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 Abstract—Analytical approaches to phased array 
optimization started in the mid 1940s and transitioned to 
numerical techniques that can find a local minimum. 
Computers spurred the development of many different 
local optimization algorithms that worked well for a few 
variables and a cost function with a single minimum. In 
the 1990s, the genetic algorithm (GA) emerged as a 
competent optimization algorithm for a wide range of 
complex cost functions. This paper reviews phased 
array optimization and lays the foundation for the use of 
the GA. An extensive reference list is provided and 
some future research areas are discussed. 
 

Index Terms—Phased arrays, genetic algorithms, 
arrays, optimization 
 

I. INTRODUCTION 
he introduction of genetic algorithms (GAs) to 
engineering produced a revolution in the design 
of complex systems. Over the past ten years, 
GAs moved from arcane toys of computer 

scientists to mainstay numerical optimization 
algorithms. Their popularity in phased array antenna 
design is apparent by the large number of papers 
published in this area as of the submission of this paper 
(see [1] to [139]). 

This paper begins with a historical development of 
phased array optimization and a demonstration of a few 
cost functions. Next, some GA details are presented 
with a list of advantages over traditional optimization 
techniques. Finally, a review of GA applications to 
phased arrays is given and wrapped up with some ideas 
of where the future lies. A major contribution of this 
paper is the extensive reference list and categorizing of 
the references.  

II. PHASED ARRAY OPTIMIZATION 
The cost function for most phased array optimization 

is based on the array factor that includes the relative 
position and weightings of all the elements. An arbitrary 
array of N elements in three-dimensional space has an 
array factor given by 
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The array designer controls the array factor via the 
amplitude weights, the phase weights, and/or the 
element locations in order to meet performance 
specifications, such as sidelobe levels, beamwidth, 
nulls, and bandwidth. 
 Initially, analytical optimization methods were used 
to find low sidelobe array amplitude weights. The first 
optimum antenna array distribution was the binomial 
distribution proposed by Stone [140]. As is now well 
known, the amplitude weights of the elements in the 
array correspond to the binomial coefficients, and the 
resulting array factor has no sidelobes. Dolph mapped 
the Chebychev polynomial onto the array factor 
polynomial to get all the sidelobes at an equal level 
[141]. The Dolph-Chebychev amplitude distribution is 
optimum in that specifying the maximum sidelobe level 
results in the smallest beam width, or specifying the 
beam width, results in the lowest possible maximum 
sidelobe level. Nine years later, Taylor developed a 
method to optimize the sidelobe levels and beam width 
of a line source [142]. Bayliss used a method similar to 
Taylor's amplitude taper but applied to a monopulse 
difference pattern [143]. The Taylor and Bayliss tapers 
are routinely used for low sidelobe arrays. Elliot 
extended Taylor's work to new horizons including 
Taylor based tapers with asymmetric sidelobe levels, 
arbitrary sidelobe level designs, and null free patterns 
[144].  
 Analytical approaches to finding optimum array 
amplitude weights are still used today. They work well, 
because the unknown array weights are coefficients of a 
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complex Fourier series. If the unknowns are the element 
spacings or element phases, then they appear in the 
complex exponent and are not easily found. Checking 
all combinations of values of the array variables is not 
realistic unless the number of variables is small. 
Optimizing one variable at a time does not work nearly 
as well as following the gradient vector downhill. The 
steepest descent method, invented in the 1800's, is 
based on this concept and is still widely used today. 
Newton's method uses second derivative information in 
the form of the Hessian matrix to find the minimum. 
Although more powerful than steepest descent, 
calculating the second derivative of the cost function 
may be too difficult.  

 In order to avoid the calculation of derivatives, 
Nelder and Mead introduced the downhill simplex 
method in 1965 [145]. This technique has become 
widely used by commercial computing software. A 
simplex has n+1 sides in n-dimensional space. Each 
iteration generates a new vertex for the simplex. If the 
new point is better than the worst vertex, then the new 
point replaces the worst vertex. In this way, the 
diameter of the simplex gets smaller until it reaches a 
specified tolerance.  
 Also during the mid 1960s, successive line 
minimization methods were developed. A successive 
line minimization algorithm begins at a random point, 
chooses a direction to move, then moves in that 
direction until the cost function begins to increase. The 
procedure is then repeated in a new direction. A 
conjugate direction is a new direction that does not 
interfere with the minimization of the prior direction. 
The conjugate directions are chosen so that the change 
in the gradient of the cost function remains 
perpendicular to the previous direction. Powell devised 
an efficient way to specify the conjugate directions 
[146]. If there is additional information on the gradient 
of the cost function, the conjugate gradient method can 
be applied. This method simply uses this gradient 
information to choose the conjugate directions. An even 
better set of directions can be chosen if the matrix of 
second partial derivatives, the Hessian matrix, is known. 
The BFGS algorithm [146]. finds a way to approximate 
this matrix and employs it in determining the 
appropriate directions of movement. This algorithm is 
"quasi-Newton" in that it is equivalent to Newton's 
method for prescribing the next best point to use for the 
iteration, yet it doesn't use an exact Hessian matrix. 
Quadratic programming assumes the cost function is 
quadratic (variables are squared) and the constraints are 
linear. This technique is based upon Lagrange 
multipliers and requires derivatives or approximations 
to derivatives [147]. 
 Numerical optimization has been used to find 
nonuniform element spacings, complex weights, and 

phase tapers that resulted in desired antenna patterns. 
Some examples of nonuniform spacing synthesis 
include dynamic programming [148], Nelder Mead 
downhill simplex algorithm [149], steepest descent 
[150], and simulated annealing [151]. Numerical 
methods were used to iteratively shape the main beam 
while constraining sidelobe levels for planar arrays 
[152], [153], and [154]. Linear programming [155] and 
the Fletcher-Powell method [156] were applied to 
optimizing the footprint pattern of a satellite planar 
array antenna. Quadratic programming was used to 
optimize aperture tapers for various planar array 
configurations [157] and [158]. Numerical optimization 
was used to find phase tapers that maximized the array 
directivity [159], and a steepest descent algorithm used 
to find the optimum phase taper to minimize sidelobe 
levels [160].  

The numerical optimization algorithms mentioned so 
far find a minimum in a valley of the cost function 
closest to the starting point. In other words, the 
convergence of the algorithm assumes the cost function 
is quadratic or bowl shaped with a single minimum. The 
next section gives a few examples of phased array cost 
functions that need non-local optimization techniques to 
find the best minimum. 

III. PHASED ARRAY COST FUNCTIONS 
The cost function for a phased array antenna can be 

quite complex, so the array factor is often optimized 
rather than a full wave computational electromagnetics 
model. Using point sources allows for the modeling of a 
large number of elements but ignores polarization, 
mutual coupling, environmental scattering, and other 
effects. Often, optimizing the array factor provides 
sufficient design information. 
 As an example, consider finding the minimum 
maximum sidelobe level by either adjusting the 
amplitude weights, element spacing, or phase weights 
of a linear array that lies along the x-axis and has 
dipoles parallel to the y-axis (Fig. 1). The spacing, 
amplitude weights, and phase weights are symmetric 
with respect to the center of the array. In order to 
visualize the cost surface, only two variables can be 
used. Figure 2 is the cost function when the amplitude 
weights are the optimization variables with 
limits 2,30.1 1.0a≤ ≤ , and δ1,2 and x1 = 0.25 λ, x2 = 0.75 

λ, and x2 = 1.25 λ. The cost surfaces for the dipole 
model and array factor look very similar implying that 
element location is more important than coupling. Fig. 3 
is the cost function when a2,3 = 1.0 and δ1,2 =0, and the 
element spacings are bound by x1 = 0.25 λ, x2 = 0.25 λ 
+ ∆2, and x3 = 0.25 λ + ∆2 + ∆3. As with the amplitude 
weights, the cost surfaces for the dipole model and array 
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factor look very similar. Fig. 4 is the cost function when 
a2,3 = 1.0, 0 ≤ δ1,2 ≤ π, and x1 = 0.25 λ, x2 = 0.75 λ, and 
x3 = 1.25 λ. Again, the cost functions for the dipoles 
and point sources are similar. 
 All the cost functions in these figures have ridges, 
narrow valleys, and dramatic variations in slope. The 
cost surface variations will slow the convergence of 
most minimization algorithms. Speed of convergence is 
highly dependent upon the starting point on the cost 
surface. For the six element case, the minimization 
algorithms mentioned so far will find the true minimum 
most of the time. On the other hand, adding more array 
variables dramatically increases the complexity of the 
cost surface and renders many "local" optimizers 
powerless to find a good minimum. 

 
 

 
 

Fig. 1. Diagram of the array that generates the cost 
functions. 
 
 
 
 

 
a. Dipoles  

 

 
b. Point sources 

 
Fig. 3. Cost surface associated with varying the spacing 
of the six element array. 
 

 
a. Dipoles  

 

 
b. Point sources 

 
Fig. 4. Cost surface associated with varying the phase 
weights of the six element array. 

a. Dipoles b. Point sources

Fig. 2. Cost surface associated with varying the 
amplitude weights of the six element array. 

327HAUPT: GENETIC ALGORITHM APPLICATIONS FOR PHASED ARRAYS



  

 The next example is too difficult for local optimizers 
to find the global minimum. Fig. 5 is a graph of the 
maximum sidelobe level in dB versus the thinning 
configuration for a 32 element array. Elements in the 
array are either turned on with an amplitude of 1 or 
turned off with an amplitude of 0. The end elements are 
always on and the array is assumed to be symmetric. 
Values along the x-axis are the decimal versions of the 
15 bit binary thinning configuration. As an example, 
one of the thinned array configurations is 
 
 10111101001101011010110010111101

=22110
 (2) 

 
There are a total of 152  possible thinning 
configurations. Not only is the cost surface riddled with 
local minima, but the variable values are discrete. This 
type of cost function is ideal for optimization by a GA 
as described in the next section. 
 
 

 
 

Fig. 5. Cost function for thinned array.  
 

IV. GA BASICS 
The GA begins with a random set of starting points 

on the cost surface called chromosomes. Each 
chromosome is evaluated by the cost function. 
Chromosomes may consist of binary or continuous 
values. Chromosomes with high costs are discarded, 
while chromosomes with low costs form a mating pool. 
Two parents are randomly selected from the mating 
pool. Selection is inversely proportional to the cost. 
Offspring are created through some combination of the 
parents. The offspring replace the discarded 
chromosomes. Next, random chromosomes in the 
population are randomly modified or mutated. Finally, 
the new and modified chromosomes are evaluated the 
process repeated. A flowchart of a GA is shown in Fig. 
6. 

Since its introduction, the GA has become a dominant 
numerical optimization algorithm in many disciplines. 

Holland started the GA [164] while Goldberg 
demonstrated its usefulness [165]. Details on 
implementing a GA can be found in [166] and a variety 
of applications to electromagnetics are reported in 
[167]. Some of the advantages of a GA include that it 

• Optimizes continuous or discrete variables, 
• Does not calculate derivatives, 
• Works with a large number of variables, 
• Is suited for parallel computers, 
• Can jump out of a local minimum, 
• Provides a list of optimum variables, not just a 
single solution, 
• May encode the variables so that the optimization 
is done with the encoded variables, and 
• Works with numerically generated data, 
experimental data, or analytical functions. 

These advantages have been capitalized by many 
phased array researchers. 
 

 
 

Fig. 6. Flow chart of a GA. 
 
  

V. REVIEW OF GA APPLICATIONS TO 
PHASED ARRAYS 

At this point, you should suspect that the GA 
outperforms traditional optimization approaches for 
many practical phased array designs. The GA has been 
applied to the cost functions in Section III but with 
many more variables. In addition, a wide range of other 
phased array optimization topics have been 
investigated. Attempt to categorize the literature into 19 
topics. Most of these topics deal with phased array 
design. The adaptive/smart antenna topic involves using 
a GA in real time. The references are listed in  
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chronological order from [1] to [139]. The author tried 
to include all papers dealing with GA applications to 
phased arrays. Apologies are made to those authors 

whose papers were missed. Rather than trying to 
summarize the research done, readers can look at the 
references listed under a given topic. 

 
Table 1. References to GA applications for phased arrays are categorized.  
 

Topic Reference 
Array synthesis [4][11][14][18][21][24][25][26][27][30][37][44][52][53][56] 

[70][71][74][84][85][87][101][109][114][123][126][128][138] 
Nulling [3][19][23] 
adaptive/smart arrays [10][20][22][34][35][40][42][46][50][57][66][75] 

[86][96][105][106][112][117][127][130][134] 
Subarray [7][76][98][118] 
Element failures [38][48][68][115][116] 
Mutual coupling [41][47][51][54][63][64][65][72][80][81][83][94][102][111][124][136

] 
Multiple beams [9][49] 
Shaped beam synthesis [28][29][36][39][60][93][103][113][133] 
Phase taper [8][78] 
GA combined and other methods [12][15][16][73][88][89][100][107][115][121][122][129] 
Conformal arrays [42][81][95][98] 
GA parameters [45][55][58][61][90][99][108][132] 
Ring arrays [33][43][125] 
Aperiodic arrays [6][31][32][59][79][92][110][119][120][137]  
Direction of arrival arrays [69][102]  
Beam scanning [97][104][135] 
Planar arryas [62][90][130][131] 
Multiple objective optimization [17][77][98] 
Thinned arrays [1][2][5][13][67][72][81][139] 
 

VI. GA FRONTIERS 
The biggest hurdle for GAs is the time needed to find a 
good optimum solution. At this point, we have a 
powerful optimization algorithm that can create new 
designs, but computers and software models that are too 
slow for the cost function evaluations. Evaluating the 
cost function quickly and accurately can be done in 
three ways: 
1. Faster GAs. Finding the optimum parameters such 

as population size and mutation rate can make 
orders of magnitude difference in the number of 
function calls needed to find an acceptable solution. 
Adaptively changing the parameters may be very 
helpful. Hybrid approaches that combine the GA 
and other approaches, especially local optimizers 
need more exploration. GAs can produce better and 
faster results with human input during the operation 
of the algorithm. Humans can even be used to 
create a subjective cost associated with a phased 
array design. Operator bias in the cost function may 
be as valuable as the mathematical equations in the 
model. 

2. Faster cost functions. Using fast, approximate 
function evaluations in early generations and 

converting to slow, more exact function evaluations 
in later generations has some promise. Efficient 
hybrid methods can make large problems tractable. 
Eliminating unimportant variables helps 
optimization algorithms converge faster. Some 
costs are more sensitive than others. Some costs 
require a finer grid for sufficient accuracy than 
toher costs. Adaptively adjusting the grid size can 
result in significant time savings. 

3. Faster computers. Clock speed and memory are 
bottlenecks for large complex optimization 
problems. GAs are ideally suited for parallel 
processing, since the cost function for each 
chromosome can be evaluated simultaneously. 

A phased array consists of more than just the antenna 
elements. Optimization of the feed structure, the active 
components, the component costs, etc. are possible with 
a GA. The design of wideband feed networks to match 
wideband elements is an important step in developing 
wideband phased arrays. The GA has certainly 
advanced the design of complex phased arrays. As can 
be seen in the references, GAs are becoming more 
accepted as a design tool. 
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