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Abstract — This paper proposes a new computationally 
efficient algorithm for direction-of-arrival (DOA) 
estimation in a multipath environment using a uniform 
linear array (ULA) of equispaced sensors. The paper 
starts by presenting a comprehensive overview of the 
classical MUSIC algorithm used for DOA estimation of 
uncorrelated signals. The effect of different factors 
related to the signal environment as well as the sensor 
array is investigated. The concept of spatial smoothing 
required in the case of correlated signals encountered in 
multipath propagation environments is then discussed. 
This then leads to the development of a new 
computationally efficient DOA estimation algorithm 
that is proposed for a multipath environment with 
unknown correlated signals. The algorithm comprises 
two stages: a first stage for discriminating uncorrelated 
signals, and a second stage for resolving the directions 
of arrival of correlated signals using covariance 
differencing and iterative spatial smoothing. Simulation 
results show that the proposed algorithm operates at a 
much lower computational cost compared to standard 
methods. The proposed algorithm also offers a 
hardware saving by reducing the number of sensors 
required to detect a given number of signals. 

I. INTRODUCTION 

he area of signal processing using sensor arrays 
to estimate the directions of radio signals has 
drawn considerable interest in recent years. This 

is due to the opportunities that this area offers in 
satisfying the increasing demand of wireless 
communication networks for higher capacity, larger 
coverage areas, and lower interference effects. 
Direction-of-Arrival (DOA) estimation methods based 
on eigen value evaluation of the signal covariance 
matrix are known to have high-resolution capabilities 
and yield accurate estimates [1]. The MUltiple SIgnal 
Classification (MUSIC) algorithm, proposed by 
Schmidt [2, 3], is an example of these methods that 
gained most of the research interest since it uses an 

accurate data model with a sensor array of arbitrary 
form. Section II of this paper highlights the concept of 
adaptive antenna arrays, or what is known as smart 
antennas, and the benefits that they offer for wireless 
communication systems. Section III demonstrates the 
sensor array geometry and the signal model used to 
develop the DOA estimation algorithm. Detection of 
radio signals incident on a uniform linear array (ULA) 
of equi-spaced sensors using the MUSIC algorithm is 
illustrated in Section IV. This section also provides a 
performance evaluation of MUSIC by studying the 
effect of changing parameters related to the signal 
environment, as well as the sensor array. Section V 
explains the concept of using spatial smoothing for the 
detection of correlated signals encountered in practical 
multipath propagation environments. Performance 
evaluation of classical spatial smoothing methods is 
also presented. Finally, Section VI proposes a new 
technique for DOA estimation in a multipath 
environment based on covariance differencing and 
iterative spatial smoothing. It is shown that the 
proposed technique offers noticeable advantages 
including lower computational time and reduced array 
size. 

II. ADAPTIVE ANTENNA ARRAYS: 
CONCEPT AND BENEFITS 

A block diagram of a typical adaptive (or smart) 
antenna array system is illustrated in Fig. 1. The system 
consists of an array of fixed set of elements (or sensors) 
that are connected to a signal processing unit. This unit 
contains Direction Finding (DF), or what is known as 
Direction of Arrival (DOA) estimation, algorithms to 
estimate the directions of the signals coming from the 
mobile users. The signal processing unit then adjusts 
the weights of a beamforming network in order to 
maximize the array output towards intended users and 
minimize it towards interferers [4]. This paper focuses 
on the DOA part of the system. 
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Fig. 1. Block diagram of an adaptive antenna array 
system. 
 
The use of adaptive antenna arrays in mobile 
communication networks brings a number of benefits as 
summarized in what follows. 

A. Extended Coverage 
The range extension factor (REF) that an N-element 
adaptive antenna array offers is given by [5]: 

α
1

REF N
r
r

conv

array == ,  (1) 

where α is an exponent modeling the path loss, and rconv 
and rarray are the ranges covered by the conventional 
antenna (with single element) and the antenna array, 
respectively. The extended area coverage factor (ECF) 
that an adaptive antenna array provides is then 
calculated as [5]: 
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The inverse of the ECF represents the reduction factor 
in the number of base stations required to cover the 
same area that is covered by a single antenna. Fig. 2 
demonstrates the improvement gained in coverage area 
when deploying adaptive antenna arrays in the base 
stations for different path loss values. It can be seen 
from Fig. 2 that the coverage area can be almost 
doubled, compared with conventional single antenna 
base stations, if an antenna array of six elements is used 
with α=5, or an antenna array of three elements is used 
with α=3. More examples that demonstrate the 
improvement in the coverage range of wireless systems 
can be found in [6–8]. 
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Fig. 2. Improvement of coverage range using adaptive 
antenna arrays. 

 
 

B. Reduced Transmission Power 
The array gain G that is achieved by an N-element 
adaptive antenna array is expressed as [5]: 

NG 10log 10= .   (3) 

This gain leads to a reduction in the transmission power 
of the base station. If the required base station reception 
sensitivity is kept the same, then the power requirement 
of the base station with N-element array is reduced to 
N–1 and, correspondingly, the required output power of 
the power amplifier of the base station can be reduced 
to N–2 [5]. Fig. 3 illustrates the reduction in the 
transmission power of the base station as the number of 
elements of the antenna array is increased. 
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Fig. 3. Reduction in transmission power at the base 
station using adaptive antenna arrays. 

 

C. Improved Signal Quality 
The additional gain offered by adaptive antenna arrays 
leads to better output SINR (signal to interference ratio). 
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For an antenna array of N elements with a number of 
interferers smaller than N–1, the output SINR in a single 
propagation environment (i.e., without multipath 
fading) can be evaluated as [9]: 
 

(dB)log10(dB) 10 inout SNRNSINR += , (4) 

where SNRin represents the input SNR in dB. Fig. 4 
shows the improvement in the output SINR value for 
different values of SNRin using antenna arrays of 
different sizes. It is clearly seen from Fig. 4 that higher 
SINRout is achieved as more elements are used in the 
sensor array. 
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Fig. 4. Improvement of output SINR using adaptive 
antenna arrays. 

D. Improved System Capacity 
Mitigating the effect of interference is another major 
capability of adaptive antenna arrays. With 
conventional antennas, a small portion of the 
transmitted power is actually received by the intended 
users while most of the transmitted power is considered 
to be a source of interference for other users. The 
radiation pattern of an antenna array is determined by 
positions of the array elements as well as the amplitude 
and phase of their feeding currents [10]. By adjusting 
these parameters, the radiation pattern of the antenna 
array can be optimized such that the main beams are 
formulated at the directions of the intended users and 
null-patterns are placed at the directions of the 
interferers. Reducing the effect of interference in GSM 
networks, as an example, allows the reduction of the 
frequency reuse patterns and this, consequently, leads 
to an increase in the system capacity. Examples that 
demonstrate the capacity improvement gained by using 
adaptive antenna arrays can be found in [11–13]. 

E. Introduction of New Services 
Due to the high signal quality and increased system 
capacity offered by adaptive antenna arrays, a wide 
range of applications can be introduced to 3G and 

future 4G wireless networks including location-based 
services. When using adaptive antenna arrays, the 
network will have access to spatial information of 
users. This information can be used to estimate the 
positions of users much more accurately compared to 
the methods used in existing networks. Positioning can 
be used in services such as emergency calls and 
location specific billing [14]. 

III. PROBLEM FORMULATION 

A. Sensor Array Geometry 
An antenna array consists of a set of elements (or 
sensors) that are spatially distributed at known locations 
with reference to a common fixed point [15]. The array 
sensors can be fashioned into different geometries such 
as linear, circular, semi-circular and planer arrays. In 
this paper, the case of a linear sensor array is 
considered where the centres of the sensors are aligned 
along the same axis. If the linear array sensors are 
spaced at equal distances, then the array is known as a 
uniform (or equispaced) linear array (ULA), which is 
the type considered in this paper. 

B. Array Signal Model 
Fig. 5 demonstrates an equispaced linear array of N 
omni-directional sensors, with spacing d, used to 
receive M narrowband signals sm(t) incident with 
azimuth angles of arrival θm, Mm ≤≤1 . The N-
dimensional received data vector u at time t is given by: 

)()()()()()()(
1

ttθttst
M

m
mm nsAnau +=+= ∑

=

θ ,      (5) 

where n is a noise vector modeled as temporally white 
and zero-mean complex Gaussian process, and a(θm) is 
the array response (or steering) vector, corresponding to 
the DOA of the mth signal, and is defined as: 

[ ]TφNφφ
m

mmm
 1)-j(-j2-j- e    e    e    1)( =θa , (6) 

where T is the transpose operator, and ϕ represents the 
electrical phase shift from element to element along the 
sensor array [16], and is expressed as: 

)sin(  2 mm λ
dφ θπ 





= ,  (7) 

where λ is the wavelength of the incident signals. The 
combination of all possible steering vectors forms the 
array manifold matrix A. 
As seen from equation (5), the intersection of the source 
waveforms (i.e., signals) with one or more of the 
steering vectors of matrix A builds up the signal model.  
The array manifold can be a multi-dimensional matrix 
if other signal characteristics such as the elevation angle 
of incidence and the signals distance from the sensor 
array are considered. However, for simplicity, this 
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Fig. 5. Equispaced linear array of N sensors. 
 
paper considers the case of one-dimensional array 
manifold (i.e., a function of the azimuth angle of 
incidence only). 
 
Physical array calibration is very important to adjust the 
array response to the incident signals. Inaccuracies in 
the array response (or steering) vectors lead to a 
decrease in the accuracy of the DOA estimation process 
[17]. A basic form of array calibration is carried out 
such that the array manifold is measured by rotating the 
antenna array relative to a fixed signal source under 
controlled multipath conditions. 

IV. DETECTION OF UNCORRELATED 
SIGNALS: THE MUSIC ALGORITHM 

A. Theory 
The MUltiple SIgnal Classification (MUSIC) algorithm 
was first introduced by Schmidt [2, 3]. The algorithm 
starts by applying temporal averaging over K snapshots 
(or samples) taken from the signals incident on the 
sensor array. This averaging process leads to forming a 
spatial correlation (or covariance) matrix R defined as: 

∑
=

=
K

t

Htt
K 1

)( )(1 uuR ,  (8) 

where H denotes the Hermitian operator. Substituting 
u(t) from (5) into (8) results in: 

HHH tttt
K

K

t
)( )()()( )()(1

1
nnAssAR += ∑

=

θθ , (9) 

IARAR 2  nss
H σ+= ,  (10) 

where ssR is the signal covariance matrix, 2
nσ  is the 

noise variance and I is an identity matrix of size N×N. 
Since matrix A contains the linearly-independent 
steering vectors, and the signal covariance matrix ssR  
is non-singular as long as the incident signals are 
uncorrelated, then this implies that N–M of the eigen 
values of the covariance matrix R are equal to 2

nσ . The 

eigen values of matrix R are the values { }Nγγγ   ...    21  
such that: 

0   =IR i-γ .                         (11) 

The basic idea behind the MUSIC algorithm is that the 
eigen vectors corresponding to the smallest N–M eigen 
values form the noise subspace, and are also orthogonal 
to the steering vectors that make up matrix A. The 
eigen vector associated with a particular eigen value iγ  
is the vector iq that satisfies the following equation: 

                  0   )  ( =− ii qIR γ .  (12) 

Therefore, by exploiting the orthogonality between the 
steering vectors making matrix A and the noise 
subspace, the MUSIC angular or spatial spectrum is 
defined as: 

)()(
1)(

nn θθ
θ

aVVa HHP = ,     (13) 

where nV  is the matrix of eigen vectors corresponding 
to the noise subspace of matrix R. Orthogonality 
between a and nV  will minimize the denominator and 
hence will give rise to peaks in the MUSIC spectrum. 
Those peaks correspond to the directions of arrival of 
the signals impinging on the sensor array. The standard 
MUSIC algorithm has a high computational load and 
storage requirements due to the exhaustive search 
through all possible steering vectors to estimate the 
direction of arrivals. Thus, other versions of MUSIC as 
well as other DOA estimation algorithms have been 
introduced in [20–25] to reduce the computational load 
and storage requirements. 

B. Results and Discussion 
The effect of changing different parameters on the 
performance of MUSIC is investigated in this section of 
the paper. Some of these parameters are related to the 
size of the sensor array in terms of the number of 
sensors forming the array and the physical separation 
between them. Other parameters are related to the 
signal environment. These parameters include the 
number of incident signals, their angular separation, 
number of samples taken as well as the SNR (signal to 
noise ratio). 
B.1. Sensor Array Parameters 
The performance of MUSIC improves as more 
elements are used in the sensor array especially in the 
case of closely spaced incident signals. This is 
demonstrated in Fig. 6 which shows the improvement 
when the number of elements of a sensor array, used to 
detect 2 signals incident at angles +10o and –10o, is 
increased from N=3 to N=6 elements. This 
improvement is seen in the form of sharper spectral 
peaks at the directions of the detected signals. 
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(a) N=3 
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(b) N=6 

 
Fig. 6. Effect of increasing the number of elements of 
the sensor array on the MUSIC spectrum (d=0.5λ, 
SNR=10 dB and K=100). 
 
The effect of changing the spacing between the 
elements of the sensor array was also investigated for a 
sensor array of two elements used to detect one signal 
incident at an angle θ=80o. It was observed that MUSIC 
is capable of detecting an incident signal successfully, 
without generating unwanted peaks in the angular 
spectrum, as long as the element spacing does not 
exceed 0.5λ, as evident from Fig. 7(a). However, using 
larger values for the element spacing results in 
unwanted peaks appearing in the MUSIC spectrums, as 
evident from Fig. 7(b). A further study of the reason 
behind this degradation in performance is presented in 
[26]. Since most of the DOA estimation algorithms 
ignore the effect of mutual coupling between the 
elements of the sensor array, an element spacing of 
0.5λ is recommended. It is to be noted that the 
existence of mutual coupling [27–30] has to be taken 
into consideration when designing the physical antenna 
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Fig. 7. Effect of increasing the spacing of elements of 
the sensor array on the MUSIC spectrum (SNR=10 dB 
and K=100). 

 
array elements with spacing less than 0.5λ. 

 
B.2. Signal Environment Parameters 
Experimental results show that the performance of 
MUSIC degrades as more signals are incident on the 
sensor array. This is illustrated in Fig. 8 which shows 
the degradation of the MUSIC spectral peaks as the 
number of signals incident on a six-element sensor 
array increases from M=2 to M=5. To overcome this, 
the number of elements of the sensor array must be 
increased [18, 19]. 
 
The spatial correlation between the incident signals, in 
terms of their angular separation, was also investigated. 
It was found that MUSIC produces sharper peaks, with 
a lower noise floor, as the angular separation between 
the incident signals increases. Fig. 9 demonstrates the 
improvement in the performance of MUSIC when the 
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angular separation between two signals incident on a 
sensor array of three elements is increased from 10o to 
60o. 

 

Moreover, it was found that the performance of MUSIC 
improves as more snapshots (or sapmples) are taken 
from the incident signals as illustrated in Fig. 10. 
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(a) Angles of arrival = +20o, and +30o 
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(b) Angles of arrival = –10o, 0o, +10o, +20o, and +30o 
 
Fig. 8. Effect of increasing the number of incident 
signals on the MUSIC spectrum (d=0.5 λ, SNR=20 dB 
and K=100). 
 
 
Finally, the effect of SNR has been investigated and 
results are depicted in Fig. 11. As one would expect, it 
is clear that sharper peaks are resolved at the directions 
of the incident signals as the value of the SNR is made 
larger. 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Estimated Angle of Arrival in degrees by the MUSIC algorithm

R
el

at
iv

e 
P

ow
er

 (i
n 

dB
)

 
__   angular separation = 60o 

---   angular separation = 10o 
 

Fig. 9. Effect of increasing the angular separation 
between the incident signals on the MUSIC spectrum 
(N=6, d=0.5λ, SNR=10 dB, and K=100). 
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(a) K=10 
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(b) K=100 

Fig. 10. Effect of increasing the number of snapshots 
taken from the incident signals on the MUSIC spectrum 
(d=0.5λ, SNR=10 dB, N=5, and M=3). 
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__   SNR = 20 dB, ---   SNR = 10 dB 

Fig. 11. Effect of increasing the SNR value on the 
MUSIC spectrum (d=0.5λ, K=100, N=3, and M=2). 

V. DETECTION OF CORRELATED SIGNALS: 
SPATIAL SMOOTHING 

As mentioned in Section IV, the signal covariance (or 
correlation) matrix ssR  is a full-rank matrix (i.e., non-
singular) as long as the incident signals on the sensor 
array are uncorrelated, which is the key to the MUSIC 
eigen values decomposition. However, if the incident 
signals become highly correlated, which is a realistic 
assumption in practical radio environments, matrix ssR  
will lose its non-singularity property and, consequently, 
the performance of MUSIC will degrade severely [31]. 
A technique known as Spatial Smoothing (SS) [32, 33] 
can be used to remove the correlation between the 
incident signals by dividing the antenna array into 
subarrays as described in what follows. 

A. Forward Spatial Smoothing (FSS) 
The basic idea of this method is to decorrelate the 
incident signals by dividing the sensor array into 
overlapping smaller subarrays and introducing phase 
shifts between them [34]. Fig. 12 demonstrates the FSS 
method when used to partition an N=6 elements sensor 
array into L=4 overlapping subarrays, each of size p=3 
elements. 
 
 

subarray 1 

  subarray 2 

  subarray 3 

  
subarray 4 

  

sensor array  
of 6 elements

 

 
Fig. 12. FSS applied to a six-element sensor array. 

The vector of the received signals at the kth forward 
subarray is expressed as: 

)()()( )1( ttt k
kF

k nsD Au += − ,    (14) 

where (k–1) denotes the kth power of the diagonal 
matrix D given by: 













=
Mθθ sin  2j-sin  2j-

e  ,  ...  , e  diag
1 λ

π
λ
π

D .  (15) 

The spatial correlation matrix R of the sensor array is 
then defined as the sample mean of the covariance 
matrices of the forward subarrays:  

∑
−

=

=
1

0

   1 L

k

F
kL

RR .   (16) 

It is to be noted that the division of the sensor array into 
forward subarrays must satisfy the following conditions 
[19]: 

MpNML ≥+−⇒≥ 1    ,      (17) 
MpN >> .         (18) 

It can be clearly seen from (18) that pmin=Mmax+1. By 
substituting this in (17), the maximum number of 
correlated signals that can be detected by FSS becomes 
N/2 compared to N–1 uncorrelated signals that can be 
detected by conventional MUSIC. 

B. Forward/Backward Spatial Smoothing (FBSS) 
It has been proven that it is possible to increase the 
number of detected correlated signals to 2N/3 by using 
a set of forward and conjugate backward subarrays 
simultaneously [35]. Fig. 13 illustrates the FBSS 
method when used to partition an N=6 elements sensor 
array into L=4 overlapping forward subarrays and L=4 
overlapping backward subarrays, each of size p=3 
elements. In this method, the vector of the received 
signals at the kth backward subarray is expressed as: 

)()]([)( )1()1( ttcongt k
NkB

k nsDD Au += −− . (19) 

The spatial correlation matrix R of the sensor array is 
then given by: 

2

BF RRR +
= .    (20) 

where RF is the average covariance matrix of the 
forward subarrays vectors uF given by (14) and RB is 
the average covariance matrix of the backward 
subarrays vectors uB given by (19). 

C. Results and Discussion 
First, the need for using spatial smoothing techniques 
for the detection of correlated signals is demonstrated. 
A simple case of two correlated signals which are 
incident at angles θ= –30o and –60o on an N=5 element 
 

sensor array  
of 6 elements 
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Fig. 13. FBSS applied to a six-element sensor array. 
 
sensor array is considered. Fig. 14 shows that 
conventional MUSIC fails to detect the two correlated 
signals as evident from the absence of spectral peaks at 
the incident angles. These spectral peaks are clearly 
resolved when FSS-MUSIC is employed with p=3. 
 
Although spatial smoothing techniques can be used to 
detect correlated signals, the existence of correlation 
reduces the number of signals that can be detected by 
the N-elements linear array. As mentioned previously, 
conventional MUSIC can successfully detect up to N–1 
uncorrelated signals while FSS-MUSIC allows the 
detection of only up to N/2 correlated signals, and 
FBSS-MUSIC can detect up to 2N/3 correlated signals. 
Fig. 15 compares the performance of the two spatial 
smoothing techniques for detecting M=6 correlated 
signals incident on a linear sensor array comprised of 
N=9 elements. It can be clearly seen that FSS-MUSIC 
fails in such a case due to the fact that the number of 
incident signals is greater than N/2. However, FBSS-
MUSIC is able to detect all the incident signals due to 
the fact that the number of incident signals does not 
exceed 2N/3. 
 
Moreover, conditions (17) and (18) discussed 
previously highlight the constraints on the size p and 
number of subarrays L that should be used in order to 
ensure successful detection of correlated signals. Fig. 
16 demonstrates the failure of FSS-MUSIC in detecting 
M=3 correlated signals by an antenna array of N=6 
elements if the main antenna array is divided into L=2 
overlapping subarrays of p=5 elements each. This is 
simply due to the fact that the number of subarrays L is 
less than the number of correlated signals M, which 
violates condition (17). Fig. 16 also demonstrates the 
success of the same smoothing technique if the main 
antenna array is divided into L=3 overlapping subarrays 
of p=4 elements each. Obviously, spatial smoothing 
works in this case since condition (17) is now satisfied. 
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Fig. 14. DOA estimation using conventional MUSIC 
and FSS-MUSIC (K=100 and SNR=20 dB). 
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Fig. 15. DOA estimation using FSS-MUSIC and FBSS-
MUSIC (θ = –60o, –30o, –20o, 0o, +20o, +60o, and p=7). 
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Fig. 16. Performance of FSS-MUSIC for different 
values of p and L (θ = –20o, 0o, and +40o, K=100, 
SNR=10 dB). 
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The size p and hence the number of the subarrays L are 
the key parameters which determine the computational 
complexity of spatial smoothing techniques. The 
acceptable values of these two parameters are 
determined by the number of correlated signals to be 
detected. Fig. 17 demonstrates the computational 
complexity of conventional MUSIC compared to FSS-
MUSIC and FBSS-MUSIC when detecting two signals 
incident on a sensor of N=20 elements. If the two 
incident signals are uncorrelated, then conventional 
MUSIC can be used and there is no need to divide the 
sensor array into overlapping subarrays. However, if 
the two incident signals become correlated, then spatial 
smoothing techniques must be used. Fig. 17 shows that 
dividing the sensor array into larger subarrays reduces 
the number of subarrays to be processed and hence 
reduces the computational time. It is also obvious from 
Fig. 17 that FBSS-MUSIC requires more computational 
time compared to FSS-MUSIC due to the fact that the 
smoothing process is carried out in two directions 
instead of one direction only. Finally, it is to be noted 
from Fig. 17 that the difference in computational time 
between the two smoothing techniques reduces when 
fewer subarrays (i.e., smaller L) are processed. 
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Fig. 17. Computational time of conventional MUSIC 
and spatial smoothing techniques (K=500, SNR=20 dB). 

 

VI. DOA ESTIMATION IN A MULTIPATH 
ENVIRONMENT 

A. Standard Methods 
The question that may arise now is: “what is the 
maximum number of signals that can be detected if 
some of the incident signals are correlated while others 
are not?”. In this case, conventional MUSIC cannot be 
used as it fails for detecting even two correlated signals 
regardless of the number of elements of the sensor 
array. Hence, spatial smoothing techniques must be 
used with a minimum number of array sensors equal to 

N=2Mc+Mu in the case of FSS-MUSIC [19]. Here, Mc is 
the number of correlated signals and Mu is the number 
of uncorrelated signals. In the case of FBSS-MUSIC, 
the minimum number of array sensors becomes 
N=(3Mc/2)+Mu [19]. In both cases, spatial smoothing 
should be carried out with respect to L= Mc subarrays, 
with p= Mc+1 elements in each subarray. Fig. 18 
illustrates the performance of both, conventional 
MUSIC and FSS-MUSIC for detecting Mc=2 correlated 
signals incident at angles –20o and +20o, and Mu=4 
uncorrelated signals incident at angles –60o, –40o, +40o, 
and +60o on a sensor array of N=8 elements. It can be 
clearly seen from Fig. 18(a) that conventional MUSIC 
detects only the four uncorrelated signals, whereas in 
Fig. 18(b) all six signals have been detected using FSS-
MUSIC. 
 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-70

-60

-50

-40

-30

-20

-10

0

Estimated Angle of Arrival in degrees by the MUSIC algorithm

R
el

at
iv

e 
P

ow
er

 (i
n 

dB
)

 
 

(a) MUSIC detects correlated signals only 
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(b) FSS-MUSIC detects correlated and uncorrelated 
signals 

 
Fig. 18. DOA estimation using conventional MUSIC 
and FSS-MUSIC in a multipath environment. 

234 ACES JOURNAL, VOL. 21, NO. 3, NOVEMBER 2006



B. Proposed Method: Covariance Differencing and 
Iterative Spatial Smoothing 

As highlighted in Section V, the performance of 
MUSIC shows severe degradation when trying  to 
detect highly correlated signals as encountered in 
multipath propagation environments. To overcome this, 
spatial smoothing must be used in conjunction with 
MUSIC. However, the spatial smoothing process adds 
computational load to the DOA estimation process as 
well as reducing the number of signals that can be 
detected by the sensor array. In this subsection, a 
computationally efficient high-resolution algorithm, 
which is based on covariance differencing and iterative 
spatial smoothing, is proposed. Unlike standard 
MUSIC, which estimates the DOAs simultaneously, the 
proposed algorithm estimates them sequentially, in two 
stages, yet at a much lower computational cost. Fig. 19 
shows a flowchart of the proposed method. It comprises 
two stages through which the uncorrelated and 
correlated signals are separated and processed 
independently. 
 
 

Form the covariance matrix R 
for all the incident signals 

Evaluate the MUSIC power 
spectrum for R 

Form Ru from the signals  
detected by the MUSIC algorithm 

Calculate Rc by subtracting Ru  
from R (Covariance differencing) 

Perform Spatial Smoothing 

More signals  
were detected? 

N=N+1 

No 

Yes 

First stage 
(Detection of 
uncorrelated 

signals) 

Second stage 
(Detection of 

correlated  
signals) 

Start 

Set N=3, p=2 

End 
 

 
Fig. 19. Flowchart of the proposed algorithm. 
 
In the first stage, standard MUSIC is applied to the 
overall signal covariance matrix R of all the incident 
signals. The DOAs that are resolved in this stage, if 
any, are used to form a new covariance matrix Ru, 

corresponding to the uncorrelated signals only. In the 
second stage, a new covariance matrix Rc, containing 
information on the correlated signals only is formed by 
covariance differencing of R and Ru. Thus: 

uc RRR −= .             (21) 

Spatial smoothing is then performed iteratively with 
respect to the new covariance matrix Rc. In the first 
iteration of applying spatial smoothing, a sensor array 
of N=3 elements divided into L=2 overlapping 
subarrays each of size p=2 elements is used. This 
arrangement is capable of detecting two correlated 
signals only. If no peaks appear in the MUSIC angular 
spectrum, then this indicates that there are more 
correlated signals embedded in the spectrum of Rc and 
that the number of elements used in the sensor array 
was not sufficient to detect them all. Hence, in the 
second iteration, the number of elements is increased to 
N=4 so that the sensor array may be divided into L=3 
overlapping subarrays each of size p=2 elements 
capable of detecting three correlated signals. The 
iteration process continues until the peaks 
corresponding to the DOAs for the correlated signals 
appear in the MUSIC angular spectrum. 
 
The lower computational cost of the proposed method 
compared to the standard DOA estimation method is 
due to the fact that spatial smoothing is applied 
iteratively utilizing smaller sensor arrays and fewer 
overlapping subarrays. As already mentioned, the 
standard method with FSS requires the use of 

uc2 MMN +=  sensors to successfully detect all 
incident signals, whereas the proposed method with 
iterative FSS uses only c2MN =  sensors when 

uc MM > , and 1uc ++= MMN  sensors when 

cu MM ≥ . Similarly, the standard method with FBSS 
requires the use of uc23 MMN +=  sensors to 
successfully detect all incident signals, whereas the 
proposed method with iterative FBSS uses 
only 1uc ++= MMN  sensors for any combination of 
correlated and uncorrelated signals. Therefore, it can be 
concluded that the proposed method also offers a 
hardware saving by reducing the size of the sensor 
array required to detect a given number of correlated 
and uncorrelated signals. 

C. Results and Discussion 
The simulation results shown in this part of the paper 
are taken for the case of a linear array of sensors 
equispaced at half the carrier wavelength. Simulations 
were carried out using an SNR value of 20 dB with 
K=200 snapshots taken from the incident signals. Fig. 
20 shows the MUSIC spectrum obtained using the 
proposed method. The solid line shows that two 
uncorrelated signals at angles θ=0o and θ=+60o were 
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successfully detected using the first stage of the 
proposed method. The dotted line shows the spectrum 
corresponding to covariance differencing which yields 
the covariance matrix of the correlated signals, Rc. The 
dashed line shows that after applying iterative spatial 
smoothing on Rc, two correlated signals at θ= –30o and 
θ=+30o have been successfully detected. 
 
Fig. 21 compares the computational time of the 
standard and proposed methods with FSS as the number 
of correlated signals Mc is varied. It can be seen that the 
proposed method is highly efficient as it offers a saving 
of up to 75% in computational time, when compared 
with the standard method. Similarly, Fig. 22 shows this 
saving if the proposed method is used with iterative 
FBSS compared to the standard method. A saving of up 
to 77% in computational time can be seen for this 
particular example. 
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Fig. 20. MUSIC spectrum with two uncorrelated signals 
at 0oand +60o, and two correlated signals at –30o and 
+30o. 
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Fig. 21. Computational time of the standard and 
proposed methods using FSS as the number of 
correlated signals Mc increases (N=30, K=200, Mu=2). 
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Fig. 22. Computational time of the standard and 
proposed methods using FBSS as the number of 
correlated signals Mc increases (N=30, K=200, Mu=2). 

 
Besides the saving in computational time, the proposed 
method offers also hardware saving in the form of 
fewer elements in the sensor array, as shown in Table 1. 
 
Table 1. Comparison between the standard and 
proposed methods in terms of the number of sensor 
array elements required to detect correlated and 
uncorrelated signals. 
 

Number of signals Required Number of elements 

Proposed  Uncorr
elated 

Mu 

Correla
ted 
Mc 

Standard 
FSS-

MUSIC with  
FSS 

with 
FBSS 

3 2 7 6 6 
3 3 10 7 7 
3 4 11 8 8 
3 5 13 10 9 
3 6 15 12 10 
3 7 17 14 11 
4 2 8 7 7 
4 3 10 8 8 
4 4 12 9 9 
4 5 14 10 10 
4 6 16 12 11 
4 7 18 14 12 
5 2 9 8 8 
5 3 11 9 9 
5 4 13 10 10 
5 5 15 11 11 
5 6 17 12 12 
5 7 19 14 13 
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VII. CONCLUSIONS 

The performance of the MUSIC DOA estimation 
algorithm was investigated for a set of parameters 
related to the sensor array and signal environment. The 
performance of MUSIC was shown to improve by using 
more elements in the sensor array, more samples of the 
incident signals, as well as an increased SNR. 
Increasing the angular separation between the incident 
signals also leads to an improvement in the MUSIC 
power spectrum in the form of sharper peaks at the 
directions of the detected signals. Extensive simulations 
demonstrated that an element spacing of λ/2 results in 
optimum performance of the sensor array. 
 
The use of spatial smoothing to detect correlated signals 
was also demonstrated. A comparative study of the 
performance of two spatial smoothing methods has 
been carried out. These methods are based on dividing 
the sensor array into overlapping subarrays which are 
used to remove the correlation between the incident 
signals. Each subarray must consist of a number of 
elements that exceeds the number of correlated signals. 
It was found that the forward/backward spatial 
smoothing technique (FBSS) requires more 
computational time when compared to the forward 
spatial smoothing (FSS) technique due to the fact that 
the smoothing process is carried out in two opposite 
directions instead of one. It is to be noted that the 
existence of correlation reduces the number of 
correlated signals that can be detected by the N-
elements sensors array to N/2 in the case of FSS, and to 
2N/3 in the case of FBSS. 
 
A computationally efficient method for DOA 
estimation in a multipath environment has been 
proposed. This method is based on covariance 
differencing and iterative spatial smoothing. Simulation 
results demonstrated the savings offered in 
computational time and hardware in comparison with 
the standard method. This makes the proposed method 
more suitable for real-time DSP implementations. 
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