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Abstract— The performance of an explicit, residual-based, a
posteriori error indicator for directing a single level p-refinement
of the finite element method, electromagnetic analysis of multi-
port waveguide structures is evaluated experimentally by con-
sidering three different structures. The error indicator consists
of a linear combination of element volume and element face
residuals. It is found that the indicator is generally very effective
in identifying elements that need to be refined. It is also found
that the relative weighting of the volume and face residual
contributions to the error indicator plays an important rol e in
its performance.

I. I NTRODUCTION

The Finite Element Method (FEM) can be used very effec-
tively in the analysis of waveguide structures. References[1],
[2], [3], [4] represent some examples of the driven problem and
[5], [6] represent some examples of the eigenvalue problem.
There are fundamental differences between the driven- and
eigenvalue problems. The eigenvalue problem is typically
a 2D analysis of the waveguide transverse plane with the
purpose of finding the modal field distributions and cutoff
frequencies, whereas the driven problem can be in 2D (see
[4]), but is generally constructed in 3D (see [1], [2], [3]).The
driven problem needs to include the waveguide port(s) within
the variational formulation as an inhomogeneous, Dirichlet
boundary condition (the voltage-current approach, see [4])
or as a special type of Neumann boundary condition (the
incident-reflected approach, see [1], [2], [3]).

In this paper we will use curl-conforming, vector elements
to analyze 3D, multi-port, inhomogeneously filled, waveguide
structures at specific frequencies (a driven problem), using
Neumann boundary conditions to model the ports. These
elements posses fundamental advantages over scalar elements,
as discussed in numerous publications [6], [7], [8], [9]. The
waveguide port variational boundary value problem and the
resulting FEM is discussed in Section II.

The main contribution of this paper is the experimental per-
formance evaluation of an explicit, residual-based, a posteriori
error indicator when used to direct a single levelp-refinement.
Error indicators are commonly used for refining finite element
discretizations in an iterative manner.

The error indicator is presented in Section III and is a
proper bound on an approximate energy norm. It can be

derived from the waveguide port variational boundary value
problem, as shown in [10], [11]. It is explicit in nature and
based on volume and trace residuals. The indicator is of the
same general form as a residual-based indicator presented in
[12, eq.(3.18)] for the general, scalar, elliptic boundaryvalue
problem case, bounding the proper energy norm. There are
clearly some important differences between our indicator and
the one in [12], but these will not be discussed further. Other
examples of indicators, similar to the one used here, can be
found in the literature. Reference [6, Appendix G] presents
an explicit, residual-based indicator tailored to the vector
wave equation, but it does not incorporate the waveguide
port formulation that we employ and only deals with 2D
problems. Reference [13] presents an explicit, residual-based
estimator for 3D, electrostatic problems. Explicit, residual-
based indicators that bound theL2 norm of the error as
opposed to the (approximate) energy norm, can also be derived
— see [12], [14] for the scalar elliptic case and [15] for the
Maxwell system case where an open boundary, hybrid FEM
is considered, employing spherical harmonics, similar in some
respect to the unimoment method [16].

Ideally, one would like to investigate the performance of an
error indicator experimentally by considering problems with
analytical solutions. Unfortunately, very few such problems
are available for the type of multi-port waveguide structures
that are considered here. Therefore, we resorted to considering
the errors with respect to higher order solutions as a measure
of the true performance. This still is of great practical value,
since the maximum available order solution represents the
closest possible approximation of the true solution for a
given discretization, in any case. We restrict ourselves to
two elements of different order that are widely used: the
Constant Tangential/Linear Normal (CT/LN) and Linear Tan-
gential/Quadratic Normal (LT/QN) elements [9]. Section IV
describes the investigative procedure followed. In Sections V,
VI and VII, investigative results of three different waveguide
port structures are presented and discussed.

We end by drawing some overall conclusions in light of all
the available results.

In this paper, the subscriptw will indicate entities associated
with the feeding waveguides and/or their corresponding port
apertures.
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II. T HE WAVEGUIDE, FINITE ELEMENT FORMULATION

The electric field, vector wave equation, boundary value
problem on the volumeΩ, is as follows [1]:


∇×
1

µr

∇× E− k2
0ǫrE = −jk0Z0J on Ω,

n̂ × E = 0 on ΓD,
n̂ ×∇× E = N on ΓN ,

(1)

where ΓD represents the homogeneous, Dirichlet boundary
andΓN represents the inhomogeneous, Neumann boundary.J

represents an impressed current distribution andN represents
a general Neumann boundary condition.

The electric field, vector wave equation, boundary value
problem can be expressed as a variational boundary value
problem [11], yielding



∫
Ω

{
1

µr

∇× E · ∇ × W − k2
0ǫrE · W

}
dV

= −

∫
ΓN

1

µr

N · W dS − jk0Z0

∫
Ω

J ·W dV

∀ W ∈ W ; E ∈ W

(2)

with

W = {a ∈ H(curl, Ω) | n̂ × a = 0 on ΓD} . (3)

Dominant,TE10 mode modeling of a waveguide port is
included in the variational boundary value problem via a
Neumann boundary condition at the port apertureSw, as
described in [1]. The resulting variational boundary value
problem is as follows:



∫
Ω

{
1

µr

∇× E · ∇ × W − k2
0ǫrE · W

}
dV

+
jkw

µrw

∫
Sw

(n̂ × E) · (n̂ × W) dS

=
2jkw

µrw

∫
Sw

(n̂ × E
inc
w ) · (n̂ × W) dS

∀ W ∈ W ; E ∈ W.

(4)

Note that the impressed, electric current source term was
dropped in equation (4), since no such sources will be present
in the waveguide problems considered here.

E
inc
w andkw represent the incident,TE10 wave at the port

and the feeding waveguide,TE10 mode propagation constant,
respectively. They are defined in terms of the local port
coordinate system shown in Figure 1, as follows [17]:

E
inc
w = E inc

w sin
(πx

a

)
ŷ. (5)

kw =

√
k2
0 −

(π

a

)2

. (6)

A finite element discretization is employed in order to solve
equation (4) in an approximate manner. The electric field is
represented as

Eh =

NF∑
i=1

EiNi, (7)

with the Ei representing the unknown degrees of freedom
and theNi representing the basis functions. By choosing the

x


y


a


b


Fig. 1. Waveguide aperture. Definitions of the local coordinate system and
dimensions.

testing functions equal to the basis functions, equation (4)
leads to a symmetric matrix equation[A]{E} = {b} in terms
of the degrees of freedom.

Curl-conforming, hierarchal, vector basis functions of mixed
order are used [9]. Since the elements are of mixed order, they
model the unknown field and its curl to the same polynomial
degree, with the least possible degrees of freedom [18]. Note
that both of these quantities play roles of equal importancein
equation (4). Normal field continuity is not enforced by curl-
conforming elements; the associated benefits are outlined in
[7]. The elements are hierarchal, which means that elements
of different polynomial order can easily be used within the
same mesh.

In the rest of this paper, the hierarchal property of the
elements is of great importance, since CT/LN (H0(curl)) and
LT/QN (H1(curl)) elements are used together. The definitions
of the basis functions used, can be found in [19].

III. T HE WAVEGUIDE, EXPLICIT, RESIDUAL-BASED, ERROR

INDICATOR

Define the error field as

eh = E− Eh. (8)

DefineK as a single, elemental volume of the mesh and define
f as a single, facial area of the mesh, withNK as the number
of elements in the mesh andNf as the number of faces in the
mesh. Further define

hK(i) = diam(Ki), (9)

hf(m) =

{
max

{
diam(K(1)), diam(K(2))

}
internal face,

diam(K(1)) boundary face,
(10)

where the superscripts(1) and (2) indicate the two elements
sharing the face concerned and diam(K) indicates the diameter
(maximum dimension) of elementK.

The following explicit, residual-based, error bound can be
derived for the discretized, waveguide variational boundary
value problem of equation (4) [10], [11]:

‖eh‖
2
Ea(Ω) ≤ CV

NK∑
i=1

h2
K(i)‖RV ‖2

L2(Ki)

+ Cf

Nf∑
m=1

hf(m)‖Rf‖
2
L2(fm), (11)
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with the approximate energy norm defined as

‖a‖Ea(Ω) ≡

[
NK∑
i=1

|a|
2
(H1(Ki))3

]−
1
2

·

∣∣∣∣
∫

Ω

{
1

µr

∇× a · ∇ × a − k2
0ǫra · a

}
dV

+
jkw

µrw

∫
Sw

(n̂ × a) · (n̂ × a) dS

∣∣∣∣ (12)

where|a|(H1(K))3 designates the Sobolev semi-norm of order
1, on elemental volumeK [20]. The volume and face residuals
in equation (11) are defined as

RV = −∇×
1

µr

∇× Eh + k2
0ǫrEh in Ki; i = 1, ..., NK .

(13)

Rf =




n̂(12) ×

[
1

µ
(1)
r

∇× E
(1)
h −

1

µ
(2)
r

∇× E
(2)
h

]

on fm \ Sw; m = 1, ..., Nf

1

µr

n̂ ×∇× Eh −
jkw

µrw

n̂ ×
[
n̂ ×

(
2Einc

w − Eh

)]
on fm ∩ Sw; m = 1, ..., Nf .

(14)
It is clear that‖eh‖Ea(Ω) is not a proper norm of the

error field, because it does not conform to the well known
specifications of a proper norm [21], since‖eh‖Ea(Ω) = 0 6⇒
eh = 0. However,eh = 0 ⇒ ‖eh‖Ea(Ω) = 0 and one can
further observe that the residuals (and therefore the RHS of
equation (11)) will go to zero whenEh satisfies the vector
wave equation and the Maxwell continuity conditions [17].
Therefore: the RHS of equation (11) can reliably indicate the
presence of an error, but not the absence thereof. This is not
ideal, but it will be shown to be quite useful.

Equation (11) can be rewritten in terms of elemental con-
tributions to the bound on‖eh‖

2
Ea(Ω). It is assumed that

the facial contributions are shared equally between elements.
The boundary face contributions are also scaled by1/2 even
though they are not shared, since they represent the same
Maxwell continuity condition as the internal face residuals
and should therefore be treated in the same way. Equation
(11) becomes a summation of elemental error indicators:

‖eh‖
2
Ea(Ω) ≤

NK∑
i=1

(
CV h2

K(i)‖RV ‖
2
L2(Ki)

+
1

2
Cf

∑
fm⊂∂Ki

hf(m)‖Rf‖
2
L2(fm)

)
.

(15)

The unknown constantsCV and Cf in equation (15) can be
replaced with two new constants,C andα, resulting in

‖eh‖
2
Ea(Ω) ≤ C

NK∑
i=1

(
αh2

K(i)‖RV ‖2
L2(Ki)

+
1

2
(1 − α)

∑
fm⊂∂Ki

hf(m)‖Rf‖
2
L2(fm)

)
,

(16)

with
0 ≤ α ≤ 1. (17)

The valueα clearly represents the relative contributions of the
volume- and facial residuals to the elemental indicators. The
effect of this parameter on the indicator performance will be
studied in the subsequent sections.

IV. I NVESTIGATIVE PROCEDURE

This section describes a procedure for evaluating the effect
of the parameterα on the performance of the error indicator
of equation (16), for a specific problem and at a specific
frequency.

After an all-CT/LN solution, the following elemental error
indicator is calculated for every elementKi, i = 1, .., NK ,
with fixed α:

αh2
K(i)‖RV ‖2

L2(Ki)
+

1

2
(1 − α)

∑
fm⊂∂Ki

hf(m)‖Rf‖
2
L2(fm).

(18)
The problem is then re-solved, but with a percentage of
elements with the highest error indicator values upgraded to
LT/QN elements. Since the quality of the upgraded solution
must lie between that of an all-CT/LN- and an all-LT/QN
solution, the relative solution quality errorǫQ, measured in
terms of the reflection coefficientS11, is defined as follows:

ǫQ =

∣∣∣∣∣
S11 − SLT/QN

11

SLT/QN
11

∣∣∣∣∣ . (19)

The valueǫQ is called relative, since it is a measure of the

solution quality error
∣∣∣S11 − SLT/QN

11

∣∣∣, relativeto the magnitude

of the highest order solution,
∣∣∣SLT/QN

11

∣∣∣.
Various ǫQ values are obtained for the current value ofα,

by changing the percentage of elements that are upgraded
to LT/QN. In all graphs to be presented, the following set
of percentages were used:0.0%, 2.5%, 5.0%, 7.5%, 10.0%,
12.5% and100.0%. This defines a curve ofǫQ as a function
of the number of degrees of freedom. A set of such curves is
generated at a given frequency point by considering a range
of α values and will henceforth be referred to as aperfor-
mance graph. On every performance graph a curve denoted
“Random” is included for reference purposes. These curves
were generated by upgrading randomly selected elements.
Considering a specific problem, a distinct performance graph
can be generated by the above described procedure, at any
frequency.

As an example, consider Figure 4, the performance graph
of a waveguide through problem atf = 8.5 GHz, to be
discussed in Section V. The first cluster of data points, around
1500 degrees of freedom, represents an upgrade of2.5% of
the elements. Following clusters represent the other upgrade
percentages used. These clusters can be quite spread out,
since the upgrading of two neighbouring elements results in
fewer additional degrees of freedom than the upgrading of
two free-standing elements (upgrading an element necessitates
the partial upgrading of its neighbours in order to maintain
tangential field continuity). At a specific upgrade percentage,
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the number of degrees of freedom depends on the element
selection scheme and will thus vary withα. The number of
degrees of freedom (rather than the upgrade percentage) was
chosen as thex-axis variable of the performance graphs, since
it is a good indicator of relative computational effort.

Various performance graphs of various problems will be
considered in order to ascertain whether a pattern is present.

V. RESULTS: PERFORMANCE GRAPHS OF A WAVEGUIDE

THROUGH PROBLEM

This section considers a waveguide through problem. The
geometry of the problem is a straight, empty length of standard
X-band waveguide. Figure 2 shows the finite element mesh.
Figure 3 compares the reflection coefficient values obtained
with all-CT/LN- and all-LT/QN elements, with the analytical
solution, showing that the LT/QN result is indeed an improve-
ment upon the CT/LN result.

Performance graphs for this structure were calculated atf =
8.5 GHz, f = 9.5 GHz, andf = 10.5 GHz. In this case the
solution quality error was not divided by

∣∣∣SLT/QN
11

∣∣∣, because the
true reflection coefficient is zero. Figures 4, 5 and 6 show the
performance graphs.

There seems to be no consistent tendency in the perfor-
mance graphs. The error indicator performance is generally
poor. We propose the following reason for this behaviour:

The actual field possesses no variation in amplitude along
the guide length, only a sinusoidal variation in phase. In the
transverse plane there is only a sinusoidal, amplitude variation
in the local (see Figure 1)x-direction. Since the actual field
variations are clearly very slow and uniform throughout the
whole structure, the actual error distribution is relatively flat,
compared to the other problems considered in this paper. Thus,
one actually needs to upgrade the mesh uniformly, rather than
selectively, for optimal error reduction.

Fig. 2. Finite element mesh of the waveguide through problem. 1194
elements, average edge length is4.5 mm. The ports are transverse to the
longest dimension of the structure. The transverse waveguide geometry is as
shown in Figure 1, witha = 22.86 mm andb = 10.16 mm.

VI. RESULTS: PERFORMANCE GRAPHS OF A WAVEGUIDE

IRIS PROBLEM

This section considers a waveguide iris problem. The ge-
ometry of the problem is a straight, empty length of X-band
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Fig. 3. S11 vs. frequency of the waveguide through problem.
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Fig. 4. Solution quality error vs. number of degrees of freedom for the
waveguide through problem atf = 8.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error is zero for all α, is
6836.

waveguide, except for an infinitely thin PEC iris located at its
center. Figure 7 shows the iris geometry. Figure 8 shows the fi-
nite element mesh. Figure 9 compares the reflection coefficient
values obtained with all-CT/LN- and all-LT/QN elements, with
an approximate, analytical result by Marcuvitz [22], showing
that the LT/QN result is indeed an improvement upon the
CT/LN result. Marcuvitz’s results are lumped-element circuit
models; in [3] the procedure required to obtains-parameters
from these was outlined.

Performance graphs for this structure were calculated atf =
8.5 GHz, f = 9.5 GHz andf = 10.5 GHz. Figures 10, 11 and
12 show the performance graphs.

Observe the following tendency in the performance graphs:
when considering only a small increase in the number of
degrees of freedom (≤ 2.5% upgraded elements), a dominant
surface contribution leads to superior results (α < 0.5), but
if one intends to upgrade≥ 5% of the elements, a value of
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Fig. 5. Solution quality error vs. number of degrees of freedom for the
waveguide through problem atf = 9.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error is zero for all α, is
6836.
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Fig. 6. Solution quality error vs. number of degrees of freedom for the
waveguide through problem atf = 10.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error is zero for all α, is
6836.

α ≥ 0.5 seems to be required.
A possible explanation for this tendency, which is also

confirmed by inspection of the geometric distribution of the
volume and face residual values, is as follows:

When a small enough number of elements are to be up-
graded, exclusive use of the face residuals leads to the best
results, because they are most effective in identifying the
elements along the iris edge, where one would expect the
greatest error in the approximate field representation to occur.
It is well known that the electric field strength at such a re-
entrant corner is singular and changes direction extremelyfast
in its vicinity [7]. The elements are of finite size and the
polynomial orders of the basis functions are also finite, thus
large inter-element discontinuities will be present as a matter
of course. Away from the singularity, the variation in the true

field is less intense and the volume residuals overshadow the
face residuals in importance.

Figures 13 and 14 show the2.5% elements with the largest
error indicator values atf = 9.5 GHz, as identified by the
α = 0.1 and α = 0.9 indicators respectively. Comparison of
these two figures clearly shows the initial, superior capability
of the α = 0.1 indicator in identifying the elements along the
iris edge in the middle of the waveguide.

From the performance graphs it can be seen via inspection
that α = 0.5 leads to the best all-round results for the
waveguide iris problem. The valueα = 0.5 causes the relative
solution quality error to decrease at a near optimal initial
gradient in two out of three cases and leads to optimal relative
solution quality error values at the highest upgrade percentage
(12.5%) in all three cases.

PEC


x


y


a


b

d


Fig. 7. Waveguide iris geometry.a = 22.86 mm, b = 10.16 mm and
d = 5.08 mm.

Fig. 8. Finite element mesh of the iris problem.1889 elements, average
edge length is4.3 mm.

VII. R ESULTS: PERFORMANCE GRAPHS OF A WAVEGUIDE

BEND PROBLEM

This section considers a waveguide bend problem. The
problem geometry is an E-plane,90◦, standard X-band, waveg-
uide bend. Figure 15 shows the finite element mesh. Figure
16 compares the reflection coefficient values obtained with
all-CT/LN- and all-LT/QN elements, with an approximate,
analytical result by Marcuvitz [22], showing that the LT/QN
result is indeed an improvement upon the CT/LN result.
Again, [3] discusses the relevant manipulations of Marcuvitz’s
lumped-element model.

Performance graphs for this structure were calculated atf =
8.5 GHz, f = 9.5 GHz andf = 10.5 GHz. Figures 17, 18 and
19 show the performance graphs.
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Fig. 9. S11 vs. frequency of the waveguide iris problem.
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Fig. 10. Relative solution quality error vs. number of degrees of freedom
for the waveguide iris problem atf = 8.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 10144.

Observe the following tendency in the performance graphs:
throughout the range of degrees of freedom (upgrade percent-
ages) considered, theα ≥ 0.5 indicators resulted in superior,
near-identical performances in every graph.

The observed tendency is close to that of the waveguide
iris problem in Section VI, except that at small upgrade
percentages (≤ 5%), the α ≥ 0.5 indicators remain superior
to theα < 0.5 indicators.

In the light of this similarity, we propose that the reason for
the behaviour exhibited by the waveguide bend performance
graphs are the same as that proposed for the waveguide iris
problem’s performance graphs. The difference in behaviour
in the case of small upgrade percentages can be accounted
for by noting that the field singularity at the re-entrant corner
of the waveguide bend is of a lower order than that of the
iris problem (r−

1
3 vs. r−

1
2 , where r is a radial coordinate

perpendicular to the re-entrant corner — see [23, p.178] for
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Fig. 11. Relative solution quality error vs. number of degrees of freedom
for the waveguide iris problem atf = 9.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 10144.
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Fig. 12. Relative solution quality error vs. number of degrees of freedom
for the waveguide iris problem atf = 10.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 10144.

Fig. 13. The2.5% elements with the largest error indicator values for the
waveguide iris problem atf = 9.5 GHz, α = 0.1.

details). This means that the upgrade percentage below which
the exclusive use of face residuals leads to superior results, is
smaller than in the waveguide iris case. In fact, this percentage
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Fig. 14. The2.5% elements with the largest error indicator values for the
waveguide iris problem atf = 9.5 GHz, α = 0.9.

is below2.5% and thus, it is not shown in Figures 17, 18 and
19.

Figure 20 shows the2.5% elements with the highest error
indicator values in the case ofα = 0.5 and f = 9.5 GHz.
Note how the re-entrant corner of the bend is covered, as one
would expect (as motivated in Section VI for the iris edge).

As noted before within this section,α ≥ 0.5 leads to the
best results for the waveguide bend problem.

Fig. 15. Finite element mesh of the waveguide bend problem.3331 elements,
average edge length is3.5 mm. The port geometries are as shown in Figure
1, with a = 22.86 mm andb = 10.16 mm.

VIII. C ONCLUSION

In this experimental investigation of an explicit, residual-
based, a posteriori error indicator (presented in Section III) for
driving a single levelp-refinement of a related waveguide FEM
formulation (presented in Section II), it seemed that the error
indicator’s performance is far superior to a benchmark, random
selection, element upgrade scheme. The only poor results were
encountered when considering the uniform, through problem,
but as it is proposed in Section V, the through problem
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Fig. 16. S11 vs. frequency of the waveguide bend problem.
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Fig. 17. Relative solution quality error vs. number of degrees of freedom
for the waveguide bend problem atf = 8.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 17628.

represents a special case that should be considered separately
when evaluating the error indicator’s general behaviour.

Though it was seen in Section VI that the face residuals
may prove more important than the volume residuals in some
regions and vice a versa, it is important to keep in mind that
both residuals together are needed to form an upper bound on
the approximate energy norm of the error field (see equation
(11)), therefore they should both be present within a general
indicator. This brings us to the choice of the parameterα
in equation (18). Although it was found that the use of the
indicator nearly always results in element selections thatare
superior to the random scheme, no matter the value ofα, it
does seem from the available results, thatα ≈ 0.5 gives the
most consistent results, but only marginally.

It was seen that the indicator considered here can be very
effective; however, a couple of limitations should be kept in
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Fig. 18. Relative solution quality error vs. number of degrees of freedom
for the waveguide bend problem atf = 9.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 17628.
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Fig. 19. Relative solution quality error vs. number of degrees of freedom
for the waveguide bend problem atf = 10.5 GHz. The all LT/QN number
of degrees of freedom, at whichǫQ = 0 for all α, is 17628.

mind. Firstly, the error indicator only indicates relativeerror
and not absolute error, which is a consequence of the unknown
constants present within equation (11). This implies that it
cannot be used as a termination condition of an iterative
analysis procedure that guarantees a specified solution error
bound. Secondly, the error indicator does not bound a proper
norm of the true error and is therefore not guaranteed to
perform consistently. Both of these limitations, which are
inherently part of the indicator considered here, may possibly
be overcome, to varying degrees, by considering other typesof
error indicators, error estimators and/or measures of the error.

Although not the topic of this present work, which has
considered only the usual mixed-order elements, subsequent
work has shown that for specific problems, full-order elements
may be desirable. The waveguide iris problem is a good

Fig. 20. The2.5% elements with the largest error indicator values for the
waveguide bend problem atf = 9.5 GHz, α = 0.5.

example of such a structure. An extended discussion and
results may be found in [24], and an adaptive scheme targeted
specifically at such problems has been presented in [25].
A general adaptive scheme within which the error indicator
discussed here could be employed, is presented in [26].
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