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Abstract − The stability of two-dimensional 
Finite-Difference Time-Domain subgridding schemes 
was numerically examined. Both the same-time-step and 
the multiple-time-step schemes were considered. Results 
show that the multiple-time-step subgridding scheme is 
late-time unstable due to larger-than-unity eigenvalues. 
As to the same-time-step subgridding schemes, stability 
is related to the treatment of corner regions.  
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I.   INTRODUCTION 
 

Since the Finite-Difference Time-Domain (FDTD) 
method was introduced [1],[2], a major challenge is 
modeling locally fine structures and/or field singularities. 
To model fine features or resolve rapid field variations, 
small cells are required and the overall computational 
cost can be prohibitive by using the traditional FDTD 
method.  

One attractive solution is subgridding, i.e., fine 
meshes are employed wherever needed and the rest of 
the computational domain is discretized by coarse 
meshes. The early version of subgridding applies the 
FDTD method twice in different regions, where the 
results in coarse region are used as boundary conditions 
for fine regions [3]. Due to the lack of timely feedback 
from fine regions, this approach only yields better results 
in fine regions. To improve the accuracy, fine regions 
are embedded into coarse regions and the timely 
feedback is provided by field coupling on boundaries [4]. 
In this scheme, two methods are possible to 
accommodate the stability requirement imposed by fine 
region cell size. One is to use the same time step (STS) 
size, which is dictated by the fine region cell size, in both 
regions. The other is to use different time step sizes 
determined by coarse and fine region cell sizes 
respectively. Thus one time step in coarse region 
corresponds to multiple time steps (MTS) in fine region. 
Accordingly, temporal interpolation is required for field 
coupling on the boundaries. 

Despite the various accuracy-enhancement procedures 
[5]-[8], FDTD subgridding methods are notorious for 

their late-time instability, which typically happens after 
many iterations. To address this issue, spatial reciprocity 
on coarse-fine region boundaries has proposed as a 
necessary condition to achieve late-time stability [9]. 
However, its effectiveness remains unclear. In this paper, 
we provide numerical examinations of its sufficiency for 
both the STS and the MTS subgridding schemes.  

The dominant eigenvalues of the system amplification 
matrices are examined as a key measure of stability. 
Meanwhile, corresponding numerical simulations are 
carried out for sufficient time steps to check the actual 
late-time behavior. For simplicity, 2D TEz wave was 
examined. The subgridding refinement ratio is 3:1. The 
odd ratio results in collocated coarse-fine region 
boundary values in space and in time. For other 
subgridding ratios, the analysis follows the same 
procedure. We note that the main purpose of this paper is 
to provide first-hand numerical examinations. 
Theoretical explanations are given tentatively based on 
known theories.  

This paper is organized as follows. Section II presents 
the methodology and describes the numerical tests. 
Section III verifies the approach by the regular FDTD 
scheme. Sections IV and V show the results of the STS 
and the MTS schemes, respectively. Finally, conclusion 
remarks are drawn in section VI.  
 

II.   METHODOLOGY 
 
The stability of FDTD subgridding schemes was first 

studied by the dominant eigenvalues of the system 
amplification matrices [2]. In the discretized Maxwell’s 
equations  
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[A] denotes the system amplification matrix. To verify 
the late-time behavior, simulations were carried out 
inside Perfect Electric Conducting (PEC) boxes of 
various sizes. A magnetic point source near the 
lower-left corner was excited and the electric field at 
another location was monitored at each time step. The 
source is a differentiated Gaussian pulse and its peak 

1054-4887 © 2007 ACES

ACES JOURNAL, VOL. 22, NO. 2, JULY 2007 189



 

magnitude is less than one. Therefore, the observed 
electrical field magnitude should not be larger than one 
in a stable simulation. Whenever the above condition is 
violated, we claim that a simulation is unstable and that 
time step is recorded as the “critical point”. Otherwise, 
the most recent observations were checked after ten 
million time steps. If they do not show any sign of 
growth, a scheme is claimed as numerically stable.  

The fine region is placed at the center of the com-
putational domain, which is denoted by m × n, where m 
is the distance from the fine region boundary to the outer 
boundary of the entire computational domain and n the 
size of the fine region, both are in terms of the coarse 
region cell size.   

We note that the maximum possible value at the 
observation is different with respect to different com-
putational domain sizes. The “critical point” only 
indicates instability and its value should not be in-
terpreted in the same way for different computational 
domains. Due of limited resources, we only considered 
small computational domains. However, stability is 
usually characterized asymptotically by assuming an 
infinitely large one. To examine the differences and 
verify our approach, we first study the regular FDTD 
method. 

  
III.   THE REGULAR FDTD METHOD 

 
Figure 1 shows the dominant eigenvalues of the 

system amplification matrix of the regular FDTD 
method as a function of the Courant-Friedrichs-Levy 
(CFL) number, which is defined by hvt p ∆∆ /2 . Here, vp 
is the phase velocity, ∆h is the cell size and ∆t is the 
time-step size. The computational domain size is de-
noted by m × n in terms of cells, where m represents the 
length and n represents the width.  

It is interesting to notice that simulations of very small 
computational domains can be stable even with a larger 
than one CFL number. For a 3 × 3 PEC box, the largest 
stable CFL number reaches to 1.15 (the CFL numbers 
are resolved to 0.01 in this article). As the computational 
domain size increases, the largest stable CFL number 
drops rapidly and becomes one when the computational 
domain size is equal to or larger than 12 × 12. These 
results were confirmed by simulations.  

The above observations can be understood by the 
asymptotic nature of theoretical stability analysis, which 
only considers the worst case in the Von Neumman 
analysis [2]. It is well known that the time step size of 2D 
FDTD simulations is restricted by 
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where kx and ky are associated with the discrete Fourier 
modes [10] and the worst case is kxh = kyh = (2n+1)π. In 
an infinitely large computational domain, there are 
infinite Fourier modes including the above worst case. 
When the computational domain size is limited, the 
discrete Fourier modes that can possibly exist are limited 
and they may not include the worst case. The stability 
condition determined directly by the dominant 
eigenvalues of small computational domains can be 
different from that of the Von Neumman analysis. 
Therefore, multiple tests with increasing computational 
domain sizes are suggested to estimate the asymptotic 
behavior of numerical stability.  
 

 
 

Fig. 1. Dominant eigenvalues of the system 
amplification matrix of the regular 2D FDTD 
method according to different CFL numbers and 
computational domain sizes.  

 
 

IV.    THE STS SUBGRIDDING SCHEME 
 
In general, we can write the STS scheme as  
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where 2/1+nU contains all coarse region unknowns and 
2/1+nu contains all fine region unknowns, both at the 

current time step. ACC represents how the coarse region 
uses the previous coarse region values, ACF represents 
how the coarse region uses the previous fine region 
values, AFC represents how the fine region uses the 
previous coarse region values and AFF represents how 
the fine region uses the previous fine region values.  

Figures 2 and 3 depict a regular coarse-fine region 
boundary and a corner region respectively. In order to 
calculate the fine region boundary electric field, e.g. ey1, 
we need the coarse region magnetic field, e.g. h’z1. To 
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recover the missing values due to boundary truncation, 
the following linear interpolation is employed [8],  
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23 zz Hh =′ .                                   (6) 
Instead of being half-cell away from the boundary 
electric field, the recovered magnetic field is 1.5-cell 
away. To keep at least first-order accuracy in space, we 
employed the unbalanced differencing scheme to update 
the boundary electric field, e.g., 
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where ∆h is the fine region cell size. When calculating 
the coarse region boundary magnetic field, e.g. Hz2, we 
need the electric field along the coarse-fine region 
boundary, e.g. Ey2. They are obtained by enforcing 
spatial reciprocity [9], i.e., 
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Note that the coarse region boundary magnetic field is 
calculated by central differencing scheme in the layout 
shown in Fig. 2. Another choice is to extend the fine 
region 1/3 coarse cell (or one fine cell) to the left, i.e., 
overlapping the coarse and fine regions by one fine cell. 
In that case, the coarse region boundary magnetic field is 
calculated by unbalanced differencing and the fine 
region boundary electric field is calculated by central 
differencing. Since unbalanced differencing scheme is 
first-order accurate, choosing fine region boundary 
electric field to be calculated by unbalanced differencing 
scheme is apparently more accurate.  

As we shall see, the real difficulty is to treat corners, 
e.g., h’z1 and in h’’z1 Fig. 3, by imposing spatial 
reciprocity. If we write  
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the coarse region boundary electrical field can be ob-
tained by spatial reciprocity as,  
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This apparently introduces errors when calculating Hz3 
(also Hz1 and in Hz2). To improve the accuracy, other 
corner layouts can be applied by shifting the fine region 
boundary field components and violating the reciprocity. 
Since spatial reciprocity is our major concern, we 
employ the layout shown in Fig. 3 and refer to it as 
“reciprocal with corner” treatment.  

 
Fig. 2. The coarse-fine region boundary. 
 

 
Fig. 3. The coarse-fine region boundary at a corner. 
 
Alternatively, one may simply ignore corners and write 

2111 , zzzz HhHh =′′=′ .                         (11) 
This can be physically interpreted as treating Hz1 and Hz2 
as the average in those cells. In the following, we refer to 
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this as “reciprocal without corner” treatment.  
 
A.  Reciprocal with Corner  

An example of the system amplification matrix is 
illustrated in Fig. 4, which corresponds to a “3 × 3” 
subgridding region. The dominant eigenvalue of this 
example is 1.420754 when the CFL number is 1.03. As 
we decrease the CFL number, the dominant eigenvalue 
drops quickly and becomes 1.0 when the CFL number is 
1.01. We further calculated the dominant eigenvalues of 
subgridding schemes with larger computational domain 
sizes (up to “10 × 10”). It was found that the results are 
all 1.0 when the CFL number is 1.0.  

Although the dominant eigenvalues do not show any 
sign of instability for CFL=1, numerical simulations 
were unstable for all computational domains being 
tested. Moreover, the instability does not happen late. 
For example, the “3 × 3" case became unstable after 360 
time steps. The “9 ×10" case is the most stable one, 
which only runs stably for 3689 time steps. This example 
shows that enforcing spatial reciprocity on coarse-fine 
region boundaries is not a sufficient condition for 
stability in general. 
 

 
Fig. 4. An example of the system amplification matrix of 

the “reciprocal with corner” treatment.  

B.   Reciprocal without Corner  
The same set of subgridding layout was examined. 

The system amplification matrices look similar to Fig. 4. 
The dominant eigenvalue of the “3 × 3” case is 1.420752 
when the CFL number is 1.03. As we decrease the CFL 
number, the dominant eigenvalue drops quickly and 
becomes 1.0 when the CFL number is 1.01. For 
subgridding schemes with larger computational domain 

sizes (up to “10 ×10”) the dominant eigenvalues are all 
1.0 when the CFL numbers are 1.0. 

Contrary to the previous case, numerical simulations 
were stable with ten million time steps for all 
computational domains being tested.  
 

V.   THE MTS SUBGRIDDING SCHEME  
 

The major difference between the STS and the MTS 
subgridding schemes is the timing procedure involved in 
the latter case. Figure 5 illustrates the case where one 
coarse-region time-step corresponds to three fine-region 
time-steps. When calculating en and en+1/3 in fine region, 
we need Hn-1/6 and Hn+1/6 in coarse region for spatial 
interpolation. Also, when calculating Hn+1/2 by imposing 
reciprocity, we need en in fine region. These two 
requirements make accurate temporal interpolation, i.e., 
obtaining Hn-1/6 and Hn+1/6 by Hn-1/2 and Hn+1/2, difficult 
to implement if special reciprocity has to be enforced. 
One solution is to use temporal extrapolation, i.e., ob-
taining Hn-1/6 and Hn+1/6 by Hn-1/2 and Hn-3/2, etc. 
Alternatively, one may also use Hn-1/2 for Hn-1/6 and 
Hn+1/6 [9], which is frequently referred to as Zeroth 
Order Hold (ZOH) in digital signal processing [11]. 
ZOH inevitably introduces spectrum distortion to input 
signals. However, we chose ZOH because temporal 
extrapolation is more prone to instability in practice.  

The implementation of the above timing procedure 
results in the following set of equations, 
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where all symbols have the same meaning as in equation 
(3). Accordingly, the system amplification matrix is 
written as 
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Figure 6 illustrates the amplification matrix of the “3 
× 3” case. Figure 7 shows the dominant eigenvalues vs. 
the CFL numbers for different sizes of computational 
domain and subgridding region. As we see, the dominant 
eigenvalues are always larger than 1.0 regardless of the 
CFL number. As the size of computational domain 
increases, the dominant eigenvalue for a given CFL 
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number decreases but never reaches 1.0. Numerical 
simulations further verified the above results, where the 
recorded “critical points” are shown in Fig. 8. These 
results correspond to the dominant eigenvalues in Fig. 7 
well.  
 

 
 

Fig. 5. Timing of the MTS subgridding scheme, where 
superscripts denote the time-step.  

 

 

 
Fig. 6. An example of the system amplification matrix of 

the MTS subgridding scheme.  

The MTS scheme is more efficient than the STS 
scheme. As demonstrated in Fig. 7, the dominant 
eigenvalues decrease with either an increasing com-
putational domain size or a decreasing CFL number. 
Thus in practice, one may delay the late-time instability 
by either decreasing the CFL number or by increasing 
the computational domain size. 
 

 
Fig. 7. Dominant eigenvalues of the MTS subgridding 

scheme.   

 
Fig.  8. “Critical points” of the MTS subgridding 

scheme with different computational domain 
sizes and different CFL numbers. 

 
VI. CONCLUSIONS  

We numerically examined the stability of both the 
STS and the MTS FDTD subgridding schemes. For the 
STS schemes, it was shown that enforcing spatial 
reciprocity does not guarantee stability in general, 
especially when corners must be handled in a reciprocal 
manner. As to the MTS subgridding schemes, the system 
is unstable due to eigenvalues that are out of the unit 
circle. Some practical considerations were also given 
with regard to the use of FDTD subgridding schemes. 
Future work involves developing stable FDTD 
subgridding schemes.  
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