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Abstract 
The effect of the gaps between the panels of 

a reflector, used as a radio-telescope, is analyzed in 
this paper via the multiscale and array factor 
approach. Initially, the simulation is carried out by 
numerical integration as well as the Finite Difference 
Time Domain (FDTD) Method for a reflector with a 
moderately large diameter, and the results are then 
scaled for the actual size, which is thousands of 
wavelengths in diameter in the frequency range of 
interest. The array factor concept is employed to 
demonstrate the fact that the grating lobe cannot arise 
for the typical gap size of the reflector.  

 
Multiscale approach 
 We investigate a large reflector antenna, 
which is a 120 ft (36.57 m) diameter radio-telescope, 
originally designed for operation up to 10 GHz, but 
now being considered for application at higher 
frequencies. However, in higher frequencies the 
quasi-periodic structure of the gaps in the reflector 
might cause grating lobes in the far-field pattern. The 
gaps consist of the hollow rings and strips dividing 
the panels similar to the Fig. 1. The width of the gaps 
is one wavelength (in the frequency of interest) 
whereas the length of the panels is in order of 1000 
wavelengths. The diameter of the main parabolic 
reflector is on the order of 10,000 wavelengths, 
which makes it impractical for the direct numerical 
simulation. Therefore we use a multiscale approach 
to study the grating lobes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To estimate the level of the grating lobes, 
first we compute the far-field pattern due to the 
circular aperture of 34 wavelength diameter with the 
gaps of one wavelength (where the surface current is 
set to zero in the shadow of the gaps in the aperture) 
between the 5-wavelength long panels shown in Fig. 
1. In this approach (shadowing) the assumption is 
that the current is uniformly distributed on the panels. 
The H- and E-plane far-filed patterns of the circular 
aperture (solid panel) vs. slotted (with panels) are 
shown in Figs. 2 and 3, respectively. It is seen that 
the first grating lobe arises around 10 degrees. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In the next step to validate the shadowing 
approach we compute the scattered far-field of the 
same size flat circular reflector with and without the 
gaps, illuminated by a normally incident plane wave 
using the Finite Difference Time Domain (FDTD) 
Method [1]. The scattered-field formulation of the 
FDTD Method is used to simulate the flat reflector 
[2]. The normally incident wave is analytically 
introduced everywhere in the computational domain 
particularly on the surface of the perfect electric 
conductor of the reflector. Next the scattered field is 
computed throughout the domain by setting the 
tangential components of scattered electric fields to 

Fig.1. Illustration of circular reflector (diameter 34 
lambda); panels (5 lambda) and gap width 1 
lambda; x and y axes show the cell numbers. 

Fig.2. H-plane far-field pattern of circular aperture 
with and without panels with diameter of 34 
lambda (shadowing approach). 
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negative of those of incident field on the surface of 
the reflector. Upon the completion of the simulation 
the equivalent surface currents at the frequency of 
interest on the Huygens box surrounding the 
reflector, which was stored throughout the simulation 
is used to compute the scattered far-field pattern via 
the near-to-far-field transformation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The comparison of the patterns for the solid 
panels in both H- and E-planes using the two 
methods, presented in Figs. 4 and 5, respectively, 
shows that the difference is limited to the far-end 
lobes. This is due to the fact that in the shadowing 
approach the edge diffraction is ignored. The same 
comparison is shown in Figs. 6 and 7 for the slotted 
case using these two methods. Once again, the 
difference is limited to the far-end lobes. One can 
conclude that the diffraction effect due to the gaps is 
insignificant and that the shadowing approach 
predicts the level of the grating lobes adequately.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the above simulation we can 
predict the pattern of the slotted reflector simply by 
arraying the panels with uniform current 
distributions. The grating lobes level and the 
locations depend on the length of each element and 
the inter-element separation. Consequently, we use 
the array factor concept to predict the performance of 
the slotted reflector. For simplicity we consider only 
the linear array of panels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  In the linear array of panels the grating lobe 
levels and locations depend on a, the length of each 
element and d, the inter-element separation, as shown 
in Fig. 8. At first we assume a linear array of 5 panels 
with a = 5λ, and d = 6λ (therefore the gap between 
the panels is g = λ). The pattern of the single element,  

Fig.3. E-plane far-field pattern of circular aperture 
with and without panels with diameter of 34 
lambda (shadowing approach). 

Fig.4. H-plane far-field pattern of solid circular disc 
with diameter of 34 lambda. 

Fig.5. E-plane far-field pattern of solid circular disc 
with diameter of 34 lambda. 

Fig.6. H-plane far-field pattern of circular 
reflector with diameter of 34 lambda with 
panels. 
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array factor, and pattern multiplication is shown in 
Fig. 9. The pattern multiplication is also compared by 
the pattern of the solid panels (a = 6λ, d = 6λ, and g = 
0). The first grating lobe again shows up around 10 
degrees (first peak angle qp) where the array factor 
has the grating lobe. However, it can be shown as the 
inter-element spacing is decreased (in other words 
when the gap becomes small compared to the panel 
size) the null of the single element pattern (first null 
angle qn) moves closer to the grating lobe of the array 
factor, and this, in turn, reduces the difference 
between the patterns of the solid and slotted panels.  
 

The individual panel far-field pattern has the 

Sinc function form 
2/sin

)2/sinsin(
θ
θ

ka
kaE =  and the 

first null occurs when the argument of the Sinc 
function is equal to π and, therefore, where aλ is the 
electrical length of the panel. 
 
 
 
 

On the other hand, the array factor 
expression is given by [3] 

)2/sinsin(
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when πθ =2/sinkd  hence 
))/(1(sin)/1(sin 11

λλλθ gadp +== −− , where 
aλ and gλ are the electrical dimensions of the panel 
and gap respectively. 

 
By comparing the expressions for the qp and 

qn, one can see that as long as the gap size is small 
compared to the length of the panel, the difference 
between these angles is insignificant. This is shown 
in Fig.10 for the array of 11 panels, with a length of 
1170λ and a gap of λ. The difference between the 
two patterns is seen to be insignificant, for the reason 
given above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.7. E-plane far-field pattern of circular reflector 
with diameter of 34 lambda with panels. 

d = a+g 

a g 

panel 

Fig.8. Illustration of linear array of N panels with length a and spacing d. 

Fig.9. Far-field pattern of linear array of 5 panels 
(a = 5λ, d = 6λ, and g = λ).  

74 ACES JOURNAL, VOL. 21, NO. 1, MARCH 2006



  

 
 
 
 
 
 
References: 
[1] K. S. Yee, “Numerical solution of initial 

boundary value problems involving Maxwell’s 
equations in isotropic media,” IEEE Trans. 
Antennas and Propagat., vol. AP-14, pp. 302-
307, May 1966. 

[2] A. Taflove and S. C. Hagness, Computational 
Electromangeics: The Finite-Difference Time-
Domain Method, 2nd ed. Boston, MA: Artech, 
pp. 224-227, 2000. 

[3] “Antenna Theory, Analysis and Design”, C. A. 
Balanis, Second Edition, John Wiley & Sons, 
Inc. pp. 582–583, 1982. 

 
 

 Nader Farahat is Associate 
Professor in the Electrical 
Engineering Department of 
Polytechnic University of Puerto 
Rico. He is also adjunct research 
associate at Pennsylvania State 
University. 

 

 

 

 

 

Raj Mittra is Professor in the 
Electrical Engineering Department 
of the Pennsylvania State 
University and the Director of the 
Electromagnetic Communication 
Laboratory. He is also the President 
of RM Associates, which is a 

consulting organization that provides services to 
industrial and governmental organizations, both in 
the U. S. and abroad. 

 

 

   

Fig.10. Far-field pattern of linear array of 11 
panels (a = 1170λ, and g = λ). 
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