
 

  

Abstract— A new type of fast method of moments 
(MoM) solution scheme using standard basis functions 
for large arrays with arbitrary contours and/or missing 
elements is applied to array antennas in a layered 
configuration. The efficiency of the method relies on use 
of the FFT along with approximating the Green’s 
function as a separable sum of interpolation functions 
defined on a relatively sparse, uniform grid. The method 
is ideally suited for solving array problems, and its 
effectiveness is demonstrated here for planar arrays of 
printed antennas. Both fill and solve times, as well as 
memory requirements, are dramatically improved with 
respect to standard MoM solvers. 
 

Index Terms—Array antennas, fast solvers, method of 
moments, periodic structures. 

I. INTRODUCTION 
straightforward numerical analysis of large arrays 
requires significant memory storage and long 
computation times. Several techniques are currently 

under development to reduce this cost. One such 
technique is the GIFFT (Green’s function interpolation 
and FFT) method [1] that belongs to the class of fast 
solvers for large structures. This method uses a 
modification of the standard AIM approach [2] that takes 
into account the reusability properties of matrices that 
arise from identical array elements. Like the methods 
presented in [3]-[6], the GIFFT algorithm is an extension 
of the AIM method in that it uses basis-function 
projections onto a rectangular grid of Green’s function 
samples that are interpolated with Lagrange interpolating 
polynomials. The use of a rectangular grid results in a 
matrix-vector product involving the Green’s function 
samples that is convolutional in form and can thus be 
evaluated using FFTs. Although our method differs from 
[3]-[6] in various respects, the primary differences 
between the AIM approach [2] and the GIFFT method [1] 
is the latter’s use of interpolation to represent the Green’s 
 

 

 

function (GF) and its specialization to periodic structures 
by taking into account the reusability properties of 
matrices that arise from interactions between identical cell 
elements.   
 
 
 
 
 
 
 
 
 
 
 
 
 
  

It should be mentioned that fast multipole methods 
(FMM) [7]-[9] have also been effectively applied to 
model large structures. In addition, a general numerical 
scheme has been introduced in [10] that use FMM to 
determine the coupling between periodic cells, with the 
interior of each cell being analyzed by the finite element 
method. To reduce the fill and solve time, other 
algorithms have been developed that use periodicity-
induced physical properties. For example, the methods in 
[11], [12] use an a priori estimate of the fields scattered 
by truncated arrays, which behave as Floquet-modulated-
diffracted fields [13], to construct global basis functions.  

The present work reports performances of the GIFFT 
method for the cases of conducting dipole antennas in 
free space and printed on a dielectric grounded slab (Fig. 
1), and for patch antennas fed by aperture slots excited by 
microstrip lines (Fig. 2). For these cases, the Lagrange 
interpolation scheme is applied to the layered material 
dyadic Green’s function for the mixed potential integral 
equation [14]. Furthermore, a multi-region interaction is 
considered since magnetic current unknowns are located 
on both sides of a shorted screen separating the two 
regions on either side of the slot (Fig. 2). A block 
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Fig. 1.  Array of dipoles excited by delta gap voltage 
generators on an infinite grounded dielectric slab.
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preconditioning scheme is implemented to greatly reduce 
the number of iterations required for a solution.  If the 
array consists of planar conducting bodies, the array 
elements are meshed using standard subdomain basis 
functions for triangles [15]; the same bases may be used 
in the apertures where magnetic unknowns are defined. 
The GIFFT algorithm has been implemented in the 
standard method of moments (MoM) code EIGERTM [16]. 
In our implementation, the array boundaries are not 
restricted to be rectangular, and the array excitation can 
be arbitrary. 

The method greatly reduces solution time by speeding 
up the computation of matrix-vector products needed in 
iterative solutions. The GIFFT approach also reduces fill 
time and memory requirements since the sparse 
interpolation can be used for all but near element 
interactions.  

II. FEED REGION AND RADIATION REGION: 
DEFINITION OF INTERPOLATION DOMAIN 
The antenna structures analyzed in this paper are 

shown in Figs. 1 and 2. In Fig. 1 an array antenna of M 
conducting dipoles is printed on a grounded dielectric 
substrate. The dipoles are fed by delta gap generators and 
meshed with triangles that form the sub-domains of 
triangle surface patch basis functions. Voltage generators 

gV p , with 1 2( , )p p p= a generic double index, are defined 
for all the dipoles. 

In the second example, illustrated in Fig. 2, the region 
above the ground plane may include a multilayered 
substrate with M conducting patches fed by slots. Below 
each slot the microstrip line feeding each antenna is 
assumed not to interfere with the feed networks of other 
patches. Mutual coupling between the patches and the 
slots is considered in the region above the ground plane.  
Hence, the only model approximation is to neglect 
coupling between the microstrip lines and slots in the 
region below the ground plane.  

The multiport analysis that one may obtain from this 
approach may subsequently be used as a multiport 
equivalent network for designing (or refining) the actual 
feed network. Array scan blindness, grating lobes and 
array edge effects are correctly taken into account since 
they are produced by the mutual coupling above the 
ground plane. In Fig. 2, voltage generators gV p  are 
defined on the microstrip lines below every slot. 
Concerning notation, as shown in Figs. 1 and 2, the array 
is decomposed into blocks of elements with each element 
denoted by the two-component multi-index p ; a prime is 
added to distinguish source from observation element 
locations ( 1 2( , )p p′ ′ ′=p ).  Within each block representing 
an element, the electric and magnetic currents are 
expressed in terms of the usual divergence-conforming 

basis functions p
n

′Λ . The m-indexed test functions are 
denoted by p

mΛ  (see [1] for more details).   
In solving the system, the vanishing of the tangential 

electric field is imposed on every conducting patch in Fig. 
1, leading to the discretized electric field integral equation 
(EFIE) defined in the standard way (see also [1])  

 

g,
pp + p p
mn n mZ V′ ′     Ι =       (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where p

n
′ Ι   are the weights of the electric unknowns 

defined on each p th dipole and ,
p

g mV  are the voltage 
generators. For the geometry in Fig. 2 the magnetic 
currents provide continuity of the electric field, and we 
impose continuity of the magnetic field (MFIE) on each 
of the M slots. Therefore, electric unknowns are defined 
on the patch ( p

n
′ Ι  ) and  microstrip ( p

n
′ Ι  ) while 

Fig. 2.  Single array element of an array of printed 
antennas in a multilayered environment. (a) Lateral 
view; (b) Top view.  The pth element is fed by an 
independent microstrip line excited by a voltage gV p  
(p=(p1,p2) is a double index). The array elements are 
coupled via the region above the ground plane. 
Identical feed lines for each array antenna are 
assumed uncoupled; hence the Green’s function is 
interpolated only in the region above the ground 
plane.  

b) Top View 
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magnetic unknowns p
nV ′    are placed on the slots, 

resulting in the system equation 
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 (2) 
 
The + or – superscripts denote operators for regions 

above or below the ground plane.  The matrix pp
mnZ ′ is the 

EFIE operator connecting blocks p  and p′ , and pp
mnY ′ is its 

dual, representing the magnetic field due to magnetic 
current  sources; pp

mnβ ′ is the corresponding magnetic field 
integral equation (MFIE) operator.  Subscripts m and n 
index testing and basis functions within cells p and ′p , 
respectively, and the matrix vector products in (1), (2) 
sum over the indices m  

 
 
 
 

and ( )1 2,p p′ ′ ′p = . The corresponding matrices mnZ − , mnY − , 

and mnβ −  that appear only on diagonal blocks represent the 
coupling to the structures below the ground plane for  
each array element; they affect only the p p′=  self blocks 
because the Kronecker delta , 1p pδ ′ =    for ′=p p  , and 

, 0p pδ ′ =   for ′≠p p . Note that the number of blocks in 
the first matrix in (2) grows as the square of the number 
of array elements while the size of the second matrix 
remains the same for any number of array elements.  

Using standard MoM, the matrix in (1) or the first 
matrix in (2) has huge memory, fill, and solve time 
requirements for large arrays. This computational 
difficulty arises from the top region because of the 
coupling between even widely separated array elements 
that in most situations cannot be neglected. The numerical 
burden is reduced by applying GIFFT to this region. That 
is, the Green’s function terms in this region are sampled 
and interpolated as shown below, and the matrix vector 
product for the majority of the system is accelerated by 
using the FFT. 

III. THE GIFFT METHOD   
For simplicity we show the basic idea of the GIFFT 

method only for the EFIE, i.e., the moment matrix-vector 
for the original discretized EFIE in (1).  Analogous 
concepts apply to the other operators pp +

mn
′β  and pp +

mnY ′  
involved in (2).  Thus, (1) or the first block product from 
the left matrix of (2), is written as [1] 

 
pp p pp p pp p
mn n mn n mn nZ Z Z′ ′ ′ ′ ′ ′          Ι = ∆ Ι + Ι            (3) 

 
where mnZ ′pp  denotes matrix elements approximated via the 
interpolation scheme. The interpolation, however, is 
inaccurate for nearby cells, which require the correction 
matrix mn mn mnZ Z Z′ ′ ′∆ = −pp pp pp . The correction matrix is a 
block Toeplitz difference matrix that may be taken as zero 
for elements whose indices satisfy 1 1 1p p c′− ≥  and  

2 2 2p p c′− ≥  for some constants 1 2( , )c c ; hence it is 
sparse. Furthermore, it is constructed from a single 
computation on a stencil of cells consisting of an 
observation cell and adjacent cells.  The m-indexed test 
functions are denoted by p

mΛ  (see [1] for more details.) 
To evaluate the matrix/vector product, we note that 

mn nZ ′ ′   ∆ Ι   
pp p  is quickly computed since mnZ ′∆ pp  is sparse, 

whereas mn nZ ′ ′   Ι  
pp p  is of convolutional form and can be 

evaluated using a 2D FFT as follows [1]:  
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  (4) 
where , ji  and ,i j′ ′ denote periodic grid points for the 
Green’s function evaluations (Fig. 3), and the double bars 
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Fig. 3.  Array cell index definitions and arbitrary skew 
lattice vectors 

1 2,S S . The periodic grid on which the 
Green’s function is evaluated and sampled is shown 
superimposed on the array cells. Within an array cell, 
the Green’s function is evaluated at 1 2 3r r r× ×  points. 
The square-shape darker regions represent conductors 
within the array cells. 
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over a quantity indicate that its length is extended so as to 
obtain a circular convolutional form and then zero-padded 
to obtain vectors of  length 2k  for efficient application of 
the fast Fourier transform ( FFT ); -1FFT  denotes the 
inverse fast Fourier transform, and iMASK  is the array 
mask restricting the result to array elements within the 
array boundary.   ,m jL L< >p

iΛ  is the projection of the 
m th  basis function in the pth array cell onto the 
Lagrange polynomial jL Li  interpolating the , ji th point.  

E
, ,j j ′iG  represents the sampled Green’s electric field dyad 

(though in reality the field is calculated in mixed-potential 
form).  Since vector basis functions are used, 

,m jL L< >p
iΛ is a vector. For arrays made of nonplanar 

scatterers in free space the FFT algorithm is applied to 
the interpolation points along z, while for layered media 
the FFT is only applied along the two transverse 
directions 1S  and 2S  along the planar array.  

In homogeneous media, the dyad can be expressed in 
terms of a single scalar potential. For layered material, 
however, the far interactions require the computation and 
storage of the five non-zero components of the magnetic 
vector potential Green’s dyad and two scalar potentials 
for all possible interactions between interpolating points 
in at most two planes separated in the z dimension, and 
for all unique discrete separations in the transverse 
dimension. There is a very high cost of computing these 
seven Green’s potentials compared to the homogeneous 
medium case, but this cost is dramatically reduced by first 
generating the potentials at a suitable set of sample points 
along radial lines in each source plane representing 
possible source/observation point separations in the 
transverse dimension.  Potential values between sample 
points along the sampling line are accurately generated 
via a non-rational interpolation scheme. Along any other 
radial line, potentials having the same separation can be 
constructed from those along the sampling line simply by 
multiplying by factors involving at most cosines or sines 
of the angle from the sampling line.  The Green’s 
function values along the sampling line are thus used to 
generate values on the regular grid by interpolation; in 
turn, a second level of interpolation on the grid is 
employed in the GIFFT algorithm. The increased number 
of potential components increases memory requirements 
when layered media are present, but does not increase the 
number of FFT’s that must be performed per iteration.  
Furthermore, the Green’s potential samples themselves 
are transformed only once, before any iterations are 
performed.  During each iteration, the updated current 
coefficients are projected onto the interpolating grid as 
usual.  Once the projections are transformed into the 
spectral domain, then a single matrix vector 
multiplication for each dyadic component of the Green’s 

function must be performed. The inverse transform is 
then computed to complete the iteration step. Assuming N 
interpolation points, the number of multiplications in the 
spectral domain is O(N) while the FFT operation is 
O( logN N ). Hence, the presence of the extra Green’s 
function terms does not greatly slow the iteration.    

IV. BLOCK DIAGONAL PRECONDITIONER 
When using an iterative solver such as BiCGStab on a 

very large matrix system, the solution may converge very 
slowly if conditioning is poor.  For this reason, a 
preconditioner is needed to improve the solution time. 
Since many arrays are designed to minimize mutual 
coupling between array elements, a block diagonal 
preconditioner for an array seems a logical and simple 
choice.  This preconditioner consists of the self-cell 
interaction terms of the impedance matrix only.  The 
inverse of this matrix is also a block-diagonal matrix and 
contains the inverse of the self-array cell blocks pp

mnZ ′   , 

with p p′= .  Physically, this preconditioner solves the 
original problem as if there were no interaction between 
array cells.  For array designs with little mutual coupling 
this is a very good assumption and often only a handful of 
iterations are required. For arrays with strong coupling 
some deterioration in performance is to be expected. 
Because an accurate computation of the self block is 
needed for the near interaction corrections, this 
preconditioner does not require additional setup time.  
The cost of inverting a self block is also negligible since 
the number of unknowns involved is small compared to 
the overall array size.  Thus after each matrix-vector 
product is computed during an iteration, the resulting 
vector is multiplied by the preconditioner, adding an 
O(MN2) computation to the total time for the matrix 
vector product (M is the number of array elements and N 
is the number of degrees of freedom in each array cell.) 

V. RESULTS 
Four different test arrays geometries were simulated 

and the results of the GIFFT method, both with and 
without preconditioning, were compared to an “exact” 
MoM solution of these arrays. The “exact” solution does 
not use interpolation or fast multiplication, but does 
utilize the Toeplitz nature of the matrices to speed fill 
time and reduce storage. 

A. Array of Dipoles 

The first two arrays consist of 20 20× elements with a 
lattice spacing 1 2 00.5S S == λ , where 0λ  is the free 
space wavelength, in both x and y directions. Each dipole 
is fed by a delta gap source at its center.  Each dipole 
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contains 23 unknowns and is 00.39λ  long and 00.01λ  
wide.  In the first test case the dipoles are in free space, 
while in the second one the same dipoles are printed on a 
grounded dielectric slab as in Fig. 1.  The height of the 
dielectric slab is 00.19d = λ  and its relative permittivity 

is 2.55rε = , as for the case treated in [17].  Both these 
cases used fourth order interpolation of the Green’s 
Function in both transverse directions. The GF is thus 
sampled at five points in each direction, resulting in 

1 2 5 5 25r r× = × =  points for each array cell. Interpolation 
points are also distributed along the border of an array 
cell and are thus shared by contiguous cells, so the 
computational burden is determined by the evaluation and 
storage of the various GF components for only 16 distinct 
points per array cell. 

The third case analyzed consists of an array of 
25 25× square conducting patches in free space 
illuminated by a plane wave at 6 GHz incident from a 
direction perpendicular to the array plane.  The patches 
are 11.4 [mm] on a side with a separation of 3.8 [mm] 
between patches, and thus the lattice spacings are S1 = S2 
=15.2 [mm]. Each patch was meshed using triangles, 
creating 65 unknowns per patch. This GIFFT method 
used fifth order (25 distinct points per cell) interpolating 
polynomials in both planar directions.  
 

Table 1 shows the run times for the standard MoM and 
GIFFT solutions of the three arrays, as well as the error in 
the GIFFT solution compared to that of the standard 
MoM, which takes advantage of the Toeplitz storage that 
also reduces the fill time.  It can be clearly seen that the 
GIFFT method offers a dramatic savings in both fill and 
solve times while maintaining a high level of accuracy 
that is evaluated as the average of the relative errors over 
all the unknowns. It can also be seen that use of the 
preconditioner dramatically reduces the number of 

BiCGstab iterations needed for a solution, further 
reducing solution time. The BiCGstab iterations are 
stopped when the solution error determined by the 
algorithm is lower than 10-4. The GIFFT method also 
dramatically reduces the memory storage requirements.  
For example, for the 25 25× square patch array (M = 625 
array cells), each patch was discretized using N=65 basis 
functions, requiring storage of N N× =4225 complex 
numbers for each ,p p′  block pp

mnZ ′    of the full 
impedance matrix. Instead, using GIFFT with a fifth order 
interpolation scheme, we need to store only 36 Green’s 
function samples per array cell. Interpolation points are 
also distributed along the border of an array cell and are 
thus shared by contiguous cells resulting in 25 distinct 
sampling points per array cell.  GIFFT’s storage 
advantage is further amplified by the fact that if there are 
M = 625 array cells in a square array, there are M2 matrix 
blocks in the complete matrix, while there are only about 
4M blocks of sampled Green’s function points. The  
factor four arises from extending the evaluation domain 
of the Green’s function to consider all possible 
interactions on the actual array as shown in [1, Fig. 3].  
For the 25× 25 array, this means that the system matrix 
for a standard solution must contain about  

92 2 1.65 10 N M× = ×  complex entries (that reduce to 
62 (2 1) 5.28 10 N M× − = ×  when stored in the Toeplitz 

format), while there are only 
325 4 62.5 10M× × = × entries in the sampled Green’s 

function array in free space.  As explained in Sec. III, for 
layered media, the number of the GIFFT complex 
samples must be multiplied by seven, the number of 
unique dyadic and scalar potential terms used in the 
mixed potential formulation.  

The results in Fig. 4 are related to an array of 19 19×   
(to match the results in [17]) dipole elements on the same 
grounded dielectric slab considered before 
( 00.19d = λ , 2.55rε = ) that exhibits scan blindness in the 
E-plane at 45.8θ = °  [17], [18]. Therefore the dipoles are 
fed with a linear progressive phase along x so as to scan 
the array beam along the θ  direction in the E-plane (the 
x-z plane in Fig. 1). The active reflection coefficients for 
the center row of array elements are shown for various 
scan angles. As pointed out in [17], the results show that 
for a broadside scan angle 0= °θ  the reflection 
coefficients are symmetric with respect to the center 
element (the 10 th) that is well matched, i.e., the 
magnitude of the reflection coefficient is much less than 
unity. This verifies that the antenna elements have been 
matched to the input impedance of the center element at 
broadside. When the array is scanned to 45θ = ° , the 
reflection coefficient varies considerably across the center 
row of the array. The center element actually has a 
reflection coefficient greater than unity, which implies 

Fig. 4.  Active reflection coefficients for various scan 
angles on the E-plane for an array of 19 x 19 dipoles 
on a grounded dielectric slab. Scan blindness occurs 
for 45.8= °θ . 
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that it absorbs power from some of the other elements. In 
other words, the left-hand dipoles in Fig. 4 radiate power, 
some of which is delivered to the right-hand array 
elements through the strongly-excited guided wave on the 
structure.For this particular scan angle, most of the 
elements are not matched, showing the scan blindness 
effect, yet a few near the array edges still have relatively 
low reflection coefficients. These results for the reflection 
coefficient show very good agreement with previously 
published results for this array [17, Fig. 4]. 

 
 
 

 
 

 
 

B. Array of Patch Antennas Excited by Slots 
The final case considered is an array of elements that 

are geometrically more complex, as shown in Fig.2, and 
the meshed patch, slot and microstrip are shown in Fig. 5. 
Two cases are considered: and array of 8 8×  and a larger 
one of 25 25×  element. The array elements are arranged 
on a rectangular lattice with periods S1 = S2 = 30 [mm]. 
The square conducting patches with dimensions 
24.5 [mm] 24.5 [mm]× are placed on a grounded 
dielectric substrate with 2.17rε =  and height =3 [mm]. 
The feeding slot has dimensions 10 [mm] 1.5 [mm]×  and 
is located 5.25 [mm]  off the center of the patch. The 
microstrip under the ground plane has a width of 1.6 
[mm], and a length of 17 [mm] that includes an open stub 
of length 10 [mm]. The microstrip substrate has 2.17rε =  
and a thickness of 0.5 [mm]. The microstrip lines are 
excited by delta gap voltage generators and the operating 
frequency is 3.7 GHz. The design is not optimized to 
minimize the input impedance over a certain band, but is 
merely intended to illustrate the effectiveness of our new 
method. Each patch, slot and microstrip is meshed 

 using quadrilaterals, creating 128 unknowns per array 
element as shown in Fig. 5. The GIFFT method used 

fourth-order interpolating polynomials in both planar 
directions.  
Table 1 shows the run times for the standard MoM and 
GIFFT solution of the array. It can be clearly seen that the 
GIFFT method offers a dramatic savings in both setup 
and solve times while maintaining a high level of 
accuracy.  In this case the BiCGstab iterations are stopped 
when the algorithm’s relative solution error falls below 
0.5 × 10−4  to limit the overall simulation time. Also in this 
case it is seen that the use of the preconditioner 
dramatically reduces the number of BiCGstab iterations 
needed for a solution, further reducing solution time. For 
the larger 25x25elements array the iterations are stopped 
when the error falls below 10−2. 

As in the previous cases, the memory storage  
requirements are dramatically reduced by GIFFT. For 
example, for the 625 25 25M = = × square patch array, 
each element is discretized using N =128 basis functions 
(112 on the patch, 5 on the slot and 11 on the microstrip), 
requiring a storage of N N× =16384 complex numbers 
for each ,p p′  block pp

mnZ ′    of the impedance matrix. 
Instead, using GIFFT with a fourth-order interpolation 
scheme, requiring 1 2 5 5 25r r× = × =  sampling points per 
cell, only 16 distinct Green’s function samples per cell are 
stored.  For the layered medium considered here, this 
number must be multiplied by seven, the number of 
unique dyadic and scalar potential terms used in the 
mixed-potential formulation.  The GIFFT storage 
advantage is further amplified by the fact that for M = 625 
array elements in the square array, there are M2 = 390625 
matrix blocks in the complete matrix (which is why a 
Toeplitz fill was used instead), while there are only about 
4M = 2500 blocks of sampled Green’s function points.  
For the 25× 25 array, this means that the system matrix 

Table 1: Matrix setup (fill) and solve times for GIFFT 
and standard MoM for several structures. 

 

Fill  
Time 
[s] 

Solve 
Time [s] 

Number 
Iterations 

Average 
% Error 

Dipoles in 
Free Space 608.0 1591.2 309            --- 

 GIFFT 4.2 232.0 263 0.20 
 GIFFT w/   

preconditioner 4.2 7.2 7 0.19 
Dipoles on 
Grounded     
Substrate 4698.6 4297.1 833           --- 

GIFFT 47.1 1132.7 911 0.15 
  GIFFT w/ 

preconditioner 47.6 23.2 17 0.15 
Square 
Patches in 
Free Space 4391.8 53612.1 463           --- 

GIFFT 27.7 1100.5 340 0.96 
  GIFFT w/ 

preconditioner 27.0 32.0 9 0.97 

Fig. 5.   Mesh of the square patch, slot and microstrip of 
one of the array elements. The ground plane 
surrounding the slot and the dielectric layers are not 
shown. 
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for a standard MoM must contain about 
2117 117 M× × 216 16 5.3 10 M× × = ×+  complex 

entries; this reduces to 117 117 (2 1)M× × −  

16 16 M× ×+  617.1 10 = ×  when stored in the Toeplitz 
format. By contrast, there are only 

37 16 4 280 10M× × × = ×  entries in the sampled Green’s 
function array in addition to those relative to the self 
blocks and difference matrix (see (2)) that also grow as 
M.   

 

 
 

VI. CONCLUSION 
The GIFFT method for solving large array problems 

[1] is extended here to arbitrary arrays of printed elements 
in a layered material with the possible slot feeds. A block 
diagonal preconditioner has been tested and found to 
greatly improve the solution time by reducing the number 
of iterations required by the BiCGstab solver. The 
examples presented show the advantages of the method in 
reducing the memory requirements of the MoM matrix, as 
well as in reducing setup and solution times. A multiport 
analysis of such arrays can thus be performed in 
reasonable time even for large array structures. An 
extension of the GIFFT algorithm for arrays of cavity-
backed patch antennas is currently under progress.   
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