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Abstract —This paper presents a hybrid numericabrder to simplify the treatment, we will refer to
asymptotic technique for the analysis of large persimple configurations constituted by finite periodic
odic microstrip arrays. In the solution of a typicahrrays of printed dipoles on a grounded dielectric
array problem, both macro-scale and element-scalab.
spatial variations of the electromagnetic quantities The approach based on the MoM solution of
are encountered. For large periodic arrays, the truntegral equations is largely used for array prob-
cated periodicity induces a macro-scale behavitams. It is well known, however, that conventional
that is weakly dependent on the radiating elemerfiarmulations are severely limited by the problem
themselves, but strongly dependent on the arraize. Large and very-large arrays are often treated
periodicity and phasing. To incorporate this globalsing the approximation of infinite periodic structure
phenomena, appropriate macro-scale functions 4té, [2]. Under this hypothesis, the electromagnetic
used in the framework of a method of momerdanalysis is reduced to that of a single periodic cell,
solution. These macro-functions are associated g representing the Green’s function of the infinite
Floguet wave induced diffracted waves and guideadray as a summation of Floquet waves (FWs). This
waves, excited at the array boundary. The propertiapproach, although computationally very efficient,
of these functions are discussed here. The techniquannot be rigorously applied when the array has a
is applied to the simple but significant case dinite extension, since FWs do not constitute a com-
printed dipole array, in order to demonstrate thglete basis. The truncation effects are particularly
effectiveness of the approach. relevant for elements near the array edge and, for

wide scan angles, even for elements at the center
of the array. Moreover, in the case of arrays printed
I. INTRODUCTION on a stratified dielectric media or with a dielectric

Modelling large periodic array antennas involvesover, the array truncation may excite guided waves
critical issues relevant to the intrinsic multi-scaléeither surface waves (SWs) or leaky waves (LWs))
features of these structures. Macro-scale spatial vatiat cannot be predicted through the analysis of the
ations coexist with element-scale variations whicimfinite periodic array. These guided waves cause
require much-smaller than wavelength discretizéarge oscillations of the current amplitude over the
tion. These latter are due to element shape, and areay and are responsible of scan-blindness effects in
responsible of quasi-static interactions which oftgphased array antennas [3]. The presence of SWs can
dominate the frequency response of the antenha detected also in finite free-space dipole arrays,
input impedance. On the other side, macro-scaihen the array operates below the resonance and
variations are strongly dependent on the periodicithe inter-element spacing is smaller than half of a
of the array and on the phasing of the excitationvavelength [4].

Aim of this paper is to highlight such basic macro- On the other side, a brute force application of
scale phenomena and to incorporate them, as arrye MoM to the finite array leads indeed to large,
domain basis functions, into a full-wave method afiense and sometimes ill-conditioned matrices, with
moment (MoM) analysis of the entire structure. I consequent huge memory occupation and CPU
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time. In order to overcome these problems, synthetitach periodicity-induced FW excites conical and
[5] or characteristic [6] basis functions have beespherical space diffracted waves emanating from
recently proposed. These basis functions are defirmtay edges and corners, respectively. These wave
from the solution of small-size numerically-tractableontributions are also present when the array is
problems, and then used in the MoM solution ah free-space. In addition, plane and cylindrical
the large problem. This allows one to incorporatguided waves (which can be either SWs or LWS)
the small- and intermediate-scale features of tlaee excited at edges and corners of the array. The
structure, while maintaining a reduced number dafirection of propagation of edge-induced diffracted
unknowns. and guided waves is such as to match the phase
velocity of the dominant FW along the edge. As
we will see next, while for elementary dipoles the
SW/LW wavenumber is dictated by the multilayered
dielectric environment [14], for actual finite-size
patches the SW/LW wavenumber is influenced also
by the presence of the periodic metallization, and
its calculation cannot leave apart the solution of the
dispersion equation.

The paper is organized as follows. Sec. Ill sum-

Fig. 1. Waves excited by Floquet waves at a finitg5izes the formulation that allows to separate the
array of linearly phased elementary dipoles printegifterent features of the array: the original integral
on a grounded dielectric slab: (a) spherical verte¥q,ation (IE) is decomposed into two equations, one
excited (space) diffracted wave, (b) conical edggg|evant to the infinite periodic problem, and one
excited (space) diffracted wave, (c) planar edgegievant to the truncation-induced current. The infi-
excited surface wave, (d) cylindrical vertex-excitegiq periodic array IE is solved in Sec. IV by using
surface wave. a conventional spectral-domain FW approach. Then
Sec. V presents the solution of the integral equation

In this paper, the use of problem-matched macrgSsociated to the truncation effects. Particular em-
scale basis functions is proposed, to obtain a cofpbasis is given to the |der_1t|f|cat|o_n and construction
pression of the MoM matrix, provided that a suitabl@f the array-domain basis function, which allows
integral equation is derived in order to isolate thfor @ numerically efficient and physically appealing
edge-induced phenomenology. The basic principléglution. Numerical results are presented in Sec. VI
of this technique have been introduced in [8]-[10 Show the accuracy of the method as compared
for free-space arrays, such as dipole or slot arraydh @ conventional element-by-element technique.
as well as open-ended waveguide arrays, and itiigally, some concluding remarks are traced in Sec.

extended here to arrays composed of planar radidt!-
ing elements printed on or embedded in dielectric
stratifications. I1. INTEGRAL EQUATIONS

The definition of macro-scale functions is based FORMULATION
on a high-frequency analysis of the radiation The geometry of a finite rectangular periodic
and scattering by truncated periodic arrays. Tleray of printed dipoles is shown in Fig. 2. The array
frequency-domain phenomenology of wave excités composed byc-oriented dipoles, with lengtt
tion in truncated periodic arrays has been exteand widthWW (W < L), arranged on a rectangular
sively analyzed in a series of recent papers dealiggd, with spatial periodicity denoted by, and
with semi-infinite and sectoral arrays in free spaag,. The grounded dielectric slab has thicknéss
[11]-[13] and in stratified media [14]. The variousand relative permittivitye,.. The array excitation
species of diffracted and guided waves excited may be provided by an incident plane wave (Fig.
a truncated periodic array are illustrated in Figa) or by delta-gap sources (Fig. 2b), with uni-
1, referring to a finite array of elementary eleciorm amplitude and linear phase7ko*, where
tric dipoles on a infinite grounded dielectric slaban ¢/“* time dependence has been assumed and
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suppressed. In the previous expression; zz+yiy denotes the portion of they-plane occupied by
is the position vector in an arbitrary point of theéhe conducting dipoles ang, is the characteristic
array planekg = v,& + v,9 is the transverse- function of A (xa(r) = 1if r € A, xa(r) =0 if
to-z wavevector component of the excitation fieldy ¢ A).

where v, = ksinfycos¢g, v, = ksinbpsin ¢o, Following the procedure introduced in [7], [8],
k = w\/éM, is the free-space wavenumber, anthe unknown electric current is decomposed as
(Ao, o) denote the direction of the scattered/radiated
main beam in the conventional spherical coordinate J =Xadoo + Iy (2)

system. whereJ . is the infinite periodic array current, and
J; denotes the 'fringe’ current, i.e. the perturbation
current induced by the truncation. We defingJ ..

as the Physical Optics (PO) approximation current,
where the PO terminology is used with reference to
the abrupt truncation (via the functiop4) of the
infinite array current omd. The current], is the

aSSS S T . . D -
- Z solution of the EFIE pertinent to the infinite periodic
/////////////,L array,
d. “m
7 w / XOOE?an(JOO) = _XOOEtanp (3)
¥
* wherey . is the characteristic function of the dipole
(a) region of the infinite periodic array. Note that the

infinite array characteristic function can be written
asxoo = XA + x4, WhereA* is the portion of the
xy-plane external to the array regioh

777 -7 By inserting (2) into (1), and successively sub-
tracting (3) from (1), yields the Fringe Integral
_ A AL Equation (FIE)
&7 Y

XAEfan(Jf) = XAE?an(XA*JOO) (4)

whose unknown function is the fringe currehj.

The forcing term of Eq.(4)x4E;,,,(xa:J), rep-
(b) resents the tangential component of the electric field
radiated by the infinite array current truncated on

Fig. 2.  Finite rectangular planar periodic arrayhe complementary array regiof*. (Note that this
of metallic dipoles printed on a grounded dielectriterm is known once the infinite array current has
slab. (a) Scattering problem: incident plane-wave ekeen computed.) Thus, the FIE (4) interprets the
citation; (b) Radiation problem: delta-gap excitatiorfringe currentJ; as the perturbation, with respect
to the PO approximation, which is necessary to
An electric current distribution is defined on compensate for the absence of radiation from the

Ejppressed currents-Joo, in order to ensure the

Yol
d W

the surface of the printed dipoles. Imposing th .
vanishing of the total electric field at the perfectl 0””_0'"?“3’ condlt_lons (1) odl. The total F:urrer_n of
e finite array is found, through relationship (2),

conduptmg dipoles yields the electric field mtegraby the MoM solution of Eq. (3) and (4), with the
equation (EFIE) :
process described next.

XAEfan(J) - _XAEiZq;Lp (1)
where E7, (J) is the tangential (to the:y-plane) I11. INFINITE PERIODIC ARRAY
component of the electric field scattered by the SOLUTION

unknown current distributionJ and E? is the The first step of the procedure is the MoM so-

tan

impressed tangential electric field. In Eq. (14, Ilution of the integral equation (3) relevant to the
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infinite periodic array. The problem is solved by F&V (r) = Y IV (r — 1) £ (tnm). (9)
using a conventional periodic MoM [1]. The current rum€A
Jo of the infinite periodic array respects the pseudgyetajls on the selection and construction of the
periodic property imposed by the Floquet conditiopya¢ro-scale and element-scale functions are given in
Joo(r) = Jo(r)e koT (5) the following p_aragraph. It_ is worth noti_ng that the
number of basis functions is completely independent
where Jo(r) is a doubly periodic function with of the number of array elements, thus allowing the
periodicity (,,d,). Thus, the MoM computation numerical analysis of arbitrarily large arrays with
of the infinite array current is reduced to that ofhe same number of unknowns.
a single periodic cell, by representing the Green’s
function kernel as a summation of FWs. The electric
current Jo on the dipole of the reference cell is
expanded into a set of basis functions (either entire
or sub-domain functions). By applying the Galerkin
method, the integral equation (3) is reduced to the
algebraic linear system

Z oo (ko, w)I = V(ko,w) (6)

where, for the sake of convenience, we have ex-
plicitated the dependence of the matrik,, and

of the vectorV (and consequently of the unknown
coefficients vectorl) on the excitation wavevector
ko and (angular) frequency.

Phase-matching condition edge

P
IV. FRINGE INTEGRAL EQUATION Fig. 3. Ray description of macro-scale diffracted
SOLUTION and guided wave basis functions. The macro-scale

The solution of the FIE is expressed in terms d¢nction includes an edge contribution plus two
diffracted and guided wave contributions associat&fid-Point vertex contributions, ensuring the unform
to the truncation effects. The unknown fringe curreffontinuity of the current at the shadow boundaries.
J; is expanded using array-domain basis function-éh‘?[hpmpa%a:_'on constg_nt e}[lr:)ng the elfjg‘z 'E f|xeotl

: - : e excitation according the generalized Ferma
associated to diffracted wavé, and to guided %Y gtheg

Wavest,fV, condition in (13) and (14).
Tp(r) =D | ainFY () + > b FEY (v)
i I v A. Macro-scale functions: FW-matched diffracted

(7) :
. and guided waves
wherea; , andb;, are unknown coefficients to be g

determined through a MoM scheme. In the previous Each macro-scale functiorff’,, f5" includes

expressions, the first subscript£ 1, ..., 4) denotes @n €dge contribution plus two end-point vertex
the edge numbering of the rectangular array, whif@ntributions, wh!ch ensure the unlf_orm continuity
the second subscript (v) denotes the diffracted {0 the current (Fig. 3). The edge diffracted waves
(guided) wave. The array-domain basis functions af&€ cylindrical wave which asymptotlcal% propagate

. . . 73
obtained by multiplication of the element-scale cupith the speed of light and decay likg *'~, where
rentJ¢ and JEW with the macro-scale functionsp: denotes the distance of the observation point
3 1,V

fidu and ik réspectively, from t_hez'-th edge. The vertex diff_ractzed waves are
’ ’ spherical waves with ray spreading“, being r;
Fgu(r) - Z Jg{u(r_rnm) fﬁu(rnm) (8) the distance from the-th vertex. The exact ex-
cA pression of the FW-induced space diffracted waves
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and the relevant phenomenology is given in [8komplex L) = LY — jallV), the mode is a

[10]. The edge-excited guided waves decaypds (radiating) LW. The elements of the matriX..
(inhomogeneous plane waves), thus providing thgolve a double summation in the spectral do-
dominant contribution to the fringe Curreﬂlyf. The main over the transverse FW Wavenumbbfgv —
propagation constant of the guided waves is dictatedw | o5, /q. and kS = k§W + 2mq/d,,. Dif-
by the environment and by the shape and periodicifyrent branch choices are possible for the doubly
of the microstrip array elements. The problem of thgfinite number of spatial harmonics. The branch

identification of the guided waves wavenumbers igoice for the wavenumber in the dielectric region

add_ressed in the follpwil’_]g sub-sectio.n._ Thg verte%-z dpg = +/ek? — K2, — k2, (the superscript GW
excited terms are cylindrical waves originating frorrrm]

. . - 1/2
the end-point of the edge with ray spreadtqd .

In this latter case, we approximate the wavenumbgrach wavenumber in the semi-infinite air region
with that of the relevant edge term, by using t

h
_ 2 .2 __ .2
criterion to compensate for the discontinuities cj?tz’pq B \/k ] km,P kfw may be chosen to_ be
the shadow boundaries. Actually, the propagatidfOPer (negative imaginary part, corresponding to

constant of the guided waves excited in the arr&ySPatial harmonic that exponentially decays in the
varies with the azimuthal angle since the "effective? diréction) or improper (positive imaginary part,
periodicity of the medium depends on this angl&C'TeSPonding to a harmonic exponentially increas-
Nevertheless, it will be shown from the numericdld In thez-direction). Since only physical solutions

results that this approximation does not affect tHpust be retained, the branches are chosen according
accuracy of the method. the rules given next. Before proceeding further, it is

worth emphasizing that, since we are looking for
B. Identification ~of FW-matched guided €dge-excited guided waves, one component of the
wavenumber propagation constant (the one along the edge) is
imposed by the phasing of the excitation.

. , i
T_he p_ropagatlo_n con_stant of th_e guided waves In the SW case, the FW phase-matching condition
excited in the microstrip array differs from tha .
4] along the edges of the array imposes

of the grounded slab modes, since it is affect
by the periodic loading effect of the finite-size W = kDY or BV =KLV (13)
metallic patches. Indeed, the guided waves excited ) Jan

in the microstrip array can be seen as a periodicit}2’ €dges along: oLy respectively, wheré;," =
induced perturbation of those supported by the bate + 270/dz andk,," = v, + 2mq/d, are the FW
grounded slab structure. The individuation of thif@nsverse wavenumbers. Consequently, the only un-
propagation constant of the array guided waves kgown is the regl propagation constant _orthogo_nal to
achieved through the solution of a homogeneolf€ €dge. In this case, all FW harmonics are in the
resonance equation [15] which is obtained from E§/OW-wave region and the proper branch choice is

as been suppressed for simplicity) is arbitrary, since
the Green’s function is an even function bf; .

(6) by removing the excitation term, namely taken. _ |
— _ In the LW case, the phase-matching condition
Z oo (K, )T = 0. (10) imposes
For any frequency, this equation admits non-trivial BIW _ | FW (LW _
solutions when the matrix determinant vanishes, i.e., W pw oW
B, =ky " =0 (14)

det[Z oo (KEV, w)] = 0 (11)

where the unknown is the guided-wave compl
transverse wavevector

for edges along: or y, respectively. Note that, since
%he transverse components of FW wavevectors are
real, the LW attenuation constant along the edges
kW = kfwfc + k:yGWg GW = SW,LW. is always zero. In this case, the unknowns are the
(12) propagation and attenuation constant orthogonal to
When the propagation wavenumber is rdej‘{( = the edge. For a radiating fast-wave harmonic the
ﬁff;"), the corresponding mode is a bound (norphysical solution correspond to the proper branch
radiating) SW. When the propagation constant hoice when the harmonic is a backward wave (the
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|J| (A/m)

group velocity is in opposite direction with respect 0.2
to the phase velocity), and to the improper one when
the harmonic is a forward wave [16].

Finally we note that, since in practical phased ar-
ray antenna or FSS problems only one FW harmonic
is propagating, the couple of indicesq in (13) and
(14) reduces t@, q = (0,0).

0.15

0.1

TFW)

C. Element-scale functions Elby-cl. MoM
nfinite array
0.05

The element current distributio]ﬁff/(r), asso- 16 1
ciated to both diffracted and guided waves, has to
be determined, to construct the basis functions (8) 159
and (9).

In the case of guided-wave currend)" (r)
represents the eigenfunction of the homogeneous 60

system (10), which can be computed by setting to

Z J (degrees) ==

120

unity one element of the vectdr and then solving 0

for the remaining elements [17]. 60
In the case of diffracted-wave functions, the ele-

ment current on the dipolej;ﬁu(r) is assumed of -120

resonant type, without care on the sub-wavelength
details, which are indeed described by the infinite ar- A
ray solution. For more complicated element shapes, Dipole index

synth_etic_ basis functions are gene.rated by 'sol\./iriggg. 4. Magnitude (in A/m) and phase (in degrees)
a periodic array problem with a suitable excitatiogt e syrface electric current sampled at the centers

[18]. of the dipoles on the central row of the array. Results

refers to a41 x 41 array of dipoles withl, = 0.6
V. NUMERICAL RESULTS cm, W = 0.1 cm, d, = 0.8 cm, andd, = 0.8

In this section, a sample of numerical resultm. The dielectric substrate has= 10.2 andh =
is shown to validate the above technique and 61905 cm. The array is excited by an incident TM-
highlight some typical truncation effects of finitePolarized plane wave withy = 40° and o = 20°.
microstrip arrays. The results obtained with thi§he operating frequency if = 7 GHz.
technique (labelledT(FW)?) are compared with
those from a conventional element-by-element MoM
(El.-by-el. MoM) and with the (windowed) infinite
array approximation (PO approx.). In all cases, theolving the resonance equation (11). Only one real
current on the dipoles is expanded in terms of PWslution is found, corresponding to a non-radiating
basis functions. SW. Complex roots associated to LWs are neglected
First, a41 x 41 array is considered, with dipoledue to the high values of the attenuation constant.
length L = 0.6 cm, width W = 0.1 cm, and The propagation constant of the SW excited by
periodicity d, = d, = 0.8 cm. The dielectric the y-oriented edges is given by Eqg. (11), with
substrate has relative permittivity, = 10.2 and the ka = ksinfysingpy = 0.22k, that yields
thicknessh = 0.1905 cm. An incident TM-polarized k" = g, = 1.197k. For the SW excited by
plane wave is assumed to illuminate the array, withe xz-oriented edges, the solution of Eq. (11), with
the scattered main beam anglés = 40° and kS" = ksinfycospy = 0.604k, gives k(W =
wo = 20°. The operating frequency i = 7 S, = 0.920k. Thus, the transverse propagation
GHz. The propagation constants of the guided wavesnstant of the SW supported by the arragi" =
excited at the edges of the array are computed By~"'| = 1.217k for the mode excited by thg-

-180



262 ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006

|J] (A/m) 0
0.2 TEW)' —
’ T(FWY — -10 El.-by-el. MoM
El-by-el. MOM v PO approx. -

Infinite array ----

-20

0.18
-30

(dB)

0.16 .40

-50

0.14
-60
0.12 ; Egg% P -70
1 6 1 T 1 41 . . [
-80
= = === -90 -60 -30 0 30 60 90
Z J (degrees) = == 0 (degrees)
180 H =

Fig. 6. Normalized far field scattered by the array
on the incidence plane. Results refers to4hex 41
array of dipoles described in the caption of Fig. 4.

120

60

-60
field scattered by the array on the incidence plane is
shown in Fig. 6. It can be noted that the crude PO
approximation (dashed line) fails in predicting even
the amplitude of the first side lobe.

In the previous case the dominating guided mode

Fig. 5. Magnitude (in A/m) and phase (in degreesyas a bound SW. This mode does not radiate
of the surface electric current sampled at the centeygectly, but affects the far-field pattern by virtue
of the dipoles on the central row of the array. Resulis the diffraction at the truncation of the array.
refers to thedl x 41 array of dipoles described inA change in the nature of the guided wave may
the caption of Fig. 4. happen when the frequency is varied. When one

of the spatial harmonics associated to the guided

wave enters the visible region, the wave becomes a

radiating LW, with a complex propagation constant.
oriented edges, and®" = |k“"| = 1.1k for To describe this phenomenon and its effects on the
the mode excited by the the-oriented edges. Notearray performance, we refer to1® x 19 array of
that the phase constant of the SWs excited at twdipoles, with lengthZ, = 0.39 cm, widthWW = 0.01
orthogonal edges differs each other, due to tlwen, and periodicityd, = d, = 0.6 cm, printed on
anisotropy of theeffective periodic medium. Figs. a dielectric substrate with thicknegs = 0.1 cm
4 and 5 present the electric current (amplitude arhd relative permittivitye, = 2.55. The array is
phase), sampled at the centers of each dipole, for theminated by an incident plane wave from broad-
dipoles on the central row and on the central colunside, at frequency = 30 GHz. The diffracted and
of the array, respectively. An excellent agreemeguided waves excited at the array edges propagate
is found between the present technique (solid lineythogonally to the edges. The dominant TM guided
and the reference solution (dotted line). Also theave is excited at thg-oriented edges of the array
infinite array data (dashed line) are shown in thglirection of propagation along the dipoles), while
diagrams, in order to appreciate the influence dfis not excited at thec-oriented edges, due to the
the fringe current contributions. In the E-plane (Figpolarization mismatch (direction of propagation or-
4), this influence can be quantified in terms of thogonal to the dipoles). The solution of the disper-
large oscillation of the current amplitude around thgion equation WitHcyGW = 0, yields the propagation
value of the infinite array level. The normalized faconstant of the dominant TM mode of the structure.

-120

_1801 6 1M 16 21 26 31 36 41

Dipole index
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B,/ k o,/ k TEWY
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1124 Grounded slab - 0.014 20
: TM, mode
1.1 0.012 a
@ -30
1.08 0.01
-40
1.06 0.008
-50 [ /3
1.04 0.006 ]
-60
1.02 0.004 90
T2t 29 31 33 35 37 0 (degrees)

/(Ghz) . . :
Fig. 9. Normalized magnitude of tiecomponent

Fig. 7. Normalized phase (solid line) and atterof the electric field scattered by the array on ffie
uation (dotted line) constants of the fundamentalane, for broadside plane-wave incidence. Results
harmonic(p, q) = (0,0) of the dominant TM mode refers to thel9 x 19 array of dipoles of Fig. 8.
versus frequency for the infinite periodic array of
printed dipoles, withL = 0.39 cm, W = 0.01 cm, 0 ‘ ‘
d, =0.6 cm,d, = 0.6 cm, e, = 2.55, andh = 0.1 TEW) —
cm. Propagation along: direction is considered. .o} pooei MM T
Also the normalized propagation constant of the

dominantTM, mode of the grounded dielectric slab  -20
is plotted (dashed line).

-30

(dB)

-40

0.42

-50
0417

]
i
i
i

b}

T
\
\
\

-60

047 -90 -60 -30 0 30 60 90

0.39[ Fig. 10. Normalized magnitude of tkecomponent
of the electric field scattered by the array on ttie
plane, for broadside plane-wave incidence. Results

refers to thel9 x 19 array of dipoles of Fig. 8.

[J] (A/m)

0.38 [

037\

T(FW)i — ]

0.36
" El-by-el. MoM
0%, 3 5 7 9 M 13 15 17 19 The g — f diagram in Fig. 7, shows the behavior
Dipole index of the normalized phase and attenuation constants

of the fundamental harmoni¢p,q) = (0,0) of

Fig. 8. Magnitude (in A/m) of the surface electrlckIhe wave in the frequency range7 — 37) GHz,

current sampled at the centers of the dipoles on the . . /
central row of the array. Results refers tdx 19 ogether with the behavior of the normalized phase

array of dipoles, with, — 0.39 cm, W — 0.01 cm, consta_nt of thél“Mo surface wave_of the grounded
bare dielectric slab. At the operating frequency, the
dy = dy = 0.6 cm, h = 0.1 cm ande, = 2.55. The .
. . . value of the propagation constant of the fundamental
array is excited by a broadside incident plane waye L ; .
at frequencyf — 30 GHz armonic isf, 00 —ja, = (1.0607—50.0071)k. The
g I = ' (p,q) = (—1,0) spatial harmonic of the dominant
TM mode is in thes, < 0 zone of the fast-wave
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+10

T(FV‘V)Z | | | | at the center of the dipoles along the central row
ok- gggg}ﬁ;gm B of the array. Fig. 9 shows the normalized scattered

far field on theE-plane. The dip, noticeable in the
1 far-field pattern aroundt37.6 degrees, is due to
0l ; | the interference between the PO field and the field
: radiated by the(p,q) = (—1,0) harmonic of the
L, dominant LW mode excited at the two edges of
el the array (those orthogonal to the dipoles). In the
1 case of a phased array antenna, this kind of LW
50 , ; 3 is responsible for the scan-blindness phenomenon.
-90 -60 -30 0 30 60 90 Clearly, this effect cannot be predicted by a crude
0 (degrees) PO approximation (dashed line in Fig. 9), since
it neglects the excitation of guided waves. Leaky
wave radiation is absent on thé-plane, as shown

plane, for (> = 0°, §, — 36°) plane-wave incidence in the far-field pattern of Fig. 10, due to the fact

Results refers to th&d x 19 array of dipoles of Fig. that the leaky-wave pattern has a null on th|§ plane
8 (analogously to the case of a TM mode excited by

a dipole on a grounded dielectric slab). In order
to better appreciate the effects of the LW radiation
Wy _ N on the scattered field, two additional cases are
ob-- gg—zgl—;l(;yoM e ] considered with a plc_ane wave incident along the E-
' wf plane (0 = 0°) from directionsfy = 36 andfy = 38
degrees, that are slightly below and above the LW
radiation direction. Far-field results are shown in
Fig. 11 and Fig. 12, and are normalized with respect
to the maximum of the actual scattered field. In
both cases, it is evident how the PO approximation
dramatically fails in predicting the correct field. In
: ! particular, for incidence afy = 36 degrees, the
0 30 o 20 w0 o PO scattered field maximum is abowitdB below
0 (degrees) the actual field maximum. Moreover, the direction

_ _ _ of the maximum is shifted of about.5 degrees.
Fig. 12. Normalized magnitude of tilecomponent on the contrary, for incidence @ = 38 degrees,

of the electric field scattered by the array on fie he PO scattered field maximum is abositdB
plane, for (o = 0° 6y = 38°) plane-wave incidence. gpove the actual field maximum, with a shift@b
Results refers to the x 19 array of dipoles of Fig. gegrees. These results demonstrate how the infinite

(dB)

30 | A

-40 f “. |

Fig. 11. Normalized magnitude of tifecomponent
of the electric field scattered by the array on itie

(dB)

Q) |pe=========z=-

8. array approximation can lead to erroneous results in
certain conditions.
region; thus, representing a backward radiating LW, VI. CONCLUSIONS

with the imaginary part of the propagation constant This paper presented a study on the edge effects
associated to the leakage of power. The direction @f large periodic microstrip arrays. The analysis is
maximum radiation of the LW, computed througlperformed through a hybrid numerical-asymptotic
the relationshipfyw ~ sin™' (8", /k), is £37.6 method, which allows to efficiently compute the
degrees. fringe current excited at the truncation of the array.
The results obtained with the present tectBased on physical considerations, this fringe current
nique (solid line) are compared with the referends expanded in terms of array-domain diffracted
element-by-element MoM solution (dotted line)and guided wave basis functions. The unknown
Fig. 8 presents the amplitude of the electric currenbefficients are found through the numerical solution
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of a linear system, where the number of unknowns is Trans. Antennas Propagat., vol. 48, no. 4, pp.
completely independent of the number of elements 594-600, Apr. 2000.

in the array. Thus, this method constitutes an effi8] A. Neto, S. Maci, G. Vecchi, and M. Sabbadini,
cient and effective technique to analyze large arrays. "A truncated Floquet wave diffraction method
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fects. The generalization to more general shapes large periodic arrays of rectangular waveguides,”
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