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Abstract: An extrapolation method based on the 
solution of induce current is introduced to rapidly 
perform angle and frequency sweep in the far-
field calculation using the sparsely sampled 
solutions. This method is based on the observation 
of the characteristics of the current distribution as 
a function of incident angles and frequency. It is 
easy to be implemented for in core processing, 
and needs a small extra memory. In addition, the 
extrapolation applies to both angle and frequency 
sweeps. Numerical examples for conducting and 
material scatterers show that the far-field 
scattering results generated by the extrapolation 
method agree to that provided by the direct 
solution, but the extrapolation method uses about 
the same amount of memory, and much less CPU 
time than that of the brute-force approach. 
 

I.   Introduction 
The algorithms based on the iterative solution of 
the integral equations and accelerated by fast 
solvers provide efficient and accurate ways to 
calculate the scattering by large and complex 
objects. The application of the fast solvers such as 
the multilevel fast multipole algorithm [1] has 
greatly reduced the computational complexity of a 
matrix vector multiplication for the iteration 
process. To further increase the efficiency in 
producing multi-angle and multi-frequency 
scattering data, attentions are focused on (a) 
developing precondition techniques to reduce the 
number of iterations for a converged solution, (b) 
developing advanced post processing methods 
which use the information of the existing solution 
to predict as much scattering data as possible. 
Several algorithms have been studied such as the 
frequency interpolation on current or scattered 
field, and the bi-static to mono-static 

approximation [2, 3, 5-10].  
For frequency loop acceleration, a straight 
forward method is to perform interpolation using 
the scattered field samples that are obtained 
directly via a numerical solver. This method is 
simple in implementation, but it applies to densely 
sampled scattered field only, and has poor 
prediction accuracy if applied to frequencies 
outside the frequency samples. A more 
sophisticated algorithm exploits the characteristics 
of scattered field vs the frequency. Basically, it 
assumes that scattered field at a given frequency 
can be written as a series of exponentials. This 
method tries to estimate the expansion coefficients 
using a set of scattering field samples. Since only 
the field samples are used, it can be implemented 
out of core (i.e., it can be performed when all the 
field samples are available). This method can also 
be applied to the induced current. In this case, the 
induced current at target mesh samples must be 
saved for every frequency samples, leading to 
increased memory requirement and processing 
CPU time for in-core processing. 
 
For angle loop acceleration, there are also similar 
methods as above. One of the popular and 
effective methods is the approximation of mono-
static RCS using bi-static results. This method 
was originally applied to process the measurement 
RCS data where the exact mono-static 
configuration is difficult to realize.  
 
In this paper, an approximate extrapolation 
method is introduced to rapidly fill the angular 
and frequency far-field points using the solutions 
at sparsely sampled points. This method is based 
on the characteristics of the induced current on the 
target surface. It assumes that the leading term of 
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the induced current at every surface depends on 
the frequency and incident angles via a complex 
exponential function. With this assumption, the 
solution at a fixed angle can be processed by 
replacing the angle dependency factor with a 
similar factor for the new incident angles. This 
process is called “normalization”. One advantage 
of this method is that the normalization can be 
performed for angle variables as well as 
frequency. In the following, the exponential 
dependency is first verified from the point of view 
of the method of moment solution. Then 
numerical verification and application examples 
are provided. The time factor used in this paper is 
exp( )i tω−  and is suppressed from the equations. 
 

II.    Formulation 
The following derivation is for a three-
dimensional perfectly conducting scatterer. The 
procedure can also be applied to scatterers of 
dielectric material and material coating on 
conducting object. In fact, in Sec. 3, there is an 
example that shows the application of 
extrapolation to material coated object. Consider 
the discretization of the surface integral equation 
for a scattering problem by the method of 
moments. For simplicity, it is assumed that the 
target surface is divided into a set of patches, each 
of which has dimension of one tenth of a 
wavelength. The induced current on the target 
surface is represented by a set of N  basis 
functions. Each basis function ( )nf r  is defined for 
an interior edge, which is shared by two patches. 
Following the standard MoM procedure with 
Galerkin testing scheme, a set of linear algebra 
equations is obtained as 

mn n m
n

Z a V=∑                       (1) 

where, Zmn  is an impedance matrix element, na is 
an expansion coefficient for basis function ( )f rn , 
and Vm is an element of excitation vector that is 

related to the excitation field incE  (also called 
incident field) as 

( ) ( )incV f r E r dSmm
Sm

= − ⋅∫ .              (2) 

For a plane wave incidence at direction ˆik , 
exp( )0

inc iE E ik r= ⋅ , where ˆ0
i ik k k= , and k0 is the 

free-space wave number. Using a numerical 

quadrature rule to approximately evaluate (2) 
gives rise to   

 

( ) 0

( )( ) .0

iik rqV w f r E eq m qm q

i iik r ik r rm q me w f r E eq m q
q

⋅ ∑= − ⋅ 

⋅ ⋅ − ∑= − ⋅ 

 

In the above equation, rm  is the center position of 
basis-m, wq  is the weighting coefficient, rq  is the 
quadrature point that lies inside the domain sm of 
basis-m. Since | |r rq m− is at most of the size of the 
domain which is about two tenth of the 
wavelength, the factor exp( ( ))i

q mik r r⋅ −  is a slow 
varying function of frequency and angle. Also, 

0E , wq , and the test function fm  are not functions 
of angle and frequency. As a result, the excitation 
element Vm  can be written as 

iik rmV V em m
⋅=              (3) 

where Vm is a slow varying function of frequency 
and incident angle. If the system of equations in 
(1) is inverted symbolically and the right hand 
side in (3) is used to replace Vm  in (1), then the 
solution for the unknown expansion coefficient 
an  will be given by 

     

1[ ]

( )1[ ]

iik rma Z V enm mn m
i iik r ik r rn m ne Z V enm m

m

⋅−∑=

⋅ ⋅ −−∑=

   (4) 

where 1[ ]Z nm
−  is an element of the inverse 

impedance matrix. It is known that the impedance 
matrix elements are related to the 3D Green’s 
function, hence it contains the factor of 
exp( | |)0ik r rm n− . As a result, if rn  is close to rm , it 
is a slow varying function of frequency (it is not a 
function of incident angles) compared to the factor 
of ˆexp( )iik rn⋅ . For the exponential factor 
exp( ( ))iik r rm n⋅ − in (4), it is also a slow varying 
function of frequency and angle if rn  is close to 
rm . If the two positions are far away, this factor 
becomes a rapidly varying function of frequency 
and angles. However, for most of the elements, 
the interaction becomes weaker when they are far 
from each other (there are exceptions that will be 
stated later in the numerical result sections). As a 
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result, it is concluded that  
ˆiik rna a en n
⋅= ,              (5) 

where an  is a slow varying function of frequency 
and angles for most of the elements. In the 
following, na  is called the normalized coefficient, 
and na  is the un-normalized coefficient. Based on 
this observation, the solution of the current 
coefficient for the same basis function for any 
near-by incident plane wave 2

ik  can be 

approximated by exp{ ( ) }i ia i k rn n+∆ ⋅ . In this 
expression,  2

i i ik k∆ = −  is small in magnitude, 
and it  represents the small shift in frequency and 
angles from the previous plane wave with ik . 
Since the induced current at a point in a patch is a 
superposition of the basis functions that are 
associated with that patch, the current solution has 
the same expression as  (4), i.e., 

ˆ( ) ( ) exp( ),iJ r J r ik r= ⋅ where ( ),J r  a component of 
surface induced current, is a slow varying function 

of frequency and angle, but it is a function of 
position.  
 
To demonstrate the above observations, consider a 
target that is made by five spheres that are 
uniformly placed on x-axis, each of which has 
radius of 0.3 m, as shown in Figure 1. The center 
distance between two neighbor spheres is 0.45 m. 
The spheres are discretized into 3,000 
quadrilateral patches. The frequency of the 
incident plane wave is 1 GHz and is vertically 
polarized. Figure 2 shows the solution for basis 
number 1345 which is centered at (0,0.18,0). It 
can be seen that the normalized coefficient (dash 
lines) is indeed varying slowly with incident angle 

iφ  compared to the un-normalized version of the 
same coefficient (the solid lines). Because of this 
property of the normalized coefficient, it can be 
accurately represented by a linear interpolation for 
a large angular range. 

  
 
 
 
 
 
 
 
 

Figure  1. Five conducting spheres on x-axis. Each sphere has radius 0.3m, and the center distance of 
two neighbor spheres is 0.45 m.  
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Figure 2.  The real part (left) and imaginary part (right) of the solution for basis number 1345. The 
incident angle θ  i = 90o, and the horizontal variable φ i varies from 0o to 90o. 
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The implementation of the current extrapolation is 
straighforward. It only involves two steps. First 
the system of equations (1) is solved to obtain the 
coefficient for one angle/frequency sample. From 
this solution, the normalized coefficient is 
extracted using equation (4). Then, in the second 
step, the normalized coefficient is multiplied by a 
correction factor of exp( ( ) )ii k rn+∆ ⋅  to obtain the 
basis function coefficient for any near-by 
frequency and angle samples.  
 

III.   Numerical Results 
In this section, examples will be shown to 
demonstrate the application of the current 
extrapolation method. The results are generated 
using a multilevel fast multipole algorithm [11] 
that is implemented for the solution of hybrid 
surface-volume integral equations [1]. The first 
example shows the comparison of the RCS for the 
five-sphere target given in Figure 1. The results 
are plotted in Figure 3 for the V-V and H-H 
polarized incident cases. It can be seen that the 
extrapolated results using five samples are very 
close to that obtained by brute-force method (in 
which, the solution to the system equation is 
obtained for every incident angles). In the plot of 
Figure 3, the horizontal axis AZ is defined as iφ− . 
 
The second example consists of a simple airplane 
model that is made by two conducting plates (as 
wings) attached to a cone-cylinder-hemisphere 
structure.  The mesh description is shown in 
Figure 4 and the radar cross sections as function 
of frequency, calculated using the brute-force 
approach (solution for every point of RCS output) 
and the extrapolation method, are shown in Figure 
5. The mono-static angles for this result are 

o30 ,iθ =  o30iφ = . 
 
The third example considers scattering of a model 
airplane VFY218 [1] at 300 MHz. Figure 6 shows 
the comparison of the 361 RCS points (0.5 

degrees step size) on the horizontal plane 
( o o0 180− range) using (1) the brute-force approach 
which calculates the solution for every output 
point (the solid dots), (2) the current extrapolation 
method of this paper (the solid line) using the 
solutions at the sampling points (the circles), and 
(3) the bi-static to mono-static approximation 
method provided in [3] (the dash line).  In both of 
the two approximations ((2) and (3)), the number 
of sampling angles is 31. This sampling rate is 
determined by the approximate formula that the 
angle increments between two neighbor samples 
is 25 / Dλ , with D  being the target’s physical 
dimension. It can be seen that the agreements of 
the approximate methods with the direct solution 
are reasonably well. 
 
It should be pointed out that the overall saving of 
the CPU time is slightly smaller that the ratio of 
the numbers of the dense sample (brute-force 
solution) and the sparse sample (for 
extrapolation). For example, in the VFY218 
example introduced above, the CPU time for the 
direct solution of all output points is 12.03 hours 
on a HP Supercomputer, and the CPU times for 
both of the two approximate methods are 142 
minutes, and 138 minutes, respectively (a 
theoretically expected values for the approximate 
method would be 120 minutes which is 6 times 
less than that of the brute-force approach). The 
reason behind the phenomena is the increased 
iteration number for the same convergence 
criterion in the brute-force solution and the 
extrapolation. The algorithm used in generating 
the data of the above examples employed an 
implementation for the iteration, in which the 
solution from the previous incidence is applied to 
approximate the initial guess of the next incident 
point. It is known that the denser the solution 
samples, the closer the two solutions of the 
adjacent sampling points. 
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Figure 3. The comparison between brute-force solution and extrapolation for the RCS of the five 
conducting spheres shown in Figure 1. 
 

                       
 
Figure 4. An airplane-like model made of 5 pieces: two trapezoidal plates (as wings), a cone, a circular 
cylinder, and a hemisphere. The cone’s profile is parabolic with height 0.36 m, the radius of the circular 
cylinder and the hemisphere tail is 0.12 m, the length of the cylindrical part is 1.0 m, the two plates are 
identical in shape and size, the two parallel sides are 0.32 m and 0.16 m, respectively. The other 
parameters are shown in the sketch. 
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Figure 5. The comparisons of RCS that is directly calculated and extrapolated for the simple airplane 
model in Figure 4. The number of frequency samples used to generate the extrapolated result is 10. 
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Figure 6. The directly calculated (brute-force) and the extrapolated RCS results of VFY 218 at 300 MHz 
in the horizontal plane ( o90iθ = ). The circles indicate the sampling points from which the RCS of the 
dense output points (the solid line) are generated. The dot-dash line is the result using the bi-static to 
mono-static approximation method. 
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Figure 7. A conducting box with dielectric coating. The thickness of the box (bottom part) is 0.08 m, and 
the coating slab thickness is 0.04 m. The number unknowns for the conducting part is 12720, and the 
number of unknowns for the material part is 19140. 
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Figure 8. The mono-static RCS of dielectric slab calculated by brute-force, and by extrapolation. The 
number of RCS points is 181, and the number of samples is 13 for the extrapolation. 
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Figure 9. The mono-static RCS of a conducting box coated by a layer of dielectric slab calculated by 
brute-force, and by extrapolation. The number of RCS points is 181, and the number of samples is 13 for 
the extrapolation. 
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IV.    Discussions and Summary 
There are some remarks that must be pointed out 
for this method. First, in section 2 above, it has 
been assumed that the interactions among the 
basis functions are typically strong when they are 
close, and are weak when they are far away from 
each other. This assumption is not valid if there 
are strong multi-bounce contributions to the far-
field. An example is a single 90 degree corner 
reflector (or aligned array of such reflectors). It 
has strong two bounce interactions that contribute 
directly to the backscattered field. Another 
example is a deep cavity which has multiple wave 
bounces inside the interior walls. As a result, the 
simple current extrapolation method introduced 
above does not apply to these two types of targets. 
Secondly, as is seen in the numerical example, the 
CPU time saving does not necessarily 
proportional to the ratio between the numbers of 
actual output points and the samples. This is due 
to the use of the current solution as initial guess to 
predict the next near-by solutions. In an iterative 
solver, the number of iterations is normally small 
if a better initial guess is built. When the output 
points (angle and frequency) are close, then the 
solutions are expected to be close as well. As a 
result, the solution at one point can be used as the 
initial guess for the next (near-by) point. For the 
brute-force approach, solution is made for each 
output point. Hence, the “distance” between two 
neighbor points is much smaller than that of the 
samples in the extrapolation method, leading to a 
smaller number of iterations per solution in the 
brute-force approach. Finally, it is also noted that 
for the angular loop, the extrapolation method has 
about the same level of accuracy as the bi-static to 
mono-static approximation approach. 
 
To summarize, a current extrapolation method is 
introduced to rapidly perform angle and frequency 
sweep in the far-field calculation using the 
sparsely sampled solutions. Numerical examples 
show that the results agree reasonably well to that 
provided by the direct solution, but the 
extrapolation method uses about the same amount 
of memory, and much less CPU time than that of 
the brute-force approach. There are two 
advantageous for this method. First, it is easy to 
implement (no out-of-core processing is needed), 
and it has small extra memory (in fact, the extra 
memory required is equal to N complex numbers, 

where N is the number of basis functions used in 
the solution). Secondly, the extrapolation applies 
to both angle and frequency sweeps. 
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