicable to any shape of 
scatterer and to any kind of spatial dependence of 
material properties. However, it may suffer from a rapid 
growth of computational complexity in the case of 
electrically large objects with increased mesh resolution. 
This problem may be avoided by reducing the total 
number of unknowns through a choice of different basis 
functions. Edge-based expansion functions, often 
referred to as three-dimensional solenoidal expansion 
functions are first proposed by [5] as a solution to this 
problem. They have a better convergence rate and higher 
numerical stability according to [4]. Another way to 
improve the efficiency of the developed algorithm is to 
use some acceleration techniques such as those based on 
the fast Fourier transform [13]. Additional research with 
the objective of increasing the efficiency of the computer 
program through a reduction of memory and time 
requirements is definitely worthwhile. 
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Abstract  Time domain Surface Impedance Boundary 
Conditions (SIBCs) of high order of approximation 
relating the electric field integral along the edge of the 
computational cell and the magnetic flux through its 
facet are derived and implemented into the Finite 
Integration Technique (FIT). It enables such effects as 
curvature of the conductor surface and variation of the 
electromagnetic field along the interface to be 
accurately described in the formulation. As a result, 
accuracy of numerical results is improved and the 
application area is expanded as compared with 
formulations employing classical low order Leontovich 
SIBCs. Numerical results obtained using low- and high-
order FIT-SIBC formulations are compared with 
analytical results to demonstrate the advantages of the 
proposed approach. 
 
Keywords  Surface Impedance Boundary Conditions, 
Finite Integration Technique, Time Domain Methods, 
Approximate Boundary Conditions. 
 
 

I.    INTRODUCTION 
 

 Although the surface impedance concept has the 
reputation of a sophisticated numerical technique, it is 
actually based on well-known assumption, namely: the 
electromagnetic field distribution in the conductor’s 
skin layer can be described as a damped plane wave 
propagating in the bulk of the conductor normal to its 
surface. In other words, the behavior of the 
electromagnetic field in the conducting region may be 
assumed to be known a priori. The electromagnetic 
field is continuous across the real conductor’s surface, 
so the intrinsic impedance of the wave remains the 
same at the interface. Therefore, the ratio Ex/Hy  
(Surface Impedance) at the xy-plane of a 
dielectric/conductor interface is assumed to be equal to 
the intrinsic impedance of the plane wave propagating 
in the conductor, in the positive z-direction 
 

µδω
εωσ

µω

ωεσ
source

source

source

y

x j
j

j
H
E

2
1

interface

+
≈

+
=

>>

,   

σµω
δ

source

2
= . (1) 

 
 The surface relation in (1), taking into account 
parameters of the conductor’s material and the source, 
contains all necessary information about the field 
distribution in the conductor’s volume. Thus it may be 
used as a boundary condition to the governing 
equations for the dielectric space that excludes the 
conductor from the region of solution and reduces the 
computational space to be discretized. It can be 
represented in another form relating normal and 
tangential magnetic fields at the interface.  

The relation in (1) is usually referred to as 
Leontovich’s SIBC. Although it has been widely used 
in combination with most numerical methods, it does 
not take into account curvature of the interface and 
variation of the field along the surface. SIBCs of high 
order of approximation allowing for both mentioned 
effects have been developed in frequency domain [1-2] 
and time domain [3] to improve accuracy and expand 
the application area of the surface impedance concept.  

In the present paper time domain SIBCs of high 
order of approximation are derived in the state variables 
of the Finite Integration Technique (FIT) [4]. It extends 
results obtained in [5] where a low order SIBC has been 
implemented into the FIT. 
 
 
II.    THE FINITE INTEGRATION TECHNIQUE 

 
The FIT, first proposed in [4], is based on the 

discretization of Maxwell equations in their integral 
form on two different staggered grids, a primary and a 
dual grid [6-7]. An example of the orthogonal dual 
mesh used in FIT is shown in Fig. 1.  
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Let iL , iS , iV  be the edges, facets, and volumes of the 

primary grid G and iL~ , iS~ , iV~  the edges, facets, and 

volumes of the dual grid G~ . Then, the state variables in 
FIT are defined as 
 

∫ ⋅=
iLi ldEê    ,   ∫ ⋅=

iSi AdBb̂̂  , (2) 

 

∫ ⋅=
iLi ldHh ~

ˆ ,   ∫ ⋅=
iSi AdDd ~

ˆ̂ , (3) 

 
while the current flux and the electric charge are 
defined as 

 

∫ ⋅=
iSi AdJj ~

ˆ̂    ,   ∫ ⋅=
iVi dVqq ~ . (4) 

 
The discretized Maxwell equations are written in 

compact form in matrix notation as 
 

beC ˆ̂ˆ
dt
d

−=    ,  jdhC ˆ̂ˆ̂ˆ~
+=

dt
d , (5) 

   

0ˆ̂
=bS    ,   qdS =ˆ̂~ , (6) 

 
where C and C~  are the discrete equivalent of the 
continuous curl operator and S  and S~ are the discrete 
equivalent of the continuous divergence operator.  

Equations (5) and (6) constitute the so-called 
Maxwell’s Grid Equations. 
 

 
Fig. 1. One cell of the primary grid and one cell of the 
dual grid. 
 

To complete the discrete system (5-6), the following 
three additional matrix operators (material matrices) 
must be introduced 

 

eMd ˆˆ̂
ε=   ,  eMj ˆˆ̂

k=  , bMh ˆ̂ˆ
1−= µ . (7) 

In a dual-orthogonal grid system, the primary edges 
and dual facets (as well as the dual edges and primary 
facets) intersect at 90°. In this case the material 
matrices are diagonal with entries 

 

( )
i

iieff

L
S

ii
~

, ,ε
ε =M  ,   ( )

i

iieff
k L

S
ii

~
, ,σ

=M ,  

 

( )
iieff

i

S
Lii

,

~
,1

µµ =−M , (8) 

 
where ieff ,ε , ieff ,σ , and ieff ,µ  are the material 
coefficients. These material relations are obtained 
introducing virtual field component virtE  at the 
intersection point of the dual facet and the primary edge 
and virtB  at the intersection point of primary facet and 
dual edge, so that 
 

i
virt
ii LEe ⋅≅ˆ    ,   i

virt
iieffi SEd ~ˆ̂

, ⋅≅ ε , 
 

i
virt
ii SBb ⋅≅

ˆ̂    ,   i
virt

ieffi LBh ~ˆ 1
, ⋅= −µ . (9) 

 
Using a leap frog scheme, (5) are discretized in time 

as 
 





∆+= −

−−+ nTnn t bMCMee ˆ̂ˆˆ 1
12121

µε ,  

 
211 ˆˆ̂ˆ̂ ++ ∆−= nnn t eCbb . (10) 

 
 

III.   SIBC OF HIGH ORDER OF 
APPROXIMATION IN TERMS OF FIT 

VARIABLES 
 

In order to derive the SIBC of high order of 
approximation in the context of FIT, let us recall here 
that the approximate relation between the normal and 
tangential components of the magnetic flux density in 
the time domain can be written in the form [3] 

3

2
3

1 2
1 3

2 2
3 3

32 2
3

2 2 2

3 2 2
3 3

2

3 2
8

1 2 ,
2

i i

i

i i i

s s si i

i i i i

si i i i

i i

s s s

i i i i

d dB T B T B
d d

d d d d T B
d d

B B B
T

η ξ ξ

ξ

ξ ξ ξ

∂
∂ξ

∂ ∂ ∂
∂ξ ∂ξ ∂ξ ∂ξ

−

−

= −

− −

−

− −

 −
= × + ×


− −

+ ×

 + × − + +   

∑

  

(11) 

54 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



where the superscript “s” denotes quantities at the 
conductor surface, “*” denotes a time convolution 
product, kd , k=1,2, are the local radii of curvature, and 

),,( 21 ηξξ  are the principal curvature coordinates (Fig. 
2). 

ξ2ξ1

d2

d1

η

α2

α1

 
Fig. 2. Local orthogonal curvilinear coordinate systems 
related to the surface. 
 
The time functions mT ,  m=1,2,3  are defined as  
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The first term in (11) gives the SIBC of 

Leontovich’s order of approximation in which the 
body’s surface is considered as a plane and the field is 
assumed to be penetrating into the conductor only in the 
direction normal to the body’s surface. The second and 
third terms give corrections taking into account the 
curvature of the conductor surface. The last term allows 
for the electromagnetic field diffusion in directions 
tangential to the conductor’s surface. 

Let us analyze the expression in the last term of the 
right hand side of (11) 
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where the unit normal vector n  is directed out of the 
body. Here the Laplacian operator of a vector field 
( )21,ξξf  is defined as follows 
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The use of (12) allows (11) to be represented in the 

form: 
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where 
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Performing integration on both sides of (13) over 

the facet ABCD of the cell shown in Fig. 3, one 
obtains: 
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Suppose the coordinates of points D and B in the 
21ξξ -plane are ( )2010 ,ξξ  and ( )220110 , ξξξξ ∆+∆+ , 

respectively (here CDAB ==∆ 1ξ  and 
BCDA ==∆ 2ξ ). Surface integrals appearing in (15) 

can be discretized as follows 
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where 
 

DALe =1 , ABLe =2 , BCLe =3 , CDLe =4 ,  
 

''1 AADDb SS = , ''2 AABBb SS = , ''3 BBCCb SS = , 
 

''4 CCDDb SS = . 
 

Performing the integration of the other terms in (15) 
in the same way, one obtains: 
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where 31 νν = ,  42 νν = , 31 ww = , and 42 ww = . 
 

 
 
Fig. 3. Cartesian computational cell used in the FIT. 
 

 
 

Substituting (17) into Faraday’s law, we obtain the 

relation between ∫ ⋅=

keL
k ldEê  and ∫∫ ⋅=

kbS
k dsnBb̂̂ , 

k=1,2,…4 
 

2
1 2 3 3

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ
2

k

k

e
k k k k k k k

b

L
e b T v b T w b T b T

S t
∂  = × + × + × + ∇ × = ∂  

  
 

2
1 2 3 3

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
2

k

k

e
k k k k k k

b

L
b T v b T w b T b T

S
 ′ ′ ′ ′= × + × + × + ∇ × 
 

 (18) 

 
where 
 

{ +







=′ )(1)(

21

00
1 ttT

r
δ

εεµ
   














−




















−








+

00
0

0
1

0 2
exp

222 εε
σ

εε
σ

εε
σ

εε
σ

rrrr

ttItI , 

 









−=′

000
2 exp1)(

εε
σ

εεµ rr

ttT ,   

 

3 0 1
0 00 0 0 0

0

( )
2 2

exp .
2

r rr r

r

t t tT t I I

t

σ σ
ε ε ε εµ ε ε ε ε µ

σ
ε ε

    
′ = −    

     
 

× − 
 

 

 
The third derivatives cannot be approximated within 

one computational cell shown in Fig. 3, so quantities 
defined in the surrounding cells of the computational 
grid must be used. Let p and q be ordinal numbers of 
the current cell in 1ξ  and 2ξ  directions, respectively. In 

the case of cartesian grid 
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Substitution of (19a-d) into (18) finally yields the 

relations between qp
ke ,ˆ  and qp

kb ,ˆ̂  for the current cell 
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The SIBC of low order of approximation derived in 

[5] is given only by the first term of the right hand side 
of (20) 
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IV.  NUMERICAL EXAMPLE AND 

VALIDATION 
 

A canonical 2D example is considered, for which 
the analytical solution is known [8]: a line current I(t) 
placed at point ( )sy,0  radiating over a half-space (Fig. 
4).  

Although the high order SIBC accurately models the 
curvature of the surface, the test case has been chosen 
with planar surface in order not to introduce the typical 
error of FIT with cartesian grid known as the “staircase 
effect”. As a matter of fact, the modeling of curved 
surfaces by means of high order SIBC and FIT would 
require a conformal scheme. In the proposed example 
the improvement in accuracy given by the SIBC of high 
order of approximation is only due to the modeling of 
the variation of the electromagnetic field along the 
surface, which is not accounted for by the low order 
SIBC of the Leontovich type. Hence, since the surface 
is planar, coefficients vi and wi in (18) are zero. 

The computational domain (the dielectric half-
space) is discretized into a 100 x 100 Cartesian grid 
made of one layer of 3D Yee cubic cells with side 
length ∆=0.015 m. Mur’s first order absorbing 
boundary conditions are used at the other boundaries. 
Time convolutions in (18) are computed recoursively 
applying the Prony’s method, as proposed in [9]. 

The following current pulse is considered 
 

( )
2

0

0 






 −
−−

= τ
τ

τ
τ

t

ettI ,                     (22) 

with t∆= 40τ , t∆=120τ , where the time step t∆  was 
chosen as  02cxt ∆=∆ . The electric field at point 
( )0,0x  is computed using the low order SIBC, the high 
order SIBC and the analytical solution (Fig. 5-6).  As 
can be noted, at low values of conductivity (σ = 0.1 
S/m) and when the filamentary source is near to the 
surface, the SIBC of low order does not give accurate 
results, while a better accuracy is reached by means of 
the present formulation. In the cases of higher values of 
conductivity (σ =1 S/m, σ =10 S/m), as shown in [4], 
the low order SIBC is accurate enough.  
 
 

 
 
Fig. 4. Geometry of the test problem. 

 

 

 
Fig. 5. Electric field at the observation point for 
ys=10∆; xs=20∆; σ= 0.1 S/m. 
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Fig. 6. Electric field at the observation point for 
ys=10∆; xs=30∆; σ= 0.1 S/m. 
 
 

V.    CONCLUSIONS 
 

The 2D numerical example has shown the 
improvement in accuracy of the proposed formulation 
compared to the corresponding formulation published 
in [5] employing low order SIBC. Even if FIT with 
Cartesian grid is computationally equivalent to FDTD, 
in the paper high order SIBCs have been expressed 
directly in FIT state variables and in future work they 
can be generalized to non cartesian grids and 
implemented in conformal schemes. 
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Abstract—We present the use of an adaptive set of basis
functions used in conjunction with the MoM to solve the
linearized scalar inverse electromagnetic scattering
problem. The basis functions, which are whole-domain
and harmonic, are selected to provide a perfectly
conditioned solution under the first-order Born
approximation when multiple frequency experiments are
considered. In order to iteratively solve the full non-
linear problem by the Distorted Born Iterative Method
(DBIM) and/or the Born Iterative Method (BIM), we
introduce a single parameter into the basis function
expansion to demonstrate that it is possible to maintain a
well-conditioned linearized inverse problem by selecting
the parameter value that minimizes the condition number
of the discrete matrix operator. The proposed technique
eliminates the need for Tikhonov regularization or
equivalent regularization schemes commonly applied to
the single-frequency, pulse-basis formulation of the
linearized inverse scattering problem.

Keywords—Inverse imaging, Distorted Born, Born,
Iterative methods, regularization.

I. INTRODUCTION

It is well documented that the continuous, non-
linear, time-harmonic, scalar inverse scattering problem
in electromagnetics is ill-posed [1], [2]. In fact, using
monochromatic interrogation and a first-order
linearizing assumption such as the Born approximation
[3], the linear inverse problem results in a Fredholm
integral equation of the first kind that retains the ill-
posedness of the full non-linear problem. As the
resulting operator has a null-space, no unique solution
exists and one must select one of an infinite number of
solutions by imposing additional constraints, a process
known as regularization [2], [4]. 

It is beneficial to examine the cause of the ill-
posedness of the problem in order to choose a suitable
regularization technique. In the linearized inverse

scattering problem, the smooth nature of the kernel tends
to suppress the effects of high-frequency spatial
variations of the unknown contrast function on the
measured field values, thereby making the high-
frequency contrast components irrecoverable from the
field data [4]. Thus, a suitable regularization technique
should, in some way, limit the high frequency
components of the reconstructed contrast function.

A common way of solving the linearized inverse
problem is to discretize the unknown contrast function in
terms of a pulse basis expansion [5], [6] which, in itself,
imposes no constraint on the maximum spatial frequency
of the reconstructed contrast. Due to the ill-posedness of
the continuous problem, the resulting discrete linear
system is ill-conditioned [4] and, without regularization,
directly solving the system yields a solution with little to
no physical significance. Consequently, one of two types
of regularization methods is commonly applied to the
discrete system. The first, Tikhonov regularization,
im poses  a  pena l ty  con s t r a in t  we ig h ted  by  a
regularization parameter. The parameter attempts to
balance the error in the residual against the error inherent
in the high spatial-frequency components [4-6].
Tikhonov regularization is capable of providing
solutions that converge to the unknown contrast function
when an iterative solution of the full-nonlinear problem
is adopted [5], [6]. Unfortunately, the first-order
approximation is often highly oscillatory depending on
the type of penalty function selected (as shown in the
numerical results of [5]) and gives little insight as to the
physical nature of the true contrast. 

The second popular regularization technique is the
so-called truncated singular value decomposition
method (TSVD) [4], [7]. As its name implies, this
approach truncates the singular value reconstruction of
the solution thereby constraining the high spatial-
frequency components of the pulse-based solution. In
fact, TSVD can be shown to be “essentially equivalent to
Tikhonov regularization when the penalty matrix is taken
as the identity matrix” [4]. Under this equivalence the
1054-4887 © 2007 ACES



61JEFFREY, OKHMATOVSKI, LOVETRI, GILMORE: ADAPTIVE BASIS FUNCTION TO INVERSE SCATTERING
truncation order substitutes as a regularization
parameter. 

While for both Tikhonov regularization and TSVD
there exist mathematical methods for determining a
suitable value of the regularization parameter [4], [7], the
solution is often quite sensitive to the parameter value
and selecting an appropriate parameter can be both
difficult and computationally expensive. The tools are,
however, quite powerful and in cases when one has no
choice  bu t  to  r egu la r ize  the  p rob lem by  the
aforementioned methods, they enable a meaningful
solution to be obtained. The inverse scattering problem
does not,  however,  necessari ly require formal
regularization provided that the problem is formulated
carefully. Our approach is to select equations that arrive
at a discrete system where only a single, meaningful
solution is possible. Further, we wish to choose our
equations in such a way that the Born Approximation
remains a meaningful first-order solution i.e., it is a
smooth first-order approximation to the unknown
contrast.

With this in mind, we note that in special cases the
Born approximation is capable of annihilating the null-
space of the discrete operator giving a unique first-order
solution. Specifically, under plane-wave incidence, the
measured field data may be identified as the spatial
Fourier Transform of the unknown contrast function [3],
[8]. Therefore, by applying an inverse Fourier Transform
to the field data we may uniquely obtain the contrast up
to some maximum spatial-frequency, a result that is
sometimes referred to as Fourier Imaging. Thus, in
Fourier Imaging, it is by multiple frequency experiments
that we “regularize” the problem (in so far as we manage
to make the solution both physical and unique).
Essentially, we are adding information. Fourier
techniques also have the advantage of a smooth, first-
order approximation to the unknown contrast function
[2]. 

In this paper, based on the idea that Fourier Imaging
offers a well-conditioned first-order solution, we first
derive a perfectly conditioned MoM formulation of the
inverse problem by expanding the contrast function in
terms of whole-domain complex exponential basis
functions, i.e., the Fourier series harmonics. Second, as
the limitations of the Born approximation are well
known, we present a parameterized set of harmonic basis
functions suitable for iterative solution schemes for
solving the full non-linear problem such as the Born
Iterative Method (BIM) [5] and the Distorted Born
Iterative Method (DBIM) [9].

As the focus of this paper is to illustrate the benefits
of the proposed basis function expansion, we focus
primarily on applying the basis functions to the (D)BIM
solutions for the simple 1D, lossless, noise-free problem

which serves as a well documented benchmark for new
inverse solution methods [1], [7]. To show that the
theory can be extended to higher dimensions, we include
a 2D formulation for the BIM. For both the 1D and 2D
cases considered, we show successful reconstruction
results.

What is presented herein is an elaboration of the
work we have presented at various conferences during
the past year [10-13]. We provide all details of the
formulation and show results for both the BIM and the
DBIM on the same problems.

II. THE MOM SOLUTION TO THE 1D 
SCATTERING PROBLEM UNDER THE BORN 

APPROXIMATION

C o n s i d e r  t h e  1 D  i n t e g r a l  e q u a t i o n  f o r
electromagnetic scattering,

(1)

where  is the transverse component of the electric
field,  is the incident electric field,  is the
unknown relative permittivity as a function of position
and where  is the wavenumber of free space.
Throughout this paper an  time dependence is
suppressed where  and  is the radial frequency
of the electric field. The free-space Green’s function

 is,

(2)

where  if  and  if . For the
incident field, we consider plane waves propagating in
either the positive or negative  direction i.e.,

(3)

where the direction of propagation is negative for
 a n d  p o s i t i v e  f o r  .  A ss u m i n g  a

permittivity contrast which is spatially bounded to a
domain , the infinite integral in (1) collapses
to . Applying the Born approximation, namely that
scattering is weak and the field within the domain  may
be approximated by the incident field, (1) becomes,
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Above,  is the contrast function used to denote the
unknown relative permittivity contrast . To solve
for the unknown contrast, we begin by expanding 
in terms of  whole-domain complex exponential basis
functions,

. (5)

For reasons which will be made clear, the spatial
frequencies are selected as ,  for

, where  is selected as  i.e.,
the fundamental wavelength is selected as twice the size
of imaging domain. The  shift is essential as it
implicitly adds a DC component into each harmonic over
the imaging domain. As a result, we eliminate the need
for an explicit DC basis function. 

Upon substitution of (5) into (4) we obtain a single
equation in  unknowns,

 (6)

While a typical approach to obtain a system of equations
from (6) would be to test, or weight the equation by
means of  different inner products on the domain 
[14], we must take a different approach because the
domain of the left-hand side of (6) does not coincide with

. Instead, we consider  independent scattering
experiments. Using multiple scattering experiments is a
typical way of creating a sufficient number of equations
[6], [9], but normally (in higher dimensions) one has the
ability to construct the different scattering experiments
by taking different angles of incidence, rather than
different frequencies. This freedom does not exist in the
1D problem. Instead, we construct  experiments with
an incident field propagating in the positive  direction
where the scattering amplitude is measured at a single
location  such that . For each of these
experiments the incident field wavenumber  is
selected as  for . Next, we construct 
experiments where the incident field propagates in the
n e g a t i v e   d i r e c t i o n  ( t a k i ng  c o r r e s po n d in g
measurements at a single location  such that

) .  Again we select  the wavenumbers
 for .  For incidence in the

positive  direction we obtain the following  algebraic
equations:

(7)

while for propagation in the negative  direction we
obtain,

(8)

Due to our previous choices of  in the expansion (5),
the functions  are orthogonal over the imaging
domain and the combined system of equations consisting
of (7) and (8) is perfectly conditioned. We write the
system as,

, (9)

where  is the identity matrix,  and
 are  vectors  of  the unknown

contrast expansion coefficients and  and  represent
vectors of the left-hand side of (7) and (8), respectively,
appropriately scaled by the width of the imaging domain.
Clearly, this demonstrates that by using the proposed
whole-domain basis functions and a multitude of
scattering experiments we are able to produce a
perfec t ly-condi t ioned sys tem under  the  Born
approximation. In fact, it can be shown that this result is
equivalent to Fourier Imaging. Before presenting
appropriate basis functions for iteratively solving the full
non-linear problem, we summarize two common
iterative techniques, namely the DBIM and BIM.

III. THE DISTORTED BORN ITERATIVE METHOD

The pertinent theory of the DBIM may be found in
[9] and is summarized herein. As is common to many
iterative techniques for solving the inverse scattering
problem we consider equation (1) as two distinct
equations used alternatively in a two-step updating
procedure. At each iteration , we identify from (1) the
d a t a  e q u a t i o n  w h en  .  W e  a s s u m e  a n
approximation to the fields within  (such as the Born
approximation for the first iteration) and solve for the
updated contrast function . The key to the DBIM is
that instead of computing , we compute 
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defined as the difference between  and .
This is accomplished by numerically computed a
Green’s function  from  and the field
values acquired at the  iteration such that the
distorted data equation becomes,

(10)

where  is simply the true total field which is a
measurable quantity at  and  is the total
field produced by the contrast .

To compute the numerical Green’s function ,
we use,

(11)

where we must first solve (11) for all source points
 when . We may then use (11) with  to

compute  at any location in space.
Next, the domain equation is used to update the field

within the imaging region from the updated contrast
. Formally, we consider 

and solve 

(12)

We may solve the full non-linear inverse problem by
repeating the following procedure beginning with

:

• Solve for  from (10) using the field
computed from (12) at iteration  and
update . In the case of  we
approximate the field using the Born
approximation, hence , 
and .) 

• Solve for the numerical Green’s function at the
observation points  from equation (11)
and solve for the updated field within the
imaging domain from the current contrast
function using (12). From the field solution
within , use (12) to directly compute  at
the observation point(s) .

IV. THE BORN ITERATIVE METHOD

While the DBIM attempts to re-use information of
the profile at each iteration by formulating the problem
in terms of , a simpler iterative scheme that simply
computes  at each iteration without computation of
the numerical Green’s function may be used. This
method, namely the BIM is detailed in [5]. The BIM data
equation may be obtained from (10) by setting

 and  for all .
Also, it is necessary to set  on the left
hand side of (10). The BIM domain equation is the same
as that of the DBIM.

V. AN ADAPTIVE, WHOLE DOMAIN BASIS 
FORMULATION FOR THE DBIM/BIM

The iterative procedure summarized in the previous
section makes use of two integral equations for
iteratively solving the non-linear, scalar, electromagnetic
inverse scattering problem under the linearizing
assumption of the Born Approximation. The domain
equation (12) (which has the same form as (11)) is a
second-kind integral equation and is not ill-posed. For
instance it can readily be solved by expanding the
unknown field quantity into pulse basis functions and
using point-matching. Consequently, the solution to
equations (11) and (12) will not be discussed further.
Conversely, the data equation, corresponding to a
linearized inverse problem, is ill-posed as discussed in
Section 1 and we must either use standard regularization
techniques or formulate the problem carefully. We
consider therefore, the basis function expansion for the
unknown contrast presented in Section 2, which, despite
the ill-posedness of the problem gave an ideally
conditioned matrix. It is clear however, that the
orthogonality property used to produce this ideally
conditioned system will vanish at subsequent iterations if
the basis function expansion (5) is used. Instead, for
iterations  in the DBIM we expand the contrast in a
parameterized set of basis functions,

(13)

where  is an iteration dependent, real-valued
parameter used to dynamically modify the basis function
expansion of the unknown contrast function with the sole
purpose of minimizing the condition number of the
discrete matrix. (A similar expansion is used for  in
the BIM.) The motivation for minimizing the condition
number of the matrix is discussed in Section 7. 
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Specifically, if we substitute the expansion (13) into
(10), making the dependence on the measurement
location and incident field direction explicit via the
parameters  and , (while dropping the explicit
dependence on  for brevity) we obtain,

 (14)

Applying the same testing procedure as the one adopted
for the first-order solution we obtain an iteration
dependent linear system which we write in compact form
as,

(15)

where  and  are matrix representations of
those terms in (14) corresponding to the coefficients 
while  and  correspond to the terms
involving . Equation (15) reduces to equation (10)
for  under the Born Approximation with .
In the case of the BIM, the right hand side is iteration
independent.

The matrix in (15) will, in general, be dense and
“poorly” conditioned if the parameter  is
selected. Therefore, we minimize the condition number

 of the matrix by performing an optimization over
the parameter . Experience has shown that the
function  is not unimodal as shown in Fig. 4
and hence a global optimization routine is required and is
discussed in Section 7.

VI. EXTENSION TO THE BIM IN 2D

In 2D the time-harmonic, lossless, non-linear, scalar
inverse scattering problem for transverse magnetic (TM)
fields may be mathematically represented by the 2D
version of the non-linear integral equation (1),

(16)

where a cartesian coordinate system is assumed and the
position vector is given by .

 is the -component of the
the scattered field defined as the difference between the
total Field  and the incident field . The
fields are parameterized by the wavevector

, and the wavenumber  is given by
. In (16), we assume the 2D, free-space Green’s

function ,

, (17)

where  is the zeroth-order Hankel function of the
second kind. In the far-field, this Green’s function may
be replaced with its large argument approximation, 

. (18)

Again, we consider incident plane waves now defined
as,

. (19)

Under the assumption of a rectangularly bounded
imaging domain 
such that the contrast function  , and
under the Born approximation, the integral in (16)
collapses to  and becomes,

(20)

where the explicit parameterization by  has been
dropped for brevity. Now, making an additional far-field
assumption we approximate the phase term as

 where  and approximate the
amplitude term by . Then, the integral
equation becomes,

(21)
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we may further reduce the integral equation to,
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(22)

where  has been used to representing the leading
terms in (21). Once again, we expand the unknown
contrast function in terms of whole-domain, harmonic
basis functions as, 

(23)

where , and .
The coefficients  correspond to the unknown
amplitude of the  basis function, while  and 
limit the number of basis functions selected. For
convenience we now impose a natural ordering on the
pairs  such that we may re-write the basis function
expansion (23) as,

(24)

where each  corresponds to a unique pair  and
where  is given by the corresponding value

. 

Substitution of the basis function expansion into integral
equation (22) yields,

. (25)

Thus, (25) represents a single equation in the 
unknowns . To obtain more equations we now
considering multiple incident fields at different angles
of incidence and various frequencies. Specifically, we
note that if we take any incident field where , we
obtain,

. (26)

To create a set of  equations in  unknowns we vary
the incident field wavevector in a manner analogous to
the 1D case i.e., we let the physical wavevector

, for . This results in,

. (27)

where we have taken a different measurement location
 for each equation. Note that  must be both in the

far field, and in the direction of  to validate previous
assumptions. Finally, we note that if we select

 and  then
the basis functions are orthogonal to the kernel of the
integral operator over the domain  which reduces the
inverse problem (27) to a perfectly conditioned linear
system analogous to (9),

. (28)

Again, like the 1D case, at subsequent iterations
beyond the first-order Born Approximation, we use the
basis function expansion,

(29)

where, as discussed in Sections 5, the parameter  is
used to minimize the condition number of the discrete
operator.

VII. NUMERICAL RESULTS

The iterative procedure using the adaptive basis
funct ion  expansion previously  descr ibed was
implemented and tested. Herein we show the 1D results
for a relative permittivity contrast selected to be the
positive cycle of sinusoid with period  m centered
over the domain  having an amplitude of

 and a rectangular contrast of amplitude  existing
over the same domain. Data was acquired at the locations

 and  m while the imaging domain was
restricted to  m. The contrast was
expanded using 20 basis functions i.e.  and a
direct search of the parameter space was performed over
the range . The results of the 1D-DBIM and BIM
are shown in Figs. 1 and 2, respectively. As expected, the
DBIM method converges faster than the BIM [5], [9].
Note that in Fig. 1, the Distorted Born reconstruction for
the sinusoid converges at iteration 2 and therefore, the
curve for iteration 6 lies on top of the curve for iteration
2. The profile error from iteration to iteration for both
methods is shown in Fig. 3 while the 
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Fig. 1.  1D DBIM profile reconstruction results: sinusoidal (a), rectangular (b).
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system condition number versus parameter value 
are shown for the two methods in Fig. 4.

For the 2D case, we show the results of the BIM for
a contrast function that consists of two Gaussian pulses,
centered at  m and  m within
a square imaging domain that extends in both dimensions
from  to  m. The standard deviation of each pulse
is  in both spatial dimensions. The pulse closer to
the origin was given a maximum amplitude of  while
the other, an amplitude of . To iteratively reproduce the
contrasts we used 144 basis functions (selecting

). Figure 5 shows the true contrast function
and reconstructed profiles after the Born approximation
and the sixth iteration.

In all cases, the forward solution was obtained from
a MoM formulation using a pulse basis over the imaging
domain. 

VIII. DISCUSSION

While a rigorous mathematical investigation of the
effects of our parameterized basis function expansion is
subject to ongoing research, we can suggest three
immediate reasons why this technique is a good
candidate for solving the linearized inverse scattering
problem. First, the very nature of the basis function
expansion limits the high frequency components of the
reconstructed profile which, as discussed in Section 1,
contributes to the ill-posedness of the original problem.
Second, as the condition number is defined as the ratio of
the largest to smallest singular values of the operator
matrix, we are implicitly demanding that the solution to
the discrete system, corresponding to the basis function
coefficients, is not overwhelmed by unconstrained high
frequencies. This can be seen by ordering the singular
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values of the discrete operator in non-increasing order
and noting that the corresponding singular vectors have
a non-decreasing number of zero crossings. frequency
[4]. Lastly, and perhaps most importantly, if we consider
the multiple-frequency approach in conjunction with
minimization of the condition number as a sort of
regularization technique itself, the selection of the basis
function parameter (which, in this context would double
as the regularization parameter) is well-defined: we
select the value of the regularization parameter which
minimizes the condition number of the discrete operator.

Two comments should be made. First, at an arbitrary
iteration , the function  is not unimodal and
an optimization technique is required to determine the
optimal value of . For the results shown in this
paper, as the optimization space is over a single
parameter (for both the 1D and 2D formulations), we
have used a direct search over the parameter space.
Empirically, we have found that at each iteration, the
condition number has a global minimum on the interval

where,

. (30)

The previous expression is motivated by the fact that the
basis function parameter is present as a phase term in the
basis function expansion and should therefore be in some
way proportional to the field velocity in the medium.
Fig. 4 shows typical behaviour of the condition number
as a function of the regularization parameter. 

Clearly, minimizing the condition number of the
matrix involves the repetitive computation of the discrete
operator for each  and its condition
number. Fortunately, the number of harmonic basis
functions required to satisfactorily reproduce an
unknown contrast function is generally much less than if
a pulse basis expansion was considered. As a result, the
condition number evaluation does not pose significant
computational strain.

Second, in many cases the condition number of the
operator matrix is not unreasonably large. Nevertheless,
minimization of the condition number is still required to
obtain a good solution. Thus, at each iteration, it is
essential to pick  corresponding to the minimal
condit ion number and not  to one that  appears
“sufficiently small”.

IX. CONCLUSIONS

Herein we have shown that it is possible to avoid the
use of common regularization techniques in the iterative
solution to the inverse scattering problem by carefully
formulating the experiments used to construct the

discrete linearized inverse problem. Specifically,
adopting a multiple-frequency formulation with adaptive
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Fig. 5.  2D BIM profile reconstruction results: True
contrast (a), first-order (b), and after six iterations (c).
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basis functions and a global optimization over the basis
parameter provides a well-conditioned matrix at each
iteration. We have demonstrated the applicability of our
adaptive basis functions to both the DBIM and BIM
methods in 1D as well as to the BIM method in 2D
(application to the 2D DBIM method poses no
theoretical problems). Our current concerns are
convergence to high-contrast profiles but this seems to
be a problem which may be inherent in the Iterative Born
techniques [2]. Even if this is the case, we plan on
applying our approach of properly formulating the
problem to other (possibly non-iterative) solution
methods in order to determine exactly in what cases the
usual regularization methods are avoidable. Future work
will include a rigorous analysis of the ability of the
proposed basis functions to reconstruct profiles in the
presence of noisy field data. Also, we will consider an
analysis for an optimum number of basis functions at
each iteration.
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Abstract—An object-oriented implementation of a
finite-volume time-domain (FVTD) engine for solving
Maxwell’s equations is presented. The relevant aspects
of the FVTD method are discussed from an object-
oriented perspective and details of the object classes are
given. Computational results obtained using the FVTD
engine for solving Maxwell’s Equations on unstructured
grids are also shown. The engine implements both
MUSCL and polynomial interpolation methods to
approximate the fluxes at the cell boundaries up to third-
order accuracy. In addition, the engine has the capability
of using a number of time-integration schemes. Results
are presented for the transient scattering from a PEC
sphere and a lossy dielectric cube. For the case of the
sphere, almost perfect agreement with the analytic
solution in the time-domain is achieved. The number of
cells required as compared to FDTD is substantially
reduced.

Keywords—Finite-volume time-domain, FVTD,
Maxwell’s Equations, object-oriented design.

I. INTRODUCTION

The finite-difference time-domain (FDTD)
algorithm is probably the most popular computational
electromagnetics (CEM) technique in use today. The two
main drawbacks of the standard FDTD method are that
curved geometries must be approximated by “stair-
stepping” the boundaries and that the electromagnetic
field components are interlaced in space and time. These
drawbacks require that a fine grid be used in order to
resolve curved boundaries which increases the required
computational resources. There have been several

successful investigations on modifying the method for
non-rectangular boundaries but these are difficult to
implement and use [1].

In recent years, the computational electromagnetic
community has taken interest in the finite-volume time-
domain (FVTD) algorithm as an alternative or
companion to the simple and powerful FDTD algorithm
for solving Maxwell’s equations [2, 3, 4]. The primary
reason for this interest is that the basic formulation of
FVTD does not require a structured spatial mesh and so
its ability to solve electromagnetic problems involving
complex geometries is not constrained by a lack of
ability to accurately describe the physical problem.

The finite-volume technique is a standard technique
used in Computational Fluid Dynamics (CFD) [5]. One
of the first comprehensive implementations of the
technique for CEM was reported by Shankar et al. in the
early 1990’s [2]. Shankar’s method collocates all the
field components at the center of each finite volume and
is implemented on structured body-fitted curvilinear
grids. It is a characteristic-based FVTD scheme which
uses a two-step second-order upwinding scheme. A
similar technique has also been presented by Shang [6].
Recently, two other groups have reported achieving
excellent results using a characteristic-based FVTD
technique [3, 4]. Both use a second-order accurate
Monotone Upstream-centered Scheme for Conservation
Laws (MUSCL) to interpolate the fluxes at the finite-
volume facets.

In this paper we consider the FVTD method on
unstructured grids and present the use of a higher-order
flux-interpolatory method, developed by Ollivier-Gooch
for fluid-dynamics problems [8], for our FVTD
computational engine. In addition, as the implementation
1054-4887 © 2007 ACES
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of our computational engine was undertaken from an
object-oriented perspective, this paper demonstrates the
flexibility of such an implementation of the FVTD
algorithm for handling a multitude of volumetric mesh
descriptions, time-integration, and flux-integration
approximations. Also, in order to facilitate an in-depth
understanding of the method, we provide an outline of
the class hierarchy and programming tactics used during
implementation. Although our FVTD implementation is
in C++, the object-oriented concepts we discuss are not
language specific.

This paper is organized as follows: In Section 2, we
discuss the object-oriented implementation of a
discretized volumetric mesh. Section 3 presents a brief
overview of the theory behind the FVTD method as it
pertains to Maxwell’s equations. In Section 4, we discuss
some of the interpolatory techniques available for flux-
in tegra t ion ,  namely  MUSCL and  polynomia l
interpolation schemes. Section 5 overviews the time-
integration schemes considered which retain the operator
representation of the FVTD update equation as a matrix-
vector-product. Finally, Section 6 validates the engine by
comparing computational results using FDTD, FVTD
with MUSCL interpolation, and FVTD with third-order
interpolation against FDTD. The problems of transient
scattering from a PEC sphere and from a lossy dielectric
cube are considered.

II. OBJECT-ORIENTED MESH REPRESENTATION

The FVTD solution of Maxwell’s equations requires
a volumetric grid over a specified three-dimensional
region of interest. The meshing software we use1 is
capable of producing unstructured meshes comprised of
tetrahedrons, hexahedrons, prisms, or pyramids and so
our FVTD engine has been designed to function using
any of these volumetric elements. Any volumetric mesh
consisting of polyhedral elements may be fully described
as a collection of elements which are, in turn, described
by vertices and facets. Thus the mesh description
inherently includes a geometrical hierarchy. Using an
object-oriented approach, our FVTD engine implements
a volumetric mesh as an object consisting of instances of
elements, vertices and facets each implemented as their
own separate classes as depicted in Fig. 1. The mesh
itself is an instance of the cMesh class and contains the
geometrical description of the mesh via arrays of
volumetric elements and vertices. A cMesh object is
responsible for accessing the mesh description from file

and is additionally responsible for saving the mesh
description in alternative formats compatible with
various visualization tools2. A brief discussion of the
vertex, element and facet descriptions follows.

Each vertex in the mesh, represented by an instance
of the cPoint class, contains three critical pieces of
information: its spatial location, a unique identification
tag corresponding to its location in the array of points in
the cMesh object, and a list of pointers to all elements
sharing it. The cPoint class also doubles as a general
Euclidean vector class and is equipped with standard
vector operators such as the cross-product.

Each element in the mesh, represented by an
instance of the cElement class, is also given a unique
identification tag and contains a list of pointers to cPoint
objects (denoting the vertices of the element) as well as
a list of the neighbouring elements. Storing neighbouring
elements by their identification tag is essential for an
efficient implementation. The element type is specified
by a member in the cElement class. In addition, the
cElement class is equipped with a set of utility functions
used to compute various geometrical properties of a
given instance of the class. The functions include the
computation of the element volume and dynamic
instantiation of element facets, as they are required
throughout the FVTD algorithm, by means of the cFacet
class. The different types of volumetric elements each
require different functions for appropriately computing
their geometrical properties. Because simple polyhedral
computat ions can be eas i ly  coded inl ine ,  our
implementation does not exploit inheritance to derive a
specific element from a base element class. If, however,
higher order elements were of interest (i.e., elements
with curved boundaries) such inheritance would be
benef ic ia l  for  more  compl ica ted  geometr ica l
computations.

Although it is possible to pre-compute and store
facet information for each element in the mesh,
experience has shown that such a list significantly
increases memory requirements. Therefore, as needed,
element facets are generated via function calls in the
cElement class which dynamically instantiate an instance
of the cFacet class. A facet object is responsible for
computing both the area and outward normal of the facet
which it stores for use during the FVTD algorithm.1. A versatile mesh generator is Gmsh (www.geuz.org/gmsh/), a 

program available under the GNU license agreement that is 
capable of producing unstructured volumetric grids. It is our 
tool of choice for mesh generation. 

2. We often make use of ParaView (www.paraview.org) for 
visualizing vector fields.
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III. FVTD FOR CONSERVATION LAWS AND 
MAXWELL’S EQUATIONS

The FVTD algorithm is usually applied to physical
phenomena which are governed by a conservation law.
For example, given a scalar quantity, denoted by ,
a typical conservation law would be,

(1)

where the flux vector  is some function of , and
 is a source term. Integrating the conservation law

over an arbitrary volume, , with boundary  gives,

(2)

where the divergence theorem has been applied to the
second term and  is the outward directed
surface element vector. The FVTD method for solving
electromagnetic problems considers all of the electric
and magnetic field components as components of a
so lu t ion  vec to r  ,  and  then  cas t s
Maxwell’s equations into a form analogous to (1).
Following a procedure similar to that given in [3],
starting from Maxwell’s two curl equations,

(3)

we employ the matrix operator,

(4)

by which the curl of a vector can be expressed in terms
of the divergence of a matrix operating on the vector,

. (5)

In terms of this new operator, Maxwell’s equations
can be written as

(6)

or, even more succinctly as

, (7)

where,

, , , . (8)

Integrating the curl equations (7) over an element
denoted by  with boundary  and using the
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Fig. 1.  Object-oriented mesh representation: class hierarchy.
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divergence theorem to convert the integral over volume
to integrals over the surface as in (2) we arrive at

(9)

where matrix  is defined by,

, (10)

where  denotes the outward normal to the volume
surface . Analogous to (2), the value  is
referred to as the flux through the surface . 

In order to discretize the electromagnetic problem of
interest we associate with each cell a value of the
generalized solution vector  located at the barycentre

 of element . This value is taken to represent the
average of the generalized solution vector over the
element , i.e.,

(11)

where  is the volume of element , and where 
scales with the size of the element. Next, we define

 and decompose  as a sum of
matrices with positive and negative eigenvalues (due to
the symmetry of  the eigenvalues are real). Limiting
each volumetric element to a homogeneous isotropic
s p a c e  d e s c r i b e d  b y  m a t e r i a l  p a r a m e t e r s

 and ,  i t  can be
shown that the matrix  has six eigenvalues given by

 where . To
avoid inducing artificial numerical oscillations into the
solution, it is beneficial to perform flux-splitting [3] by
decomposing  into

, (12)

where,

 

. (13)

To compute the value of the surface integral in (9)
we require knowledge of the flux  on the
boundary . To determine the flux, we let  denote
the solution vector on the inside part of the surface 

while using  to denote the solution vector on the
outside part of . We can consider  and  as
limits of the solution  from the inside or outside of
the element on to . The electromagnetic boundary
conditions for the continuity of the tangential electric and
magnetic field components across a boundary, 

, (14)

are used to express the flux at the surface  in terms of
the operator  as . As

 and  are not known explicitly they must be
interpolated from the known values in the cell interior. 

The flux at the boundary  may be split by first
calculating  and  at the cell boundary. Let us
consider the top and bottom blocks of  and

 separately. The top block is

  and 

. (15)

We multiply the first by  and the second by  to
obtain

  and 

(16)

w h e r e  .  F i n a l l y ,  a  l i n e a r
combination of these two gives the desired quantity,

(17)

where  and .
A similar construction can be made for the bottom block
of  and  in order to obtain .

Using these results ,  we come to a  concise
representation for the flux,

(18)
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Ã n̂( )

Λ diag 0 0 v v v– v–, , , , ,{ }= v 1 εμ⁄=
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 and 

(19)

and  is the identity matrix, and  is the
impedance.

At PEC boundaries zero tangential electric field and
the image principle can be used to derive that the linear
o p e r a t i o n  o f   o n   b ec o m es

, where 

. (20)

Consequently, it can be shown that the scattered field
formulation derived using the image principle results in,

, (21)

where  is the source term for the
scattered field formulation.

Finally, while a discussion of high-order mesh
truncation schemes is beyond the scope of this paper, it
is possible to obtain a simple mesh boundary condition
by setting  to zero at the mesh boundary.

IV. FLUX INTEGRATION: MUSCL AND 
POLYNOMIAL INTERPOLATION

It is apparent from (9) and (18) that integration
around the boundary of an element requires knowledge
of the flux (or equivalently the solution values  and

) at both sides of the cell boundary. As we are only
storing the solution at the barycentres of the elements, we
require interpolation of these values to the element
border in order to accurately integrate the flux. Two
common techniques for interpolating the flux at the cell
boundary are the so-called upwind and MUSCL schemes
[3]. As upwinding provides only first-order accuracy and
results in significant dissipation, we omit it from further
consideration. For brevity, details of the MUSCL
scheme are omitted, however the MUSCL scheme as
detailed in [3] was implemented yielding second-order
accurate results as will be shown in Section 6. Further,
we have applied polynomial interpolation, for which we
now summarize the required theory for computing the
fluxes at the volumetric element boundaries.

IV.A  The ENO Requirement

In any interpolatory technique used to compute the
value of the solution  at the boundary of a facet, we
make use of a stencil comprised of the values  located
at the centers of some elements in the neighbourhood of
the facet of interest. Although stencils for an arbitrarily
high order of approximation are available, when they’re
applied to a solution with strong gradients, experience in
CFD has shown that this could result in unwanted
numerical oscillations [7]. The idea behind essentially
non-oscillatory (ENO) interpolation schemes, used
frequently in CFD for approximating the solution value
at a given facet, is to use only neighbouring solution
values that are smoothly connected to the solution at the
facet in question. That is, the stencil that we use to
approximate the facet values cannot cross points where
the solution has steep gradients. Details can be found in
several publications dealing with computational fluid
dynamics (see, for example, [7, 8]) which deal with
problems that involve the evolution of shocks.

Initially, we believed that maintaining ENO
interpolation schemes would be critical to updating the
solution inside the computational domain. We thought
that material boundaries would require special care in
selecting the interpolation stencil in an analogous
manner to handling shocks in computational fluid
dynamics. However, upon numerical experimentation,
we found that such interpolatory stencil modifications at
material boundaries were unnecessary and, due to the
overhead required in computing the modified stencils,
we no longer impose ENO requirements. To date, we
have not encountered a problem of interest where such a
scheme is required. We do however, acknowledge that
for some problems, we may have to re-evaluate the
importance of ENO schemes.

IV.B  General Polynomial Interpolation

The work described herein closely follows the work
of Ollivier-Gooch found in [8]. In describing the
polynomial interpolation method of Ollivier-Gooch we
consider a polynomial  which interpolates the
field value solution  around a point  and require
that the difference between this polynomial and the exact
solution be of order , that is,

. (22)

IV.C  Stencil Selection

We require a stencil such that the data we use to
determine the coefficients of our polynomial are not too
far from the control volume center, . A good way to
collect finite volumes for the stencil around a finite
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volume  is to use the first neighbouring elements
around , i.e., those which share a common facet with

. Iterating this process and thereby adding new
elements to our control volume, we will collect a large
enough stencil to achieve the desired accuracy: enough
points to determine the coefficients for our polynomial.
The set of elements from which the stencil will be
generated may be written as,

(23)

wi th  .  The  intersec t ion   i s
assumed null if there is no common facet between
elements  and . The stencil  is then built by
considering the center points of each element in .
Usually  will be the same as the maximal possible order
of accuracy for the stencil [8].

IV.D  Polynomial Interpolation Theory

According to the dimensions of our problem, we
consider the function  and we write a
general Taylor’s expansion about the point . If the
function is infinitely differentiable in the neighbourhood
of , then we can write,

(24)

which is a polynomial approximation for  given by
the truncated Taylor’s expansion of degree . In (24)

. As the FVTD solution is in terms
of cell-averaged values , we let the expansion point 
correspond to the barycentre of  and take a volumetric
average of both sides of (24) over  to obtain,

. (25)

Now it is our desire to express  in terms of the
average values . We begin by extracting the first term
of the summation in (25) which happens to be  and
write it in terms of  as,

. (26)

Next, by extracting the first term of (24) we obtain

(27)

Finally, substitution for  from (26) into (27) gives,

(28)

where 

(29)

define the element moments and where 
corresponds to the first two terms on the right hand side
of (28) because the two error terms are of the same order.
By the selected substitution method we have implicitly
enforced that the average polynomial value over the
element  is equal to the cell-averaged solution  i.e.,

, (30)

due to the fact that, upon cell-averaging of (28), the error
terms cancel. Finally, to determine the polynomial
coefficients, corresponding to the partial derivatives in
(28), we minimize, 
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, (31)

where details can be found in [8].
We note that expression (28) can be used to compute

the true solution anywhere within the stencil from the
cell-averaged value in each element. Therefore, this
method enables us to convert the stored cell-average
values into a high-order solution for  and  on
element boundaries. It also allows us to output the true
solution for electromagnetic problems of interest such as
for scattering from a PEC sphere as shown in Section 6. 

IV.E  Object-Oriented Flux Interpolation

It is clear that an object-oriented approach to the
implementation of an engine capable of various flux-
interpolation schemes is possible. Further, one may be
interested in adaptively applying different flux-
integration techniques to save on computational
resources in regions where high-order techniques are not
required for adequate accuracy. Therefore, it is not
desirable to derive a flux-interpolation method from a
base class. Instead, our implementation uses a switch
statement to select between the methods so that all
methods are at our disposal during computation.

Using the above methods to approximate the flux at
the boundaries i.e.  and  we substitute (18) into the
second term of (9),

(32)

where  is the number of facets making up element ,
 denotes the element neighbouring  via its 

facet and  denotes the outward normal to the 
facet. Note that  and  are the integrals of the inner
and outer solutions over facet  respectively which we
compute analytically from the polynomial interpolation
function up to third-order accuracy.

Finally, for a mesh comprising of  elements we
define

(33)

where   i s  the  vector  of  a l l

unknowns. Using the notation of (32) and (33) in (9)
gives,

(34)

where the time-derivative is taken element by element
over  and where  is a source term where each
element of  represents the right-hand-side of (9) at the

 cell. It is of importance to note that under linear flux
interpolation the result of the operator  operating on 
can be viewed as a matrix-vector product.

V. TIME-INTEGRATION SCHEMES

Having organized the flux-integration into a matrix-
vector product over the entire computational space, it
remains to discretely approximate the time derivative in
(34). We have considered forward-Euler, predictor-
corrector, Runge-Kutta and Crank-Nicholson methods.
These methods are explicit schemes, save Crank-
Nicholson. For source-free media, the predictor-
corrector scheme discretization of (34) using a time-step
of  will give a system of equations of the form,

(35)

It is clear that this may be re-written as,

(36)

where,  and . In
fact, any explicit scheme can be formulated as a matrix-
vector-product and so an explicit formulation of the
FVTD method requires the one-time filling of the matrix

, setting the initial value of the solution vector over the
domain, followed by a simple matrix-vector product at
each time-step. Implementation of this update scheme
should make use of the matrix-vector product updating
inherent in the algorithm. For this reason, we have used
our matrix library, based on an underlying abstract
matrix class, namely, cAbstractMatrix. The benefit is
that this abstract class is compatible with various linear
system solvers such as our own implementations of
GMRES, BCGStab, etc. [9], so that in implicit schemes,
when the operator shows up on the left-hand side of the
update equation, our solvers can be used.

Unfortunately, storing the entire operator matrix
will require substantial amounts of memory for large
meshes. For example, in the case of a tetrahedral mesh
using simple upwinding, each block of six rows of the
matrix would contain five (corresponding to the element
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ũ* ũ**

m

N

1
V1
------ α 1– A n̂( )uds

∂T1

!
⎝ ⎠
⎜ ⎟
⎛ ⎞ T

:

1
VN
------- α 1– A n̂( )uds

∂TN

!
⎝ ⎠
⎜ ⎟
⎛ ⎞ T

LUb

U u1
T u2

T … uN
T

T
=

∂tU LU+ F=

U F
F

ith

L U

Δt

U n 1+( ) U n( ) ΔtLU n( )– Δt2

2
--------L2U n( ) O Δt 2( ).+ +=

U n 1+( ) L̃U n( )=

L̃ I ΔtL– Δt2 2⁄( )L2+= I R6N 6N×∈

L̃



78 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007
in question and its four facets)  blocks. A mesh
consisting of one million elements where 8 byte double
precision values are used to store the matrix entries
would require  Gigabytes of
RAM to store the matrix. The situation becomes worse
when higher-order interpolatory schemes are considered
(for example the MUSCL scheme would increase this
requirement 5 times). With our current resources we are
unable to store the entire matrix. Instead, we update the
solution  by dynamically computing the  six-row
block of . Therefore, for explicit schemes, we have
overloaded the cAbstractMatrix matrix-vector-product
operator with this row-by-row method of multiplication.
T h e  m a t r i x  c l a s s  w e  u s e  t o  i m p l e m e n t  t h e
cAbstractMatrix class for solving FVTD problems we
call cMaxwellApprox. A depiction of the conceptual flow
of the algorithm as well as the corresponding object-
oriented design is shown in Fig. 2.

VI. NUMERICAL RESULTS AND DISCUSSION

VI.A  Scattering from a PEC sphere

We present the FVTD results for scattering from a
perfectly electrical conducting (PEC) sphere as an exact

series solution is available in the frequency domain [10],
and a time domain solution may be easily obtained using
the inverse Fourier transform. This problem was selected
as a benchmark for the FVTD engine as the irregular
surface of the sphere coincides with one of the primary
reasons for developing finite-volume methods on
irregular grids: eliminating the need for stair-stepping at
arbitrarily shaped boundaries.

The finite-volume algorithm using the previously
discussed flux- and time-integration methods was tested
for a PEC sphere with a three metre radius centered at the
origin of a Cartesian coordinate system. An -polarized
electric-field plane-wave transient pulse 
incident in the -direction and varying as the derivative
of a Gaussian was selected where, for 

(37)

T h e  p a r am e t e r s  w e r e  s e l e c t e d  a s :  ,
s ,  a n d  s  g i v i n g  a

shortest free-space wavelength of about 3 metres
resulting in significant energy in the resonance region of
the sphere.
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Fig. 2.  Algorithm flow and associated class description for the FVTD engine.
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Fig. 3 shows the computational results for the -
component of the scattered field at the back-scatter
location (0, 0, -7) (a), (c), (e), as well as at the side-scatter
location (-7, 0, 0) (b), (d), (f). For both measurement
locations, the analytic solution is compared to solutions
o b t a in e d  u s i ng  t he  M U S C L  a nd  po l y n om i a l
interpolation finite-volume methods computed on a
mesh with an average cell edge length of 0.75 m. All
results shown use the second-order predictor-corrector
time-integration scheme. In addition, FDTD results are
presented for a cell edge length of 0.1 m. The figure
shows that the FVTD results are in excellent agreement
with the analytic solution.

To further test the FVTD engine, the same PEC
sphere problem was solved for volumetric meshes with
average element edge lengths of 0.6 and 0.5 m. The back-
scattering results are summarized in Table 1. In the table,
the  error denotes the percent error between the
computed solution and the analytic solution as measured
by the  norm. Clearly, for the same level of
discretization polynomial interpolation is more accurate
than MUSCL as expected due to the higher-order spatial
approximations used in the polynomial interpolation
scheme.

Comparing the FVTD results with the FDTD results
we see that for the 0.1 m FDTD grid, the FVTD
algorithm provides better accuracy using MUSCL on the
0.5 m mesh. Third-order polynomial interpolation
provided more accurate results than FDTD even in the
case of the 0.75 m mesh. The increased accuracy
obtained for both the MUSCL and polynomial
interpolation schemes comes at the cost of increased
memory requirements needed to properly store the
unstructured mesh as discussed in Section 2. For
example, we require 203 Megabytes of RAM to store
700,000 mesh element solutions using the MUSCL
scheme, while FDTD uses roughly the same amount of
memory for 8 million grid point solutions. Fortunately,

the MUSCL solution at this level of discretization
already out-performs the accuracy of FDTD for the
simple case of the PEC sphere. For more complicated
geometries, we feel that the benefits of any of the FVTD
techniques will be even more prominent.

VI.B  Scattering From a Dielectric cube 

To test the FVTD implementation’s ability to handle
dielectric bodies and finite conductivities we show the
scattering from a lossy, dielectric cube. As there is no
known analytic solution for this problem we simply
compare the results with the FDTD solution. The cube
dimensions were selected as 6 m and the physical
parameters  were  se lec ted  as :  ,  ,

S/m. An x-polarized, -incident, electric-
field plane-wave Gaussian transient pulse 
was selected such that for 

(38)

with parameters , s, and
s. Again, FVTD results were simulated

on a volumetric mesh with an average element edge size
of 0.75 m and were compared to FDTD results obtained
from two regular grids: a 0.2 m regular grid and a 0.5 m
regular grid. Results are shown in Fig. 4.

From the results, we can see that the FVTD solution
to the lossy cube problem compares quite well with the
FDTD solution. The largest difference in the plots is
most likely due to differences in the dielectric modelling:
FDTD assumes a diamond shaped stencil for imposed
dielectric objects while FVTD is capable of imposing a
constant dielectric within each finite volume, providing
a more accurate physical model of the cube.

x

Table 1: Comparison of PEC sphere back-scattering results.
Solution method Average Element 

dimension (m)
Number of 
mesh cells

Memory Require-
ments (Mb)

Number of 
time steps

 Error of 

MUSCL 0.75 ~200,000 62 ~750 7.13%

MUSCL 0.6 ~400,000 117 ~900 7.40%

MUSCL 0.5 ~700,000 203 ~1100 2.87%

Polynomial-3 0.75 ~200,000 131 ~750 3.12%

Polynomial-3 0.6 ~400,000 251 ~900 1.70%

Polynomial-3 0.5 ~700,000 435 ~1100 1.69%

FDTD 0.1 ~8,000,000 223 ~2000 3.25%

L2 Ex
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Fig. 3.  Scattering from a 3 meter PEC sphere: Back-scattering (a), (c), (e); and Side-scattering (b), (d), (f);
MUSCL (a), (b); Polynomial Interpolation (c), (d); FDTD (e), (f).
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VII. CONCLUSIONS

The unstructured grid FVTD method using MUSCL
or polynomial interpolated flux-integration, and second-
order predictor-corrector time-integration, has given
excellent results for all scattering problems tested thus
far. The FVTD method has shown to yield more accurate
results than FDTD solutions for the same level of
discretizat ion.  This  is  due to a  more accurate
approximation of the geometry for curved scatterers in
FVTD. In the case of the PEC sphere, to obtain the same
level of accuracy using FDTD required a cubical cell-
size 7 times smaller than the average cell edge-length in
FVTD. 

Although we have not included a comparison of the
computational time required by FVTD and FDTD for the
same numerical problem, we can say that compared to an
un-optimized FDTD implementation, our un-optimized

FVTD engine ran substantially faster for the same level
of accuracy. We did compare the performance of our
engine against a fully optimized commercial FDTD
package and found that our engine ran significantly
slower. Consequently, we are currently working on
optimizing our code and formulating a new criterion for
obtaining the maximum time-step which satisfies
stability conditions on an unstructured grid.
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Abstract-In this paper we propose a new sensor array
configuration for improved smart antenna design. The new
configuration involves two parallely-displaced sensor arrays
in the vertical plane. The proposed sensor array configuration
avoids the problem of spatial aliasing encountered in largely
spaced sensor arrays and reduces the effects of inter-element
mutual coupling for closely spaced arrays. Moreover, the
proposed sensor array configuration allows for doubling the
number of array elements and, hence, increasing the system
capacity, without significantly increasing the array aperture.
This allows for a more accurate beam pattern to be generated
especially in a radio environment with a large number of inter-
ference signals. Numerical results are presented to demonstrate
the improved performance of direction-of-arrival estimation
and adaptive beamforming algorithms when the proposed array
configuration is used.

Index Terms-Smart antennas, adaptive array processing,
direction-of-arrival estimation, adaptive beamforming.

I. INTRODUCTION

The main impairments in wireless communication are mul-
tipath fading, co-channel interference, and delay spread. Smart
antenna systems overcome these impairments providing a
wider coverage and a greater capacity. This promising tech-
nology has been incorporated in 3G and 4G wireless systems
allowing for high data rate applications [1], [2].

A smart antenna system at the base station of a cellular
mobile system is depicted in Fig. 1. It consists of a uniform
linear antenna array for which the currents are adjusted by
a set of complex weights using an adaptive beamforming
algorithm. The adaptive beamforming algorithm optimizes
the array output beam pattern such that maximum radiated
power is produced in the directions of desired mobile users
and deep nulls are generated in the directions of undesired
signals representing co-channel interference from mobile users
in adjacent cells [1]-[4]. Prior to adaptive beamforming, the
directions of users and interferes must be obtained using a
direction-of-arrival estimation algorithm [5], [6], shown in Fig.
1.

Most smart antenna systems utilize a uniform linear ar-
ray (ULA) of elements that are spaced apart by half-
wavelength ( = 2). The inter-element spacing in a ULA
is chosen to be 2 in order to reduce mutual coupling
effects which deteriorate the performance of the direction-
of-arrival estimation and adaptive beamforming algorithms as
demonstrated in [2], [6]. If the inter-element spacing is chosen
to be smaller than 2 the mutual coupling effects cannot be
ignored and the beamforming algorithm fails to produce the
actual beam pattern. On the other hand, increasing the inter-
element spacing beyond 2 results in spatial aliasing which
takes the form of unwanted peaks in the output beam pattern.
It is therefore concluded that = 2 represents the optimum
value for the inter-element spacing in a ULA.

Due to practical considerations it is desirable to design
smart antenna systems with smaller size. This can be done
by employing a ULA with smaller aperture. Since the inter-
element spacing in a ULA is maintained to 2 the array
aperture can be reduced by decreasing the number of antennas
in the array. This will, however, limit the array capability of
handling more desired and interfering signals resulting in a
reduction in the system capacity.

It is therefore desirable to design a smart antenna sys-
tem which can handle more signals without increasing the
array aperture significantly. This paper presents a new array
configuration which consists of two parallely-displaced arrays
aligned in the vertical plane. The proposed array configuration
has several advantages. First, it maintains almost the same
radiation aperture as the conventional uniform linear array yet
it can handle more signals from users and interferers. Second,
the horizontal displacement between the two arrays in the
proposed array configuration allows for resolving correlated
signals encountered in multipath propagation environment
without having to apply spatial smoothing techniques [5].
Moreover, the vertical displacement between the arrays allows
for resolving signals arriving at grazing incidence (endfire
direction) in the vertical plane.

The paper is organized as followsSection II develops the
signal model for the proposed array configuration. Sections III
and IV present the theory of the direction-of-arrival estimation
and adaptive beamforming algorithms, respectively. Section V
presents results that demonstrate the improved performance of
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Abstract  The patch antenna fed by an L-shaped 
probe was proposed in 1998. This feeding method, and 
its modified version, the meandering strip, has led to 
the development of a new class of wideband patch 
antennas which can be operated in linear, circular or 
dual polarization with excellent performance 
characteristics. L-probe coupled patch antennas are 
simple in structure and low in material and production 
costs. Moreover, it can be designed with dual wideband 
performance which is very attractive for modern 
mobile communications.  This paper presents a 
review of the general designs for linearly and circularly 
polarized L-probe patch antennas. Comparisons 
between measured and simulated results are presented.  
Methods for gain enhancement and cross polarization 
suppression are also introduced. The designs and 
performances of two dual-band wideband L-probe fed 
patch antennas are also described.   
 

I. INTRODUCTION 
 

 In the last two decades or so, many methods have 
been developed to broaden the bandwidth of microstrip 
patch antennas.  One way is to use the L-probe 
coupled feeding method.  Since its introduction some 
seven years ago, a number of developments have taken 
place, including the designs for dual-band, 
dual-polarized and circularly polarized wideband patch 
antennas.  The objective of this paper is to give an 
account of these developments. 

The paper begins with a description of the context 
in which the method was developed, followed by a 
summary of the characteristics of the basic L-probe fed 
patch antenna and the characteristics of a twin L-probe 
fed patch antenna.  It proceeds to describe the more 
recent developments, including a derivation of the 
L-probe, called the meander or M-strip feeding method.  
The design of a dual-band dual-polarized antenna array 
is then presented. The paper ends with some 
concluding remarks.  
 

II. BRIEF REVIEW OF BANDWIDTH 
BROADENING TECHNIQUES OF MICROSTRIP 

PATCH ANTENNAS 
 

The basic structure of a microstrip patch antenna 
consists of an area of metallization supported above a 

ground plane and fed against the ground at an 
appropriate location (Figure 1).  The region between 
the metallic patch and the ground plane forms a 
resonant cavity.  The patch geometry can take on a 
variety of shapes. Two common feeds are the coaxial 
probe and the microstrip line (Figure 2). The 
bandwidth of a patch antenna is governed by the 
impedance bandwidth, commonly defined as the range 
of frequencies for which the standing wave ratio (SWR) 
is less than or equal to 2. In general, for most 
frequencies of interest, the bandwidth increases with 
substrate thickness and also increases as the relative 
permittivity decreases. However, one cannot obtain 
wide bandwidth just by increasing the substrate 
thickness. For the coaxial fed case, the length of the 
probe is increased when the substrate thickness 
increases. The large inductance associated with a 
lengthy probe makes it impossible to match the antenna 
to the feedline.  For the stripline fed case, the width of 
the line increases with substrate thickness, which 
increases the spurious radiation from the line and alters 
the resonant frequency of the antenna.  Also, there is a 
lower bound on the value of the relative permittivity, 
namely, unity. The result is that narrow bandwidth (< 
5%) is the major problem associated with the basic 
form of microstrip patch antennas fed by a coaxial 
probe or a microstrip line. 

 

Thin dielectric 
substrate

patch

Ground plane

Thin dielectric 
substrate

patch

Ground plane  
Fig. 1. Basic structure of a microstrip patch antenna. 
 

 

Microstrip lineCoaxial probe
Feeding methods

Microstrip lineCoaxial probe
Feeding methods  

Fig. 2. Patch shapes and two common feeding methods. 
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In the last two decades or so, a number of 
bandwidth broadening techniques of microstrip 
antennas have been developed.  Wideband designs use 
one or more of the following: (1) introduction of an 
additional resonance to the main patch resonance so 
that the overall response is broadband; (2) low 
permittivity substrates; (3) thick substrates and a 
scheme to overcome the mismatch problem. 

Figure 3 shows three wideband coaxially fed 
patches.  In Figures 3(a) and 3(b), parasitic patches 
are added either in the same layer (coplanar) or in 
another layer (stacked).  The parasitic patches 
introduce an additional resonance.  The coplanar 
design seldom exceeds 15% bandwidth, and it has the 
disadvantage of increasing the lateral size of the 
antenna [1].  The stacked geometry can achieve about 
20% bandwidth [2].  Although it does not increase the 
lateral size, it introduces another layer. 

 

Substrate 

(a) Coplanar parasitic patches 

Parasitic 
patches Fed patch 

Top view 

Side view 

Ground 
plane Coaxial feed 

Substrate 1 
Substrate 2 

Fed patch 

Parasitic 
patch 

Ground plane 
Coaxial feed 

(b) Stacked patches 

(c) U-slot patch 

Ground plane Coaxial feed 

Substrate 

U Slot 

Patch 

Top view 

Side view 

 
Fig. 3. Three broadband coaxial fed microstrip patch 
antennas. 
 
 

Figure 3(c) shows a single-layer, single patch 
wideband microstrip antenna.  In this design, a 
U-shaped slot is cut in the patch [3, 4].  The U-slot 
introduces a second resonance and provides a 
capacitance which tends to cancel the probe inductance, 
allowing the use of thick substrate.  With a foam 
substrate thickness of about 0.08 free space wavelength, 
this antenna easily achieves 30% bandwidth.  The 
main disadvantage is that the cross polarization 
radiation in the H-plane is quite high. 

Another wideband design is feeding the patch by a 
microstrip line through an aperture (slot) [5] (Figure 
4a). If the resonant frequency of the aperture (slot) is 
near the resonance of the patch, the effective 
bandwidth will be increased. Bandwidth of 10% can be 

achieved using a single patch. If a stacked patch 
geometry is used [6] (Figure 4b), 50% bandwidth has 
been reported.  However, there is significant backlobe 
radiation due to the resonant slot. 

 
Patch Dielectric substrate

Dielectric 
substrate

Aperture

Microstrip Feed line

Ground plane

Patch Dielectric substrateDielectric substrate

Dielectric 
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Aperture

Microstrip Feed line
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(a) 

Top view

Side view

Top 
Patch

Ground plane

Microstrip 
line Aperture

Bottom 
Patch

Bottom 
Patch

Microwave 
Substrate

Top view

Side view

Top 
Patch

Ground plane

Microstrip 
line Aperture

Bottom 
Patch

Bottom 
Patch

Microwave 
Substrate  

(b) 
 

Fig. 4. (a) Aperture coupled patch, (b) Aperture 
coupled stacked patches. 

 
 

III. THE L-SHAPED PROBE FEEDING 
MECHANISM 

 

Shortly after the publication of the first paper on 
the U-slot single layer single patch wideband patch 
antenna, another wideband single layer single patch 
antenna was introduced.  This design achieves wide 
band operation using an L-shaped probe feeding 
method.  The geometry is shown in Figure 5 and a 
prototype of this antenna is shown in Figure 6.  This 
design uses low permittivity substrate (air or foam) of 
thickness about 0.1 free space wavelength.  The feed 
is a modified version of the coaxial probe.  Instead of 
the center conductor extending vertically to the patch 
and connected to it, a portion of it is bent in the 
horizontal direction.  The horizontal arm of the probe 
is approximately a quarter of a wavelength long.  It 
provides a capacitance to counteract the inductance due 
to the vertical part.  This design has only one patch 
and one layer but it achieves 30% or more bandwidth.  
This feeding method for patch antennas was first 
discussed in [7, 8].  
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Fig. 5. Geometry of the L-probe coupled patch antenna. 

 

 
 

Fig. 6. Prototype of the L-probe coupled patch antenna. 
 
 

To illustrate the characteristics of the basic 
L-probe proximity coupled patch antenna, consider a 
design with the dimensions given in the caption of 
Figure 7.  

Figure 7 shows the simulated gain and SWR 
versus frequency for this antenna.  The simulated 
radiation patterns are shown in Figure 8.  It is seen 
that this antenna has an impedance bandwidth of 36%, 
an average gain of about 8.5 dB across the matching 
bandwidth, with stable broadside patterns.  However, 
the cross polarization level at the edges of the band is 
high, due to radiation from the vertical arm of the 
probe.  These characteristics are similar to the U-slot 
patch antenna. 
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Fig. 7. Simulated SWR and gain versus frequency of 
the L-probe coupled antenna of Figure 6 with the 
following dimensions: W=30 mm,L=25 mm,H=6.6 
mm, a=5.5 mm, b=10.5 mm, d=2 mm. 

 

(a) 4GHz (b) 4.53GHz 

(c) 5.34GHz 

H co-pol 
E co-pol 
H x-pol 
E x-pol 

 
 

Fig. 8. Simulated radiation patterns of the L-probe 
coupled antenna with the dimensions shown in the 
caption of Figure 7. 
 

In what follows, we describe various recent 
developments which show that the L-probe feeding 
method can be used to achieve a variety of 
performance characteristics. 

 
 
IV. TWIN-L-PROBE FEEDING MECHANISM 

 

By feeding the patch with twin L probes, the gain 
of the antenna is enhanced, accompanied by a 
reduction in the cross polarization radiation.  The 
geometry is shown in Figure 9 [9].  The separation of 
the two L-probes is about half a wavelength and the 
width W of the patch is about 0.7 wavelength.  The 
measured SWR and gain of this antenna are shown in 
Figure 10.  The case of a single L-probe is also 
included.  It is seen that the bandwidth for the twin 
L-probe is slightly smaller than the single L-probe, but 
the gain of the antenna is about 10 dBi for most of the 
passband.  The maximum gain of the single L-probe 
is about 8 dB but it drops off rapidly in the upper half 
of the pass band.  Figure 11 shows the measured 
radiation patterns.  It is seen that the beamwidth is 
narrower than the single L-probe case.  The cross 
polarization levels at the edges of the pass band are 
significantly reduced. 
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Fig. 9. Geometry of the twin-L-probe fed patch 
antenna. 
 
 

 
Fig. 10. Measured SWR and gain of the twin-L-probe 
coupled patch of Figure 9 with the following 
dimensions: L=22 (0.367λ), H=6 (0.1λ), W=44 
(0.733λ), T=0.3 (0.005λ), a=4.5 (0.075λ), b=12 (0.2λ), 
v=2(0.033λ), d=0(0λ), s=28.6(0.477λ). The case of 
single L-probe coupled patch is also shown for 
comparison. (From Mak et. al. [9], c 2005 IEEE) 
 

 
V. WIDEBAND DUAL FREQUENCY L-PROBE 

FED PATCH ANTENNA 
 

There are many applications in wireless 
communications that involve two or more distinct 
frequencies.  It is sometimes possible that a 
broadband microstrip antenna can cover the 
frequencies of interest.  However, the disadvantage of 
using a broadband antenna is that it also receives 
nondesired frequencies unless some kind of filtering 
network is introduced to reject such frequencies.  On 
the other hand, the advantage of a dual-frequency 
design is that it focuses only on the frequencies of 
interest and is thus more desirable.  Dual-frequency 
microstrip antennas can be designed by using a 
single-element, stacked patches, patch with reactive 
loading, or patches with slots.  When these are fed by 
the conventional coaxial probe, the resulting 
bandwidths are narrow.  The bandwidths in the two 
bands can be considerably enhanced by means of 
L-probes.  Two designs are described below. 

 
 

A.  Dual-Band Patch Antenna Fed by Two Separate 
L-Probes 

One such design is shown in Figure 12 [10]. It 
consists of two stacked patches, with the smaller one 
on the top layer.  Each patch is fed by a L-probe.  
Figure 13 shows the simulation and measurement 
results of the return loss and antenna gain at the lower 
and upper bands.  It appeared that the simulation 
results missed two high Q resonances in the lower band 
and one high Q resonance in the upper hand.  The 
impedance bandwidth is 26.6% and 42.2%, 
respectively, at the lower and upper bands, while the 
peak gains are 8.4 dBi and 8 dBi within these two 
bands.  The simulated and measured radiation patterns 
at 0.89 GHz and 2.4 GHz, respectively, are shown in 
Figures 14 and 15, respectively. All simulations in this 
paper are performed with the Zeland IE3D software. 
 
 

Single L probe Twin L probe

 
 

 
Fig. 11. Measured radiation patterns of the single 
L-probe and twin-L-probe coupled patch antennas. 
(From Mak et. al. [9], c 2005 IEEE) 
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Fig. 12. Geometry of the two-layer dual-band L-probe 
coupled patch antenna. W=243.6 mm(0.72λ1), H=47 
mm (0.139λ1), W1=125.6 mm (0.37λ1), H1=33 mm 
(0.098λ1), l1=20.5 mm (0.061λ1), h1=24.8 mm 
(0.074λ1), b=33.5 mm (0.1λ1), W2=44 mm (0.36λ2), 
H2=13 mm (0.106λ2), l2=19 mm (0.155λ2), h2=9.5 
(0.077λ2), t1=2 mm, t2=1 mm, D=4.6 mm, d=2 mm, 
S1=62.8 mm, S2=22 mm. (From Li et. al. [10], c 2005 
IEEE) 
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(b) Upper band 
 

Fig. 13. Simulated and measured return loss and gain 
of the antenna in Figure 12 at the lower and upper 
frequency bands. (From Li et. al. [10], c 2005 IEEE) 
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Fig. 14. Simulated and measured radiation patterns at 
0.89 GHz of the antenna in Figure 12. (From Li et. al. 
[10], c 2005 IEEE) 
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Fig. 15. Simulated and measured radiation patterns at 
2.45 GHz of the antenna in Figure 13. (From Li et. al. 
[10], c 2005 IEEE) 

 
 
 
 
 

92 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



 

B.  Dual-Band Patch Antenna Fed by Two 
Combined L-Probes 

Another design of dual-band patch antenna [11] 
fed by L-probes is shown in Figure 16. Instead of using 
two distinctly different feeds, as in the case shown in 
Figure 12, the two probes are combined together to 
form a single feed structure. Two slots are etched from 
the radiation edge of the lower-band patch to suppress 
the excitation of the TM20 mode that would influence 
the upper-band radiation pattern.  The performance of 
the antenna is simulated by IE3D ver. 10. Figure 17 
shows the simulated return loss for the antenna of 
Figure 16, with dimensions shown in the captions.  
The antenna operates at 900 MHz (λ1, lower-band 
operation) and 1.8 GHz (λ2, upper-band operation).  
The impedance bandwidth of 21% and 11% was found 
for the lower and upper bands, respectively. It is wide 
enough to cover GSM 900 and 1800 cellular phone 
systems. The maximum gain of 8.7 dBi was found in 
the upper band.  The simulated radiation patterns are 
shown in Figures 18 and 19. The 3 dB beamwidths of 
lower and upper bands are 71o and 83 o in the H-plane 
and are 51o and 57.5o in the E-plane. The cross 
polarizations is -10 dB and -13 dB in the lower and 
upper bands, respectively. The measured results agree 
with the simulation. Results can be found in [11].  
 

 
 
Fig. 16. Geometry of the dual-band patch antenna with 
combined dual L-probe feed.  
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Fig. 17. Simulated return loss of the antenna shown in 
Figure 16 with the following dimensions: L1= W1 = 
102 mm (0.324λ1), H1=45.5 mm (0.145λ1), b1=51 mm 
(0.162λ1), a1=31 mm (0.098λ1), S1=4 mm (0.0127λ1), 
g1 = 2 mm (0.0064λ1), g 2=90 mm(0.286λ1), c2 = 25.5 

mm (0.081λ1) L2=37 mm (0.22λ2), H2=24 mm 
(0.128λ2), b2=31 mm (0.184λ2), a2=13 mm (0.077λ2), 
S2 = 4 mm (0.0238λ2). 
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Fig. 18. Simulated radiation pattern of lower band at 
953 of the antenna shown in Figure 16, with the 
dimensions given in the caption of Figure 17. 
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Fig. 19. Simulated radiation pattern of the higher band 
at 1.786 GHz of the antenna shown in Figure 16, with 
the dimensions given in the caption of Figure 17. 
 

VI. MEANDERING STRIP FED PATCH 
ANTENNA 

The L-probe patch antenna has a cross-polarization 
level of about -15 dBi which may be too high in some 
applications. Phase cancellation technique can be 
employed to suppress the cross-polarization as 
described in [12]. This method can suppress the 
cross-polarization effectively but it requires a wideband 
matching network to feed the two oppositely oriented 
probes which are 180 degrees out of phase with each 
other, thereby increasing the complexity of the antenna 
structure. In addition, the E-plane pattern of the 
L-probe patch antenna is not symmetrical with respect 
to the broadside direction. This may affect the 
performance in antenna array design. 

As a modification of the L-probe patch antenna 
technique, a patch antenna fed by a meandering strip 
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has been invented recently [13]. As shown in Figure 20, 
the L-shaped probe is replaced by a strip feed which 
has a meandering form.  The strip looks like a 
combination of one L-shaped probe and one inverted 
L-shaped probe.  It is formed by bending a metal strip 
so that it has 3 portions normal to the ground plane and 
patch, and 2 portions parallel to the ground plane and 
patch. For an appropriate length of the strip, the phases 
of the current in the vertical portions of the strip are 
such that their radiations in the far-zone cancel, 
resulting in the suppression of cross polarization. 
 

(a) Perspective 
view

(a) Perspective 
view  

(b) Side view(b) Side view(b) Side view  
Fig. 20. Geometry of the printed meandering strip fed 
patch antenna. 

 
For ease of fabrication, the meandering strip can 

be printed on a printed circuit board.  For a typical 
design, the impedance bandwidth is similar to the 
L-probe patch antenna, while the cross-polarization is 
lower than -20 dBi over the operating band. Very 
symmetrical radiation patterns in the E-plane and 
H-plane are observed. Due to the suppression of 
cross-polarization, a higher gain of about 8.5 dBi can 
be achieved, which is about 1 dBi higher than the 
L-probe patch antenna.   

It was discovered that the impedance bandwidth of 
the meandering strip patch antenna can be increased to 
over 60% with acceptable performance in other 
electrical parameters. This is achieved by increasing 
the width of the meandering strip to about 0.25λ. This 
antenna represents the state-of-the-art wideband patch 
antenna technology. 
 
 

VII. CIRCULARLY POLARIZED STACKED 
PATCH ANTENNA FED BY A MEANDERING 

PROBE 
 

Both the L-probe and the meandering strip feeding 
method can be used for circularly polarized patch 
antenna.  Figure 21 shows one such design using two 
truncated stacked patches fed by a meandering strip.  

This arrangement generates two pairs of orthogonal 
modes, resulting in wide impedance bandwidth (34%, 
SWR<2) as well as wide 3 dB axial ratio bandwidth 
(14%). The simulated results are shown in Figure 22.  

  

W1 

W2 

A1

A2 
t 

H1 
H2 

g 

h 

 
         (a) perspective view           (b) side view 

 
Fig. 21. Geometry of the meandering strip fed stacked 
patches with truncated corners for circular polarization. 
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Fig. 22. (a) Simulated SWR (b) simulated AR and gain 
of the antenna shown in Figure 21 with the following 
dimensions: W1=56 mm (0.378λ0), W2=66 mm 
(0.445λ0), A1=17 mm (0.115λ0), A2=23.5 mm (0.159λ0), 
H1 = 18.5 mm (0.125λ0), H2=11.5 mm (0.078λ0), t = 16 
mm (0.108λ0), g=1.45 mm(0.01λ0), h=9.3 
mm(0.063λ0). 
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E-right, phi=0º 
E-right, phi=90º 

E-left, phi=0º 
E-left, phi=90º 

 
 

Fig. 23. Simulated radiation pattern of the higher band 
at 2.036 GHz of the antenna shown in Figure 21, with 
the dimensions given in the caption of Figure 22. 

 
 

VIII.  CONCLUDING REMARKS 
 

In conclusion, a class of wideband patch antennas, 
in the form of L-probe and the M-strip proximity 
coupled patch antennas, have been described. These 
antennas can be designed to yield wide bandwidth, 
high gain, and low back radiation.  They can also be 
designed for dual-band and/or dual-polarized 
applications.  It is relatively simple in structure and 
low in production cost.   
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Abstract — This paper discusses the concept and the 
realization of novel wideband dielectric resonator 
antennas (DRAs), in which a dielectric cylinder or 
parallelepiped are fed from a microstrip line through two 
parallel bowtie-slots. The concept of partial independence 
of the slot modes from the dielectric resonator mode is 
exploited in such a way that the resonances of the slot 
modes and of the DRA are designed to occur at different 
frequencies. As a result, the bandwidth of the DRA is 
significantly improved, while stability in the radiation 
patterns and low cross-polarization are maintained. 
Finally, a study is performed concerning the influence of 
the gap between the dielectric resonator and the ground 
plane upon the overall performance of the DRA. 
Comparison of the results from a commercial software 
tool (HFSS®) and from the Finite-Volume Time-Domain 
(FVTD) method is made. 

 
Index Terms — Dielectric resonator antenna, slot-

coupling, wideband antennas, bowtie slots, gap, FVTD.  

I. INTRODUCTION 

The demand for wireless communications in the lower 
GHz range is rising dramatically due to the publics need 
for mobility and internet connectivity at flexible 
locations. Dielectric resonator antennas (DRAs) [1] are 
very attractive candidates for such applications, because 
of their high radiation efficiency, low dissipation loss and 
small size. Other inherent advantages include the ease of 
excitation, the low fabrication cost and the large 
bandwidth compared to a patch antenna. For instance, a 
DRA of dielectric permittivity εr = 10 has an impedance 
bandwidth of around 10%, which is wide enough for a 
number of applications. However, for multiband 
applications wider bandwidths are always of interest and 
therefore various bandwidth enhancement techniques 
have been the focus of many DRA investigations. 

Most of the bandwidth enhancement techniques 
involve complicated structures for the dielectric resonator 
such as stacked DRAs [2], [3], [4], parasitic elements [5], 
[6], or non-canonical geometries [7], [8]. In most of these 
cases the manufacturing difficulty and hence the cost 
increases. To eliminate this problem, this paper 

introduces a simple but effective method to broaden the 
DRA bandwidth without adding manufacturing 
difficulties. In this solution, a microstrip line couples 
energy to a dielectric resonator through two parallel 
bowtie-slots. The advantage of the design proposed in 
Figure 1 lies in the weak coupling of the dielectric 
resonator mode to the slot modes [9]. Therefore, the 
modes can be independently designed in such a way, that 
the resonant frequencies are sufficiently separated from 
one another and, as a result, the impedance bandwidth 
increases. Moreover, the polarization and the radiation 
patterns of the DRA are maintained, since the slot modes 
and the fundamental modes of either the cylindrical or the 
rectangular dielectric resonator have similar radiation 
characteristics.  

 
 

 
 
Fig. 1.  Proposed antenna geometry. 
 
 

The design procedure for a double-bowtie-slot-coupled 
DRA is described in Section II. The validity and 
repeatability of the design process are demonstrated in 
Sections III and IV, where two individual cases are 
considered. The first case involves a simple cylindrical 
dielectric resonator (DR) that is fed by the double-bowtie-
slot excitation scheme, while in the second case the disc 
is replaced by a dielectric parallelepiped.. Simulation and 
experimental results are shown, in order to prove the 
initial hypothesis. Finally, a discussion is made in Section 
V about the effect of a ga. Simulation and experimental 
results are shown, in order to prove the initial hypothesis. 
Finally, a discussion is made in Section V about the effect 
of a gap between the dielectric resonator and the ground 
plane of the microstrip line. 
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II. DESIGN CONCEPT  

The design of a dielectric resonator fed from a 
microstrip line through two parallel bowtie-slots is a 
straightforward procedure, if the concept of the partial 
independence of the DR mode from the slot modes is 
taken into consideration. Therefore, the design process 
can be separated into three main steps.  

In the first step, the two bowtie slots are designed to be 
resonant at nearby frequencies f1 and f2.. To that end, the 
structure depicted in Figure 2 is simulated assuming a flat 
dielectric superstrate structure (permittivity εrd. To that 
end, the structure depicted in Figure 2 is simulated 
assuming a flat dielectric superstrate structure 
(permittivity εrd and height h) on top of the slots and 
infinitely extended in the x-y direction. This allows the 
computationally efficient use of the commercial software 
tool Ansoft Designer® (Method of Moments). The bowtie 
slots with lengths Ls1, Ls2 and widths Ws1, Ws2 are etched 
into the groundplane of a microstrip line, which is a 50 Ω 
line of width Wm. The distances from the centers of the 
two slots to the open end of the microstrip line are P1 and 
P2, respectively, so that good impedance matching can be 
ensured.  

 

Wm
Ls1

Ws1 Ws2

P2

P1

h �rd

�rst

x

y

z

Ls2

superstrate

substrate
 

Fig. 2. Schematic of the structure with the bowtie-slots 
between a sub- and a superstrate. 
 

With reference to Figure 2, the parameters that 
determine the frequency of resonance for the bowtie-slots 
are primarily the permittivity of sub- and superstrate, εrs 
and εrd, respectively, as well as the slot lengths Ls1 and 
Ls2. The widths Ws1 and Ws2 (or the flare angles of the 

bowties) are primarily used as matching parameters for 
the two slots, as well as to further increase their 
bandwidth [10]. 

The second step involves the design of the dielectric 
resonator. For dielectric resonators of a canonical shape 
like a cylinder or a parallelepiped, the literature offers us 
closed-form expressions for the resonant frequency of 
their fundamental modes [11]. Therefore, for a DR of the 
same permittivity εrd and height h as that of the 
superstrate in Figure 2, the other dimensions (radius for 
the cylinder, length and width for the parallelepiped) are 
tuned in order to achieve a resonant frequency f3 for the 
DR, which is nearby, but larger than the frequencies f1 
and f2.     

In the third step, the feeding scheme from the first step 
is combined with the DR designed in the second step. To 
do so, the feed design of Figure 2 is kept unchanged, but 
the lateral substrate dimensions are made finite and the 
superstrate is replaced by the DR, whose dimensions and 
permittivity were determined during the second step. The 
final structure, which is depicted in Figure 1, is fine-
tuned, so that its impedance bandwidth is further 
enhanced. This optimization involves primarily the stub 
lengths P1 and P2, the flare angles of the bowties as well 
as the position of the dielectric resonator center relative to 
the center line of the feeding microstrip. Since the 
structure is no longer infinitely extended in x- and y-
direction, all the simulations in this last step are 
performed with Ansoft HFSS® (Finite Elements Method). 

It should be emphasized that the mutual coupling of the 
two slots in parallel configuration may affect the radiation 
patterns of the DRA. The two slots in parallel point the 
beam at an angle different from the broadside direction. 
To achieve a broadside radiation pattern of the DRA, two 
methods can be used. First, the distance between the two 
slots can be further decreased with respect to the 
wavelength of operation. Second, shifting the center of 
the DR along the line connecting the slot centers does not 
only influence the matching, but can also affect the 
direction of maximum radiation. Obviously, the dielectric 
resonator serves as a dielectric loading for higher front-
to-back ratio, but most importantly, it helps form the 
radiation patterns generated by the feed. 

III. DOUBLE BOWTIE-SLOT-COUPLED CYLINDRICAL 
DRA 

For operation of the DRA in the 5.0 GHz – 6.5 GHz 
range using a simple dielectric cylinder, the 
aforementioned procedure results in an antenna geometry, 
as illustrated in Fig. 3. The cylindrical DRA is made from 
Rogers TMM® 10i laminate, with dielectric permittivity 
εrd = 9.8, height h = 4.5 mm, and radius r = 12 mm. The 
dielectric disc lies on top of the two bowtie slots, which 
have dimensions Ls1 = 7.9 mm, Ls2 = 6 mm, Ws1 = 0.58 
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mm, Ws2 = 2.02 mm, while their width at the center is Wc1 
= Wc2 = 0.3 mm. The center of the cylindrical DR is 
placed at a position P = 3.1 mm from the open end of the 
microstrip line. The width of the microstrip line is 
Wm = 2.4 mm and its open end is at distances P1 = 4.1 mm 
and P2 = 2.7 mm from the slot centers. Finally, the Duroid 
substrate’s permittivity is εrs = 2.2, its thickness is 
t = 0.7874 mm and its dimensions are 100 mm × 100 mm.  

Wm
Ls1

Ws1 Ws2

P1

P2

h �rd

�rst

x

y

z

Ls2

P

r

 
Fig. 3. Schematic of the double-bowtie-slot-coupled 
cylindrical DRA. 
 

According to the specifications given above, an 
antenna prototype was manufactured and measured. The 
measured and simulated return loss of the double-bowtie-
slot-coupled DRA is illustrated in Figure 4. An 
experimental impedance bandwidth of 33 per cent is 
obtained, a very satisfying value for a structure with a 
single cylindrical DRA. The small discrepancy between 
simulated and measured results is most probably caused 
by the gap between the ground plane and the DR. A more 
extensive discussion on this subject is made in Section V. 
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Fig. 4. Measured and simulated Return Loss of the 
cylindrical DRA as a function of frequency. 

To further illustrate the excitation of the three modes in 
the proposed scheme, the simulated real and imaginary 
parts of the impedance are depicted in Figure 5. The two 
slot modes are excited at 5.6 GHz and 6.5 GHz, while the 
fundamental HEM11δ mode of the cylindrical DR is at 
6.75 GHz. This statement can be further substantiated by 
looking at the real and imaginary parts of the input 
impedance (Figure 6) of the infinitely extended 
superstrate structure depicted in Figure 2. In this case, the 
infinite superstrate plays the role of a dielectric loading 
but does not excite any resonant modes. Therefore, only 
the two slot modes are excited, while the presence of the 
dielectric loading improves the front-to-back ratio. Figure 
6 proves the aforementioned hypothesis, since only two 
modes are observed: one at 5.65 GHz and one at 6.7 GHz. 
A comparison between Figures 5 and 6 clearly associates 
the third mode (indicated by the local maximum of the 
real part of the impedance) in Fig. 5 with the DR mode. It 
is worth mentioning that according to the simulations 
performed, the replacement of the superstrate by the DR 
slightly shifts the resonant slot modes to lower 
frequencies, due to the lowering of the effective 
permittivity εeff for the slots. 
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Fig. 5. Real and imaginary impedance of the structure 
with two bowtie-slots and the cylindrical DRA on  top. 
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Fig. 6. Real and imaginary impedance of the structure 
with two bowtie- slots and a superstrate (no DRA). 
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The measured radiation patterns (parallel and cross 
polarization) are depicted in Figures 7, 8, 9 at frequencies 
5.2 GHz, 6.25 GHz, and 6.7 GHz, respectively. As 
expected, the polarization remains reasonably pure for a 
wide angle range and the gain in the broadside direction 
is stable at around 3.5 dBi. In addition to that, the shift of 
directivity to an off-broadside angle, caused by the slot 
array, has been cancelled through the optimization of the 
distance between the slots and the position of the center 
of the dielectric disc. Therefore, stable radiation patterns 
are achieved.  

0
30

60

90

120

150
180

210

240

270

300

330

-40

-20

0

-40

-20

0

E-plane at 5.2 GHz

 

 co-pol
 cross-pol

0
30

60

90

120

150
180

210

240

270

300

330

-40

-20

0

-40

-20

0

H-plane at 5.2 GHz

 

 co-pol
 cross-pol

 
Fig. 7. Measured radiation patterns of the cylindrical 
DRA at 5.2 GHz. 
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Fig. 8. Measured radiation patterns of the cylindrical 
DRA at 6.25 GHz. 
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Fig. 9. Measured radiation patterns of the cylindrical 
DRA at 6.7 GHz. 

IV. DOUBLE BOWTIE-SLOT-COUPLED RECTANGULAR 
DRA 

The general validity of the proposed design procedure 
is further substantiated by the application of the same 
concept to the case of a rectangular DR fed by two 

parallel bowtie slots. It should be noted that the choice of 
the cylindrical and the rectangular dielectric resonator 
was made based on two criteria: the presence of closed 
formed expressions for the determination of the 
frequencies of the resonant modes and the ease of 
fabrication.  

For the same frequency range of operation, the feed 
geometry and the dimensions of the various components 
are kept unchanged from the cylindrical DRA 
configuration.. The sole difference is obviously the 
dielectric resonator, which is now a parallelepiped made 
from Rogers TMM® 10i laminate of dielectric 
permittivity. The sole difference is obviously the 
dielectric resonator, which is now a parallelepiped made 
from Rogers TMM® 10i laminate of dielectric 
permittivity εrd = 9.8 with dimensions a = d = 20.5 mm 
and h = 4.5 mm. For better matching and radiation 
patterns, the rectangular DR is centered at a distance 
P’ = 3.6 mm from the open end of the microstrip line, and 
displaced by distance ∆y = 1.2 mm from the microstrip’s 
center line. 
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Fig. 10.  Schematic of the double-bowtie-slot-coupled 
rectangular DRA. 

 
The DRA was manufactured according to the geometry 

depicted in Figure 10. Figure 11 shows the resulting 
return loss and a measured bandwidth of more than 37 %. 
Good agreement is obtained between simulation and 
experiment.  
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Fig. 11. Measured and simulated Return Loss of the 
rectangular DRA as a function of frequency. 

 
Finally, the radiation patterns (parallel and cross 

polarization) of the rectangular DRA are shown in 
Figures 12, 13, 14 at frequencies 5.15 GHz, 6.5 GHz, and 
6.95 GHz, respectively. Just like in the cylindrical 
configuration, stable radiation patterns are achieved. It is 
important to note here that if a rectangular (not a square) 
DR had been used (α ≠ d in Figure 10), the polarization 
purity would have been improved. This is due to the fact 
that the TEx

111 mode would be resonant at a different 
frequency compared to the TEy

111 mode and therefore the 
polarization at the frequency of the TEy

111 mode would 
not be distorted by the orthogonal resonant mode. 
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Fig. 12. Measured radiation patterns of the rectangular 
DRA at 5.15 GHz. 
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Fig. 13. Measured radiation patterns of the rectangular 
DRA at 6.5 GHz. 
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Fig. 14. Measured radiation patterns of the rectangular 
DRA at 6.95 GHz. 
 

V. EFFECT OF THE GAP BETWEEN THE GROUNDPLANE 
AND THE DIELECTRIC RESONATOR 

 
The comparison between the HFSS simulations and the 

measured data for the return loss of the fabricated DRAs 
reveals a reasonably good agreement (Figures 4 and 11). 
It demonstrates an accurate numerical design of the 
operational bandwidth, despite the fact that observed S11 
resonances are slightly shifted. The discrepancies 
between simulations and measurements can be partly 
explained by imperfections of the realized prototypes. 
Fabrication imperfections relevant to probe-fed DRAs 
have been discussed in [12] and [13]. In the present case 
of a slot-fed DRA, a major physical source of error 
consists in a gap between the dielectric resonator and the 
metallic ground plane. For the prototypes fabricated in the 
frame of the present investigations, the dielectric 
resonator adheres to the ground plane using a thin layer of 
Vaseline (Fig. 15). This allows easy variation of the 
relative location of the DR with respect to the feed circuit, 
for testing purposes. In addition, this way of attaching the 
DR presented the advantage of allowing a convenient re-
use of the same feeding circuit with various dielectric 
resonators. This adhesion layer might be replaced by 
dielectric glue in future fabrication runs. 

 

hg

�rd

dielectric

gap with �rg

�rs

 
Fig. 15. Schematic showing the characteristics of 
dielectric gap between the DR and the ground plane. 

 
 

The present section presents a numerical study of the 
effect of this Vaseline-filled gap for the case of the 
double-bow-tie slot fed cylindrical DRA. A full 
simulation of the device including the dielectric gap faces 
two main difficulties: 

101ALMPANIS, FUMEAUX, VAHLDIECK: BROADBAND DIELECTRIC RESONATOR ANTENNAS



 

First, the thickness hg of the gap is not well known. A 
constant gap thickness hg of a few tens of microns is 
assumed. More precise information is not available, 
neither in the form of an average gap size, nor regarding 
typical gap variations under the surface of the DR. The 
dielectric permittivity εrg of the Vaseline is estimated to 
take a value between 2 and 3. 

Second, simulating a gap with a thickness below 50 µm 
in the lower GHz frequency range is a very challenging 
task for general-purpose electromagnetic simulation tools, 
since the gap thickness is in the order of λ0 / 500 or 
smaller. 

The latter problem is best solved by using a strongly 
inhomogeneous mesh to resolve the gap. This has been 
done with the commercial code HFSS® and, for 
comparison, also with an in-house written code based on 
the Finite-Volume Time-Domain method. Both methods 
make use of tetrahedral meshes, which permit rapid 
variations in cell sizes to accommodate fine structural 
details equally well as the free space surrounding the DR. 
Apart from this common feature, the two methods differ 
greatly, and some characteristics relevant to the present 
simulation are shortly described in the following: 

a) HFSS is based on the Finite-Element method in the 
frequency domain. The resolution of the gap requires a 
dramatic increase in the number of cells. The limitation in 
the capability to solve the present problem arises since the 
memory load increases faster than linearly with the 
number of unknowns, leading to an explosion of the 
memory costs. In the present study, the resolution of thin 
dielectric gaps in HFSS simulations required at times 
more than 10 GB of memory. 

b) The FVTD method [14], [15] is a time-domain 
method that can be used in any polyhedral discretization. 
It is therefore characterized by a large geometrical 
flexibility, e.g., when applied in a tetrahedral mesh. 
Applications of the method to DRAs have been presented 
previously in [13] and [16]. The second of those 
references in particular shows the simulation of a slot-fed 
DRA. In the present case (as for HFSS), the resolution of 
the dielectric gap between the ground plane and the DR 
also increases dramatically the number of cells in the 
tetrahedral mesh. However, because of only a linear 
increase of the memory with the number of unknowns, 
the memory cost remains at a level around 1 GB, 
compatible for use on a standard PC. The limitation in the 
capability of the program to solve the dielectric gap 
problem is more due to the CPU time required to achieve 
convergence of the results in this resonant structure. Even 
when using a local-time stepping technique [17], the 
efficiency of the scheme is not dramatically increased, 
since tiny cells, which are required for the gap resolution, 
represent a very large percentage of the total number of 
cells. Therefore, simulations of a DRA in the presence of 

very thin gaps requires several days of computations, 
limiting the simulation capabilities. 

Because of the incomplete knowledge of the gap 
properties, and because of the limitation of both tools 
chosen for the numerical simulation, the present analysis 
must be interpreted in a qualitative manner, as a 
demonstration of the potential effects of a gap between 
the dielectric and the ground plane. Several 
configurations of Vaseline-filled gaps have been tested 
with both tools in the case of the cylindrical DR fed by 
double bow-tie slots (presented in Sect. III). The results 
are shown in Figure 16 for HFSS and Figure 17 for 
FVTD. In both cases, the dielectric gap is of height hg = 
30 µm and of dielectric permittivity εrg = 2.7. Both figures 
include the simulated return loss with and without 
dielectric gap, as well as the measured data for 
comparison. From those graphs, it is observed that 
without the gap, both simulation tools represent the -
10 dB bandwidth of operation with reasonable accuracy, 
although slight differences occur. In addition, it is 
observed that the introduction of a thin dielectric gap 
between the DR and the ground plane has a sensible 
effect on the simulated performance. This effect is 
qualitatively very similar for both numerical tools and 
supports our assumption about the effect of the small gaps 
on the return loss.  A more precise match to simulation is 
not expected, considering that the modeling of the 
dielectric gap is at the limit of the capabilities of both 
tools and that the real characteristics of the dielectric gap 
are unknown. 
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Fig. 16. HFSS simulations of the return loss for the 
cylindrical DRA with and without dielectric gap 
(thickness hg = 30 µm, εrg = 2.7). The curves are 
compared to measured data. 
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Fig. 17. FVTD simulations of the return loss for the 
cylindrical DRA with and without dielectric gap 
(thickness hg. FVTD simulations of the return loss for the 
cylindrical DRA with and without dielectric gap 
(thickness hg = 30 µm, εrg = 2.7). The curves are 
compared to measured data. 
 

VI. CONCLUSION 

It was shown that the resonances of a 2-element array 
of bowtie-slots and a dielectric resonator can be combined 
for bandwidth enlargement. Novel double-bowtie-slot-
coupled DRA designs were proposed with more than 
30 % bandwidth, 3.5 dBi gain in the broadside direction, 
and stable radiation patterns and polarization. The effect 
of the gap between the dielectric resonator and the ground 
plane of the microstrip line has been discussed. 
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Abstract — Full modeling of large conformal array can 
be time and memory consuming. An approximated 
method that takes into account the vectorial nature of the 
radiated field is presented. The radiation characteristic of 
the array is obtained by means of the vectorial sum of 
each element radiation characteristic, rotated according to 
the orientation of the element. The coupling between 
elements will be evaluated in the case of interest: a 
conformal array on an inflatable structure. In the 
approximated method, coupling will be neglected in such 
a case. To illustrate the approach, a spiral antenna will be 
chosen and modeled with MoM. Finally, array radiation 
patterns obtained by the approximated method will be 
compared with a full wave MoM to validate our method, 
in the case of a simplified 1D circular array. 
 
Keywords — Spiral antenna, coupling, wideband array, 
conformal antennas. 

I. INTRODUCTION 
 

A high altitude airship (HAA) offers great potential 
as a host platform for low frequency antenna array [1]. 
The main advantage is the large surface available, 
allowing good performances for applications like radar 
tracking and telecommunications at lower cost than 
satellites. The antenna array has to be conformed to the 
ellipsoidal shape of the airship hull and must fill 
wideband, low weight, low power, low profile conditions. 
The array lies on the side of the airship and must achieve 
a bandwidth centered on 500 MHz as well as digital 
beamforming capability. The unusual configuration of 
our array must be pointed out since we assume that no 
ground plane will be used because of low profile 
condition and because we assume that the equipment 
must lie outside the hull. 

The usual modeling tool (FEKO) based on method of 
moments (MoM) is no longer appropriate to study such a  
 

 
large array. Indeed, the number of antennas is too high 
and modeling becomes time and memory consuming.  
However, it is possible to obtain the radiation 
characteristic of the array if the coupling between 
elements is low by making the sum of each element 
contributions [2]. Thus, only one radiation characteristic 
of an isolated element has to be computed by the MoM, 
reducing the computation time consequently. 
Therefore, after presenting the approximated method 
based on rotation of the radiation characteristic and phase 
shift according to the position of each element. The 
choice of a radiating element will be explained and 
results of FEKO simulations of this antenna will be 
described. 
Then coupling between array elements will be examined 
in the chosen frequency range at different array 
curvatures in order to quantify the effect of coupling.  
Finally, considering a small array, radiation patterns 
obtained with exact method and computed with neglected 
coupling by the approximated method will be compared. 
Influence of the frequency and curvature will be 
investigated. 
 

II. APPROXIMATED METHOD 
 

In order to avoid the modeling of the full array, we 
assume that the radiated far field of the conformal array is 
the sum of the radiated far fields of each antenna element 
as it is usually assumed for classical planar array [3]. This 
assumption involves neglecting the coupling between 
elements. Thus, this method can be applied for any 
radiating element, as long as the coupling between 
elements of the array is low. This approach is expected to 
noticeably reduce the time consuming issue, since it is 
only necessary to model only one antenna element with 
an exact method before doing the sum of all elements of 
the array. The antenna must be modeled in its own 
environment in order to define its radiation characteristic. 
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First, phase shift between elements due to the distance 
from the phase reference are taken into account. Each 
element at position m is characterized by a translation 
vector dm (Fig. 1). Thus the components (Eq, Ej) of the 
array total far field Etot in the main coordinate system (er, 
eq, ej) (Figure 2) can be expressed as a function of the Em 
far field radiated by element m, expressed in the main 
coordinate system as well, 
 

),( ).jexp(),(
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m ϕθδϕθ ∑
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→→
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N

m
mr

tot ek EE .          (1) 

 
Fig. 1. Circular 1D conformal array configuration. 
 

In order to obtain Em , the orientation of each 
antenna element has to be taken into account as it 
changes, in a given direction, magnitude, phase and 
polarization properties of the isolated element. FEKO 
gives far field results as (E’q, E’j) components of the 
element antenna far field E' [4], at discrete values (q’, j’) 
in the local coordinate system of an isolated element (e’r, 
e’q, e’j). The radiation characteristic E' has to be 
expressed in the main coordinate system (er, eq, ej). The 
orientation of each element is taken into account by 
means of a rotation matrix R (see figure 2).  

A general rotation R can be written in terms of 
successive rotation matrix Rz, Rx, and Rz’ [5], with the 
three rotation Euler angles g, b, y, (see figure 3), 
 

' ( ) ( ) ( ).z zξψ β γ=R R R R   (2) 
  

To obtain the rotated radiation characteristic, we apply 
eq. (3), where Em has its components in the main 
coordinate system (er, eq, ej) 

)(mm ',''),( 12 ϕθϕθ ETRTE = .   (3) 
 

 
 
Fig. 2. Local coordinate system of an isolated element 
(e’r, e’q, e’j) and main coordinate system (er, eq, ej) 
rotated by a rotation matrix R. 
 

 
Fig. 3. Successive rotation matrix Rz, Rx, and Rz’, with the 
three rotation Euler angles g, b, y. 
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As rotation matrix, Rm must be used in a cartesian 
coordinate system. Transformation matrix T1 from 
spherical to cartesian coordinate system and 
transformation matrix T2 from cartesian to spherical are 
required and given below 
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T2 is not equal to T1

-1 since the angles (q, j) used in T2 
can be expressed as function of (q’, j’) as follows 
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with the unit vector a, given by 
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It must also be noticed that the spherical coordinates 

angles (q’, j’) of the requested far field calculated by 
FEKO takes discrete values. The new coordinate angles 
(q, j) in the main coordinate system (er, eq, ej) do not 
necessary match. For that reason an interpolation method 
will be required (see figure 4). 

III. CHOICE OF THE ANTENN ELEMENT 
 

We have seen before that the approximated method 
relies on the antenna element radiation characteristics that 
are taken into account in the array radiation 
characteristic. The method can be applied if the coupling 
between elements is low, thus an element that fulfills our 
design requirement has to be chosen to illustrate the 
approach. In our configuration, the choice of the antenna 
element is determined by different parameters. First 
limitations are resulting from the platform itself. The 

antenna must radiate broadside, must be flat and must 
still radiate without ground plane. This prohibits all the 
antennas fed with a reference to a ground plane. 
Secondly, wideband performances of the array are limited 
by the size of the antenna since the elements must be half 
wavelength spaced. Finally, the conformation of the array 
leads to polarization and magnitude changes due to the 
various orientations of the elements. The choice of the 
antenna must be done after exploring these points. 

 

 
Fig. 4. Discretization of the spherical coordinate angles 
(q’, j’) in the (q, j) coordinate system of reference do not 
necessary match with the discretization of the main 
coordinate system. 
 

Many designs exist for wideband and ultra wideband 
antenna [6], [7]. Some of them are low profile and 
research has been done recently to improve their 
performances. Archimedean spiral is a good candidate for 
wideband applications and has been chosen for our goal.  
It is usually not considered for phased array due to its 
size requirement [8]. Indeed, it radiates if its diameter D 
is larger or equal to λmax/π (with λmax the largest 
wavelength in the band). In addition, distance between 
array elements center to center, must be lower than half 
of the smallest wavelength of the bandwidth to avoid 
grating lobes when scanning. This leads to an element 
size less than or equal to λ/2. In consequence, condition 
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2D § λ § πD must be fulfilled and the bandwidth is 
limited approximately to 1.5:1. Thus we can expect good 
functioning between 400 MHz and 600 MHz. 
VSWR of a 0.27 m diameter spiral modeled with 
commercial software FEKO, calculated with a 200 W 
reference impedance, is plotted in figure 5. It can be 
observed that this antenna can radiate efficiently above 
400 MHz. Its size corresponds to a distance between 
array elements center to center of 0.25 m, thanks to the 
curvature. Therefore, scanning can be obtained till the 
upper frequency, 600 MHz. 

In a conformal configuration, all the elements do not 
radiate with the same field in a given direction because 
on their own radiation characteristic. Indeed the 
orientation of the elements depends on their position on 
the surface. Thus, it is required to know what is the 
radiation characteristic of the antenna element before 
including it in the approximated method in order to 
calculate the array radiation pattern. 

Far field of the considered antenna is right hand 
circularly polarized (RHC) above the plane of the antenna 
and left hand circularly polarized (LHC) below (see 
figure 6). It has also the great advantage to radiate the 
same polarization over 180° (figure 6). That implies that 
the polarization characteristic of the conformal array will 
not be too much influenced by the orientations of the 
antenna elements. 

 

 
 

Fig. 5. VSWR of a spiral antenna with diameter of 0.27 
m, calculated with 200 W reference impedance. 
 
 
Gain in RHC polarization is plotted according to the j 
angle in figure 7, at various frequencies. It can be seen 
that the more the frequency increases, the more the RHC 
polarized radiated field decreases, in the inward direction 
j =180°. 
 

 
Fig. 6. 3D radiation pattern of spiral antenna. RHC 
polarized (right part) and LHC polarized (right part). 
 
 

 
Fig. 7. Gain of RHC polarized component of the far field 
versus j angle, at q=90°, at various frequencies. 
 
 

IV. STUDY OF COUPLING BETWEEN ARRAY 
ELEMENTS 

 
Before using the approximated method, it is 

necessary to evaluate coupling between array elements, 
which have neglected in our approach. A circular 1D 
array with angle of curvature a and identical antennas 
(co-polar configuration) is considered (see figure 8). Only 
an eight-antenna array has been modeled with MoM, as it 
is time consuming. Coupling effects have been 
investigated based on the computation of the S 
parameters between spiral antenna ports.  
The influence of the frequency within a range of 300 
MHz to 600 MHz as well as the curvature effect has been 
studied. 

The S parameters for the planar case (0° of 
curvature) are shown in figure 9, whereas those for the 
conformal case (10° of curvature) are plotted in figure 10. 
Both figures show results for eight identical antennas 
radiating a RHC polarized far field in the outward 
direction. Angle of curvature a is the angle seen between 
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the element centers of two successive antennas from to 
the origin of the coordinate system. 

It can be clearly noticed two different behaviors for 
the S parameters according to the frequency. The 
coupling between the element 1 (see figure 8) and an 
element close to it, i.e. S12 and S14 , roughly decreasing 
with the frequency, whereas an increase can be observed 
concerning the elements located in the opposite part of 
the array i.e. S16 and S18. The rise appends at 450 MHz, 
where the distribution of the current along the two spiral 
arms exhibits also higher values.  
When comparing the planar (figure 9) and the 10° 
conformal (figure 10) cases, few differences can be 
distinguished. We can conclude that a small angle of 
curvature like 10°, almost do not change radically the 
coupling between elements. The effect of curvature is 
clearer for the far element coupling S16 and S18. 

 
Fig. 8. Circular 1D conformal array configuration 
considered for the simulation. The 8 antennas are equally 
spaced. Angle of curvature a can vary. 
 

 
 

Fig. 9. S-parameters versus frequency. For the planar 
case a =0°. 

 
Fig. 10. S-parameters versus frequency. For the 
conformal case a =10°. 
 

V. COMPARISON OF METHODS 
 

Radiation patterns obtained by the approximated 
method and FEKO are now compared for different 
frequencies and different angles of curvature in order to 
validate the approach. Figure 11 shows an example of 
radiation pattern plotted for RHC electric far field, at 450 
MHz, with a curvature of 10°. On the upper part, can be 
seen the effects of the rotation of radiation pattern. Each 
radiation pattern corresponds to an antenna element that 
has been rotated according to its orientation, in the q=90° 
plane.  
The middle part depicts conformal array radiation pattern 
that corresponds to a uniformly excited array with 
omnidirectional sources. It emphasizes the effects due to 
the geometry of the conformal array itself. Those effects 
are combined in the radiation pattern, given by the 
approximated method, using equations (1) and (3), and 
can be observed in the lower part of figure 11, which 
shows the comparison between the two methods. It can 
be observed that the radiation pattern due to point sources 
has been reshaped by each antenna element radiation 
characteristic to give the final radiation pattern. 

The two methods have been compared for 
frequencies within the range of 400 MHz to 600 MHz 
and for 0°, 5°, and 10 ° of curvature. Some examples are 
given below. Figures 12 and 13 show the comparison of 
two methods for the planar case, at 400 MHz and 600 
MHz, respectively. Figures 14 and 15 show the results for 
the 10° conformal case, at 400 MHz and 600 MHz, 
respectively. 
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As it can be seen in figures 12 to 15, reconstruction 

of the main lobe at j=0°, is fulfilled for frequencies 
within the band 400 MHz to 600 MHz. Inward lobe, at 
j=180°, exhibits more important differences between the 
two methods, especially when the radiation of the 
isolated element in this direction is particularly low. 
When comparing the planar case with the conformal case, 
it can be noticed that this difference for the inward lobe 
happens in both cases. Moreover, both cases exhibit 
higher differences at 600 MHz. Therefore we can 
conclude that this effect comes from the radiation 
characteristic of the isolated element itself when used in 
the approximated method. 
We highlight before that at 450 MHz behavior of 
coupling strongly changes. Nevertheless, no specific 
effect has been noticed concerning the differences 
between exact method and approximated method (see 
figure 11), except that stronger differences can be 
distinguished around j=90° and j=270° corresponding to 
the lowest radiation direction of the antenna element 
(endfire direction). So, for the considered array of eight 
spiral antennas, in the conformal case as in the planar  

 
 
 
 
case, it is possible to obtain the shape and level of the 
main lobe simply by summing the contribution of each 
antenna element, including the orientation of each one. 
 

 
 

Fig. 12. Two methods comparison for 0° curvature 
(planar case) at 400 MHz. 

Fig. 11. RHC electric far field at 450 MHz with curvature of 10°. Top: 8 antenna rotated radiation patterns. Middle: 
uniformly excited conformal array with omni-directional sources. Bottom: comparison between the two methods. 
 

110 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



 
Fig. 13. Two methods comparison for 0° curvature 
(planar case) at 600 MHz. 
 
 

 
Fig. 14. Two methods comparison for 10° curvature 
(conformal case) at 400 MHz. 
 

 Fig. 15. Two methods comparison for 10° curvature 
(conformal case) at 600 MHz. 

VI. CONCLUSIONS 
 

An approximated method has been presented to solve 
the time consuming issue of a large array modeled with 
MoM. It has been illustrated with a specific 
configuration: a conformal spiral antenna array that 
achieves wideband performances on an inflatable 
structure. The approximated method neglects the 
coupling and is based on the summation that includes the 
rotation of each element radiation characteristic. It has 
the advantage of taking into account the vectorial nature 
of the array radiation characteristic. For the chosen 
design, coupling between elements has been studied, and 
the curvature of the array seems to not influence 
significantly its value. Finally, validation of the radiation 
patterns obtained by the approximated method has been 
performed by comparing with a full wave method. It has 
shown that main lobe reconstruction is fulfilled, but 
differences still remain for the inward lobe because of 
low levels in that direction. However, this method allows 
to predict the shape of array radiation pattern in a very 
simple and general way. It provides also an interesting 
tool that can be used as a first approximation for 
conformal array analysis. 

 
REFERENCES 

[1] Integrated Sensor Is Structure, “Proposer information 
pamphlet”, DARPA, Sept. 2003 

[2] C. A. Balanis, Antenna theory, analysis and design, 
Wiley; 2 Edition, ISBN: 0471592684, May 1996. 

[3] R. C. Hansen, Microwave Scanning Antennas, Vol. 
II, Academic Press, New York and London, 1966. 

[4] EM Software & Systems-S.A., FEKO User’s 
Manual, 32 Techno Lane, Technopark, Stellenbosch, 
7600 South Africa, June 2004. 

[5] A. Gray, A Treatise on Gyrostatics and Rotational 
Motion, MacMillan, London, 1918.  

[6] S. – Y. Suh, “A comprehensive investigation of new 
planar wideband antennas”, PhD thesis in Electrical 
Engineering, Virginia Polytechnic Institute and State 
University, July 2002. 

[7] E. Caswell, “Design and analysis of star spiral with 
application to wideband arrays with variable element 
sizes”, PhD thesis in Electrical engineering, Virginia 
Polytechnic institute and state University, Dec., 
2001. 

[8] H. Steykal, J. Ramprecht, and H. Holter, “Spiral 
element broad band phased array”, IEEE Trans. 
Antennas Propagation, Vol. 53, No. 8, pp. 2558-
2562, August 2005. 

 

111CHAUVET, GUINVARC'H, HÉLIER: APPROXIMATED METHOD NEGLECTING COUPLING



Two Element Phased Array Dipole Antenna 
 

Mitsuo Taguchi 1, Kotaro Era 2, and Kazumasa Tanaka3 

 
1 mtaguchi@nagasaki-u.ac.jp 

1, 3 Department of Electrical and Electronic Engineering, Nagasaki University 
1-14 Bunkyo-machi, Nagasaki-shi, 852-8521 JAPAN 

 
2 Presently, Murata Manufacturing Company Ltd. 

10-1 Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555 JAPAN  
 
 

Abstract — Two element array of dipole antennas with 
90 degree phase difference feed is proposed for 
directional antenna applications.  In the numerical 
analysis, the electromagnetic simulator WIPL-D based 
on the method of moment is used.  At first, the distance 
between the two elements is fixed to be a quarter 
wavelengths at the design frequency of 2.45 GHz.  The 
front-to-back ratio is calculated.  Then, by adjusting the 
length of the two elements and the distance between 
the two elements, a front-to-back ratio of 15.3 dB is 
obtained.  The relation between the front-to-back ratio 
of this antenna and the feed point currents is discussed.  
The measured input impedance with 90 degree hybrid 
phase shifter agrees with the calculated result.   

 
I.    INTRODUCTION 

 
For the short-range wireless communication, a small 

antenna with unidirectional radiation characteristics is 
desired.  As the directional antenna composed of wire 
elements, the Yagi-Uda antenna and the Electronically 
Steerable Passive Radiator (ESPAR) antenna are well 
known [1], [2].  These antennas consist of single driven 
element and some parasitic elements.  In the Yagi-Uda 
antenna, the induced currents on the parasitic elements 
are controlled by adjusting the length of the parasitic 
elements and the distance between the elements [1].  In 
the ESPAR antenna, the current of the parasitic 
elements are controlled by adjusting the reactance 
loaded at the feed point of them [2].  These antennas 
are spatially phase controlled antennas.  Since only one 
element is excited in these antennas, the current 
distribution on each element can be easily controlled by 
changing the distance between elements or loaded 
reactance at parasitic elements.      

In this paper, two element array of dipole antennas 
with 90°  phase difference feed is proposed for the 
directional antenna [3].  At first, the distance between 
two dipole elements is fixed to be a quarter wavelength 
at the design frequency of 2.45 GHz, and the length of 
two elements are changed to obtain high front-to-back 

ratio. This antenna array configuration is numerically 
and experimentally analyzed. In the numerical analysis, 
the electromagnetic simulator WIPL-D based on the 
method of moment is used [4].  Next, the distance 
between the two dipole elements and the length of two 
elements are adjusted in order to obtain highest front-
to-back ratio.  Finally, the relation between the front-
to-back ratio and the feed point current on each 
element is discussed. 
 

II.    ANALYTICAL AND EXPERIMENTAL 
MODEL 

  
Figure 1 shows the structure of the two element 

phased array dipole antenna. The antenna elements are 
fed with 90°  phase difference. The distance between 
the two elements is d. The length of the antenna 
elements #1 and #2 are L1 and L2, respectively. The 
radius of each element is a = 1 mm.  In the numerical 
analysis by WIPL-D, antenna elements are excited by 
the delta-gap generators. The design frequency is 2.45 
GHz.    

  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Structure of proposed antenna. 
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Figure 2 shows the experimental model. Two 
monopole elements are mounted on a ground plane of 
dimensions 87 cm by 87 cm.  This antenna is driven 
through the 90 degree hybrid phase shifter. The 
reflection coefficient Γ at the input port of the hybrid 
phase shifter is expressed in terms of the reflection 
coefficients Γ2 and Γ3 seen from ports 2 and 3 toward 
the load [5].   

                                                       
 (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Experimental model. 
 

 
III.   RESULTS AND DISCUSSION 

 
A.  Case I: d = 0.25 λc 

 

 At first, the distance between two dipole elements d 
is fixed to be 30.6 mm = 0.25 λc, where λc is the 
wavelength at the design frequency 2.45 GHz.   Figure 
3 shows the calculated input impedances at feed points 
of each element for L1 = L2 = 61.2 mm = 0.5 λc. At the 
frequencies less than 2.1 GHz, the input resistance on 
the element #1 becomes small compared with the 
single dipole antenna.  This phenomenon is similar to 
the horizontal dipole located above the infinite ground 
plane. The difference of impedances between two 
elements at higher frequencies is observed from 2.45 
GHz[6]. Since each element is excited with 90 degree 
phase difference, the mutual coupling is different at 
each element.  Therefore this difference occurs. 

Figure 4 shows the front-to-back ratio characteristics.   
The front-to-back ratio is 4.8 dB at 2.45 GHz and 
becomes highest at 1.9 GHz. Figure 5 shows the 
maximum front-to-back ratio calculated in the 
frequency band from 1 GHz to 3 GHz.  Figure 6 shows 
L2 and the frequency when the maximum front-to-back 

ratio is obtained.  The maximum front-to-back ratio is 
obtained for the ratio of L2 to L1 from 0.93 to 0.95.   

 
 

  
 

Fig. 3. Calculated input impedance at feed point of  
each element, d=30.6 mm, L1=L2=61.2 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Calculated front-to-back ratio characteristics, 
d=30.6 mm, L1=L2=61.2 mm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Calculated maximum front-to-back ratio. 
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Fig. 6. L2 for maximum front-to-back ratio and its 
frequency. 

 
B.  Case II: cd 0.25≠ λ  
 

By adjusting the distance between both elements d 
and the length of two elements L1 and L2, the 
maximum front-to-back ratio is obtained at the design 
frequency 2.45 GHz.  The maximum front-to-back 
ratio of 15.3dB is obtained in the case of d = 20.6 mm, 
L1 = 54.6 mm, and L2 = 50.2 mm.   
Figures 7 and 8 show the electric field radiation pattern 
in xy plane at 2.45GHz, the input impedance 
characteristics at the feed point of each element in this 
case, respectively. In Figure 7, the electric field 
radiation pattern in the Case I is also shown for 
comparison. 

 Figure 9 shows the calculated and measured input 
impedance characteristics at the input port of the 90°  
hybrid phase shifter.  In the calculation, the attenuation 
and the phase delay in the coaxial cable between the 
phase shifter and the antenna element is considered.  
Figure 10 shows the VSWR characteristics of this 
antenna. The VWSR less than3 is obtained near the 
design frequency 2.45 GHz.   

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Calculated electric field radiation patterns in  xy 
plane (vertical polarization) at 2.45 GHz,  Case 
I: d = 30.6 mm, L1 = L2 = 61.2 mm, Case II: d 
= 20.6 mm, L1 = 54.6 mm, L2 = 50.2 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Calculated input impedance at feed point of 
each element, d = 20.6 mm, L1 =54.6 mm, L2 
= 50.2 mm. 

 
 

 

 
 

Fig. 9. Input impedance characteristics at input port of 
90°  hybrid phase shifter, d = 20.6 mm, L1 = 
54.6 mm, L2 = 50.2 mm. 

 
C.  Discussion 
 

The front-to-back ratio of the antenna is 4.8 dB at 
2.45 GHz in the case I of d = 30.6 mm, and L1 = L2 = 
61.2 mm. On the other hand, the front-to-back ratio 
becomes maximum (15.3 dB) in the case II of d = 20.6 
mm, L1 = 54.6 mm, and L2 = 50.2 mm. The radiation 
characteristics are determined by the current 
distribution on each element.  Here, the synthesized 
feed point current vectors including the spatial phase 
delay between two elements are shown in order to 
discuss why the front-to-back ratio is different in case I 
and II.  Figure 11 shows the feed point current of each 
element and the synthesized currents in the +y and –y 
direction in case I of d = 30.6 mm, L1 = L2 = 61.2 mm.  
The distance between two elements d = 30.6 mm 
corresponds to the spatial phase delay of 90°  at 2.45 
GHz. Without considering the attenuation along the 
propagation, the current on the element #2 added by the 
current #1 with 90°  phase delay contributes to the 
radiation toward +y direction. The current on the 
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element #1 added by the current #2 with 90°  phase 
delay contributes to the radiation toward -y direction.  
The amplitude of feed point current on the element #2 
is too small compared with that on the element #1, and 
the phase difference of currents is not equal to the 
excitation phase difference of 90°  because of the 
mutual coupling.  Therefore the current on the element 
#1 does not cancel out the current on the element #2 
with  90°  phase delay.  As the result, the amplitude of 
synthesized current toward –y direction does not 
become small. Therefore the front-to-back ratio 
becomes low. 

Figure 12 shows the feed point current of each 
element and the synthesized currents in the +y and –y 
directions in case II of optimized model (d = 20.6 mm, 
L1 = 54.6 mm, L2 = 50.2 mm).  The distance between 
the two elements d = 20.6 mm corresponds to about 60 
degrees of the spatial phase delay at 2.45 GHz. There 
is a large difference between the amplitudes of the two 
synthesized current vectors. Therefore, the front-to-
back ratio becomes high. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10. VSWR characteristics at input port of of 90°  
hybrid phase shifter, d=20.6 mm, L1=54.6 
mm, L2=50.2 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 11. Current on each element and synthesized 
currents toward +y and y directions at 2.45 
GHz, d=30.6 mm, L1=L2=61.2 mm, FB ratio 
= 4.8 dB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Current on each element and synthesized 

currents toward +y and –y directions at 2.45 
GHz, d=20.6 mm, L1=54.6 mm, L2=50.2 
mm, FB ratio = 15.3 dB. 

 
 

IV.   CONCLUSION 
 

Two element phase array of dipole antennas with 
90°  phase difference feed has been analyzed 
numerically and experimentally.  In the spatially phase 
controlled antennas such as Yagi-Uda antenna and 
ESPAR antenna, the feed point current on each element 
is easily controlled. However, it is difficult in the 
proposed antenna due to the mutual coupling between 
two elements.  By adjusting the length of each element 
and the distance between the two elements, the front-
to-back ratio of 15.3 dB have been obtained. 

Although the proposed antenna has a simple 
structure, it has the unidirectional radiation 
characteristics.  This antenna array configuration can 
be a promising element antenna for base station 
antennas of short-range wireless communication 
systems.   
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Abstract — Mixed order tangential vector finite 
elements (TVFEs) of order 0.5, 1.5, and 2.5 for tetrahedra 
are presented and used in conjunction with an exact Finite 
Element-Boundary Integral (FE-BI) formulation. The 
main advantage of using mixed order elements is to 
reduce the computational complexity when solving large 
problems. As an illustrative example, a wide band 
antenna is designed and placed on an automobile. Results 
regarding the antenna return loss, far field pattern, axial 
ratio, and gain are presented. 

I. INTRODUCTION 
Printed microstrip patch antennas are widely used in 

wireless communications because they are low profile, 
low cost, and can easily be integrated with other circuitry. 
However, conventional patches find very few applications 
due to their narrow bandwidth. In the past, techniques 
have been proposed to overcome this bandwidth problem 
by using parasitic patches, stacked patches, and thick 
substrates [1]-[2]. Despite the advantages, these methods 
enlarge the antenna size either in the antenna plane or in 
the antenna height. Some other patch antennas 
investigated include E-shaped, spiral, tapered slot, and 
bow-tie [3]-[6]. E-shaped and square slot antennas are 
preferred for wideband and multi-band operations. They 
have been used in mobile and satellite communications, 
remote sensing, electronic warfare, and radar systems [7]-
[10].  

Another important application area is the design of 
multi-functional automotive antennas. Nowadays, satellite 
radio, navigation, and personal communication systems 
are standard features in many automobiles. These 
applications require a compact circularly polarized 
wideband antenna with decent gain and omni-directional 
characteristics.  In this study, we propose the design of 
such antenna by using a square slot with an E-shaped 
tuning stub. The antenna has less than -10 dB return loss 
in the 0.8 GHz -3.35 GHz band and can be used for GPS, 
XM, GSM, and PCS systems. FE-BI software is used for 
simulations. Initial antenna results are validated with 
Ansoft’s HFSS. In addition, the antenna is placed on the 

automobile and simulations are carried out to observe the 
changes in the antenna parameters in the presence of the 
automobile. 

II. FORMULATION 
The finite element method boundary integral method 

(FE-BI) is known to be very accurate when analyzing 
antennas with fine geometrical details [11]. Using 
tetrahedral elements offers higher flexibility when 
simulating complex structures, and mixed-order 
tangential vector finite elements (TVFEs) guarantee 
tangential field continuity across element boundaries and 
suppress spurious modes [12]. 

In the past, mixed order TVFEs are proposed up to 
1.5th order for a patch antenna backed by a dielectric 
filled rectangular cavity recessed in infinite ground plane 
[13]. Formulation used in [13] omits the edge effects and 
determines the unknown magnetic currents on the 
boundary and the electric fields inside the finite element 
domain. It is obvious that for a general radiation problem 
involving a complex structure such formulation will 
easily fail. An alternative exact formulation was 
introduced in [14]. In this formulation the FE-BI system 
is of the form 
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where Eν refers to the electric fields in the interior volume 
of the antenna and Es is the sub-column for the surface 
fields. The J sub-column of unknowns contains the 
current density unknowns on the large metallic surface of 
the sub-structure. In the given system, the sub-matrices 
Ess, Eνν, Esν, and Eνs are sparse and can thus be treated 
efficiently in the context of an iterative solver. Their 
explicit form is known [14]. The time harmonic electric 
field is related to the time-dependent electric field by 

{ }jwtezyxEetzyx ),,();,,( ℜ=E  where 1−=j . 
They are extracted by discretizing the functional  
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For Magnetic Field Integral Equation (MFIE) 
formulation, the elements of the matrix in (1) are obtained 
from the operators    
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Finally, the elements of the coupling matrix are obtained 
from 

                          ∫
∧

⋅×−=
s

ndsHEikS .)(0
                     (7) 

 
Elements and Basis Functions 
 

We consider a tetrahedral element with nodes 1, 2, 3, 
and 4. The volume of the tetrahedron is denoted by V. 
The simplex coordinates ξ1, ξ2, ξ3, and ξ4 at a point P are 
defined in the usual manner, where Vn denotes the volume 
of the tetrahedron formed by P and the nodes of the 
triangular face opposite to node n (Fig. 1).   

 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry of a tetrahedral element. 
 
A mixed-order TVFE of order 0.5 is characterized by six 
linearly independent vector basis functions which are 
expressed as 
                         ξξξξ ijji

∇−∇  , ji < .                         (8)                                  

A mixed order TVFE of order 1.5 is characterized by 20 
linearly independent vector basis functions in a 
hierarchical fashion. In addition to the six edge-based 
vector functions (8), it is characterized by the six edge-
based vector basis functions  

                   ))(( ξξξξξξ ijjiji
∇−∇−  , ji <                (9) 

and the eight face-based vector basis functions 
                    )( ξξξξξ ijjik

∇−∇  , kji <<                (10) 

                    )( ξξξξξ kiikj
∇−∇  , kji <<  .             (11) 

A mixed order TVFE of order 2.5 is characterized by 45 
linearly independent vector basis functions in a 
hierarchical fashion. In addition to the 12 edge-based 
vector functions (8)-(9) and eight face-based vector 
functions (10)-(11), it is characterized by the six edge-
based vector basis functions 
                   )()( 2 ξξξξξξ ijjiji

∇−∇−  , ji <            (12) 

16 face-based vector basis functions  
                         )( ξξξ kji

∇  , kji <<                          (13) 

        )(
2 ξξξξξ ijjik

∇−∇  , ji < , ikji ≠≠≠          (14) 

and the three cell-based vector basis functions                                   
)(

11 ξξξξξξ ∇−∇
iikj

,  1,, >kji , ikji ≠≠≠ , kj < .   

(15) 

III. ANTENNA GEOMETRY 
The top and side views of the antenna are shown in Fig. 

2a and Fig. 2b, respectively. The antenna consists of a 
square slot placed between two substrates of the same 
material.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

 
 
 
 
 
 

 
(b) 

 
Fig. 2. a) Top and b) Side view of the antenna. 
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Two E-shaped patches are printed orthogonally (one on 
the top and one on the bottom of the antenna) and 
connected to two orthogonal microstrip feed lines. 
Through proper selection of the parameters of the E-
shaped tuning stub, it is expected that the coupling 
between the microstrip line and the printed wide slot can 
be controlled more effectively. When dimensions of the 
E-shaped tuning stub change, the coupling changes and 
the antenna has different resonance characteristics.  

The design maintains a high degree of polarization 
isolation and employs a symmetric feeding structure. The 
antenna is a bi-directional radiator, and the radiation 
patterns on both sides are approximately the same. 
Moreover, circular polarization is obtained by 
simultaneous excitation. Neltec NH 9300 (εr=3, 
tanδ=0.0023) with a thickness of 1.27 mm is used for the 
substrate material. The dimensions of the antenna and the 
antenna specifications are given in Table 1 and Table 2, 
respectively. Antenna was designed using a trial-and-
error approach.  
 

Table 1. The dimensions of the designed antenna. 
 

 Antenna Dimensions 

L1 75 mm 
L2 6 mm 
L3 8.5 mm 
L4 3 mm 
L5 12 mm 
L6 6 mm 
W1 57 mm 
W2 1.18 mm 
W3 5 mm 
W4 33 mm 
W5 3 mm 
h 1.27 mm 

 

IV. NUMERICAL RESULTS 

A. Square Slot Antenna 
The return loss comparison of the antenna between FE-

BI method and HFSS for Port 1 is shown in Fig. 3. Both 
simulations have very similar characteristics. The HFSS 
simulation show that the antenna operates in the band 0.8 
GHz – 3.35 GHz with a 10 dB bandwidth of 123%. 
Similarly, according to FE-BI result the band extends 
from 0.74 GHz to 3.02 GHz with a bandwidth of 121%. 
Thus, it can be used for GPS (1.227 GHz and 1.575 
GHz), XM (2.332 GHz-2.345 GHz), GSM (890 MHz-915 
MHz and 935 MHz-960 MHz), and PCS (1.85 GHz-1.99 

GHz and 2.18 GHz-2.20 GHz) bands. All FE-BI 
simulations are done by using 1.5 and 2.5 order elements 
throughout the entire finite element domain. 

 
Table 2. Square slot antenna specifications. 

 

 Antenna Specifications 

Frequency Range 0.8 GHz–3.35 GHz 

Impedance 50 ohms 

Return Loss Less than -10 dB 

Polarization Circular 

Axial Ratio Less than 3 dB 

Gain 2 dB 

VSWR(min 
performance) 

Less than 2:1 Nominal 
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Fig. 3. Return loss of the antenna for Port 1. 

 
S11 and S22 are also very similar due to the symmetry 

of the ports as shown in Fig. 4. The VSWR and the peak 
gain of the antenna when only Port 1 is excited are shown 
in Fig. 5 and Fig. 6. The VSWR level is below “2” 
throughout the entire band, and reasonable gain flatness 
around 2 dB is obtained until 2.8 GHz. 

Figure 7 shows the calculated axial ratio of the antenna. 
The antenna provides circular polarization in two bands 
of 0.8 GHz - 1.9 GHz and 2.8 GHz - 3.35 GHz with 3 dB 
bandwidths of 95% and 25%, respectively. Axial ratios 
computed on the x-z and y-z planes at GPS frequencies 
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(1.227 GHz and 1.575 GHz) are shown in Fig. 8a and 
Fig. 8b. The axial ratio is less than 3 dB around the z-axis 
which is the main direction of radiation. 
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Fig. 4. S11 and S22. 
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Fig. 5. VSWR for both ports. 
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Fig. 6. Peak gain when only Port 1 is excited. 
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Fig. 7. Axial ratio. 
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Fig. 8. Axial ratio on (x-z) and (y-z) planes at a) 1.227 
GHz and b) 1.575 GHz. 

 
Figure 9 shows the far field radiation patterns of the 

antenna on the x-z and y-z planes. E-phi and E-theta 
components for both planes are calculated at 0.8 GHz, 
1.575 GHz, 2.34 GHz, and 3 GHz. It is apparent from the 
plots that the antenna has omni-directional radiation 
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characteristics. The cross polarized fields deteriorate as 
the frequency increases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Radiation patterns of the antenna shown in Fig. 2 
on x-z and y-z planes at 0.8 GHz, 1.575 GHz, 2.34 GHz, 

and 3 GHz. 

B. Automotive Applications 
Figure 10a, Fig. 10b, Fig. 10c, and Fig. 10d show the 

antenna on the roof, trunk, 4-door automobile, and 
convertible automobile meshes, respectively. The length, 
width, and height of the problems at 3 GHz are also 
given. In order to reduce the number of unknowns 0.5 
order elements are used for the regions further away from 
the antenna while 1.5 and 2.5 order elements are 
employed in the vicinity of the antenna.  

 
 

 
 
 
 
 
 

(a) 
 
 

 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 

 
 

 
 

(c) 
 
 
 
 
 
 
 
 

 
(d) 

Fig. 10. Square slot antenna on the a) Roof, b) Trunk, c) 
Whole 4-Door Automobile, and d) Whole Convertible 

Automobile. 
 

Table 3 shows the number of FE and BI unknowns and 
total solution time for each problem when combination of 
0.5 and 2.5 order elements, and 2.5 order elements alone, 
are used. The residual error is kept constant for both 
solutions. BICGSTAB (l) algorithm is used for the 
iterative solver which is superior to other solvers for 
antenna analysis [15]. As clearly seen from Table 3, 
mixed order elements improve the solution time and 
reduces the memory. In BICGSTAB (l) algorithm l=4 is 
used for the simulations. In addition, the convergence 
characteristics of each problem are shown in Fig. 11, Fig. 
12, Fig. 13, and Fig. 14, respectively. 

 
Table 3. The number of FE and BI unknowns and total 

solution time for each problem. 
 

 Total FE       
Unknowns 

Total BI 
Unknowns 

Total 
Solution 

Time 
(sec) 

Roof 5473 (0.5+2.5) 
37,825 (2.5) 

4880 (0.5+2.5) 
14,362 (2.5) 

2,664 
52,872 

Trunk 4,721(0.5+2.5) 
30,523(2.5)  

3,860 (0.5+2.5) 
11,312(2.5) 

9,636 
73,467 

4-Door 
Automobile 

9,756(0.5+2.5) 
67,312(2.5) 

11,400(0.5+2.5) 
33,113(2.5) 

4,3450 
123,543 

Convertible 
Automobile 

10688(0.5+2.5) 
74,561(2.5) 

10980(0.5+2.5) 
32,452(2.5) 

24,491 
137,687 
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Fig. 11. Convergence behavior of the antenna on the 

roof. 
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Fig. 12. Convergence behavior of the antenna on the 

trunk. 
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Fig. 13. Convergence behavior of the antenna on the 4-

Door automobile. 
 
Figure 15 and Fig. 16 show the similar radiation 

characteristics of the antenna and the antenna on the roof 
and on the trunk at GPS, respectively. Although the co-

polarization levels for the antenna on the roof and trunk 
are lower than the antenna alone, the difference is very 
small around the main direction of radiation (z-axis). 
Moreover, the cross polarization levels of the antenna on 
the trunk are lower than the antenna. 
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Fig. 14. Convergence behavior of the antenna on the 

convertible automobile. 
 

 
 
 
 
 
 
 
 

 
 
 
 

Fig. 15. Radiation pattern comparison of the antenna 
alone and the antenna on the roof at GPS. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 16. Radiation pattern comparison of the antenna 

alone and the antenna on the trunk at GPS. 
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Figure 17 and Fig. 18 show the radiation pattern 
comparisons of the antenna and the antenna on the 4-
Door and convertible automobiles. The co-polarization 
patterns are very similar in both cases. Especially, E-phi 
patterns on the y-z plane have very close values. The saw-
like pattern for the automobiles is actually an expected 
case. Besides that, the y-z plane is wider than the x-z 
plane and the automobiles have more deteriorated cross-
polarization patterns. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Radiation pattern comparison of the antenna 
alone and the antenna on the 4-Door automobile at GPS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Radiation pattern comparison of the antenna 
alone and the antenna on the convertible automobile at 

GPS. 
 

V. CONCLUSION 
A set of hierarchical mixed-order TVFEs for 

tetrahedral elements up to and including 2.5 order are 
proposed. A wide band square slot antenna with an E-
shaped tuning stub is designed using FE-BI method that 
employs the presented mixed order TVFEs. The antenna 
operates in the band 0.8 GHz – 3.35 GHz. The antenna 
has an average gain of 2 dB and provides circular 
polarization. 
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Abstract — A dual-band hybrid antenna element 
comprising of microstrip and waveguide radiating 
elements is theoretically investigated through computer 
simulations. The low band radiator is a Shorted Annular 
Ring (SAR) microstrip antenna and the high band 
antenna is an open ended circular waveguide. First, the 
characteristics of a SAR patch antenna are presented 
and reviewed. Then the dual-band antenna 
configuration is described, which is realized by forming 
a waveguide radiator in the shorted region of the SAR 
microstrip antenna.  Modeling and analysis of the SAR 
patch antenna and the hybrid element are investigated 
using the method-of-moment-based software package 
FEKO. The analysis includes return loss computations 
showing the element bandwidth at different frequency 
bands and the radiation patterns in the E- and H- planes.  
Feeding the element in phase quadrature produces 
circular polarizations (CP).  The radiation patterns of 
the CP dual-band element are also analyzed using 
FEKO and the axial ratio performance is subsequently 
assessed. 
 

I.  INTRODUCTION 
 

Dual-band antennas operating from a single 
aperture are desired in several modern communications, 
satellite communications, remote sensing, and multi-
function radar systems. Providing multiple antennas to 
handle multiple frequencies and polarizations becomes 
especially difficult if the available space is limited (as 
with airborne platforms and submarine periscopes).  
Few techniques are currently available to achieve such 
dual band operation with microstrip antennas [1]. A 
rectangular patch can be operated at dual bands using 
the first resonance of the two orthogonal dimensions of 
the rectangular patch, which are the TM100 and TM010 
modes. The frequency ratio is roughly equal to the ratio 
between the two orthogonal sides of the patch.  
Multiple radiation elements are also used for operation 

at dual bands.  A third popular approach is the 
introduction of reactive loading to a single patch. 

The orthogonal mode patch can have simultaneous 
matching of the input impedance at the two 
frequencies with a single feed structure. But then it 
gives two orthogonal polarizations from the two 
frequencies. A probe-fed patch can be used to 
accomplish this approach where the location of the 
probe is displaced from the two principal axes of the 
patch. Slot coupling can also be used to implement 
single feed dual matching.  

The dual band operation can also be achieved using 
multiple radiating elements. In this case, each of the 
radiating elements supports strong currents and 
radiation at its resonance frequency. This category 
includes multilayer stacked patches. This approach can 
also be used to broaden the bandwidth of a single band 
antenna when the two frequencies are forced to be 
closely spaced.  Multi-band antennas can also be 
obtained by printing more resonators on the same 
substrate.  

Another popular technique for obtaining a dual 
band operation is the use of reactively loaded patch. A 
stub can be connected to one radiating edge of the patch 
so as to create a further resonant length for another 
operating frequency. The radiating edge can also be 
loaded with an inset or a spur-line. However, if a higher 
value of the frequency ratio is intended then shorting 
vias or lumped capacitors can be used between the 
patch and the ground plane. Etching slots on the patch 
can also introduce reactive loading.  

A dual band element is presented in this paper and 
uses a hybrid of microstrip and waveguide radiators 
each resonating at a different frequency [2].  The hybrid 
antenna is realized by forming an open ended 
waveguide in the shorted region of a Shorted Annular 
Ring (SAR) microstrip antenna [3]. The SAR 
microstrip antenna acts as the low band radiator and the 
open ended waveguide acts as the high band radiator. 
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The upper to lower frequency ratio can be controlled by 
the proper choice of various dimensions and dielectric 
material. Operation in both linear and circular 
polarization is possible in either band.  Moreover, both 
broadside and conical beams can be generated in either 
band from this antenna element.  The following 
sections present a modeling and analysis of this dual 
band antenna element using the moment-based software 
package FEKO [4].  
 
II.  MODELING OF SHORTED ANNULAR RING 

(SAR) PATCH ANTENNAS 
 
 Annular ring and rectangular or square ring are 
popular geometries for microstrip antennas. They have 
one more design variable than the conventional circular 
patch, which is the inner dimension. Both inner and 
outer dimensions can be used to control the resonant 
frequency of the patch. They also generally offer 
greater impedance bandwidth. If the patch is shorted at 
the inner radius of the annular ring, the element is 
called Shorted Annular Ring (SAR) patch and it can 
offer some special advantages. Similar shorting at the 
inner dimension of the rectangular or square ring 
produces the same properties. The configurations of the 
circular and square versions of the SAR element are 
shown in Figure 1. 

The SAR microstrip antenna was first investigated 
by Goto’s group [5-6] for dual frequency use and 
subsequently as a circular polarization self-diplexing 
antenna [7] for mobile communications. Lin and Shafai 
[8] have used cavity method to analyze the 
characteristics of TM11 as well as TM21 modes of SAR 
patch antenna. Iwasaki and Suzuki investigated an 
electromagnetically coupled shorted patch antenna [9] 
and Boccia, et al. reported GPS application of elliptical 
annular microstrip antenna [10].  

 
Fig. 1.  Shorted annular ring (SAR) microstrip antenna.  
 
 To reduce the mutual coupling between the SAR in 
array environments, the surface waves propagating 
along the array structure has to be reduced.  Jackson, et 
al. [3] showed that reduced surface wave excitation can 
be achieved by proper choice of the inner and outer 
radii of a SAR microstrip antenna. Therefore, if SAR 

microstrip antenna is designed accordingly, it is then 
called Shorted Annular Ring Reduced Surface Wave 
(SAR-RSW) microstrip antenna. The relationship 
between the outer radius a and inner radius b at 
resonance is 
 

( ) ( ) ( ) ( ) 0n n n nJ ka Y kb J kb Y ka′ ′− =    (1) 
 
where Jn and Yn are the Bessel functions of the first and 
second kind.  If the values of a, b, and the substrate 
dielectric constant εr are given, the frequency can be 
varied and a number of roots can be determined for n = 
0, 1, 2,…….  This gives the different resonant modes of 
operation of the SAR microstrip antenna. 
 
Table 1. Resonant frequency using FEKO and equation 
(1). 

 
Inner/Outer 

radius 
Res. freq. (GHz) 

from FEKO 
Res. freq. (GHz) 
from equation 1

0 2.82 2.77 
0.1 2.87 2.82 
0.2 3.02 2.98 
0.3 3.29 3.25 
0.4 3.68 3.66 
0.5 4.29 4.28 

 
 A simulation of the SAR element was performed 
using FEKO for εr = 2.5, h = 1.5 mm, and a = 19.2 mm.  
Table 1 compares the resonant frequency results using 
FEKO and equation (1). The broadside radiation 
patterns in the E- and H-planes were also computed 
using FEKO and the results are shown in Figure 2 for 
different inner/outer radius ratios.  

Another interesting feature of the SAR antenna is 
that the lowest order mode produces a conical radiation 
pattern unlike the conventional microstrip antennas. 
This result was first reported by Goto [6] for use as a 
planar conical beam antenna, but this feature has not 
received attention. With suitable choice of outer and 
inner radii, a single feed antenna design, which 
produces conical pattern at lower frequency and 
broadside pattern at higher frequency, can be realized. 
Figures 3 and 4 present the return loss and radiation 
patterns, respectively, calculated using the full-wave 
MoM simulation FEKO for an optimized SAR antenna 
producing conical (at 3.85 GHz) and broadside (at 5.0 
GHz) patterns from a single point feed. The peak 
directivity of the monopole-like pattern is 3.0 dB at 
about 15º from the horizon and that of the broadside 
mode is 8.0 dB. The bandwidth (in terms of -10 dB 
return loss) is about 2% and 3%, respectively, for 
conical and broadside modes. 

A B C D
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Conical patterns are typically generated using 
higher order mode excited circular microstrip antennas 
[11-12]. A TM21 excited circular microstrip resonating 
at 3.85 GHz requires a radius of 20 mm. On the other 
hand, the radius of SAR patch antenna resonating at the 
same frequency is 13.7 mm, which is 25% less in size. 
A comparative study of compact circular microstrip 
antennas producing conical patterns was presented in 
[12]. 

 

 
 
 

 
 
 

 
Fig. 2.  E- and H- plane patterns of SAR element for 
different inner/outer radius ratios.  
 

 
 

Fig. 3.  Computed return loss of optimized SAR 
antenna; Parameters: a=13.4 mm, b=4.7 mm, h=1.5 
mm, εr=2.35. 

 
III.  MODELING OF LINEARLY POLARIZED 

HYBRID DUAL BAND RADIATOR 
 
 The hybrid dual band element uses the annular or 
square ring as the low-frequency radiator in consistence 
with the SAR-RSW patch design.  Figure 5 shows 
circular and square configurations for the hybrid dual-
band element.  The ground plane in its shorted annular 
region at the center creates an aperture that can be used 
as an open-ended waveguide radiator and can be 
designed to operate at the higher frequency band. The 
dimensions and dielectric materials of the SAR patch 
antenna and the waveguide radiator are appropriately 
chosen for the required dual band operation.  The cut-
off frequency of the dominant mode for the waveguide 
defines its higher band frequency.  In general, the cut-
off frequency of the dominant mode is far above the 
lower band frequency.  Thus, the waveguide acts as a 
high pass filter in the lower band and yields good 
isolation between the ports.  Although the dimension of 
waveguide is fixed, the higher band frequency can be 
reduced by dielectric loading the waveguide.  The cut-
off frequency can be changed to a desired value by 
loading of the waveguide with dielectric material of 
appropriate permittivity.   
 As in the SAR element, the hybrid antenna can be 
operated for a conical radiation pattern in either band.  
The lowest resonant mode of the SAR microstrip 
antenna is TM01, which produces a conical radiation 
pattern.  If the SAR microstrip antenna dimension is 
designed such that the resonant frequency in TM01 
mode becomes the desired frequency, the antenna will 
produce a conical beam in the lower band.  In order to 
generate a conical radiation pattern in the higher band, 
an appropriate feed design in the waveguide is required 
to generate higher order modes, which will produce 
conical radiation patterns. 
 

E-plane  

H-plane  
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    3.85 GHz 

 
5.0 GHz 

Fig. 4.  Computed radiation pattern at 3.85 GHz and 5.0 
GHz; Parameters: a=13.4 mm, b=4.7 mm, h=1.5 mm, 
εr=2.35. 
 

The circular hybrid element, comprising of an 
annular ring and a circular open-ended waveguide, was 
simulated using FEKO for insertion losses, radiation 
patterns, and port-to-port isolation at the two frequency 
bands. The simulation model is shown in Figure 6. The 
return loss at the lower frequency band is shown in 
Figure 7 indicating a -10 dB return loss of 3%. Figures 
8 shows radiation patterns at the lower and higher 
frequencies of 3.0 GHz and 7.3 GHz for a circular 
element of parameters: a = 27.8 mm, b = 13.9 mm, εr = 
2.2, and h = 2.54 mm. At 3 GHz, the calculated peak 
directivity is 8.8 dB and the 3 dB beam widths are 55º 
and 63º in the E- and H- planes, respectively. The dual-
band antenna produces a peak directivity of 9.5 dB and 
beam widths of 33º (E-plane) and 48º (H-plane) at 7.3 
GHz.  The higher frequency represents a margin of 16% 
over the cut-off frequency of 6.3 GHz for the air-filled 
circular waveguide.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Circular and square configurations for the 
hybrid dual-band element. 

 
    

 

 
 
Fig. 6.  Modeled dual-band antenna using FEKO. 

dielectric 

feed w/g 
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Fig. 7.  Computed return loss of dual-band antenna at 
lower frequency; Parameters: a=27.8 mm, b=13.9 mm, 
h=2.54 mm, εr=2.2. 

 

 

   
 
 
 
 

   
 

 
 
Fig. 8.  E- and H- plane radiation patterns of the hybrid 
dual-band element. 

 
One of the features of this dual-band configuration 

is the good inherent port-to-port isolation at lower 
frequency. For low frequency signals, the circular 
waveguide acts as a high-pass filter and good isolation 
between the ports is achieved in the low frequency 
band. In other words, the length of the waveguide feed 
section determines the isolation between the ports. The 
computed isolation data at the two bands are shown in 
Figure 9.  Isolations in excess of 85 dB at the lower 
frequency band and 31 dB at the higher frequency band 
were calculated. 
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Fig. 9.  Port-to-port isolation at the two frequency 
bands of the hybrid element. 

 
Another parameter to control one of the operating 

frequencies is the permittivity of the dielectric material 
inside the waveguide. The higher frequency can be 
reduced by dielectric loading of the waveguide. The 
present work considers only the dominant mode 
excitation in the circular waveguide, which produces 
broadside patterns.  Higher order modes, for example 
TM01 mode, can be made possible with an appropriate 
waveguide feed design and will generate conical 
patterns. An example is shown in Figure 10 for the 
radiation patterns of a dielectric loaded waveguide 
radiating element with a dielectric constant of 3.0. The 
upper frequency is reduced to 4.2 GHz. The lower 
frequency characteristics remain almost unaffected 
except for the isolation between the ports, which 
depends on the separation between the operating and 
waveguide cut-off frequencies. The increase in beam 
width and the reduction in directivity are due to the 
decrease in the size of the radiating element. 

 
IV. MODELING OF CIRCULARLY POLARIZED 

HYBRID DUAL BAND RADIATOR 
 

Feeding the radiators within the hybrid element at 
two orthogonal points with equal amplitudes and in 
phase quadrature produces circular polarization. The 
feeding can be such that dual circular polarizations are 
produced.  Feeding at four points with sequential 90-
degree phase shifts will produce lower axial ratios.  
This was simulated using FEKO for the hybrid element 

E-plane H-plane 

E-plane H-plane 

3 GHz            

                   
7.3 GHz 
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at the two frequency bands of operation. The models for 
dual and quad feeding of the shorted annular ring are 
shown in Figure 11. All design parameters required in 
simulation such as, inner and outer radii, feed position, 
dielectric constant, substrate height, ground plane size, 
and operating frequency were the same as used in linear 
polarization of the hybrid antenna. 

 
             E-plane  

 
            H-plane 

Fig. 10.  Computed E- and H- plane patterns at 4.2 GHz 
for dielectric-loaded waveguide. 

 
Simulation results at the lower frequency band for 

the circular hybrid antenna are shown in Figures 12 and 
13 for the dual-fed element and in Figures 14 and 15 for 
the quad-fed element. The results of the simulation 
indicated that low axial ratios can be obtained on axis 
over a bandwidth greater than the impedance 
bandwidth. Quad feeding produced broader impedance 
bandwidth and perfect axial ratio on axis. It also 
produced larger beamwidth over which the axial ratio is 
below certain level, e.g. 3 dB. Resulting radiation 
patterns were almost identical in the E- and H-planes, 
supporting the low axial ratio results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.  FEKO model for dual and quad feeding of 
hybrid element for circular polarization.  

 

 
 

 
 
Fig. 12.  Return loss and on-axis axial ratio at lower 
band for circular hybrid element with dual-fed 
circularly polarized SAR.  
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  (a)  
 

 
 

                              (b) 
 

Fig. 13.  Radiation patterns at 3 GHz for circular hybrid 
element with dual-fed circularly polarized SAR: (a) φ = 
0o plane and (b) φ = 90o plane. 
 

 
 

 
 

Fig. 14.  Return loss and on-axis axial ratio at lower 
band for circular hybrid element with quad-fed 
circularly polarized SAR.    

 

 
 
                              (a)    

 
 
  (b) 

 
Fig. 15.  Radiation patterns at 3 GHz for circular hybrid 
element with quad-fed circularly polarized SAR: (a) φ 
= 0o plane and (b) φ = 90o plane. 
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V.  CONCLUSIONS 
 
 A dual-band dual polarization radiating element 
was modeled using the electromagnetic software 
package FEKO. Return loss, radiation patterns, and 
port-to-port isolations were calculated.  The program 
was also used to design and optimize the element 
parameters in order to achieve the dual-band operation 
at the desired frequencies. Circular polarization 
operation was simulated by feeding the element at two 
orthogonal points in phase quadrature or at four points 
in sequential phase progression. 
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Abstract  —  CEM methods such as FDTD and TLM 
are the de-facto standard for general purpose EM field 
modeling in the time domain. On the other hand, the 
Microsoft .NET Framework and the associated C# 
programming language have become the de-facto 
standard for software development on Windows. This 
paper presents the technique for building a time domain 
CEM object library in C#. This approach could be the 
basis for creating an open-source standard CEM library. 

Index Terms  —  CEM, FDTD, TLM, time domain 
analysis, object-oriented approach. 

I. INTRODUCTION 

Traditional computational electromagnetics (CEM) 
research does not place sufficient emphasis on object-
oriented design and implementation.  Classic and recent 
CEM books [1] – [8] do not address the importance of 
object orientation at all. As a result, software packages 
developed by CEM practitioners usually cannot be 
maintained outside of their respective research 
institutions. It is hard to imagine engineers around the 
world would have to re-invent the basic string and math 
functions before they could start writing codes to solve 
their design problems. However, when it comes to 
developing new programs for CEM applications most 
CEM practitioners have to start from scratch because 
there is no standard CEM library at their disposal. 
Using free packages such as NEC [9], TLM3D [10], 
YatPac [11], and MEEP [12] to solve EM problems is 
one thing; building new programs base on these 
packages is a completely different challenge. 

In the author’s opinion, general purpose CEM 
methods such as MOM, FEM, FDTD and TLM are 
mature enough to be placed in an open source standard 
CEM library. The existence of such a library would not 
pose unwanted competition to the CEM software 
industry because the role of CEM industry should be in 
optimizing the well known modeling methods with 
proprietary features, in customizing the software with 
industrial strength graphical user interface front-end, 
and in interconnecting the field modeling engines to 
CAD/CAE packages. 

Object-oriented paradigm is the key for 
implementing a standard CEM library. However, 
Object orientation is not equivalent to programming in 
Java, C++, and C#. In fact, it is not difficult to find 
procedure-oriented spaghetti code written in these 
languages. A truly object-oriented program makes good 
use of encapsulation, inheritance, and polymorphism. 
Stroustrup discusses the concept in great details in his 
authoritative C++ book [13]. 

The author has illustrated the advantages of an OOP 
CEM framework in an earlier paper [14]; in order to 
build a standard CEM library in a reasonably short 
period of time, existing procedure-oriented CEM codes 
should be leveraged as much as possible. This paper 
thus spells out the details of converting a procedure-
oriented program to an object-oriented implementation. 
Since the Microsoft .NET Framework and its associated 
C# programming language have become the de-facto 
standard for the Windows software industry, this paper 
makes use of the C# programming language to apply 
the OOP techniques to computational electromagnetics. 

II. IMPLEMENTATION OF TLM IN C# 

The theory of TLM is well described in the literature 
[1], [4], [15] and [16]. Procedure-oriented 
implementation of the method can be found in [1] and 
[10]; a package written in C/C++ has been recently 
released by Russer et al. [11]. These TLM source codes 
are invaluable resources for CEM researchers who are 
interested in the TLM method. However, these 
computer codes are based on legacy modules that are 
not object-oriented. To illustrate the idea of object-
oriented implementation, this paper describes the 
software technology for converting the TLM_INHO 
Pascal program in [1] to a reusable class object in C#; 
the source codes presented in this paper can be 
downloaded at the CERL website [17]. 

C# is not the only programming language that is 
suitable for implementing polymorphic CEM programs. 
Many CEM professionals may prefer C++ and Java to 
C# because of the maturity of the two older languages 
as well as the general availability of third party 
numerical libraries [18] and [19]. C# is used in this 
paper because it supports multi-dimensional arrays in a 
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way that is similar to Pascal and FORTRAN.  
Furthermore, C# supports C++ style operator 
overloading which is a crucial feature for implementing 
a complex mathematic library. Finally, C# can leverage 
the computing power of library modules written in 
C/C++, Pascal and FORTRAN via the .NET 
Framework InteropServices. Hence, C# is a serious 
programming language that CEM researchers may not 
want to ignore. 

The first step to convert the TLM_INHO.PAS 
program to C# is to map the Pascal data types to the 
equivalent C# data objects. Pascal’s numeric data types 
such as integer and single can be translated in a 
straightforward manner to the C#’s int and float 
data types. In both languages, double precision floating 
p o i n t  n u m b e r s  a r e  c a l l e d  d o u b l e . 

{------- Pascal Code Segment -------} 
nx, ny : integer;  {mesh dimension  } 
d1, d2 : single;   {normalized freq.} 
header : string[80]; {temp. storage } 
 
//-------- C# Code Segment ---------- 
int nx, ny;     // mesh dimension 
float  d1, d2;  //normalized freq  
string header;  //temporary storage 

Listing 1. Code segment using simple data types to 
illustrate the equivalence of data types 
between Pascal and C#. 

 

The string types between these two languages are quite 
different.  In Pascal, string is an array of characters; the 
characters in a string can be manipulated at run-time. In 
C#, string is an immutable built-in type; a new string 
must be created if any characters in the old string are to 
be changed. In addition to that, the C# string is a 
reference type. When the value of a string variable is 
assigned to another string variable, only the reference 
to the string is assigned to the new variable; both 
variables will refer to the same character string. The 
code segments in Listing 1 and 2 illustrate the said 
concepts. When the content of a string is no longer 
referred by a string variable, the memory location 
occupied by the defunct string will be recovered by the 
.NET Framework’s garbage collection utility. This 
garbage collection concept applies to all built-in and 
user defined reference data types. 

Arrays in Pascal and C# are quite similar but the 
differences have to be noted.  In Pascal, array lower 
bounds can be easily specified.  In C#, arrays have a 
default lower bound of zero; arrays with user specified 
lower bounds can be created with the static 

CreateInstance class method.  In the original 
TLM_INHO.PAS program, the three-dimensional array 
for storing voltage impulses is declared as: 

v:array[1..5,1..12,1..12] of single; 

A three-dimensional C# array that allows indices to 
span through [1..5, 1..12, 1..12]  would be: 

float[,,] v = new float[6,13,13]; 

The above three-dimensional C# array in fact has 
1×13×13 extra entries. To avoid wasting storage, one 
may use the following statement: 

float[,,] v = (float[,,]) 
Array.CreateInstance( 
typeof(float), 
new int[] { 5,12,12 }, 
new int[] { 1, 1, 1 }); 

string a, b; // string variables 
a = “abc”;// assign address of “abc” 
b = a;    // to a and b. a and b now 
          // refer to the same string 
a = “def” // a refer to a new string. 
b = a;    // a and b now refer to 
          // “def”, “abc” becomes 
          // inaccessible. 

Listing 2. Code segment illustrates the reference 
characteristic of the C# string; the 
unreferenced “abc” string will eventually 
be garbage collected by the .NET 
Framework. 

 

Instead of typing the declaration statement above 
repetitively in a source file, one may define the 
following generic static method to create three 
dimensional arrays: 

public static T[,,] Array3D<T> 
 (int x1, int x2, int y1, 
  int y2, int z1, int z2){ 
int[] dim={x2-x1+1, y2-y1+1,z2-z1+1}; 
int[] lower={x1, y1, z1}; 
return (T[,,])Array.CreateInstance( 
             typeof(T), dim, lower); 
} 

Using this generic method, a three dimensional array of 
storage for the voltage impulses can be created via the 
following simple statement: 

float[,,]  v = 
Array3D<float>(1,5,1,12,1,12); 
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The same technique can be employed to create two-
dimensional arrays of any type; the generic method in 
this case would be: 

public static T[,] Array2D<T> 
(int x1, int x2, int y1, int y2){ 
 int[] dim ={ x2-x1+1, y2-y1+1}; 
 int[] lower ={ x1, y1 }; 
return (T[,])Array.CreateInstance( 
             typeof(T), dim, lower); 
} 

Hence, non-zero lower bound two-dimensional arrays 
of type char, int and float can be declared like: 

char[,]  a = 
Array2D<char>(1,5,1,120); 
int[,]     b = 
Array2D<int>(1,5,1,120); 
float[,] c = 
Array2D<float>(1,5,1,120); 

One would expect this technique to work for one-
dimensional arrays as well.  However, the version 2.0 
C# compiler does not allow one-dimensional 
System.Array to be typecast to T[]. This compiler 
deficiency, or bug, can be overcome by using the 
following simple Array1D<T> class. 

 
Fig.1. Helper classes for a new TLM_INHO object. 
 
public class Array1D<T>{ 
  public Array1D(int x1, int x2){ 
    int[] dim ={ x2 - x1 + 1}; 
    int[] lower ={ x1}; 
    a = Array.CreateInstance( 
        typeof(T),dim, lower); 
  } 

  public T this[int i]{ 
    get { return (T)a.GetValue(i); 
} 
    set { a.SetValue(value,i); } 
  } 
  public Array a; 
} 

Besides demonstrating C#’s generic class definition, 
this implementation also illustrates the use of C#’s 
indexer, [], as well as the accessor (get) and mutator 
(set) property methods. With these array creation 
methods and the Array1D <T> class, it is 
straightforward to transform the TLM_INHO Pascal 
program to a C# program — all data and procedures 
crucial to the TLM simulation are placed inside a main 
C# class; supporting data and utility functions are 
placed in other general purpose helper classes. A screen 
shot of the module that contains the immediate helper 
classes for a new TLM_INHO object is shown in 
Figure 1.  SrStream and SwStream are text based 
file IO classes whereas the TheBase consists of the 
previously mentioned static array creation methods and 
the Array1D <T> helper class. 

Figure 2 shows the private variables of an 
inhomogeneous medium TLM class, InHo. Since 
InHo is derived from TheBase, InHo inherits all the 
data and methods of TheBase. As a result, InHo can 
make use of the array creation methods and the one-
dimensional array class, TheBase, without using the 
<class>.<method> notation. Besides the private 
data shown in the figure, InHo has a number of public 
methods for data I/O, field simulation, and data 
processing. Figure 3 shows a main program that makes 
use of the InHo class to implement a single-thread 
TLM simulation algorithm identical to the original 

 
Fig.2. The class structure of TLM_IHNO in C#. 
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Fig.3. A C# program that employs the TLM_INHO 

class library. 
 

 
Fig.4. The output of the TLM program in figure 3. 

 
Fig.5. InHo_2, a new class derived from InHo. 

Pascal program. The false argument passed to the 
Iterate method informs the tlm object it is not 
necessary to send output to the console during the field 
simulation process. The original Output (renamed 
PlotGraph) procedure has been made virtual to 
support polymorphism. 

The new program has been used to analysis the 
rectangular resonator associated with the original 
Pascal TLM_INHO program. The output from the 
current C# implementation, which is identical to the 
output of the original program, is shown in Figure 4. 

The above computation has validated that the 
Program, InHo, and TheBase classes have been 
properly implemented in C# using the object-oriented 
paradigm. The helper classes and array creation 
methods are general purpose utilities for converting 
codes in other programming languages to C#. 

One of the advantages of object-oriented 
implementation is the ease of leveraging computing 
power of existing software modules via object 
inheritance and polymorphism. If the PlotGraph 
method of InHo is made virtual, a new class, say 
InHo_2, can be derived from InHo with a new pixel-
based graphical PlotGraph method that overrides the 
original string-based implementation. The code 
structure of such an implementation is shown in 
Figure 5. Inheritance and polymorphism are powerful 
features that do not exist in the traditional procedure-
oriented programming paradigm. 

Another advantage of object-oriented implementation 
is the feasibility of instantiating multiple copies of the 
InHo objects in the Main method.  A multiple-engine 
TLM program can be easily created using the InHo 
class library; Figure 6 depicts the code segment of a 
dual-engine simulation program.  On a multi-processor 
computer, the engines will run simultaneously. In order 
to illustrate the concurrent behaviour of the dual-engine 
implementation, a true argument is passed to the 
iterate method so that the tlm objects would print 
the name of the input file and the iteration number to 
the console during the field computation process. The 
screen image in Figure 7 shows interspersed outputs 
from the two concurrent threads in Figure 6. 

 
Fig.6. A multi-thread TLM_INHO code segment in C#. 

 
Fig.7. A screen image consists of interspersed outputs 

from the two execution threads in Fig 5. 
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Recently released CEM codes, [9] and [12], are 
mostly implemented in C++. However, as the author 
has mentioned earlier, programs implemented in C++ 
are not necessarily object-oriented programs. Programs 
that do not take advantage of object inheritance and 
polymorphism are merely class oriented programs. 
More applications of object-oriented programming 
paradigm to computational electromagnetics can be 
found in [20]-[25]. Details about polymorphism and 
concurrent programming in C# can be found in [26] 
and [27]. 

III. CONCLUSION 

A C# implementation of the classical two-
dimensional TLM algorithm by Hoefer has been 
presented. Object-oriented features such as 
encapsulation, inheritance and polymorphism have 
been demonstrated. The object-oriented paradigm 
presented in this paper can be used to convert most 
legacy procedure-oriented CEM programs to modern 
object-oriented library modules. The technique 
presented in this paper is equally applicable in the Java 
environment, or in the C++ world with other operating 
systems. The author is advocating placing commonly 
used CEM engines, such as MoM, FEM, FDTD and 
TLM, in an open source standard CEM library to 
benefit the EM community at large. 
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IV. APPENDIX 

 
THEBASE.CS: AN OBJECT-ORIENTED TLM LIBRARY IN C#  
using System;          using System.Collections.Generic; 
using System.Text;     using System.IO; 
namespace TLM{ 
public class SrStream : StreamReader{ 
    public SrStream(String ifs) : base(ifs){} 
    public String ReadString(){ 
        char a = ' ';   do{ a = (char)Read();}   while (char.IsWhiteSpace(a)); 
        string buffer = ""; 
        do{ buffer += a;  a = (char)Read();} while (!char.IsWhiteSpace(a)); 
        return buffer; 
    } 
    public float ReadFloat() { return float.Parse(ReadString()); } 
    public int ReadInt() { return int.Parse(ReadString()); } 
} 
public class SwStream : StreamWriter{ 
    public SwStream(String ofs) : base(ofs){ } 
    public string Format<T>(T v, int pl){ 
        string str = v.ToString().PadLeft(pl, ' '); 
        return str.Substring(0, pl); 
}   } 
public class TheBase{ 
 
    // Protected Math Methods 
    //======================= 
    protected double atan(double v) { return Math.Atan(v); } 
    protected double exp(double v) { return Math.Exp(v); } 
    protected double cos(double v) { return Math.Cos(v); } 
    protected double sin(double v) { return Math.Sin(v); } 
    protected double sqrt(double v) { return Math.Sqrt(v); } 
    protected double floor(double v) { return Math.Floor(v); } 
    // Data 
    //===== 
    public SrStream sr; 
    public SwStream sw; 
    public String input_file, output_file; 
    // Protected IO Methods 
    //===================== 
    protected string Format<T>(T v, int pl) { return sw.Format<T>(v, pl); } 
    protected float ReadFloat() { return sr.ReadFloat(); } 
    protected int ReadInt() { return sr.ReadInt(); } 
    public class Array1D<T>{ 
        public Array1D(int x1, int x2){ 
            int[] dim ={ x2 - x1 + 1 };   int[] lower ={ x1 }; 
            a = Array.CreateInstance(typeof(T), dim, lower); 
        } 
        public T this[int i]{ 
            get { return (T)a.GetValue(i); } 
            set { a.SetValue(value, i); } 
        } 
        public Array a; 
    } 
    // Public Methods 
    //=============== 
    public TheBase(String ifs, String ofs){ 
        input_file = ifs; 
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        output_file= ofs; 
    } 
    public bool OpenFiles(){ 
        try{ 
            sr = new SrStream(input_file); 
            sw = new SwStream(output_file); 
            return true; 
        } 
        catch (Exception e){ 
            Console.WriteLine("An error occurred: ‘{0}’", e); 
            CloseFiles();   return false; 
    }   } 
    public void CloseFiles(){ 
        if (sr != null) sr.Close(); 
        if (sw != null) sw.Close(); 
    } 
    public static T[,] Array2D<T>(int x1, int x2, int y1, int y2){ 
        int[] dim ={ x2 - x1 + 1, y2 - y1 + 1 }; 
        int[] lower ={ x1, y1 }; 
        return (T[,])Array.CreateInstance(typeof(T), dim, lower); 
    } 
    public static T[,,] Array3D<T>(int x1,int x2,int y1,int y2,int z1,int z2){ 
        int[] dim ={ x2 - x1 + 1, y2 - y1 + 1, z2 - z1 + 1 }; 
        int[] lower ={ x1, y1, z1 }; 
        return (T[, ,])Array.CreateInstance(typeof(T), dim, lower); 
}   }   } 
TLM_INHO.CS: An object-oriented TLM Library in C#  
using System; 
using System.Text; 
using System.Threading; 
using System.Collections.Generic; 
using System.IO; 
 
namespace TLM{ 
public class InHo : TheBase{ 
    int nx, ny;  // number of nodes in mesh 
    int io, it, jo, ni; // output point (io,jo), output type & num of iters 
    int kb, kc, kd, ke; // number of boundaries,computational boxes,dielectric 

// boundaries & excitation points or lines 
    float[, ,] v = Array3D<float>(1, 5, 1, 12, 1, 12);  // voltage buffer 
    float[,] data = Array2D<float>(1, 101, 1, 2); 
    char[,] outc = Array2D<char>(1, 101, 1, 70); 
    Array1D<float> rc = new Array1D<float>(1, 10);  // reflection coef 
    Array1D<float> rd = new Array1D<float>(1, 10);  // relative permittivity  
    Array1D<float> va = new Array1D<float>(1, 6);   // initial values 
    Array1D<float> eh = new Array1D<float>(0, 300); // storage for results 
    Array1D<float> r = new Array1D<float>(1, 12); 
    int[,] ib = Array2D<int>(1, 12, 1, 8); 
    int[,] ibd = Array2D<int>(1, 10, 1, 8); // waveguide, boundaries & codes 
    int[,] ie = Array2D<int>(1, 5, 1, 7);   // excitation points and code (115) 
    int[,] ia = Array2D<int>(1, 8, 1, 4);   // computation boxes 
    float ehre, ehim, d;  // field magnitudes and normalized frequencies 
    float pcf, cf, d1, d2, ds;      // normalized frequencies & step size 
    float peak, a, cs, max, yo; 
    int npt, l, j, m, i, ic, pt, ptp, ptm, nn;  // iteration counters} 
 
    void ReadHeader(){ String header; 
        header = sr.ReadLine(); sw.WriteLine(header); 
        header = sr.ReadLine(); sw.WriteLine(header); 
    } 
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    void ReadNxNy(){ ReadHeader();  nx = sr.ReadInt(); 
        ny = sr.ReadInt();        sr.ReadLine(); 
        sw.WriteLine("{0} {1}", Format<int>(nx, 4), Format<int>(ny, 4)); 
    } 
    void ReadBound(){  ReadHeader();  kb = 0; 
        do{ kb = kb + 1; 
            for (m = 1; m <= 8; m++){ ib[kb, m] = ReadInt(); 
                sw.Write("{0}", ib[kb, m].ToString().PadLeft(4, ' ')); 
                if (m == 4) sw.Write("    "); 
            } 
            r[kb] = ReadFloat();    it = ReadInt();      sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(r[kb],16),Format<int>(it, 10)); 
        } while (it > 0); 
    } 
    void ReadDielBound(){ ReadHeader();    kd = 0; 
        do{ kd = kd + 1; 
            for (m = 1; m <= 8; m++){  ibd[kd, m] = ReadInt(); 
                sw.Write("{0}", Format<int>(ibd[kd, m], 4)); 
                if (m == 4) sw.Write("    "); 
            } 
            rc[kd] = ReadFloat();      it = ReadInt();        sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(rc[kd],18),Format<int>(it,10)); 
        } while (it > 0); 
    } 
    void ReadCompBox(){ ReadHeader();    kc = 0; 
        do{ kc = kc + 1; 
            for (m = 1; m <= 4; m++){  ia[kc, m] = ReadInt(); 
                sw.Write("{0}", Format<int>(ia[kc, m], 4)); 
            } 
            rd[kc] = ReadFloat();    it = ReadInt();      sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(rd[kc],22),Format<int>(it,22)); 
        } while (it > 0); 
    } 
    void ReadExcitation(){  ReadHeader();    ke = 0; 
        do{ ke = ke + 1; 
            for (m = 1; m <= 7; m++){ ie[ke, m] = ReadInt(); 
                sw.Write("{0}", Format<int>(ie[ke, m], 4)); 
                if (m == 4) sw.Write("  "); 
            } 
            va[ke] = ReadFloat();  it = ReadInt();     sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(va[ke],16),Format<int>(it,17)); 
        } while (it > 0); 
    } 
    void ReadFreq(){ 
        sr.ReadLine();        sr.ReadLine();        d1 = ReadFloat(); 
        d2 = ReadFloat();     ds = ReadFloat();     sr.ReadLine(); 
        sr.ReadLine();        sr.ReadLine();        io = ReadInt(); 
        jo = ReadInt();       l = ReadInt();        ni = ReadInt(); 
        yo = ReadFloat();     sr.ReadLine(); 
        sw.WriteLine("Output point is ({0},{1})", 
            Format<int>(io,4),Format<int>(jo, 4)); 
        sw.WriteLine("Number of iterations is {0}", ni); 
        sw.WriteLine("Permittivity stub admittance is {0}", yo); 
        sw.WriteLine("   D1          D2         Step Size"); 
        sw.WriteLine("{0}{1}{2}", Format<float>(d1, 8), Format<float>(d2, 8), 

 Format<float>(ds, 18)); 
    } 
    public InHo(String ifs, String ofs) : base(ifs, ofs) { } 
    public void ReadData(){ 
        ReadNxNy();           ReadBound();             ReadDielBound(); 
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        ReadCompBox();        ReadExcitation();        ReadFreq(); 
    } 
    public void Iterate(bool bShowProgress){ 
        if (bShowProgress){ 
            Console.WriteLine("Finished reading input."); 
        } 
        float a, vx, vy, vxy; 
        // CLEAR WORKING SPACE  
        for (j = 1; j <= ny; j++){ 
            for (i = 1; i <= nx; i++){ 
                for (m = 1; m <= 5; m++){ 
                    v[m, i, j] = 0; 
        }   }   } 
        // INITIALIZE EXCITATION POINTS 
        for (nn = 1; nn <= ke; nn++){ 
            for (j = ie[nn, 3]; j <= ie[nn, 4]; j++){ 
                for (i = ie[nn, 1]; i <= ie[nn, 2]; i++){ 
                    m = ie[nn, 5]; 
                    while (m <= ie[nn, 7]){ 
                        v[m, i, j] = va[nn];      m = m + ie[nn, 6]; 
                    } v[5, i, j] = va[nn]; 
        }   }   } 
        // Sample Output at time zero } 
        switch (l){ 
            case 3: eh[0] = 2 * (v[1, io, jo] + v[2, io, jo] + v[3, io, jo] + 
                          v[4, io, jo] + yo * v[5, io, jo]) / (4 + yo); break; 
            case 2: eh[0] = yo * (v[3, io, jo] - v[1, io, jo]); break; 
            case 1: eh[0] = yo * (v[4, io, jo] - v[2, io, jo]); break; 
        } 
        for (ic = 1; ic <= ni; ic++){ 
            // INHOMOGENEOUS SHUNT NODE SCATTERING PROCEDURE 
            for (nn = 1; nn <= kc; nn++){ 
                for (j = ia[nn, 3]; j <= ia[nn, 4]; j++){ 
                    for (i = ia[nn, 1]; i <= ia[nn, 2]; i++){ 
                        a = (v[1, i, j] + v[2, i, j] + v[3, i, j] + v[4, i, j] 
                            + v[5, i, j] * rd[nn]) * 2 / (rd[nn] + 4); 
                        v[1,i,j]=a-v[1,i,j];      v[2,i,j]=a-v[2,i,j]; 
                        v[3,i,j]=a-v[3,i,j];      v[4,i,j]=a-v[4,i,j]; 
                        v[5,i,j]=a-v[5,i,j]; 
            }   }   } 
            // SET UP BOUNDARY CONDITIONS 
            for (nn = 1; nn <= kb; nn++){ 
                for (j = ib[nn, 3]; j <= ib[nn, 4]; j++){ 
                    for (i = ib[nn, 1]; i <= ib[nn, 2]; i++){ 
                        vxy = v[ib[nn, 6], i, j]; 
                        v[ib[nn, 6], i, j] = r[nn] * v[ib[nn, 5], i  
                        + ib[nn, 8], j + ib[nn, 7]]; 
                        v[ib[nn, 5], i + ib[nn, 8], j + ib[nn, 7]] = 
                        r[nn] * vxy; 
            }   }   } 
            // PERFORM IMPEDANCE MODIFICATIONS AT AIR-DIELECTRIC BOUNDARIES 
            if (ibd[1, 1] != 0){ 
                for (nn = 1; nn <= kd; nn++){ 
                    for (j = ibd[nn, 3]; j <= ibd[nn, 4]; j++){ 
                        for (i = ibd[nn, 1]; i <= ibd[nn, 2]; i++){ 
                            vx = v[ibd[nn, 6], i, j]; 
                            vy = v[ibd[nn, 5], i + ibd[nn, 8], j + ibd[nn, 7]]; 
                            v[ibd[nn, 6], i, j] 
                                = -rc[nn] * vy + (1 + rc[nn]) * vx; 
                            v[ibd[nn, 5], i + ibd[nn, 8], j + ibd[nn, 7]] 
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                                = rc[nn] * vx + (1 - rc[nn]) * vy; 
            }   }   }   } 
            // INTERCHANGE IMPULSES AMOUNG NODES 
            for (nn = 1; nn <= kc; nn++){ 
                for (j = ia[nn, 3]; j <= ia[nn, 4]; j++){ 
                    for (i = ia[nn, 1]; i <= ia[nn, 2]; i++){ 
                        a = v[3, i, j];         v[3, i, j] = v[1, i, j + 1]; 
                        v[1, i, j + 1]          v[4, i, j] = v[2, i + 1, j]; 
                        v[2, i + 1, j] = a; 
            }   }   } 
            // Sample Output 
            switch (l){ 
                case 3: eh[ic] = 2 * (v[1,io,jo] + v[2,io,jo] + v[3,io,jo] + 
                     v[4, io, jo] + yo * v[5, io, jo]) / (4 + yo);    break; 
                case 2: eh[ic] = yo * (v[3, io, jo] - v[1, io, jo]);  break; 
                case 1: eh[ic] = yo * (v[4, io, jo] - v[2, io, jo]);  break; 
            } 
            if (bShowProgress){ 
                Console.WriteLine("{0}: iteration {1}", input_file, ic); 
                Thread.Sleep(1); 
    }   }   } 
    public void Fourier(){ 
        float ra, rb, cs, u, uk, ehre, ehim, ehmod, d; 
        npt = 0;      max = 0;      ra = 0;      rb = 6.283184f;     d = d1; 
        while (d <= d2){ 
            ehre = 0;   ehim = 0;   uk = (float)exp(-d * ra);        u = uk; 
            for (ic = 0; ic <= ni; ic++){ 
                cs = ic * rb * d; 
                ehre = (float)(ehre + (eh[ic] * cos(cs) * uk)); 
                ehim = (float)(ehim - (eh[ic] * sin(cs) * uk)); 
                uk = uk * u; 
            } 
            ehmod = (float)(sqrt(ehre * ehre + ehim * ehim)); 
            npt = npt + 1;            data[npt, 1] = d; 
            data[npt, 2] = ehmod;     d = d + ds; 
        } 
        for (j = 1; j <= npt; j++){ 
            if (data[j, 2] > max){ 
                max = data[j, 2];      peak = data[j, 1];        pt = j; 
    }   }   } 
    public void CurveFit(){ 
        float ai, bmax; 
        if (pt > 1 && pt < npt){ ptp = pt + 1;        ptm = pt - 1; 
            ai = ((data[ptm,2]-max)*(data[ptm,1]-data[ptp,1])-(data[ptm, 2]– 
                   data[ptp, 2]) * (data[ptm, 1] - data[pt, 1])); 
            ai = ai / ((data[ptm,1] - data[pt,1])*(data[pt,1]-data[ptp,1])* 
                  (data[ptm, 1] - data[ptp, 1])); 
            bmax = (data[ptm,2]-max)/(data[ptm,1]-data[pt,1])-ai*(data[ptm,1] 
                  + data[pt, 1]); 
            peak = -bmax / (2 * ai); 
    }   } 
    public void Correct(){ 
        float a, p; 
        // VELOCITY ERROR CORRECTION 
        p = (float)(3.14592653 * peak); 
        cf = (float)(p / atan(sqrt(2.0) * sin(p))); 
        pcf = peak / cf; 
    } 
    public void PrintReport(){ 
        sw.WriteLine(); 
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        sw.WriteLine("        RESULTS"); 
        sw.WriteLine("        -------"); 
        sw.WriteLine("{0} points plotted.", Format<int>(npt, 4)); 
        sw.WriteLine("  Maximum plotted field magnitude:"); 
        sw.WriteLine("{0}", Format<float>(max, 14)); 
        cf = 1 / cf; 
        sw.WriteLine("  The velocity correction factor (Do/D) is {0}", cf); 
        sw.WriteLine( 

"  MESHSIZE/MESH WAVELENGTH     MESHSIZE/FREE SPACE    FIELD 
MAGNITUDE"); 

        sw.WriteLine("           (D)                    (Do)    WAVELENGTH      
(EHMOD)"); 
        sw.WriteLine( 

"  ------------------------   -----------------------  -----------
----"); 

        for (j = 1; j <= npt; j++){ 
            sw.WriteLine("        {0}                    {1}              {2}", 
                    Format<float>(data[j, 1], 8), 
                    Format<float>(data[j, 1] * cf, 8), 
                    Format<float>(data[j, 2], 8)); 
        } 
        sw.WriteLine(); 
        sw.WriteLine("Maximum field value at D  = {0}", peak); 
        sw.WriteLine("      corresponding to Do = {0} <=== FINAL RESULT", pcf); 
    } 
    public void PlotGraph(){ 
        float u; 
        sw.WriteLine("                         Graph of EHMOD vs. D"); 
        sw.WriteLine("   D                              EHMOD"); 
        u = max / 70; 
        if (u == 0) 
            Console.WriteLine("No plot generated - all values equal zero."); 
        else{ 
            sw.Write("         "); 
            for (j=7; j<=63; j+=7) sw.Write("   {0}",Format<float>(j*u,4)); 
                sw.WriteLine("   {0}", Format<float>(max, 4)); 
            for (j = 1; j <= npt; j++){ 
                data[j, 2] = data[j, 2] / max; 
                data[j, 2] = (float)(floor(70 * data[j, 2])); 
                for (i = 1; i <= 70; i++){ 
                    outc[j, i] = ' '; 
                    if (data[j, 2] == i) outc[j, i] = '*'; 
                } 
                sw.Write(" {0}|", Format<float>(data[j, 1], 7)); 
                for (i = 1; i <= 70; i++){ sw.Write(outc[j, i]); } 
                sw.WriteLine(); 
    }   }   } 
    public void Run(bool bShowProgress){ 
        ReadData();        Iterate(bShowProgress);        Fourier(); 
        CurveFit();        Correct();                     PrintReport(); 
        PlotGraph(); 
    } 
    public void Work(){ 
        if (OpenFiles()){   Run(true);  CloseFiles(); 
    }   } 
}   } 
 
TLM.CS: An object-oriented TLM Program in C#  
using System;                 using System.Text;       using System.Threading; 
using System.Collections.Generic;                      using TLM; 
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namespace CS_TLM{ // This is the main program to test out the TLM class 
    class Program{ 
        static void Main(string[] args){ 
            // Single Thread TLM_InHo 
            //======================= 
            InHo tlm = new InHo(@"../../TLM_INHO_INP.txt", 
                                @"../../TLM_INHO_OUT.txt"); 
            if (tlm.OpenFiles()){ 
                tlm.Run(false);    tlm.CloseFiles(); 
            } 
            // Multi-Thread TLM_InHo 
            //====================== 
            InHo tlm_1 = new InHo(@"../../TLM_INHO_INP_1.txt", 
                                  @"../../TLM_INHO_OUT_1.txt"); 
            InHo tlm_2 = new InHo(@"../../TLM_INHO_INP_2.txt", 
                                  @"../../TLM_INHO_OUT_2.txt"); 
            ThreadStart delegate_1 = new ThreadStart(tlm_1.Work); 
            ThreadStart delegate_2 = new ThreadStart(tlm_2.Work); 
            Thread thread_1 = new Thread(delegate_1); 
            Thread thread_2 = new Thread(delegate_2); 
            thread_1.Start();   thread_2.Start(); 
            while (thread_1.IsAlive || thread_2.IsAlive){ Thread.Sleep(1); } 
            Console.WriteLine("Job Done!"); 
}    }    } 
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Abstract  A method for the simulation of complex 
circuits with nonlinear elements is proposed. The method 
is based on wavelet expansion of the state variable 
description, and leads to a compact representation of the 
nonlinear problem which is characterized by accuracy 
and computational efficiency. 
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I. INTRODUCTION 

 
The most common approach to design and optimize 

microwave devices is to represent them through 
equivalent circuits, which are in general composed by 
linear, non linear, lumped, and distributed elements. 

The main difficulty of the problem is the mixed 
nature between linear components (best treated in the 
frequency domain) and nonlinear components (best 
treated in the time domain). Some authors proposed the 
impulse response and convolution (IRC) technique [1] – 
[3], in which a great computational effort is dedicated to 
the process of recording and convolving the quantities 
related to the nonlinear elements. A different approach 
consists of approximating the frequency response by a 
Padè approximation, so called asymptotic waveform 
evaluation method, and has been used for both linear and 
nonlinear circuits [4] – [6]; the main drawback of the 
method is the sometimes low approximation (due to the 
reduction in the number of poles) in case of very complex 
circuits. In [7] a further approach is presented: the 
numerical inversion of Laplace transform technique, 
which is characterized by several advantages with respect 
to IRC and AWE, but suffers from the series 
approximations and the nonlinear iterations involved. 

Recently wavelet based techniques have been 
proposed also for the analysis of nonlinear circuits (in 
transient or steady state mode), showing good potential 
[8], [9]. A basis of Daubechies wavelets on the interval is 
here used to expand the unknown quantities and the 
circuit equations are obtained by the application of the 
modified nodal analysis. The nonlinearities are treated by 
the use of the substitution theorem, and the problem is 
solved by the application of a standard Newton – 

Raphson algorithm with an analytical calculation of the 
Jacobian. 

This particular formulation makes the method 
efficient from a computational point of view, since the 
matrices involved in the calculation are sparse (i.e. 
characterized by a small number of non zero elements), 
hence the number of multiplications required in the 
solution is low. Furthermore the characteristics of the 
chosen wavelet basis reduce the size of the matrix. 

The method has been tested in several cases, here is 
reported the calculation of voltages and currents in a 
complex circuit, and the results are compared with the 
results coming from a SPICE simulation. 
 

II. MATHEMATICAL FORMULATION 
 
A.   Modified Nodal Analysis in the Wavelet Domain 
 

Let us consider a complex circuit, composed by a set 
of lumped and distributed parameters, connected to 
independent voltage generators and linear loads. It is 
possible to divide the circuit into two interconnected 
parts: a subnetwork φ composed by lumped linear and 
nonlinear elements, for which we are interested in the 
calculation of voltages and currents, and a linear 
subnetwork π, composed by lumped and/or distributed 
elements, seen as a multiple port circuit. By the used of 
the MNA it is possible to write the circuit equations in the 
Laplace domain in the following form [10] 

 
( ) ( ) ( ) ( ) ( )s s s s s sϕ ϕ ϕ ϕ π π+ + =W x G x L i b  (1) 

 
where ϕx  is the vector of unknowns (nodal voltages, 
whose dimension is the total number of MNA 
variables); ϕW  and ϕG  are constant matrices describing 
the lumped elements of the network φ and b is a constant 
vectors whose entries are the independent voltage and 
current sources (together with the initial condition 
sources, if present). πL  is a matrix whose entries are 
zeroes or ones, mapping the vector ( )sπi  of currents 
entering the linear subnetwork π into the node space of 
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the network φ. The linear multiterminal subnetwork π can 
be described by the standard approach as 

 
( ) ( ) ( )s s sπ π π=Y V i     (2) 

 
where ( )sπY  is the y parameter matrix and ( )sπV  is the 
vector of terminal voltage nodes connecting the 
subnetwork to the network φ. By substituting (2) in (1) it 
is possible to write 

 
( ) ( ) ( )s s s sϕ ϕ ϕ ϕ+ =W x G x b��   (3) 

 
where ϕG�  and ϕW  take also into account the 

contribution of the matrix ( )sπY .  
As an example, we apply the MNA to the simple 

network represented in Fig. 1. 
 
 

 
Fig. 1. Simple network for MNA analysis. 

 

 
In this case equations (1) and (2) respectively 

become 
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− +
=
− +

. (5) 

 
We now consider a wavelet basis 

( ) ( ) ( )1 , , nt b t b t=   b …  on the interval [ ]0, mT ; by 
performing the Wavelet Expansion (WE) of a generic 
function ( )f t , we obtain a vector of coefficients of 
dimension n; the notation used is the following: 
( ) ( )j j

j
f t b t f= =∑bf , where [ ]1, , T

nf f=f …  is the 

vector of the wavelet coefficients. By using the 

differential operator D and the integral operator I in the 
wavelet domain (for wavelets on the interval, introduced 
in [11]) the differentiation (or integration) of a function is 
simply performed by a matrix – vector product, i.e., 

( ) ( )df t
h t

dt
= ⇒ =h Df . Formally this means that it is 

possible to obtain the equation in the wavelet domain by 
simply using the Laplace domain equations and substitute 
the variables with the vectors of coefficients and the 
operator s with the differential matrix D. According to 
this, equation (3) can be expressed as 

 
( )ϕ ϕ ϕ ϕ+ = =W G x Tx b��    (6) 

 
i.e., an algebraic systems of the form ϕ =Tx b  in which 
the matrix T is straightforwardly calculated, the vector b 
contains the WE of the independent generators and ϕx  is 
the vector of unknowns (the wavelet coefficients of the 
expansion of the unknown voltages).  

For the example of Fig. 1 we obtain for the matrix 

ϕ ϕ+ =W G T��   
 

1 1

1 1

2 2

2 2

0 0 0
0 0 0

0 / / 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

G G
G G C C G

L G L G G
G G

−
− + − −

− − + −
−

U U U
U U D D U

I U I U U
U U U

U
U

 

  (7) 
 

where U  is the identity matrix of the proper dimension. 
As it can be easily seen the matrix T is sparse and the 
system can be easily and conveniently solved by an 
iterative technique, requiring a low CPU time 
consumption. 
 
B.  Treatment of the Nonlinearities 

 
The presence of nonlinearities (connected at the 

output ports) leads to an additional term in equation (1) 
 

( ) ( ) ( ) ( ) ( )( ) ( )s s s s s t sϕ ϕ ϕ ϕ π π ϕ + + + = W x G x L i F x bL

   (8) 
 

where ( )( )tϕF x  represents the above mentioned 
nonlinearities. 

For the sake of simplicity we here refer to a simple 
two port network, represented in Fig. 2a, where one port 
is connected to an independent generator, while the other 
port is connected to a nonlinear load, whose constitutive 
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relation is ( )i f v= . The extension to a more complex 
circuit (i.e. characterized by several ports, connected to 
generators, linear and nonlinear loads) is straightforward. 

 

 
Fig. 2a. Circuit with a nonlinear load. 

 

 
Fig.  2b. Application of the substitution’s theorem. 
 
 
It is possible to substitute the nonlinear load with a 

voltage generator imposing the unknown voltage ( )NLv t , 
as shown in Fig. 2b. Let us suppose that we are interested 
in calculating the current NLi  flowing through the 
nonlinear load. By applying the superposition effect 
(once the substitution has been performed the circuit is 
linear) we can write 

 
a b

NL NL NLi i i= +   (9) 
 
where the first term a

NLi  is related only to the presence of 
the independent generator E and can be calculated by 
simply solving a linear problem (of the kind reported in 
equation (6), while b

NLi  is the current related to the effect 
of the unknown voltage generator and needs of course to 
be calculated. Under these assumptions we can write in 
the wavelet domain 

 
a b a

NL NL NL NL NL= + = +i i i i Tv   (10) 
 

where the vectors represent the WE of the currents, the 
matrix T  is the matrix solving the linear problem (see 
equation (6), and NLv  is the wavelet expansion of the 
unknown voltage source. At this stage equation (10) is 
characterized by two vectors of unknowns: NLi  and NLv . 
The additional equation needed to solve the problem is 
the constitutive equation of the nonlinear load and it is 
enforced as follows. 

By inverse transforming (10) we obtain the following 
time domain expression of the unknown current 

 
( ) ( ) ( ),

a
NL NL kj NL j k

k j
i t i t T v b t= +∑∑         (11) 

 
where the terms ( )kb t  are the function of the wavelet 

basis, ,NL jv  are the entries of the vector NLv , while the 
terms kjT  are the entries of the square matrix T . 
Equation (11) must satisfy the constitutive equation of the 
nonlinear load ( )i f v= ; in order to enforce it we impose 

the collocation at the discrete times nt , n equally spaced 
points in the interval [ ]0, mT  (the ones which are 
characteristic of the definition of the wavelet functions 
[12]) obtaining a set of nonlinear equations in the 
unknown coefficients ,NL jv .  

The constitutive equation of the nonlinear load 
( ) 0i f v− =  can be written as 

 

( ) ( ) ( ), , 0a
NL kj NL j k NL j j

k j j
i t T v b t f v b t

 
+ − =  

 
∑∑ ∑     (12) 

 
i.e., ( ) 0NLF v =  in which we underline that the 
unknowns are the coefficients ,NL jv . The analytical 
evaluation of the Jacobian is straightforwardly written as 
follows 

 

( ) ( )kj k n j n
kNL

F fT b t b t
v v
∂ ∂

= −
∂ ∂∑ .  (13) 

 
The solution of the system is performed by adopting 

a Newton – Raphson algorithm, with an analytical 
evaluation of the Jacobian. The convenience of the 
proposed method, in terms of low CPU time consumption 
in the presence of nonlinear loads, stands in the 
availability of the analytical form of the Jacobian; as a 
matter of fact its knowledge allows us to use a 
sparsification procedure which results in a reduction of 
the CPU time employed for the solution, as explained in 
the next section. 
 
C.  Computational Cost of the Proposed Method 

 
The main advantage in using a wavelet basis stands 

in the fact that it is possible to represent very complex 
waveforms (typical of fast electrical transients, like the 
ones in microwave circuits) by a small number of wavelet 
functions (hence by a small number of coefficients). This 
leads to a reduced dimension of the matrices involved in 
the simulations, with respect to other standard techniques. 

149BARMADA, MUSOLINO, RAUGI: SIMULATION OF NON LINEAR CIRCUITS



Furthermore it is well known that wavelets tend to 
concentrate in time zones where approximation needs to 
be high and have a reduced weight (low wavelet 
coefficients) in the other zones, a property known in the 
literature as self adaptive zooming. According to this 
observation, the use of a thresholding procedure is a 
common practice to reduce the computational cost [12], 
[13]. The coefficients of the wavelet matrix that are 
smaller than a fraction (typically a few thousandths) of 
the maximum are forced to zero.  

This procedure does not significantly affect the 
accuracy of the computations (when reasonable values of 
the threshold are used) and produces sparse matrices that 
can be efficiently stored and computed. In particular in 
[12] it is shown that for diagonal dominant matrices it is 
possible to obtain a percentage of non-zero elements of 
the order between 5% and 15% with solutions that are 
affected by extremely low error. The sparsification 
procedure is convenient because the number of 
multiplications required for the simulation is considerably 
lower with respect to the full matrix, leading to a 
significant CPU time reduction and a lower storage 
memory. 

It is noteworthy that a lower approximation in the 
evaluation of the Jacobian (which is exactly calculated by 
the analytical computation as in (13) and post processed 
by the sparsification procedure) does not affect the 
correctness of the solution, and may have effects only on 
the number of iterations necessary to reach convergence.  

In the evaluation of the overall computation time 
reduction we have to consider the weight of the wavelet 
transform of the input quantities and the inverse wavelet 
transform of the results. These operations are efficiently 
performed via matrix vector products characterized by 
sparse matrices [14]. As a consequence the reduction of 
the time needed to perform the matrix vector product 
obtained with the threshold procedure has a strong impact 
on the overall computation cost, as it involves the most 
time consuming activity. 
 

III. NUMERICAL APPLICATION 
 

As an example of application of the proposed 
technique we considered the circuit schematically shown 
in Fig. 3. It is composed by four Multiconductor 
Transmission Lines (three conductors and ground each) 
represented by blocks B, C, E, and F and by the blocks A 
and D constituted by three longitudinally disposed 
resistors of 0.1 Ω each. The per unit length parameters of 
the lines are the same for each line and are here reported 
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The lines in B and C are respectively long 10 and 5 

cm, while those in E and F have the same length of 15 
cm.  

A voltage generator of waveform 
 

( ) ( )
22

1 10 sin 2 2
t T

Te t e f t T Vπ
− − 

   = ⋅ ⋅ −   
 

is applied to terminal #1, with T = 0.11ns, f = 2.8 GHz 
and characterized by an internal resistive impedance R1 = 
10 Ω. 

The amplitude of the waveform e1 (t) shown in Fig. 
4, has been chosen in order to strongly evidence the 
nonlinear effects.  

Terminals 2, 3, 5, 6, 8, 9, 11, and 12 are connected to 
50 Ω termination resistances. 

Terminal # 4 is terminated on the series connection 
of a 15 Ω resistance and of a nonlinearity described by 
the following characteristic 

 
( ) ( )5 3

4 410v t i t= ⋅ . 
 
Terminals 7 and 10 are terminated on series 

connection between a 20Ω  resistance and a diode of 
characteristic 

 

( ) ( )( )4,7
4,7 0 1Tv t vi t I e= ⋅ −  

 
where 0 1I pA=  and 0.025865 VTv = . 

The system has been simulated by using a basis of 
128 Daubechies wavelet with 6 vanishing moments. 

The same system has also been simulated with 
SPICE and the results have been compared with those 
obtained by the approach here presented.      
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Fig.3. Analysed circuit. 
 

 
Fig. 4. Input voltage at terminal #1. 

 
 

 
Fig. 5. Typical sparsity pattern of the Jacobian matrix in 

the version that uses sparse matrices. 

 
Fig. 6. Typical sparsity pattern of the Jacobian matrix in 

the version that uses original full matrices. 
 
 
Two versions of the proposed method have been 

implemented: the first one which performs the 
sparsification in order to take advantage of the available 
numerical routines for treatment of sparse matrices while 
the other uses the original full matrices. 

The comparison has been performed by considering 
the Jacobian matrices related to comparable deviation of 
( )NLF v  from zero in the cases of solution of the 

sparsified and original system. 
Figures 5 and 6, respectively, show the Jacobian 

used in Newton-Raphson scheme with and without 
sparsification. 

Figures 7 and 8, respectively, show the voltage and 
the current on the cubic nonlinearity. 
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Fig. 7. Comparison between the voltages on the cubic 

nonlinearity obtained by the proposed approach and by 
SPICE. 

 

 
Fig. 8. Comparison between the currents on the cubic 

nonlinearity obtained by the proposed approach and by 
SPICE. 

 
The waveforms obtained by the two approaches are 

practically indistinguishable. In order to appreciate the 
good agreement between the results a zoom on the 
voltages is shown in Fig. 9. 

Figures 10 and 11 show the voltage and the current 
on the diodes. As expected the current on the diode is 
unidirectional and the voltage on the diode does not 
exceed the value of 0.65 V that approximately represents 
the direct bias voltage of a silicon diode. 

The first procedure has required 23 iterations while 
the second one 35. The solution of the linear system 
obtained after the thresholding procedure was about five 
times faster than that in the other one. The total CPU time 
(2.8 sec) required to solve the nonlinear problem by using 
sparse matrices using the standard Newton-Raphson was 
three times shorter than the modified Newton-Raphson 

with full matrices (9.3 sec). The used threshold was 5% 
of the maximum element of each column. 

As for the SPICE simulation the CPU time was about 
4 seconds. 

 

 
Fig. 9. Enlarged portion of Fig. 7. 

 

 
Fig. 10. Voltage on the diodes on terminals #7 and #10. 

 

 
Fig. 11. Current across the diodes on terminals #7 and 

#10. 
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IV. CONCLUSIONS 
 

A method for the simulation of complex circuits, in 
presence of nonlinear elements is here proposed. The 
method is based on wavelet expansion and a special 
treatment of the nonlinearity. The method allows a fast 
computation, together with the required accuracy and low 
memory consumption. 
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Abstract  This paper presents a high frequency phase 
variable model of electric machines obtained using finite 
element (FE) analysis. The model consists of the low 
frequency phase variable model in parallel with a high 
frequency winding branch. The resistance and inductance 
of individual winding turns are calculated by 
magnetodynamic FE analysis while capacitance is 
calculated by electrostatic FE analysis. With the obtained 
parameters, a distributed model was formed based on the 
winding arrangement. The order of the distributed 
winding model is reduced using the Kron reduction 
technique to form the lumped parameter high frequency 
winding branch. A Permanent Magnet synchronous 
motor (PMSM) with its operating inverter is used as an 
example. The developed model is then used to evaluate 
the motor-inverter interaction. The results show the 
ability of the developed model to represent the motor’s 
high frequency behavior under different operating 
conditions. 
 
Index Terms — FE, high frequency, PM synchronous 
motor, Kron reduction, phase variable model, lumped 
parameters, distributed parameters 

I. INTRODUCTION 
 

Many efforts have been devoted to develop the 
high frequency induction motor models based on 
experiments. Using these models, the overvoltage at 
the machine terminals, electromagnetic interference, 
and voltage distribution among the winding turns 
have been reported [1, 2]. A conventional direct–
quadrature (dq) axis model of PMSM has also been 
developed using an experimental approach [3]. The 
model can represent the motor’s low and high 
frequency behaviors.   

In this paper, an FE based physical motor model 
of randomly wound PMSM is developed. The 
developed model can be used to test, improve, and 
optimize the motor design. This model consists of a 
high frequency branch connected in parallel with a 
low frequency phase variable model. The low 
frequency phase variable model represents the 

motor’s low frequency behavior while the high 
frequency winding branch represents the high 
frequency behavior. A change in the winding 
arrangement will affect only the high frequency 
winding branch parameters and will not affect the 
low frequency phase variable model parameters.  

The FE based approach is used to calculate the 
high frequency model parameters. The developed 
model is used to evaluate the integrated motor drive 
high frequency behavior. This includes the motor 
terminal overvoltage, effect of switching 
frequencies on the motor currents and output torque. 
The simulation results show the ability of the 
developed model to represent the motor low and 
high frequency behavior under various dynamic 
operating conditions. 

II. HIGH FREQUENCY WINDING BRANCH 
PARAMETER CALCULATION USING FE 

A 2-hp, 6-poles, 36-slots, random wound winding 
arrangement, with 128 amp-turns per half slot motor 
was used as an example. Due to the symmetry, a one 
pole of the motor’s geometry is used considering the 
individual turns in each half slot as shown in Fig. 1. 
Each slot contains 18 turns with 9 turns in each half 
slot. Each turn utilizes #14 gauge wire with 
diameter of 1.6281 mm. Diameter of insulation is 
1.73 mm. The same positioning of the turns within 
the other slots is maintained. To consider the 
geometry effects on the inductance and capacitance, 
all the slots in one pole of the motor’s geometry 
were modeled. The winding resistance, inductance 
and capacitance values are function of the operating 
frequency. The resistance increases with the 
increase in the supply frequency due to the skin and 
proximity effects. The skin effect is the tendency of 
the current to remain at the surface region of the 
conductor while the proximity effect is the action of 
the magnetic field of adjacent conductors on the 
current density distribution inside the given 
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conductor. The inductance value decreases with the 
increase of the frequency. The change in the 
capacitance values with the change in the frequency 
is minimal and can be ignored in the considered 
frequency range. The capacitances are distributed 
between turn to turn and turn to ground. The 
capacitance provides an easy path for high 
frequency current components to flow between the 
turns and to ground.  

 

 

 

 

 

 
Fig. 1. One pole motor geometry with individual winding 
turns. 
 

A 2-D magnetodynamic FE analysis is performed 
to obtain resistances and inductances of the different 
winding turns. This analysis is a steady state time 
harmonic form of diffusion equation [4]. First a 
geometry description is set up by assigning the 
proper material properties to the different parts of 
the one pole geometry. The rotor and stator iron are 
composed of nonlinear magnetic material with 
linear resistivity. The turn conductors are assigned 
with unit permeability and resistivity. Assignment 
of resistivity is required to include the eddy current 
effects. The motor magnets are assumed to be linear. 
The shaft, fixing wedge and insulation inside the 
slots were assigned with air. The meshing is 
selected in coordination with the skin depth. The 
size of the mesh elements inside each turn is kept 
less than the skin depth. The skin depth is calculated 
according to the rise time of the pulse width 
modulation (PWM) pulses. The rise time of the 
PWM pulse is 1 µ s which corresponds to the 
frequency component of 1-MHz. The skin depth at 
1-MHz frequency is 6.6 e-5 m. The meshing details 
inside the one pole model are shown in Fig. 2. The 

mesh contains 7937 line elements and 179692 
surface elements.  

Periodic boundary conditions are assigned to the 
wedge shaped pole structure while the homogeneous 
Dirichlet boundary conditions are applied to the 
outer stator surface. The FE-circuit coupling allows 
us to simulate the exact operating conditions with 
real voltage supply connection. The field and circuit 
equations are coupled and solved simultaneously 
[5]. The magnetic field inside the motor is governed 
by the following partial differential equation 

s eH J J∇× = +                                              (1) 

where, sJ  is the source current density, eJ  is the 
induced current density, and H  is the field 
intensity. In general, the current in the circuit 
domain with m loops can by represented by the 
following set of equations 

[ ] d  1[ ][ ] [ ] [ ] [ ]
dtm m m m m m m

m

E R I L I I dt
C

γ
 

= + + + 
 

∫      (2)         

where, mR  represents the matrix of resistances, mL  is 
the matrix of inductances, mC  is the matrix of 
capacitances, mγ  is the matrix of  non-linear voltage 
drops, mI  is the matrix of currents, and mE  is the 
matrix of voltages. More details about the 
formulation can be found in [5]. 

The inductance and resistance frequency response 
of the different turns were obtained by solving the 
magnetodynamic problem for various supply 
frequencies. The frequency range used is from 10- 
kHz to 1-MHz. Usually the PWM switching 
frequencies are in the range of tens of kHz. The 
upper limit of the frequency range is selected to 
include harmonics up to 1-MHz. 

The computation took 4 hours to solve the 
magnetodynamic problem on a Pentium P4, 3-GHz 
machine. During the simulation all the turns were 
connected in series. After solving the coupled field 
circuit problem, the resistances and inductances as 
functions of frequency were obtained.

 
 
 

 
 
 

 
 
 
 

Fig. 2. Mesh details inside one pole model, inside slot and inside turn. 
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The variation of the resistance and the inductance 
versus the frequency for different turns in the first 
half slot of phase A are shown in Figs. 3 and 4, 
respectively. 

 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 3. Resistance variation with frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Inductance variation with frequency. 

In Figs. 3 and 4, R1, R2… and L1, L2… correspond 
to the resistance and the inductance of the different 
turns in the first half slot of phase A respectively. It 
is difficult to point out each individual turn in Figs. 
3 and 4, since all the curves are very close to each 
other. Therefore, the figures are just meant to show 

the trend of variation of resistance and inductance 
with frequency. It should be noted that the slope of 
the resistance curve becomes smaller and also the 
slope of inductance curve becomes constant in the 
higher frequency region. The inductance obtained 
by this method is apparent global inductance. Since 
simultaneous excitation of all the turns in a given 
half slot is performed, the inductance value contains 
both self and mutual inductance terms. The skin 
effect inside the iron is more pronounced compared 
to the turn conductors. As a result, the flux lines do 
not penetrate the iron region but remain confined 
inside the slot. Figure 5(a) shows flux plot at 30 kHz 
frequency while Fig. 5(b) shows the flux plot at 1-
MHz frequency. The flux plots are at steady state. 
These figures clearly show the fact that the stator 
iron acts as a flux barrier due to the increased eddy 
currents at high frequency. The position and 
numbering of turns in the first slot is also shown in 
Fig. 5(b). Similar calculations were repeated for 
each half slot. 

The capacitances were calculated from FE 
electrostatic analysis since capacitances are function 
of the motor geometry and not the supply frequency. 
The electric field is assumed to be linear in this case 
and it is proportional to the applied voltage. The 
analysis determines the electric scalar potential 
distribution due to the applied voltage [6]. The turn 
conductors were treated as perfect conductors and 
hence are not meshed. The insulation in the slot and 
surrounding of the conductor is finely meshed. The 
mesh details in the slot and the insulation is shown 
in Fig. 6(a-c). The capacitance calculation is based 
on the energy principle. By applying voltage on the 
conductors, the ground capacitance matrix was 
calculated from the stored static energy. The electric 
potential distribution inside the motor is governed 
by the following partial differential equation,

 
 
 
 
 
 
 
 
 
 
 
 
                                                                   (a)                                                               (b) 

Fig. 5.(a) Flux lines in one pole machine at 30 kHz, (b) In the slot at 1 MHz.  
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(a)                                                           (b)                                                    (c) 
Fig. 6. Mesh details (a) inside one slot, (b) inside half slot, and (c) surrounding single turn. 

 

( )0r Vε ε ρ∇ ∇ = −i                     (3) 
where, ρ  is surface charge density, rε  is relative 
permittivity, 0ε  is air permittivity, and V  is electric 
scalar potential.  

To calculate the lumped capacitance matrix, 
charges are related to the potential differences. 
Similar capacitance calculations were repeated for 
each half slot. The mutual capacitances were 
calculated between turns within each half slot. All 
capacitances were multiplied by the mean length of 
the turn as the calculated capacitances are per unit 
length. The self capacitance is the addition of the 
ground capacitance and mutual capacitances with 
other turns. 

III. DISTRIBUTED PARAMETER MODEL AND ITS 
REDUCTION 

The distributed parameter winding model is 
shown in Fig. 7. The model is formed using the high 
frequency parameters obtained from the FE 
analysis. The distributed model consists of the 
resistance of each turn, the global inductance of 
each turn, the capacitance to ground for each turn 
and the mutual capacitances with other turns inside 
the half slot. The used motor has 216 turns per 
phase. All the turns in a given phase are connected 
in series thus forming 217 nodes. The parameters of 
the first turn are between nodes 1 and 2; the 
parameters of the second turn are between nodes 2 

and 3 and so on. The ground capacitance is equally 
distributed between the two ends of the turn. Here, 
C12 is the mutual capacitance between turns 1 and 2; 
R1 and L1 are the resistance and global inductance of 
the first turn, respectively. Also, C1g is the 
capacitance to the ground of the first turn and so on. 
The resistance and inductance values used in the 
model are the average values over the considered 
frequency range.  

The order of the distributed parameter winding 
model obtained above is reduced by using Kron 
reduction technique [7]. This reduction is performed 
in order to reduce the simulation time so that a 
global solution of the combined low and high 
frequency phenomena of PWM motor-inverter 
interaction can be obtained at much faster speeds. 
PWM is the modulation technique to obtain inverter 
output voltage control. The nodal method is used to 
form the admittance matrix of the distributed 
winding model. In this algorithm, all the nodes other 
than the terminal nodes are eliminated. To eliminate 
the internal nodes, the admittance matrix is 
partitioned such that the nodes to be removed are 
represented in the upper rows. The partitioned 
matrices are shown below in (4). In equation (4), i 
and j are terminal nodes and n is the number of 
turns. The reduced admittance matrix is obtained 
from (4) using matrix transformation formula given 
in ( )5 ,

 
 
 
 
 
 
 
 

Fig. 7. Distributed parameter winding circuit obtained from FE analysis. 
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                                                                             (4) 
 
 

11 121
4 3 1 2

21 22

red
node

y y
Y B B B B

y y
−  

= − =  
 

.                      (5)                   

In (5), red
nodeY  is the reduced (2×2) admittance matrix. 

The π -network model shown in Fig. 8 (a), is used 
to represent the resultant matrix (5) using the 
principle of two port circuit [8]. The obtainedπ -
network is symmetrical with equal diagonal 
elements. From theπ -network model parameters, 
the high frequency branch parameters R, L, and Cg 
are obtained. The lumped equivalent circuit for the 
high frequency branch is shown in Fig. 8 (b). 

 

 

        (a)             (b) 

Fig. 8. (a) π -network model, (b) Reduced order high 
frequency winding branch. 

The high frequency phase variable model is shown 
in Fig. 9. This model consists of the low frequency 
phase variable model in parallel with the high 
frequency winding branch. The low frequency 
phase variable model was previously developed by 
the authors [9]. A filter is connected in series with 
the high frequency winding branch to filter out the 
fundamental (60 Hz) frequency components [10]. 
The lumped parameter values at various switching 
frequencies are given in Table 1. It should be 
observed that there is slight change in the values 
of the parameters by changing the winding 
arrangement from a form wound winding type to 
random wound winding type for same number of 
turns. Further details on the parameters of form 
wound winding type motor can be found in [11]. 

IV. SIMULATION AND RESULTS  
The high frequency phase variable motor model 

is tested in an integrated motor drive system as 
shown in Fig.10. A vector control algorithm is 
used to drive the motor. The motor drive system 
consists of a PWM inverter, cable and the 

developed motor block model. The load torque is 
set to its rated value of 12 N.m. 

 

 
 

 

 

 

 
 
 
 
 
 
 
 

 
Fig. 9. High frequency phase variable model. 
 

Table 1. Lumped parameters at different frequencies. 

  Per phase 10 kHz 20 kHz 30 kHz 
Resistance R 

(Ω ) 6.66 8.08 9.02 

Inductance L 
( µ H) 67.37 38.46 29.97 

Capacitance 
Cg (nF) 1.42 1.42 1.42 

 
As shown in Fig. 10, there are two cascaded 

control loops to control the motor. The inner loop 
controls the motor's stator currents. The outer loop 
controls the motor's speed. A high frequency cable 
model was used to connect motor to the inverter 
[12]. The simulation was performed at various 
switching frequencies namely, 10-kHz, 20-kHz, 
and 30-kHz. For PWM switching operation, the 
simulation time step should be in the range of 
nanoseconds in order to capture the spikes in the 
various waveforms. Figure 11 shows the three 
phase current profiles at different switching 
frequencies. The pulsations in the current 
waveform are due to PWM switching action. The 
spikes in the current waveform are due to high 
voltage edge rates of converter elements and cable 
parameters. The high frequency branch enables us 
to include these spikes. These spikes are clearly 
visible in 10-kHz current waveform results. At 20-
kHz and 30-kHz frequency, there is an increase in 
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the number of current spikes since the spikes are 
formed at each transition point. Since the 
capacitance values are constant for all cases, the 
increase in the magnitude of current spikes is 
marginal. The spikes in phase A current are clearly 
shown in Fig. 12. Typical torque waveform is 
shown in Fig. 13 at various switching frequencies. 
The pulsations in the torque are due to the PWM 
switching action. The frequencies in the 
simulations are approximate values since the 
motor is working under the hysteresis current 
controller. Therefore the captions of Fig. 11 to Fig. 
14 are annotated with (approx.) label. The spikes 
are also visible in the ground current which is 
shown in Fig. 14. This current is the current 
passing to the ground through high frequency 
winding branch. This current produces 
electromagnetic interference with other electrical 
equipments connected to the ground. The motor 
model is also tested for the overvoltage 
phenomenon when connected through a long cable 
to the PWM inverter. Due to the impedance 
mismatch between the cable impedance and the 
motor input impedance, the voltage builds up at 
motor’s terminal and can reach a peak value of 
double the DC supply voltage. This can damage 
the motor’s insulation. Predicting this overvoltage 
magnitude is very crucial in the insulation design 

and selection process. To investigate the effect of 
cable length on the motor overvoltage, the motor 
model is connected to a cable of different lengths. 
The overvoltage at 10-kHz switching frequency is 
shown in Fig. 15. As the length of the cable 
increases, the amplitude of the voltage increases 
and the frequency of oscillations decrease. The 
simulation results show that the developed model 
can predict motor-inverter interaction at faster 
speeds than full FE model. The developed model 
can be used to evaluate EMI issues during the 
design and development process numerically. 

V. CONCLUSION  
A high frequency phase variable electric 

machines model is developed using FE analysis. 
This was done numerically rather than 
experiments. This approach will allow us to 
evaluate the motor high frequency behavior during 
the design process. The winding arrangement 
changes show a little difference in the parameter 
values for equal number of turns. The model can 
predict motor high frequency behavior such as 
motor current spikes, terminal overvoltage as well 
as the ground currents at fast computation speed. 
The model can be utilized in design optimization 
and insulation selection for motors during design 
process as well as in the evaluation of EMI issues. 

 

 

 

 

 

 

 

 

Fig. 10. Integrated motor drive system. 

 

 

 

Fig. 11. Three phase steady state current waveform at different switching frequencies. 
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Fig. 12. Phase A steady state current waveform at different switching frequencies. 

 

 

 

 

Fig. 13. Torque profile at different switching frequencies. 

 

 

 

 

Fig. 14. Grounding current at different switching frequencies. 

 

 

 

 
 

Fig. 15. Overvoltage profile for different cable lengths. 
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Abstract — We use a spatial harmonic analysis 
(SHA) method to homogenize optical metamaterials 
with a negative refractive index; the method provides a 
more general approach than other methods for estimat-
ing the effective index of materials arranged of cas-
caded elementary layers. The approach is validated for a 
single layer and a triple layer two dimensional metal 
grating. 
 

Index Terms — Negative Index Metamaterial, Spa-
tial Harmonic Analysis (SHA), Homogenization. 
 

I. INTRODUCTION 

The refractive index (n n in′ ′′= + ) is the key pa-
rameter in the interaction of light with matter. While n ′  
has generally been considered to be positive, the condi-
tion 0n ′ <  does not violate any fundamental physical 
law, and materials with negative index have some re-
markable properties. Such materials are called negative-
index materials (NIMs), and in these materials the phase 
velocity is directed against the flow of energy. There are 
no known naturally-occurring optical NIMs. Optical 
properties of such media have been considered in early 
papers by Mandel’shtam  [1] and Veselago  [2]. Proof-
of-principle experiments  [3] have shown that artificially 
designed materials (metamaterials) consisting of split 
ring resonators (SRRs) and metal wires can act as NIMs 
at microwave wavelengths. NIMs drew a large amount 
of attention after Pendry predicted that NIMs can act as 
a superlens allowing for an imaging resolution which is 
limited not by the wavelength but rather by material 
quality  [4]. 

A. Homogenization of an Elementary Layer 
 

A possible approach to designing negative index ma-
terials is a periodic array of elementary coupled metal-
dielectric resonators. This work takes a closer look at 
approaches which simultaneously provide fast calcula-
tion of the field inside a given metamaterial arranged of 
elementary periodic layers and calculation of its effec-

tive parameters. 
First we review an established approach to homog-

enization of a thin layer of NIM. For a given mono-
chromatic incident light, it is possible to measure the 
complex reflectance and transmittance coefficients (r  
and t ) and then unambiguously retrieve the refractive 
index of the NIM sample. This effective parameter can 
be conveniently obtained from the characteristic matrix 
of a homogeneous film at normal incidence  [5]. 

Here we consider an effective layer of NIM over a 
homogeneous thick substrate with a refractive index 2n , 
as shown in Fig. 1. The conservation of the tangential 
electric and magnetic fields at the first interface gives 
the standard boundary conditions (BCs), 0 1H H= , 

0 1E E= . Then, using the definitions of the complex 
reflection and transmission coefficients ( 0 0,r ir E E= , 

1 1,t it E E= , and 1 1,r ir E E= ), we have 

1

1
0 1

1 t
r r

      =       
V D V , (1)
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Fig. 1. Simplified approach to the homogenization of a 
thin equivalent layer of NIM on top of a thick sub-
strate with a refractive index n2. The equivalent layer 
is characterized by the effective permittivity and per-
meability. Note that r2 = 0, provided that the layer is 
not illuminated. 
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where V  is a rotation matrix. 

1 1

1 1

−  =    
V , (2)

and 

1
1

1

0

0 1

η−  =    
D , (3)

where 1 1 1η µ ε=  is the effective impedance of the 

NIM layer with effective permeability 1µ and effective 
permittivity 1ε . 

Then, using the scaled thickness of the layer, 
1 12δ π λ= ∆ , with the transport matrix 

1 1

1 1
1

0

0

n

n

e

e

ι δ

ι δ

−   =    
A , (4)

i.e., backpropagating 1r  and propagating 1t  up to the 
second interface we arrive at the equation 

2 211
1 1

1 2

n tt

r t
−

     =         
D VA . (5)

Combining (1) and (5) gives the following form 

0 2 21 1
1 1 1

0 2

1

1

r n t

r t
− −

 −    =   +      
D VA V D . (6)

From the above we have 

0 2 21 1 1 1
1 1 1

0 2

1

1

r n t

r t
− − − −

 −    =   +      
V D A V D  (7)

or  

( )
( )

( )
( )

1 1

1 1

0 0 1

2 2 1

0 0 1

2 2 1

1 1

1

1 1

1

n

n

r r
et n

r r e

t n

ι δ

ι δ

η
η

η
η

−

 + + −      +      =    + − −      − 

. (8)

Then, multiplying the components of each vector from 
both sides we arrive at 

( )
( )

2 2
0 2

1 2 2 2
0 2 2

1

1

r t

r t n
η

+ −
= ±

− −
, (9)

while summing up the components and using (9) gives 

( )

2 2
0 2 2

1 1
0 2 0 2

1
cos

1 1
r n t

n
r n r t

δ
− +

=
 + + − 

. (10)

Equation (6) can be written in another manner as  

0 1 2=Q M Q , (11)

using 
0

0
0

t

r

  =    
Q , 

2

2
2

t

r

  =    
Q , and 1

1 1 1 1
−=M S A S , 

where 1S  is the symmetric matrix, 1
1 1

−=S V D V . Note 
that for a single layer on a substrate, 2 0r =  and 0t  is 
the incident field. 

B. Nomenclature of Matrix Functions 
 

To simplify the notations (and further programming), 
nomenclature for matrix functions is defined in parallel 
with direct matrix notation. First, we introduce a general 
2 2×  matrix partitioning function (w ) with partitions 
comprised of four different m m×� �  square matrices 
( 0,0 0,1 1,0 1,1, , ,w w w w ): 

( )
0,0 0,1

0,0 0,1 1,0 1,1
1,0 1,1, , ,
w w

w w w w
w w

   =     
w . (12)

Second, using (12) we add a partitioning function ( s ) 
for arranging four bi-diagonally symmetric partitions 
combined of two m m×� �  matrices ( 0s  and 1s ): 

( ) ( )
0 1

0 1 0 1 1 0
1 0

, , , ,
s s

s s s s s s s s
  = =   

s w . (13)

Then, using (12) and a m m×� �  null matrix ( o ) we 
suggest to define another function (d ) for making a 
diagonally partitioned matrix of two m m×� �  matrices 
( 0b  and 1b ) as 

( ) ( )
0

0 1 0 1
1

o
, , o, o, o

b
b b b b b

   = =    
d w . (14)

In addition, the following constant rotation matrix ar-
ranged of 2 2m m×� �  identity matrices ( i ) is used 

173KILDISHEV, CHETTIAR: CASCADING OPTICAL NEGATIVE INDEX METAMATERIALS



 

( )
i i

i, i, i, i i i

−  = − =    
i w . (15)

Finally, a stacking function ( c ) is defined for a 
stacked vector made of two equal vectors ( 1v , 2v ) with 
m�  components as 

( )
1

1 2
2

,
v

v v v
  =    

c . (16)

Thus for example, (2)-(4) and (11) can be rewritten 
using (12)-(16) for 1m =�  as 

( )0 0 0,t r=Q c , ( )2 2 2,t r=Q c , (17)

( )1 1
1 ,n ne eι δ ι δ−=A d , ( )1

1 1 ,1η−=D d , =V i . (18)

C. Basics of SHA in Cascaded NIM Layers 
 

Equations (9) and (10) provide an easy approach to 
the characterization of thin metamaterials. With this 
simple assumption it is thought that a cascaded bulk 
material can be arranged using a stack of q  equivalent 
layers with an effective transformation ma-
trix 1q q −=M SA S . In general, this straightforward ap-
proach assumes that the spatial harmonics of each layer 
interact only with the same harmonics of other layers in 
the stack. In essence, this loose assumption ignores any 
transformation of a given incident harmonic into the 
spatial harmonics of different order, which are either 
reflected or transmitted. To illustrate this issue, consider 
another approach to obtaining effective parameters of a 
multilayer NIM arranged of thin infinite elementary 
layers with periodic distribution of elementary materi-
als. Essentially, the enhanced method follows the recipe 
for a classical case of stratified media (see for example, 
 [6]- [11]). 

We note that a variety of rigorous algorithms have 
been based on SHA for diffraction gratings. After the 
publications of Burckhardt  [7], Kaspar  [8], and Knop 
 [9], a very similar method was introduced by Moharam 
and Gaylord  [10]- [12]. Analytical approaches to the 
problem were shown by Botten and McPhedran  [13]-
 [15]. An alternative to Botten’s method was discussed 
by Tayeb and Petit  [16]- [18]. Due to space constrains, 
here we only give a brief list of early publication; a lar-
ger review will be published elsewhere. 

We start with monochromatic Maxwell’s equa-
tions E Bιω∇× =

G G
, H Dιω∇× =−

G G
 arriving at 

2 2 lnk n H H Hε= ∇×∇× −∇ ×∇×
G G G

, 
2 2 lnk n E E Eµ= ∇×∇× −∇ ×∇×

G G G
. (19)

In addition, using 0B∇ ⋅ =
G

 and 0D∇ ⋅ =
G

 we 
have 

lnH Hµ∇ ⋅ = −∇ ⋅
G G

,  

lnE Eε∇ ⋅ = −∇ ⋅
G G

, 
(20)

and finally 

( )2 2 2 ln

ln ,

k n H H H

H

µ

ε

+∇ =−∇ ∇ ⋅

−∇ ×∇×

G G G

G  

( )2 2 2 ln

ln .

k n E E E

E

ε

µ

+∇ =−∇ ∇ ⋅

−∇ ×∇×

G G G

G  
(21)

D. Bloch-Floquet Waves in Cascaded 2D Layers 
 

A simpler 2D example is used here to illustrate the 
approach because derivations for the spatial harmonic 
analysis (SHA) in 2D are less difficult. Consider a sin-
gle period ( l ) of an infinite interface of a free-space 
domain with the domain of a material characterized by a 
set of step-wise continuous permittivity values ( 1,1ε , 

2,1ε , … ), as shown in Fig. 2a. 

Provided that a TM ( ˆH h= ⋅z
G

) boundary-value 
problem is taken, then only the tangential components 
of the H and E field distributions over l  are required in 
this case. A local coordinate system is introduced, with 
a unit normal ( x̂ ), a unit transverse vector ( ẑ ) and a 
tangent unit vector ( ŷ ). Then, consider two scalar fields 
(h  and d ) as the distribution of the transverse magnetic 
field ( ˆh H= ⋅z

G
) over l  and the distribution the electric 

field ( ˆd Eε= ⋅y
G

). A monochromatic Maxwell equa-
tion ( )ˆ ˆh dιω⋅ ∇ × = −y z  couples the fields 

( ) 1d i hω − ′= , (22)

where the normal derivative of h  is denoted 
ˆh h′ = ⋅∇x . 

The core of any SHA approach is the transformation 
of the fields from a physical space to spatial spectral 
space using available proper functions ( mg ). Provided 
that h  and mg  are sets of discrete values obtained at a 
uniform grid on l , these sets are considered as two vec-
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tors (h  and mg ). The sum max

max

p m
p pp p
g gν∗

=−∑  is consid-

ered here as a scalar product of two vectors ( ), m
l

g gν , 
where p  is a point of the grid on l  arranged of 

max2 1p p= +�  points. Note that the proper functions 
mg  are orthonormal on l , i.e. ( ) ( ), m

l
g g mν δ ν= − . 

Let us isolate the first elementary layer, for example, 
as shown in Fig. 2b. The magnetic field is defined by 

1 ,1 ,1
m m m m
t t r rm

h g c g c
∞

=−∞
= +∑ , where m

tg  and m
rg  are 

transmitted and reflected elementary fields of order m . 
In essence, the field 1h  is decomposed into elementary 
fields (the Bloch-Floquet waves), which are orthonor-
mal on l . In a truncated approximation, maxm m≤ , 

the vectors mg  can form a p m×� �  matrix g , 

max2 1m m= +�  and the complex magnitudes of the 
reflected and transmitted fields ( ,1

m
rc  and ,1

m
tc ) can be 

taken as the components of two different m� - dimen-
sional vectors ,1rc  and ,1tc . Then, the magnetic field in 
matrix form is defined by 1 ,1 ,1 ,1 ,1t t r rh g c g c= + .  

The Bloch-Floquet theorem allows for the separation 
of variables, 1 1tg v u=  and 1

1 1rg v u−= , where u  is an 
m m×� �  matrix exponential, 1 ,1exp xu k kxι= , of a 

proper values matrix, ,1
m
xk ; and 1v  is a p m×� �  matrix 

constructed of orthogonal vectors 1
mv . For the free-

space case, indices in u , v , and m
xk  are dropped, and 

the proper functions u  are defined through 

( )21m m
x yk k= − , where 1

0sinm
yk m lλ φ−= +  and 0φ  

is the angle of incidence (shown in Fig. 2b). The wave-
front 1 2

expm m
yv p k kyι−= �  is just an orthonormal Fou-

rier component of the mth order. 
 

1) Eigenvalue Problem 
 

To obtain both ,1xk  and 1a  for a given elementary 
layer, where the permittivity of elementary materials (a 
piece-wise continuous function 1ε ) is periodic in the y  
direction but constant in the x direction, it is necessary 
to attain an eigenvalue problem formulation. In this 
case, 

2 2
1 1 1 1 1 0yk h h f hε +∇ − ∂ = , (23)

where f  is the logarithmic derivative, 1 1lnyf ε= ∂ , 1ε  

and 1
1ε
−  are p p×� �  diagonal matrices, and 2k  is a sca-

lar. 
The above equation can then be rewritten using 

( )1
1 1 1 ,1 1 ,1t rh v u c u c−= − . Next, introducing 1a  as an 

m m×� �  matrix mapping an orthogonal basis 1v  into the 

free-space basis v , ( 1 1v va= ), substituting ( )1
1 yv f v kι −  

with ( )1 1 1 1
1 1 1y y yk v v v vk v vkι ε ε ι ε− − − −−  and using 1γ  for 

1
1v vε− , 1γ�  for 1 1

1v vε− −  and i  for the m m×� �  identity 
matrix, (23) is further simplified as 

( )2 1
1 ,1 1 1 1ix y ya k a k kγ γ− = − � . (24)

The transform 1a  is required because in contrast with 
the free-space case, each wavefront 1

mv  in an elemen-
tary inhomogeneous layer is not a single Fourier com-
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Fig. 2. (a) Interface of an elementary layer of NIM 
with free space; (b) an isolated elementary layer; (c) 
a cascaded multilayer NIM. 

175KILDISHEV, CHETTIAR: CASCADING OPTICAL NEGATIVE INDEX METAMATERIALS



 

ponent anymore; however, as a ‘physical function’♦ it 
still can be expressed as a superposition of Fourier 
components. Note that equation (24) is written in an 
eigenvalue form since 2

,1xk  is a diagonal matrix. The 
equation can be solved either numerically or analyti-
cally for both 2

,1xk  and 1a , provided that 1γ  and yk  are 
known. 

 
2) Mixed Boundary-Value Problem 

 

Transverse field continuity together with the conser-
vation of the tangential electric field on l  gives the 
standard boundary conditions (BCs), 0 1h h= , 

1 0 1h hε ′ ′= , where the pairs h , h ′  represent the mag-
netic field and its normal derivative just before and after 
the interface; 1ε  are the values of permittivity at the 
collocation points on l . 

After using the definitions of the fields 
( )1

0 ,0 ,0t rh v uc u c−= − , ( )1
1 1 1 ,1 1 ,1t rh va u c u c−= −  and 

taking the normal derivatives, a spectral form of the BC 
is 

0 1 1c s c= . (25)

Here,

( ) ( ) ( ) ( )1 1
0 ,0 ,0 1 1 1 ,1 ,1

, , , , ,
t r t r

c u u c c c u u c c− −= =d c d c , 

and ( )1 1
1 1 1 1 ,1, x xs a k a kγ− −= i d i-1 . 

At the second interface (as shown in Fig. 2b), the 
equation for the elementary layer is given by 

1
1 1 1 2b c s c−= , (26)

where ( )11 1 1,b β β−= d ; the matrix exponential 

1 ,1 1exp xkβ ι δ=  adjusts the phases for the scaled thick-

ness of the layer ( 1 12δ π λ= ∆ ). 

Combining (25) and (26) gives the following form 

1 1
0 1 1 1 2c s b s c− −= . (27)

Since xk  is given as a common matrix for all layers, a 
possible alternative is to employ a normalization 
( 0 0cc i=  and 2 2cc i= ), where the upper and lower 
partitions of 0c  and 2c  correspond to a magnetic com-
ponent and a normalized electric component, respec-
tively. These Fourier components are both continuous 
across any interlayer interface and form the basis for 

 
♦ i.e., a piecewise continuous function with a limited variation on l. 

wave matching. Then, (27) is simplified to 

1 1
0 1 1 1 2

− −=c d b d c , (28)

where the linear operators ( )1 1
1 1 1 1 ,1, x xa k a kγ− −d d=  and 

1
1 1bb i i-=  are unique for each layer with a given dis-

tribution of elementary materials ( 1γ ), defined matrices 
of the proper values ,1xk  and the proper vectors 1a . 

For the trivial case of a uniform slab with a permittiv-
ity 1ε , 1 ia = , 1 1iγ ε=  and a generalized analog of (6) 
is 

1
0 21 1

1
1 110 2

i ooi o

o oo

h h

h h

β
η ηβ

−

−
−

                =            ′ ′         
i i

� �

� � , (29)

where the tangential fields are the corresponding matri-
ces of the Fourier transforms, 1h v h−=� , 

( ) 1h kv hι −′ ′=� ; ( )1
1 1

m
xdiag kη ε−=  (from (24), 

2 2
,1 1ix yk kε= − , and ( )2,1 1

m m
x yk kε= − ). Then for ex-

ample, validation of (29) for a plane wave at normal 
incidence gives a familiar result, shown earlier in (11). 

From (28) we also note that in general, the following 
identity holds 

10

1 1
1 1 ,10

,1 1 ,1 1

,1 1 ,1 1

1
1 2

1 1
,1 1 1 2

o

o

cos sin

sin cos

o
,

o

x x

x x

x x

x x

ah

k a kh

k k

k k

a h

k a k h

γ

δ ι δ

ι δ δ

γ

− −

−

− −

      =     ′     
 −  ×  −   

     ×    ′   

�

�

�

�

 (30)

with ,1 1cos xk δ  and ,1 1sin xk δ  being arranged of adequate 
matrix exponentials. 

II. SHA IN BI-PERIODIC NIM LAYERS 

As yet there has been no mention of how to handle 
bi-periodic structures with generally different periods in 
z  and y  directions (denoted here as yl  and zl  respec-
tively, as shown in Fig. 3). In contrast to the previous 
example, essentially there are two difficulties to over-
come. First, there are a dramatically larger number of 
spatial harmonics ( 2m�  in bi-periodic structures, versus 
m�  in the single-periodic NIMs of Fig. 2a). This volume 
could be quite demanding for pure numerical solvers. 
On top of that, the already large number of basis spatial 
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harmonics in which the fields is expressed should be 
increased even further to ensure convergence of the 
eigenvalues. A simple example of a bi-periodic layer of 
a binary material is shown in Fig. 3, where the layer is 
arranged of a metallic rectangular block which is im-
mersed in a dielectric host. Certainly in real life applica-
tions each elementary layer (cross-section) could be 
much more involved. The electromagnetic field compo-
nents inside a bi-periodic structure also should be bi-
periodic with periods being the same as the length ( yl ) 
and width ( zl ) of the unit cell.  

Then, each field component (e.g., ( ), ,x y zH h h h=
G

) 

can be expressed as 

i i ih v uc= � � , , ,i x y z= , (31)

where each field component is written as the product of 
a cell periodic part ( ),v v y z=� �  and a wavelike part 

exp( )xu k xι= �� , as a consequence of Bloch's theorem. 
As usual, we start with Maxwell’s equations 
E Bιω∇× =
G G

, H Dιω∇× = −
G G

, and since 0H∇ ⋅ =
G

, 
i.e. 2H H∇×∇× = −∇

G G
, we arrive at 

( )2 1 2
r r rH H k Hε ε ε−−∇ = ∇ × ∇× +

G G G
. (32)

Introducing a tangent field ˆ ˆy zh h hτ = +y z
G

, we note 
that 

( )
( )

2 2 1
ˆ

ˆ

z y z z y

y y z z y

h h
h h

h h
τ τ

ε
ω εµ ε

ε
−
 ∂ ∂ −∂   −∇ = +    − ∂ ∂ −∂  

y

z

G G
. (33)

After splitting the components of hτ
G

, (33) yields 

( )2 2 1
y y z y z z yh h h hω εµ ε ε−−∇ = + ∂ ∂ −∂ , 

( )2 2 1
z z y z y y zh h h hω εµ ε ε−−∇ = + ∂ ∂ −∂ . 

(34)

Then, using separation of variables (31) in matrix 

form, h vucτ =
G G�� , where ( ),v v x y=� � , ( )u u z=� � , the 

above is rewritten as 

( )
( )1 2 2

2 1

1 1

1 1 ,

y z

y x y y y y y

z z

y y z z

v v k k
a k a a uc a uc

v vk

v vk a uc

ε

ι ε ε

ι ε ε

−

−

− −

− −

 − +   =   − ∂  

+ ∂

� �

�

 

( )
( )1 2 2

2 1

1 1

1 1 ,

y z

z x z z z z z

r y r y

y z z y

v v k k
a k a a uc a uc

v vk

v vk a uc

ε

ι ε ε

ι ε ε

−

−

− −

− −

 − +   =   − ∂  

+ ∂

� �

�

 

(35)

where
i , iz z z z y y y yk diag m l k diag m lα λ α λ   = + = +       , 

( )0 0ˆ ˆ ˆ ˆy z k kα α+ = − ⋅y z x x
G G

, and 0k k k=
G G G

 is a unit 

vector defined by the wavevector (k
G

) of the incident 
field. 

The latter is further simplified with the aid of the fol-
lowing identities for the partial logarithmic derivatives 

1 1 1
z z zv v k kι ε ε γ γ− − −∂ = − , 

1 1 1
y y yv v k kι ε ε γ γ− − −∂ = − , 

(36)

where 1v vγ ε−= . Then we arrive at 

( ) ( )
( )

2 1 2 1

1 ,

y x y y y y z z y y

z y z y z z

a k a a uc k k k a uc

k k k k a uc

γ γ γ

γ γ

− −

−

= − −

+ −

� �

�

( ) ( )
( )

2 1 1

2 1 .

z x z z z y z y z y y

z y y z z

a k a a uc k k k k a uc

k k k a uc

γ γ

γ γ γ

− −

−

= −

+ − −

� �

�
 

(37)

The second term in the right side of both equations in 
(37) corresponds to the cross polarization. For a sym-
metric grating we can show that both ( )1

z y z yk k k kγ γ− −  

and ( )2 1
z y yk k kγ γ γ−− −  are equal to zero and conse-

quently we have no cross polarization for symmetric 
gratings. This simplification yields two decoupled ei-
genvalue equations as shown below 

( )
( )

2 1 1 2

2 1 1 2

i

i .

y x y z z y

z x z y y z

a k a k k k

a k a k k k

γ γ

γ γ

− −

− −

= − −

= − −
 (38)

For an asymmetric grating the two eigenvalue equa-
tions would be coupled via the cross polarizations term. 

A 2D TM case ( oy zc k= = , i.e. the structure is pe-
riodic in the y direction only, there is no magnetic field 

lz
∆

ly

Fig. 3. Sketch of an example 3D periodic cell. 
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along the direction of periodicity) gives 
( ( )1
y rv y vγ ε−=� ) 

( )2 1 1iz x z y y y ya k a k kγ γ− −= − , (39)

while a 2D TE case ( oy yc k= = , i.e. the structure is 
periodic in z-direction only, there is no electric field 
along the direction of periodicity and ( )1

z v z vγ ε−= ) 
is 

2 1 2
z x z z za k a kγ− = − . (40)

Note that equations (39)-(40) also provide a solution 
for structures with interleaving single-period layers with 
90-degree rotation of their periodicity directions. 

III. CASCADING THE ELEMENTARY LAYERS 

Cascading a set of q  elementary layers (depicted in 
Fig. 2c) gives 

0 1 1c w c= . (41)

Here, 1
1

q

w wν
ν=

=∏ �  and 1 1w s b sν ν ν ν
− −=�  is an elementary 

transform due to ν -th layer. 
Provided that each subset of q  elementary layers is 

again stacked m  times, then the matrix power 
[ ]0 0

mmw w=  is used with the following transformation 

0 0 1
mc w c= . (42)

Transformations equivalent to (27) - (42) can be writ-
ten as 

0,0 0,1

1,0 1,1 0
ti

r

cc w w

c w w
         =             

, (43)

where ic  are the spatial harmonic coefficients of the 
source, rc  is a set of the spatial harmonic coefficients of 
reflected light, and tc  are the harmonic coefficients of 
transmitted light. 

A. Reflection and Transmission Coefficients 
 

The major work-load in the above method falls on the 
calculation of the proper values and vectors ( ,xk ν  and 
aν ) for each elementary layer. Once the values are ob-
tained, the characteristic matrices of each layer are ar-
ranged as 1 1s b sν ν ν

− − . 

Introducing the transformations , ,t rc cν ν νρ = , 

, ,t t qc cν ντ =  (with initial values given by iqτ = , and 
oqρ = ), the matrices of spatial spectral reflectance and 

transmittance are defined as 

( )( ) 11,0 1,1 0,0 0,1
1 w w w wν ν ν ν ν ν νρ ρ ρ

−

− = + + , 

( ) 10,0 0,1
1 w wν ν ν ν ντ τ ρ

−

− = + , 
(44)

where the characteristic matrix is partitioned as 
0,0 0,1

1,0 1,1

w w
w

w w

ν ν

ν
ν ν

   =     
� . The partitions are calculated us-

ingsν , which is a matrix with symmetrical partitions, 

( )0 1,s s sν ν ν= s  with ( )0 1 11
2 ,x xs k a k aν ν ν ν νγ− −= +  and 

( )1 1 11
2 ,x xs k a k aν ν ν ν νγ− −= −  and a similar matrix 

( )1 0 1,s s sν ν ν
− = s � �  with ( )0 1 1 11

2 ,x xs k a k aν ν ν ν νγ− − −= +�  and 

( )1 1 1 11
2 ,x xs k a k aν ν ν ν νγ− − −= −� , then 

0,0 0 1 0 1 1w s s s sν ν ν ν ν ν νβ β−= +� � , 0,1 0 1 1 1 0w s s s sν ν ν ν ν ν νβ β−= +� � ,
1,0 1 1 0 0 1w s s s sν ν ν ν ν ν νβ β−= +� � , 1,1 1 1 1 0 0w s s s sν ν ν ν ν ν νβ β−= +� � . (45)

Thus, for example, a single-layer structure is calcu-
lated as follows: ( ) 10,0

0 1wτ
−

= , ( ) 11,0 0,0
0 1 1w wρ

−
= . 

Then, the transmitted and reflected Bloch-Floquet 
waves are 

,1 0t ic cτ= , ,0 0r ic cρ= . (46)

B. A Simple Validation Test 
A simplified 2D single-layer model for validating the 

simulation method is shown in Fig. 4a. The sample 
structure is intentionally made of a very thin metallic 
grating (with 10-nm thickness). The grating is arranged 
of 400-nm gold strips separated by narrow strips of sil-
ica, the period of the structure is 480 nm. The large as-
pect ratio of the metallic strips and a large electric reso-
nance at a wavelength of about 1.2 micron are among 
the main challenges of the test model. To obtain a good 
set of reference data, the structure was simulated using a 
commercial software package with 5th-order finite ele-
ments. The validity of the FEM solution was verified by 
using the same model with different levels of additional 
meshing refinement and an adaptive solver. The results 
were stable upon the use of 41,000 degrees of freedom 
(field variables), where the bulk of the resources had 
been spent for the free-space buffer, non-reflecting lay-
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ers and adequate meshing at the corners. 
In contrast to FEM, the spatial harmonic analysis 

method appeared much more efficient. The problem 
was stabilized after the use of 11 eigenvalues with a 
calculation time of about 100 times less versus the FEM 
solver with the same number of wavelength points and 

the same computational hardware. It should be noted 
that the amount of simulation time using SHA is ap-
proximately proportional to the total number of elemen-
tary layers and scales approximately as the square (or 
cube) of the total number of eigenvalues in 2D (or 3D) 
problems, while the performance of FEM solvers de-
creases very moderately with increasing layers. Both 
models appeared to be quite sensitive to the material 
properties of the metal. In both cases, the interpolated 
complex refractive index was based on the experimental 
table of Johnson and Christy  [19]. In addition to simple 
validation of the modeling approach, the test model of 
Fig. 4a reveals all typical features of the periodic struc-
tures with localized plasmonic resonances, e.g. at the 
same wavelength the electric resonance is always ac-
companied by a satellite magnetic antiresonance and 
vise versa. 

As has been discussed in  [5] and shown in equations 
(10) and (11), the effective refractive index 1n  and its 
effective impedance 1η  of a given elementary layer can 
be uniquely determined either experimentally or from 
simulations. Rewriting (10) as 

[ ]

2 2
2

21
1

1

1
arccos1 1 (1 )

2
s

r n t
n n r tn

δ πδ ν

 − +    + − −=    +  

, 

 0,1,2ν = …  

(47)

we can determine 1n , where 2n  is the refractive index 
of the thick substrate beyond the elementary layer, and 
r  and t  are the complex reflection and transmission 
coefficients of the propagating plane wave mode. In 
simulations r  and t  can be obtained from 

( )0 0,0t τ= , ( )0 0,0r ρ= , (48)

i.e., in essence by taking only the central terms of the 
transmission and reflection matrices. Then, the effective 
permittivity and the effective permeability are given by 

1 1 1nµ η= , 1 1 1nε η= . (49)

C. Implementation Details for the 2D Case 
 

Although the process of solving (24) is relatively 
simple for dielectric sub-wavelength gratings, a direct 
treatment of metallic sub-wavelength gratings is more 
difficult because of the much higher contrast in permit-
tivity within the optical wavelength range.  
The following steps are taken to alleviate the problem: 
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Fig. 4. (a) Geometry sketch of a resonant elementary 
layer; (b) effective permeability and permittivity ob-
tained for the elementary layer using FEM and SHA 
(using 11 eigenvalues); (c) comparison of the reflection, 
transmission, and absorption spectra obtained in simula-
tions using FEM and SHA (11 eigenvalues). 
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1) The Fourier transform of inverted permittivity 
 

First, we take the following modification of (23) 

( )2 1 2 1
1 1 1 1 1 0x y yk h h hε ε− −+ ∂ + ∂ ∂ = . (50)

Using ( )1
1 1 1 ,1 1 ,1t rh va u c u c−= −  and 1 1

1 1v vε γ− −= �  

we have 

( )2 1
1 1 ,1 1 1 0x y xv v a k a v kγ ιγ−− + ∂ =� � , (51)

or  

2 1
1 1 1 1i y y xk k a k aγ γ −− =� � . (52)

Finally, we can use the following version of (24) 

( )2 1 1
1 ,1 1 1 1ix y ya k a k kγ γ− −= −� � , (53)

which provides stable convergence in the presence of 
metallic elements. 

Moreover, in accord with (53) the Fourier transform 
of the inverted permittivity 1γ�  and its inverse 1

1γ
−�  is 

used respectively in (28) and (30) instead of 1
1γ
−  and 

1γ . 

2) Analytical calculation of the Fourier transform 
 

In addition, along with the use of the inverted permit-
tivity, the Fourier transformation 1γ�  in (25) is calcu-
lated analytically provided that ( )1 yε  over the period l  
is a combination of homogeneous segments. Indeed, for 
any 0m >  ( )1

m m
y ykk y kk y m

yl e dy e lkkι ι− −− =∫ , thus for 

example, a term ,
1
p mγ�  (at row p  and column m ) of the 

square matrix 1γ�  for the elementary layer in Fig. 4a, is 
given by 

( ) ( )[ ]
( )

( )

1 1

1 1

sin

1

g s

g s

p m
if p m

p m

otherwise

κπ
ε ε

π

κε κ ε

− −

− −

−
+ ≠

−

+ −
, (54)

where w lκ =  is the metal filling factor and gε  and sε  

is the permittivity of gold and silica, respectively. 
 

IV. DISCUSSIONS 

Both remedies built on (53) and (54) work well with 
metallic structures. For example, Fig. 5 shows the real 
and imaginary parts of the effective refractive index that 
is restored using the complex transmission and reflec-

tion coefficients at normal incidence  [5]. (The geometry 
of the layer has been already shown in Fig. 4a.) Both 
real and imaginary parts of the refractive index are con-
verging rapidly. Small features around 650 nm are sup-
pressed only for max 1m = , and both curves are quickly 
converging to their limits; starting from max 9m =  the 
corresponding curves with larger maxm  are overlapping.  

In contrast, a direct application of the initial formula-
tion (24) is of limited utility to the problem. We note 
that the transmission and reflection spectra demonstrate 
much slower convergence and substantial artifacts. For 
example, Fig. 6 depicts the results obtained from the 
problem of Fig. 4a using the initial eigenvalue formula-
tion (24). 

It is important to note that a convergence control 
should be implemented for the entire multilayer struc-
ture; otherwise insignificant modes of an elementary 
layer could be considerably enhanced due to additional 
resonances of coupled elementary layers. 

Consider for example the real part of the refractive 
index, n ′ , shown in Fig. 7a. The values of n ′  are re-
stored from r  and t , which are calculated for a single 

layer depicted in the inset of Fig. 7a. There is no reso-
nance within the selected 300-nm wavelength segment, 

0.6 0.8 1 1.2 1.4 1.6 1.8
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mmax = 1

mmax = 1,3...19

mmax = 19

n"
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wavelength (λ) µm

Fig. 5. Real and imaginary part of the refractive index 
(n′ and n″) vs. wavelength calculated with a different 
number of spatial harmonics (mmax = 1, 3, 19). Starting 
from mmax = 9 the difference in the results is almost 
indiscernible. 
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and the values of n ′  converge quickly starting from 
max 6m = . 
Now we take a triple-layer structure arranged of two 

identical elementary layers of Fig. 7a separated by a 
uniform 100-nm layer of silica. The structure exhibits 
an additional magnetic resonance within the selected 
wavelength range. As expected, this resonance, which 
appears due to additional near-field coupling between 
the metallic strips, requires taking into account an in-
creased number of modes. The same level of relative 
error is now achieved starting from max 10m > . 

As a result, additional care is required for the accurate 
calculation of stacked substructures arranged of elemen-
tary layers and cascaded materials integrating different 
or identical multilayer substructures. It also follows 
from the analysis of equations (27)-(45) that: 

(i) None of asymmetric multilayer composites can be 
effectively described either by the simplified homogeni-
zation approach (9)-(11), or through its generalized ana-
log (30). (A multilayer composite is asymmetric if it 
contains an odd number of elementary layers and the 
layers are not mirror-symmetric relative to the central 
layer; all structures with an even number of distinct 
layers are always asymmetric). 

(ii) Effective optical parameters (including an effec-
tive negative refractive index) obtained in a single sym-
metric sub-set of elementary layers may not guarantee 
the same effective parameters in a bulk material ar-
ranged of identical subsets, not merely because of ab-
sorptive losses but also due to new interactions of near-
field waves introduced by the use of cascading. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Real and imaginary part of the refractive index 
(n′ and n″) vs. wavelength calculated using (24) for 
mmax = 61, 71, 81. Starting only from mmax = 71 the dif-
ference in the results are converging well to the asymp-
totic curves obtained using (53). 
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Fig. 7. The real part of the refractive index (n′) vs. 

wavelength. (a) n′ calculated for a single layer struc-
ture shown in the inset for mmax = 1, 2 ...10. Starting 
from mmax = 6 there is almost no difference in the 
curves, (b) n′ calculated for a triple layer structure ar-
ranged from two identical layers of diagram (a) sepa-
rated by a 100-nm uniform layer of silica. The inset 
depicts the triple-layer structure. Convergence to the 
same lever of error begins starting from mmax

 = 10. 
Slower convergence is caused by an additional reso-
nance due to strong near-field coupling between the 
layers. 
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To illustrate (i) consider a classical example of a sub-
set structure with two homogeneous lossless layers 
[ [20], p. 72]. The characteristic matrix of two layers 
with thicknesses 1∆  and 2∆ , and indices 1n  and 1η , is 

computed as 2 1 2=w w w� � , with 1 1
1 1 1 1

− −=w d b d�  and 
1 1

2 2 2 2
− −=w d b d� . The effective characteristic matrix 

( effw ) of an equivalent single layer, which is defined as 

0,0 0,1

1,0 1,1

1

cos sin
,

sin cos

eff eff

eff
eff eff

eff x eff eff x

eff eff x eff x

n k n n k

n n k n k

δ ι δ

ι δ δ−

   =      
 −  =  −  

w w
w

w w
 (55)

(using a scaled thickness, ( )1 2kδ = ∆ +∆  and the 
effective index, effn ), should be equal to the characteris-
tic matrix of the double-layer 2w . To be equivalent to 

effw , the product 2 1 2=w w w� �  must have identical di-

agonal partitions since 0,0 1,1
eff eff=w w  in (55). This is true 

only if the product commutes, i.e. 1 2 2 1=w w w w� � � � , leav-
ing the only trivial case of 1 2n n=  possible. Therefore, 
even a simple stack of two distinct lossless films cannot 
be adequately modeled by a single effective layer. 
Physically, the condition 1 2 2 1=w w w w� � � �  means that the 
effective parameters of a multilayer NIM should not 
depend on which side is chosen for illumination, i.e. its 
structure should be symmetric. 

Note that although 1 2 3 3 2 1=w w w w w w� � � � � �  is always true 
for any triple-layered structure, since the first and the 
last layers are equal ( 1 3=w w� � ), the homogenization of 

( )1 1 1 1 1
3 1 1 12 2 12 1 1

− − − − −=w d b d b d b d  is not very simple even 

for the structure with homogeneous elementary layers. 
Now to exemplify (ii) consider a cascaded structure 

arranged of identical symmetric substructures, then 
1 1 1 1 1

3 1 1 12 2 12 1 1w s b s b s b s− − − − −= , where 1
12 1 2s s s−=  

1 1
1 2

− −= i d d i . The diagonally partitioned matrix 1
1 2
−d d  

is responsible for interactions between the layers. Cas-
cading p  triple-layer substructures suggests taking the 
p -th power of the characteristic matrix 3w . Although 
the result is straightforward since 
( ) ( )1 1 1 1 1
3 1 1 12 2 12 1 1

pp
w s b s b s b s− − − − −= , it is clear that new 

interactions of near-field waves introduced by cascad-
ing will change the effective properties of the cascaded 
structure in comparison to those of the initial three-layer 
sub-structure, unless it is possible to write 3w  as 

1
3 eff eff effw s b s−= , where effb  is a diagonal matrix of effec-

tive eigenvalues and effs  is a matrix of effective eigen-
vectors. 
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Abstract — With the emergence of frequency 
selective surfaces (FSS) and other passive planar 
antenna devices at infrared frequencies, the increasing 
need for accurate characterization using numerical 
modeling prior to device fabrication has exposed 
limitations in the traditional modeling procedures used 
for lower frequency FSS designs. To improve full-wave 
FSS models at IR, a procedure to measure and integrate 
dispersive material properties in modeling is described. 
Measured and modeled results are provided as 
verification demonstrating the need to account for 
material dispersion in infrared FSS design. 
 
Keywords — Frequency Selective Surfaces, Nanoscale 
device modeling. 
 

I.    INTRODUCTION 
 

A Frequency Selective Surface, or FSS, is made up of 
a periodic arrangement of resonant structures for the 
purpose of spectral modification of reflected, 
transmitted, or emitted radiation. The resonant 
properties of these structures depend both upon the FSS 
layout (dimensions and periodicity) and the properties 
of the materials used in the construction. Thus, by 
varying the FSS layout and material properties, it is 
possible to tune the FSS resonance to meet specific 
design requirements. 

Since the 1960s, FSS structures have been 
successfully designed and implemented for use in radio 
frequency (RF) applications. With growing interest in 
adapting low-frequency antenna layouts for infrared 
(IR) applications, several FSS designs have been 
fabricated and tested including designs using dipoles 
[1], crosses [2], and square loops [3]. To limit the need 
for repetitive fabrication and testing, commercially 
available numerical electromagnetic solvers have been 
successfully used to model and characterize FSS 
designs at IR [4]. One of the greatest limiting factors of 
IR FSS modeling, however, has been the assumption 
that materials at IR exhibit electromagnetic properties 

independent of frequency. Traditionally a valid 
assumption at RF, the majority of materials utilized in 
FSS fabrication exhibit measurable frequency 
dependent (FD) optical properties at IR. This 
measurable material dispersion can have a significant 
impact on the measured performance of the fabricated 
FSS and will degrade agreement between measured and 
modeled results when assuming static material 
properties. Furthermore, a large number of commercial 
electromagnetic solvers used in FSS characterization 
were developed specifically for RF application and, 
thus, allow only frequency independent material 
definitions, or provide only a limited means to account 
for dispersive materials.  

To overcome this limitation, this paper presents a 
procedure to account for FD material properties in IR 
FSS modeling. Frequency-dependent IR material 
measurement using an IR ellipsometer, and the 
integration of dispersive materials into existing 
commercially available full wave modeling packages is 
discussed. In addition, this paper includes analysis 
showing significant improvements in agreement 
between modeled and measured results. 
 
II.     FREQUENCY-DEPENDENT IR MATERIAL 

CHARACTERIZATION 
 

Before modeling an IR FSS design, materials used 
for fabrication must be first characterized for their 
dispersive optical properties. While FD properties for 
many materials have been previously characterized and 
published, inconsistency in measurement approaches 
limit the utility of such results. Published material 
studies frequently characterize materials only in ideal 
situations, such as within a vacuum or as a bulk 
composition [5] or using mathematical models [6]. In 
addition, even if the material is studied in a similar 
configuration as the FSS to be modeled, variability in 
deposition techniques, layer intermixing, atmospheric 
conditions, material composition, and handling can 
render prior measured data inaccurate for modeling. 
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Clearly, for the highest possible accuracy when 
modeling FSS on dispersive materials, IR material 
properties must be characterized directly using the as-
deposited materials or actual substrates. 

Specifically, a J. A. Woollam Infrared Variable-
Angle Spectroscopic Ellipsometer (IR-VASE) (Fig.1) 
was utilized to measure the IR properties of each 
material used in fabrication of the FSS over the 
wavelength range from 2 µm to 14 µm. For metals, 
deposition of the metal at a thickness greater than the 
skin depth on a known substrate, such as silicon, is 
recommended for accurate characterization of near bulk 
material properties. This is consistent with the metal 
thicknesses typically used in FSS designs; however, 
deposition at the exact fabricated metal thickness allow 
for representative results.  To characterize dielectric 
stand-off layers, it is recommended to make 
measurements on the actual layer of material used in 
fabrication, before the application of electron resist.  
This facilitates both the determination of IR properties 
and the accurate measurement of the dielectric’s 
thickness.  The characteristics of each material are 
measured from samples, analyzed and fit to an 
oscillator model using software provided by the 
manufacturer, and stored in a shared network library as 
a spreadsheet file. Because most commercially 
available modeling software programs only accept 
material property definitions as complex dielectric 
constants, and not index of refraction, the measured 
data from the ellipsometer can also be converted for 
direct utilization by using the relationship 

 
)(~)(~ λελ rn = .                           (1) 

 

 
Fig. 1. IR-VASE. 
 

As with any measurement apparatus, the IR-VASE is 
susceptible to both measurement and post processing 
errors. One of the capabilities of the IR-VASE analysis 
software is the ability to automatically determine both 
the standard deviation of the measured material 
response and material model errors. From these values 
and with proper deposition and analysis, optical 
properties from simple dispersive dielectrics and metals 

should be within ±5% of their actual values. As 
material model complexity increases, error will also 
increase. 
 

III.     IMPLEMENTATION 
 

To carry out modeling, a MATLAB function was 
created to utilize the measured FD material properties. 
The MATLAB function consists of three major 
components – User Interface (UI), Solver Independent 
Code (SIC), and Solver Specific Code (SSC). The UI 
component of the code provides the interface necessary 
for user input and real time presentation of results. The 
SIC component interprets the users input, reads FD 
material properties from the shared network library, and 
creates result files and directories. The SSC component 
provides functionality to interface with a specific 
external electromagnetic solver and to interpret the 
results generated by the solver. The function’s layered 
approach is desirable as it allows for easy integration of 
multiple electromagnetic solvers without changing the 
UI or SIC. Currently, Ohio State University’s Periodic 
Method of Moments (PMM) and Ansoft Designer, both 
Method of Moments solvers, are supported. 

Solutions for frequency dependent material 
designs are realized using frequency point by point 
simulation. To improve performance, programs are 
provided with a template specifying initial geometry. 
Step modeling is achieved by populating the desired 
template with material properties at each frequency step 
and calling the necessary solver. In the function’s 
current implementation, PMM setup files, written in 
FORTRAN, are directly modified at each step, whereas 
Designer setup files require modification using 
VBScript to directly interface with the modeling 
program. Results are then stored for each frequency 
step in a spreadsheet and the UI is updated in real-time. 
A summary of the program is provided in Fig. 2. 

 

 
Fig. 2. Implementation of frequency-dependent 
modeling. 

 
In addition to support for FD materials, the developed 

MATLAB function further enhances all of the solvers 
by adding new capabilities. Most significant of this new 
functionality, especially from the standpoint of the user, 
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is the fact that parameter input, user interfaces, and 
results are all presented identically regardless of the 
chosen solver. Neutral presentation is desirable to lower 
the learning curve necessary for modeling, such as the 
need to learn FORTRAN for PMM or the Ansoft 
product UI for Designer, and improves post processing 
and sharing of data between solvers. The function also 
facilitates the process of design optimization by adding 
the ability to specify variable parametric sweeps and by 
allowing auto-rendering of the design in 3-D.  This 
functionality is not available in some commercially 
available solvers, including PMM. 

 
IV.    EXAMPLE RESULTS: SQUARE-LOOP FSS 

ON ZIRCONIUM 
 

For verification of the need to account for FD 
material properties in FSS modeling, a Manganese 
square- loop FSS on Zirconium (ZrO2) with a Gold 
ground plane (Fig. 3) was fabricated and tested using a 
3 µm to 14 µm spectroradiometer manufactured by 
Infrared Systems Development Corporation. The 
radiometer measures the surface emissivity directly [4]. 
In addition, the same design was modeled using PMM 
assuming frequency independent materials (εr = 3.0272, 
tanδ = 0.023, Rs = 40 Ω) and the developed MATLAB 
function following the process outlined in the previous 
sections with frequency dependent material properties. 
In addition, based on a ±5% variation in material 
properties, the maximum and minimum emissivty limits 
was calculated.  Modeled results from Designer 
demonstrated acceptable agreement with results from 
PMM and, thus, are omitted. Fig. 4 is a plot of the 
modeled and measured emissivity of the square loop 
FSS. Neither PMM nor Designer support the 
calculation of emissivity directly, however, the 
developed MATLAB function calculates emissivity 
using the conservation of energy relationship 
 

      α(λ) +  τ(λ) +  ρ(λ) = 1.                          (2)                          
 

With transmission τ set to zero due to the presence of 
the groundplane and with absorption α (unity minus 
reflection ρ) set equal to emissivity as a consequence of 
Kirchhoff’s law. From the figure, the FD model 
provides an improved indication of the device’s 
measured behavior over the frequency independent 
model including a better bandwidth match from 3 µm to 
6 µm, accurate prediction of the device’s emissivity 
peak around 7 µm, and improved agreement of curve 
shape from 8 µm to 14 µm. Even with the inclusion of 
errors in the material measurements, the FD model 
demonstrates reasonable agreement with measured 
results. 
 

 
Fig. 3. SEM image of fabricated Square-Loop FSS on 
ZrO2. 
 
 

 

Fig. 4. Measured, frequency independent PMM, and 
frequency-dependent PMM results for square-loop FSS 
on ZrO2. Error bars represent total emissivity variation 
with material error. 
 
 

In addition to modeling results, run time data for the 
model from Fig. 3 was also collected for each program 
and summarized in Table 1. As expected, the use of 
frequency dependent materials facilitated by a 
MATLAB function has resulted in an overall increase 
of run time. The increase can largely be attributed to 
additional time required to copy the measured 
permittivity values from the shared drive, extract the 
results, save the results to a spreadsheet file, generate of 
the function’s GUI, and launch and close the desired 
solver. Overall, the longer runtime is acceptable due to 
the increase in model accuracy and additional program 
functionality. 

 
Table 1. Comparison of runtime for a square-loop FSS 
using 100 frequency points. 
 Frequency 

Independent 
Frequency 
Dependent 

Runtime 177s 552s 
 

186 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



V.     EXAMPLE RESULTS: SQUARE-LOOP FSS 
ON POLYMER 

 
From the standpoint of mass production of an IR 

FSS, non-traditional stand-off layers, such as polymers, 
would be highly desirable for future designs to lower 
fabrication costs, reduce fabrication time, and allow for 
flexible substrates. Due to their composition, most 
polymers will exhibit significant frequency dependence 
and numerous loss bands at infrared. To evaluate FSS 
behavior on a polymer dielectric, another square loop 
FSS was modeled (Fig. 5) using both a fixed, lossless 
permittivity dielectric (εr = 1.5, tanδ = 0) and the 
complex permittivity of PC0G46GL measured from the 
IR-VASE (Fig. 6). PC0G46GL is a fluoropolymer 
based on polycarbonate and represents a potential 
plastic substrate candidate. While deposition of a 
PC0G46GL substrate is feasible, development of THE 
PROCESS capability requires considerable investment 
of engineering time and has not yet been implemented. 
With the modeling capabilities developed; however, it 
is now reasonable to predict the behavior of 
PC0G46GL both for design optimization and benefit 
evaluation prior to development of fabrication 
capabilities.  

 

 
Fig. 5. Frequency independent PMM and frequency 
dependent PMM results for square loop on plastic. 
 

 
Fig. 6. Frequency dependent index of refraction (n,k) of 
PC0G46GL from ellipsometer. 

When assuming a fixed permittivity dielectric, the 
square loop FSS was easily optimized for high 
emissivity from 5 µm to 8 µm simply by scaling 
existing designs and models. Running the same models 
using the developed MATLAB function and accounting 
for the frequency dependence of the plastic, the FSS 
retains some of its original behavior with the 
introduction of a high emissivity band between 8 µm to 
9 µm and a sharp dip in emissivity around 7.5 µm. 
From a design standpoint, this new behavior can 
significantly change the potential applications of the 
FSS by effectively expanding the device’s emissivity 
band and introducing an undesired dip in the middle of 
that band. Even with the measured IR properties, 
predicting these new trends before testing is clearly 
problematic when using only a frequency-independent 
model. By including material frequency dependence, 
further design optimization can occur with a reasonable 
expectation of accuracy and, thus, a reduction in the 
need of costly fabrication and measurement and 
investment risk. 
 

VI.    CONCLUSIONS 
 

A procedure for the accurate characterization of a 
frequency selective surface design for use at infrared 
frequencies has been developed using dispersive 
materials. The procedure requires the use of material 
characterization and a custom MATLAB function to 
interface with commercially available electromagnetic 
solvers. Comparison of modeled and measured data for 
FSS designs on ZrO2 and plastic substrates illustrate the 
significance of accurately modeling frequency-
dependent material properties in performance 
predictions. 
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