
 

Abstract — The paper presents the Generalized 
Scattering Matrix (GSM) approach for analyzing 
multilayer printed array structures. The analysis involves 
computation of the overall GSM of an infinite array 
structure, Floquet modal based analysis of mutual 
coupling between array elements followed by estimation 
of finite array characteristics. A slot-fed patch array of 
225 elements is used as an example for numerical results. 
It is found that the input match of the edge elements 
significantly differs from that of the elements in the center 
region of the array. The advantages and disadvantages of 
the approach are discussed at the end. 
 

Index Terms—Finite Array, GSM Approach, 
Multilayer Array, Floquet Analysis, Mutual Coupling. 
 

I. INTRODUCTION 

he purpose of this paper is to provide a general 
overview of the GSM approach for analyzing 
multilayer finite printed array structures. 
Multilayer printed patch structures are used for 

enhancing the bandwidth performance [1,2] of a printed 
array. They are also used as a multiband frequency 
selective surface [3], wide band screen polarizers [4] and 
for realizing photonic band-gap materials [5].  The GSM 
approach is very convenient for analyzing such structures. 
The GSM approach essentially is a modular approach, 
where each layer of a multilayer structure is analyzed 
independently and then characterized in terms of a matrix. 
The matrix is called the GSM of the layer, because the 
reflection and transmission characteristics of the layer 
with respect to several incident modes are embedded 
within the matrix.  The complete characterization of a 
multilayer structure is obtained by cascading the 
individual GSMs of the layers.  

 The GSM of an array essentially characterizes the 
periodic array that is extended to infinity in the transverse 
directions. In addition, the GSM is associated with an 
ideal Floquet excitation, defined by uniform amplitude 
and linear phase progression. For a finite array or a 
tapered excitation, the analysis involves few additional 
steps. In this paper, we outline the steps and illustrate 
their mathematical foundations. We demonstrate that the 

results of an infinite array can be utilized to predict the 
performances of a finite array with an arbitrary excitation. 
The predicted result would be exact if we define a “finite 
array” as a physically infinite array with a finite number 
of excited elements. The remaining elements are non-
excited, though they must be physically present. Such a 
finite array is impractical. A real finite array, however, 
has only a finite number of physical elements. In many 
situations radiation characteristics of a real finite array 
can be approximated as that of a finite array defined 
above, because the non-excited elements generally do not 
contribute significantly to the radiated fields, particularly 
in the main lobe region. 

 Section II briefly outlines the GSM approach for an 
infinite multilayer array. Section III formulates the mutual 
coupling that plays the most important role in the 
performance of a finite array. Section IV presents the 
analytical procedure of a finite array employing the 
mutual coupling data. Numerical results of a multilayer 
slot-fed finite patch array antenna are shown in Section V 
and the important conclusions are made in Section VI. 

II. THE GSM APPROACH 

The GSM approach of a multilayer finite array 
involves the following steps: 

• Computation of GSM of each layer, 
• Combining GSMs of the individual layers to 

obtain overall GSM of the structure, 
• Mutual coupling computation between the 

array elements using Floquet modal theory, 
• Active element pattern computation, 
• Computations of finite array pattern and 

return loss of the elements. 

A typical multilayer array consists of four types of 
basic building blocks: printed elements layer, dielectric 
layer, dielectric interface and aperture (slot aperture, for 
instance) layer. The GSM of a printed element layer and 
slot aperture layer are usually obtained using Galerkin’s 
MoM analysis [6]. The GSM of a dielectric layer and the 
interface are determined using Floquet modal analysis [7]. 
The GSMs of the individual layers are then combined to 
obtain the overall GSM of the multilayer structure. The 
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GSM analysis and the cascading formulas are outlined in 
the following Section. 

A. The GSM 
The GSM essentially represents the input-output 

characteristics of an infinite array structure with respect to 
a set of Floquet modes. For a multilayer array structure, 
the GSMs of individual layers are determined and then 
combined together to obtain the overall GSM of the 
structure, as typically done in a mode-matching analysis 
of waveguide horns or filters.  

To illustrate the GSM approach pictorially, consider 
a three-layer periodic array structure (patch-dielectric-
patch) as shown in Fig. 1(a). The three-layer-structure is 
equivalent to five modules connected in cascade as shown 
in Fig. 1(b). 

 

 

 

 

       (a) 

 

 

 

 

       (b) 

Fig. 1.  (a) A three-layer array structure, (b) Modular 
representation of the array (D1 and D2 represent 
dielectric layers). 
 
 

Identical cell-sizes and cell-orientations for the 
periodic arrays are assumed. Also, the structure is 
assumed to be infinite extent along x and y directions and 
is under Floquet excitation.  

The GSM of a module is defined through the relation 
between incident and reflected voltages as below 
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In the above [a1
+] and [a2

+] are the incident voltage 
vectors with respect to the Floquet modes at the two sides 
(or ports) of the module and [a1

-] and [a2
-] are the 

corresponding reflected voltage vectors. The [S] matrix at 
the right-hand side of (1) is called the GSM of the layer. 
It consists of four sub-matrices, namely [S11], [S12], [S21], 
and [S22], respectively.  

The overall GSM of the multilayer structure is 
obtained by combining the individual GSMs of the layers 
or modules. The cascading formula for two modules A 
and B is given by [7, p. 190] 

]][[]][[][][ 2111
1

2211121111
ABABAAAB SSSSISSS −−+= ,  (2a) 
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This formula can be applied repeatedly to obtain the 
overall GSM of a multilayer array. The GSM cascading 
formulas is applicable only if the layers have identical 
periodicities and have identical cell orientations. This 
insures that a Floquet modal vector function has an 
identical expression for all the layers. If the layers have 
different periodicities, then the process is more involved 
as detailed in [7, 8].  

 

 

 

 

 

 
 
Fig. 2. Infinite linear array. 
 

III. MUTUAL COUPLING FORMULATION 

An accurate analysis of a finite array with an 
arbitrary excitation necessitates an estimation of the 
mutual coupling between the array-elements. The mutual 
coupling between the elements can be estimated by 
invoking the Floquet modal analysis of an infinite array 
[9].  

The mutual coupling between the elements is 
generally quantified in terms of the following three 
measurable quantities:  

(a) Mutual impedance, 
(b) Mutual admittance, 
(c) Scattering parameters. 

The above three measurable quantities are related to 
each other by simple algebraic relations. In this Section 
we will first derive the mutual impedance from Floquet 
impedance of an infinite array [7,9]. We first consider a 
one-dimensional array. The result can be extended for a 
two-dimensional array. 
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A. Mutual Impedance 
Consider the infinite array shown in Fig. 2. The 

elements are arranged along the x-direction with element 
spacing a.  Suppose the elements are excited uniformly 
with linear phase progression, known as Floquet 
excitation. Suppose ψ is the phase difference between two 
adjacent elements. Then following the definition of 
mutual impedance, the input voltage for the 0-th element 
can be obtained as 

           ∑
∞

−∞=

=
n

nn ZIV 00 )(ψ .        (3) 

In the above V0 is the input voltage for the element 
located at x = 0, In is the input current of the n-th element 
and Z0n is the mutual impedance between the two 
elements that are located at x = 0 and at x = na, 
respectively. For Floquet excitations, the input currents 
can be expressed as 

    )exp(0 ψjnII n −=          (4) 

where I0 is the input current for the element at x =0. The 
input impedance seen by the n=0 element is 
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Substituting (3) and (4) in (5) we obtain 
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For a Floquet excitation, the above input impedance must 
be equal to the Floquet impedance ZFL(ψ).  Therefore we 
obtain  
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The right hand side of (7) is the Fourier series expansion 
of the Floquet impedance where the Fourier coefficients 
are equal to the mutual impedances. Thus, the mutual 
impedance Z0n is readily obtained in terms of the Fourier 
integral as follows, 
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If the two elements are located at x = ma and x = na, 
respectively, then the mutual impedance between these 
two elements can be expressed as 
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Equation (9) establishes the relation between the Floquet 
impedance and the mutual impedance between the 
elements. It is important to observe that equation (9) 
yields the mutual impedance in the array environment. 
Also observe that Zmn and Znm are identical because 
ZFL(ψ) = ZFL(-ψ) [7, p. 130]. The symmetry property of 
ZFL(ψ)  can be utilized to express Zmn in the following 
convenient form from computational point of view: 

  ∫ −=
π

ψψψ
π 0
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The mutual impedance deduced in (10) includes the 
effects of scattering from the intermediate and 
surrounding elements that are open-circuited. The 
element-by-element approach [10] typically ignores the 
scattering effects; therefore the present formulation for 
mutual coupling is generally more accurate than the 
element-by-element approach. 

It is worth pointing out that for some arrays the 
Floquet impedance ZFL may have a finite number of 
singularities due to resonances of selective Floquet modes 
with the guided wave modes supported by the array 
structures. Under such a situation, a singularity extraction 
technique [11] must be employed to compute the integral 
near a singular point. 

The mutual admittance between the two elements in 
array environment can be obtained as 

  ∫ −=
π

ψψψ
π 0

})cos{()(1 dmnYY FL
mn   (11) 

where  YFL(ψ) is the Floquet admittance, reciprocal to the 
Floquet impedance ZFL(ψ) and Ymn is the mutual 
admittance between the m-th and the n-th elements. The 
distance between the two elements is (m-n)a. The 
scattering parameters between the elements also follow 
the similar relation. If Smn represents the scattering 
parameter defined as the voltage received by the m-th 
element when the n-th element is excited with all other 
elements including the m-th element are matched 
terminated, then 

  ∫ −Γ=
π

ψψψ
π 0

})cos{()(1 dnmS FL
mn   (12) 

where ΓFL(ψ) is the reflection coefficient of an array 
element under Floquet excitation. Since ΓFL(ψ) = ΓFL(-ψ), 
one can see that Smn = Snm. It should be noted that the 
integral for Smn does not have any singularity because the 
magnitude of ΓFL(ψ) does not exceed beyond unity. Thus, 
from computational point of view, scattering matrix 
formulation is advantageous as compared with 
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impedance/admittance formulation for a finite array 
analysis. 

The mutual coupling formulation can be extended for 
a two dimensional planar array. For a rectangular lattice 
structure, the mutual impedance involves a two-
dimensional integral with variables ψx and ψy, where ψx 
and ψy represent the phase difference between the 
adjacent elements along x and y directions, respectively. 
For a triangular lattice, the formulation is slightly 
different (see [7, p.141]). 

IV. FINITE ARRAY: ACTIVE IMPEDANCE AND 
RADIATION PATTERNS 

The mutual coupling information between the 
elements is utilized to determine the active impedance or 
return loss of an element with respect to given amplitude 
and phase distributions. The active impedance of an 
element depends on the amplitude and phase distributions 
and the load-conditions of the non-excited elements [7, 
p.146]. In the present study we will assume that the non-
excited elements of a “finite array” are match terminated. 
This assumption is somewhat justified because a matched 
element have a small scattered field, thus closely 
resembles the absence of an element.  

Under such a situation the scattering matrix relation 
will yield the exact active input impedance solution. The 
relation in this situation is  

             ]][[][ +− = VSV         (13) 

where [V+] and [V-] are the incident and reflected voltage 
vectors. Elements of [S] are obtained using (12).  
Equation (13) can be utilized to obtain the complex 
reflection coefficients of the elements with respect to a 
given amplitude distribution of a finite array. 

 The radiation pattern of the finite array for this 
particular situation can be obtained directly from 
superposition. The result becomes [7, p.150] 

    ]][[ += VPEE aarray         (14) 

where Ea is the active element pattern, which is defined as 
the radiation pattern of an element in array environment 
while other elements are match terminated. The vector 
form of the active element pattern can be obtained from 
Floquet analysis and the final expression becomes [7, 
p.109] 
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In the above TETM VV 0000  and  are the modal voltages 
at the array aperture for the TM00 and TE00 Floquet 
modes, respectively. The modal voltages are functions of 

scan direction (θ,φ). The gain can be determined by 
normalizing element and array structures.   

V. RESULTS 

To illustrate the GSM approach, we consider a 
multilayer finite array of slot-fed patch elements. Figure 3 
shows the element and array structure. The element 
numbering scheme is also shown pictorially. We 
computed the Floquet return loss (return loss under 
Floquet excitation) versus scan angle and plotted in Fig. 
4. The return loss is generally good near the bore-sight 
scan, however a sharp resonant spike is observed near 39 
degree scan angle along the E-plane. The resonant spike 
causes a complete mismatch and the array is ceased to 
radiate at this angle. This phenomenon is known as scan 
blindness. The TM0 surface wave mode, supported by the 
grounded dielectric structure, is responsible for this 
blindness. At that scan angle, the surface wave mode has 
a perfect phase-match with the element phase causing a 
resonance1. The surface wave resonance for the D-plane 
scan is not present because the resonant condition is not 
satisfied for the square grid structure under consideration. 
For the H-plane scan, the resonance does not occur 
because the surface wave is not excited at the first place 
due to polarization mismatch between the patch mode and 
the surface wave mode. 

Figure 5 shows the active element pattern cuts for the 
array. The patterns are normalized with respect to the 
incident power. The active element gain is about 6.39 
dBi, which is 0.23 dB lower than that of a 100% aperture-
efficient element. This gain loss is due to back side 
radiation of the feed slot. The E-plane pattern has a null 
(blind angle) near 39 degree which is consistent with the 
return loss behavior. For the E and H-plane patterns, the 
cross-polarization components do not exist because of 
symmetrical geometry. The cross-polarization level is 
substantial at the D-plane scan, particularly near 60-
degree off-boresight.  

Figure 6 shows the radiation pattern of a finite array 
of 15×15 elements. Two scan angles were considered in 
this case. The radiation patterns of the finite array were 
computed using (14). The amplitude taper (Gaussian) was 
10 dB for both cases. For the bore-sight beam, the peak 
gain is about 28.95 dBi, which is about 1 dB lower than 
that of a uniform excitation. The scanned beam has a peak 
gain of 28.06 dBi. The side lobes are 25 dB below the 
beam peaks in both cases. 

Equation (12) was utilized to compute the mutual 
coupling in terms of the array scattering parameters. 
 

1 As stated at the introduction, the present analysis assumes infinite 
array with a finite number of excited elements. For a real finite array, the 
effects of edge diffraction may be included approximately through 
complex reflection coefficient of the surface wave mode due to the 
ground plane and dielectric truncation [12]. 
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Figure 7 shows the coupling level of the array elements 
with respect to the center elements. The E-plane elements 
are tightly coupled than the H-plane elements. 

 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
Fig. 3. A 15×15 element array of slot-fed patch elements. 
The element numbering scheme is also shown. 
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Fig. 4.  Floquet return loss of a slot-fed patch array versus 
scan angle.  Cell size =0.6 × 0.6, patch size=0.24 × 0.47, 
slot size =0.017 × 0.25, patch side εr =2.53, 
thickness=0.058, feed side εr =9.8, thickness=0.026, 50 
Ohms feed line. All dimensions are in wavelength in free 
space. 
 

Figure 8 shows the active return loss of the elements 
in the 15×15 elements patch array with uniform and 
tapered distributions, respectively.  For the tapered array, 
Gaussian amplitude distributions with 10 dB taper for 
both planes were considered. For the plots, elements were 
numbered according to the numbering scheme depicted in 
Fig. 2. Four cases were considered as indicated at the 
inset of Fig. 8. The elements were designed to have about 
-16 dB bore-sight match under Floquet excitation. It is 
found that the active return loss varies from element to 
element. In particular, elements near the edge have 
noticeably different return losses than the rest. For the  
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Fig. 5. Active element pattern cuts of the array. Element 
dimensions are sane as in Fig. 4. 
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Fig. 6. Radiation pattern of 15 x 15 element patch array. 
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Fig. 7. Mutual coupling between patch elements in array 
environment. Patch dimensions are in Fig. 4. 
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Fig. 8. Active return loss of the 15 x 15 element patch 
array in Fig. 3. The patch dimensions are in Fig. 4. The 
element numbering scheme is shown in Fig. 3. 
 

 
bore-sight scan, the return loss for most of the elements 
lies below –15 dB. The return loss deteriorates for the off-
bore-sight scans.  

VI. CONCLUSIONS 

In this paper we demonstrated the GSM approach for 
analyzing multilayer finite array. We considered a finite 
slot-fed patch array as an example. The mutual coupling 
between the elements, active element pattern, active 
return loss and array patterns were computed and results 
are shown. It is found that the mutual coupling is stronger 
between the E-plane elements than H-plane elements. The 
active return loss is substantially different for the 
elements near the edge, than the elements at the center 
region of the array. 

The GSM approach is a modular approach as 
compared to an integrated approach. Computationally, the 
GSM approach for finite array analysis is much more 
efficient than FEM and FDTD approaches, because the 
problem size of a GSM is limited to a cell only. 
Furthermore, the matrix size of the MoM based GSM 
approach is much smaller as compared to a grid-based 
approach.  However, a grid-based approach is more 
versatile because it can be applied to non-periodic 
geometries also without additional complexity. 
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