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Abstract— The performance of an explicit, residual-based, a derived from the waveguide port variational boundary value
posteriori error indicator for directing a single level p-refinement  problem, as shown in [10], [11]. It is explicit in nature and
of the finite element method, electromagnetic analysis of niti- 5564 on volume and trace residuals. The indicator is of the

port waveguide structures is evaluated experimentally by an- | f idual-b d indicat ted |
sidering three different structures. The error indicator consists same general 1orm as a residual-based indicator presemted |

of a linear combination of element volume and element face [12, €0.(3.18)] for the general, scalar, elliptic boundeajue
residuals. It is found that the indicator is generally very dfective problem case, bounding the proper energy norm. There are
in identifying (.alemen.ts that need to be refined. It is also fpl]d C|ear|y some important differences between our indicatat a
that the relative weighting of the volume and face residual ne one in [12], but these will not be discussed further. ©the
contributions to the error indicator plays an important rol e in o L
its performance. examp_les of mdlcators, similar to the one use_d here, can be
found in the literature. Reference [6, Appendix G] presents
an explicit, residual-based indicator tailored to the wect
. INTRODUCTION wave equation, but it does not incorporate the waveguide
The Finite Element Method (FEM) can be used very effeport formulation that we employ and only deals with 2D
tively in the analysis of waveguide structures. Refereritgs problems. Reference [13] presents an explicit, residaakt
[2], [3], [4] represent some examples of the driven problewh a estimator for 3D, electrostatic problems. Explicit, rest
[5], [6] represent some examples of the eigenvalue problebased indicators that bound th&? norm of the error as
There are fundamental differences between the driven- amgpbosed to the (approximate) energy norm, can also be derive
eigenvalue problems. The eigenvalue problem is typicaly- see [12], [14] for the scalar elliptic case and [15] for the
a 2D analysis of the waveguide transverse plane with thaxwell system case where an open boundary, hybrid FEM
purpose of finding the modal field distributions and cutof considered, employing spherical harmonics, similaroims
frequencies, whereas the driven problem can be in 2D (s@spect to the unimoment method [16].
[4]), but is generally constructed in 3D (see [1], [2], [3Dhe Ideally, one would like to investigate the performance of an
driven problem needs to include the waveguide port(s) witherror indicator experimentally by considering problemshwi
the variational formulation as an inhomogeneous, Dirichlanalytical solutions. Unfortunately, very few such probte
boundary condition (the voltage-current approach, seg [4re available for the type of multi-port waveguide struetur
or as a special type of Neumann boundary condition (thleat are considered here. Therefore, we resorted to camgide
incident-reflected approach, see [1], [2], [3]). the errors with respect to higher order solutions as a measur
In this paper we will use curl-conforming, vector elementsf the true performance. This still is of great practicaluel
to analyze 3D, multi-port, inhomogeneously filled, wavelpui since the maximum available order solution represents the
structures at specific frequencies (a driven problem),gusinlosest possible approximation of the true solution for a
Neumann boundary conditions to model the ports. Thege&ven discretization, in any case. We restrict ourselves to
elements posses fundamental advantages over scalar édemamo elements of different order that are widely used: the
as discussed in numerous publications [6], [7], [8], [9].€ThConstant Tangential/Linear Normal (CT/LN) and Linear Tan-
waveguide port variational boundary value problem and tlyential/Quadratic Normal (LT/QN) elements [9]. Section IV
resulting FEM is discussed in Section II. describes the investigative procedure followed. In Sestig,
The main contribution of this paper is the experimental pe¥/l and VII, investigative results of three different wavége
formance evaluation of an explicit, residual-based, agyasi port structures are presented and discussed.
error indicator when used to direct a single leygkfinement.  We end by drawing some overall conclusions in light of all
Error indicators are commonly used for refining finite eleinethe available results.
discretizations in an iterative manner. In this paper, the subscript will indicate entities associated
The error indicator is presented in Section Il and is with the feeding waveguides and/or their corresponding por

proper bound on an approximate energy norm. It can bgertures.
1054-4887 ' 2006 ACES
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Il. THE WAVEGUIDE, FINITE ELEMENT FORMULATION a

A
\4

The electric field, vector wave equation, boundary value
problem on the volumé), is as follows [1]:

1
Vx —VxE-kieE=—jkyZoJ onQ, b

Hr
AxE =0 onTp, @

nxVxE=N onl'y, y

whereI'p represents the homogeneous, Dirichlet boundary X
andI'y represents the inhomogeneous, Neumann boundary.
represents an impressed current distribution Bhtepresents Fig. 1. Waveguide aperture. Definitions of the local cooatinsystem and
a general Neumann boundary condition. dimensions.
The electric field, vector wave equation, boundary value
problem can be expressed as a variational boundary value

L
>

problem [11], yielding testing functions equal to the basis functions, equatign (4
leads to a symmetric matrix equatipA]{ E} = {b} in terms
/ {iv XE-VxW—keE- W} dv of the degrees of freedom.
a Lir Curl-conforming, hierarchal, vector basis functions oked

_ _/ N - Wds— jkoZo/ I Wdv (2) order are used [9]. Since the elements are of mixed order, the
r 0

N M model the unknown field and its curl to the same polynomial
VWeW; EecW degree, with the least possible degrees of freedom [18]e Not
. that both of these quantities play roles of equal importance
with equation (4). Normal field continuity is not enforced by eurl
W ={ac H(cur,Q) | Axa=0onTp}. 3) conforming elements; the associated benefits are outlimed i

[7]. The elements are hierarchal, which means that elements
Dominant, 7'E;y mode modeling of a waveguide port isof different polynomial order can easily be used within the
included in the variational boundary value problem via game mesh.

Neumann boundary condition at the port apertiig, as In the rest of this paper, the hierarchal property of the
described in [1]. The resulting variational boundary valuglements is of great importance, since CT/LN,(&url)) and
problem is as follows: LT/QN (H;(curl)) elements are used together. The definitions
1 of the basis functions used, can be found in [19].
/ {—VxE-VxW—kéerE-W}dV
@ MT'k I1l. THE WAVEGUIDE, EXPLICIT, RESIDUAL-BASED, ERROR
+j—w/ (A x E) - (2 x W) dS INDICATOR
2;:5 S o (4)  Define the error field as
- 2k /Sw(anw)-(an)dS o _E_T, -
VWeW; EcW. DefineK as a single, elemental volume of the mesh and define

. . Wf as a single, facial area of the mesh, withx as the number
Note that the impressed, electric current source term Bfelements in the mesh amd; as the number of faces in the

dropped in equation (4), since no such sources will be ptes%\esh Further define
in the waveguide problems considered here. '

E and k,, represent the incidenfEy, wave at the port hx ;) = diam(K;), 9)
and the feeding waveguid&,E;, mode propagation constant, max {diam(K V), diam(K ?))} internal face
respectively. They are defined in terms of the local poft/(m) = {diam(K(l)) boundary face
coordinate system shown in Figure 1, as follows [17]: (10)

E}° = Ey°sin (%C) y. (5)  where the superscriptd) and (2) indicate the two elements
sharing the face concerned and dids) indicates the diameter
kw = [ k2 — (f)% (6) (maximum dimension) of elemert.
a The following explicit, residual-based, error bound can be

A finite element discretization is employed in order to solvderived for the discretized, waveguide variational bouynda
equation (4) in an approximate manner. The electric field v&lue problem of equation (4) [10], [11]:

represented as N
Np 2 2 2
_ N lerllge) < Cv Z P IBRv 112k
E, =Y EN, (7 g
. - =1 Ny
with the E; representing the unknown degrees of freedom +Cy Z hf(m)||Rf||%2(fm)a (11)

and theN; representing the basis functions. By choosing the

m=1
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with the approximate energy norm defined as with
_1 0<a<l a7)
Ng 2
lallpe) = lz |aI?H1(K1))3] The valuex clearly represents the relative contributions of the
i=1 volume- and facial residuals to the elemental indicatorse T

. / iv xa-Vxa—klea-abqy  cffectof this parameter on the indicator performance wall b
a Lur o studied in the subsequent sections.
Jkw

™ /Sw(ﬁ x a) - (it x a) dS’ (12)

where|a|(H1(K) , designates the Sobolev semi-norm of order This section describes a procedure for evaluating th_e teffec
1,0n eIementafvqumK [20]. The volume and face residualsof the parametex on the performance of the error indicator

+
IV. INVESTIGATIVE PROCEDURE

in equation (11) are defined as of equation (16), for a specific problem and at a specific
1 frequency.
Ry =-Vx —VxE,+ kgerEh in K;; i=1,...,Ng. After an all-CT/LN solution, the following elemental error
Hir (13) indicator is calculated for every elemehi;, i = 1,.., Nk,
. 12) 1 " 1 @ with fixed a:
n X WV x B, — WV x Ey ) ) 1 )
Hr Hr ahie ) IRV 1720k, + 5(1 —a) Z By IR £[172(5,,)-
on fm\Sw; m:l,...,Nf Fm COK;
R, = (18)

The problem is then re-solved, but with a percentage of
[0 T elements with the highest error indicator values upgraded t
on o, N Sy: m=1,...N LT/QN elements. Since the quality of the upgraded solution
me s B JE14 must lie between that of an all-CT/LN- and an all-LT/QN
It is clear that||e,||z«(q) is not a proper norm of the solution, the relativ_e solutiqn_ quality errep,, measured in
error field, because it does not conform to the well knowt§rms of the reflection coefficiertt;,, is defined as follows:
specifications of a proper norm [21], singey|| ga(o) = 0 # Sy, — SLTION
e, = 0. However,e, = 0 = len|lze) = 0 and one can €Q = T/QlNl
further observe that the residuals (and therefore the RHS of 11
equation (11)) will go to zero whelt;, satisfies the vector The valuee, is called relative, since it is a measure of the

wave equation and the Maxwell continuity conditions [17]q tion quality errov‘Su _ SIII/QN” relativeto the magnitude
Therefore: the RHS of equation (11) can reliably indicae th

presence of an error, but not the absence thereof. This is Abthe highest order 50|Uti0+SIfI/QNJ-
ideal, but it will be shown to be quite useful. Various e values are obtained for the current valueoof
Equation (11) can be rewritten in terms of elemental coby changing the percentage of elements that are upgraded
tributions to the bound orjey,||? o)~ It is assumed that to LT/QN. In all graphs to be presented, the following set
the facial contributions are shared equally between elésnerof percentages were usedl0%, 2.5%, 5.0%, 7.5%, 10.0%,
The boundary face contributions are also scaled f% even 12.5% and100.0%. This defines a curve ofy as a function
though they are not shared, since they represent the sahéhe number of degrees of freedom. A set of such curves is
Maxwell continuity condition as the internal face residualgenerated at a given frequency point by considering a range
and should therefore be treated in the same way. Equatieina values and will henceforth be referred to aperfor-
(11) becomes a summation of elemental error indicators: mance graphOn every performance graph a curve denoted
Nk “Random” is included for reference purposes. These curves
2 2 2 were generated by upgrading randomly selected elements.
lenllze@ < Z (CVhK(i)HRVHP(Ki) Consi(?ering a spe(B:/ificppgroblerg, a distinc>': performance lyrap

L v x By — P [ (2B~ B,)]

(19)

i=1

1 ) can be generated by the above described procedure, at any
+§Cf Z hf’(m)HRfHL2(.fm))' frequency.
fm COK: As an example, consider Figure 4, the performance graph

(15) of a waveguide through problem gt = 8.5 GHz, to be

The unknown constant§y, and C; in equation (15) can be discussed in Section V. The first cluster of data points, radou
replaced with two new constants, and «, resulting in 1500 degrees of freedom, represents an upgrade56t of
the elements. Following clusters represent the other aegra

9 J 9 9 percentages used. These clusters can be quite spread out,
llenllze (@) < CZ (ahK(i)HRV”Lz(Ki) since the upgrading of two neighbouring elements results in
= fewer additional degrees of freedom than the upgrading of
(1—a) Z hf(m)HRfH%z(fm)) ; two free-standing elements (upgrading an element neat=sit
fm COK; the partial upgrading of its neighbours in order to maintain
(16) tangential field continuity). At a specific upgrade percgeta

_|_

N =
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the number of degrees of freedom depends on the elem¢  0.04 e

selection scheme and will thus vary with The number of g See ° o é%l_},/\tllc
degrees of freedom (rather than the upgrade percentage) v R e LT/QN
chosen as the-axis variable of the performance graphs, sinc 0.03; °
it is a good indicator of relative computational effort. R s
Various performance graphs of various problems will br 5! i
considered in order to ascertain whether a pattern is p1r.ese|—;,
N
V. RESULTS PERFORMANCE GRAPHS OF A WAVEGUIDE 0.01f 1
THROUGH PROBLEM O PSPPSR TP RTTPRTSPNY |
This section considers a waveguide through problem. Tt
geometry of the problem is a straight, empty length of stashda 0
X-band waveguide. Figure 2 shows the finite element mes
Figure 3 compares the reflection coefficient values obtaine _; 5, ‘ ‘ ‘ 5 S
1 10.5

with all-CT/LN- and all-LT/QN elements, with the analytica 8.5 9
solution, showing that the LT/QN result is indeed an improve
ment upon the CT/LN result.

Performance graphs for this structure were calculatgd-at
8.5 GHz, f = 9.5 GHz, andf = 10.5 GHz. In this case the

9.5
Frequency (GHz)

Fig. 3. S11 vs. frequency of the waveguide through problem.

solution quality error was not divided byt1/°N|, because the 0.04r
true reflection coefficient is zero. Figures 4, 5 and 6 show tF jac|
performance graphs. <

There seems to be no consistent tendency in the perfc . 003
mance graphs. The error indicator performance is genera £
poor. We propose the following reason for this behaviour:

The actual field possesses no variation in amplitude alor § !
the guide length, only a sinusoidal variation in phase. & th c

0.025¢

lity e

. ) . i .o [ e o=01 |

transverse plane there is only a sinusoidal, amplitudetrari 5 0.015 . ...
in the local (see Figure 13-direction. Since the actual field & : “‘g'g

.. . L o =0. . 4
variations are clearly very slow and uniform throughout thi %917 2:07 “““““ .
whole structure, the actual error d|str|but|on_ is r_eldyvﬁat, 0.005-| v q=0.9 e
compared to the other problems considered in this papes, Thi —— Random
one a(_:tually needg to upgrade the mesh uniformly, rather th 0200 1400 1600 1800 2000 2200 2400 2600
selectively, for optimal error reduction. Number of degrees of freedom

Fig. 4. Solution quality error vs. number of degrees of faradfor the

waveguide through problem at = 8.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error i@ Zer all «, is

6836.

waveguide, except for an infinitely thin PEC iris locatedtat i
center. Figure 7 shows the iris geometry. Figure 8 shows the fi
nite element mesh. Figure 9 compares the reflection coefficie
values obtained with all-CT/LN- and all-LT/QN elementsthwi
an approximate, analytical result by Marcuvitz [22], shogyi
that the LT/QN result is indeed an improvement upon the
CT/LN result. Marcuvitz's results are lumped-element @itc
Fig. 2.  Finite element mesh of the waveguide through problens4 models; in [3] the procedure required to obtakparameters
elements, average edge length4i$ mm. The ports are transverse to thefrom these was outlined.
Lohnfﬁstig'gngg);?Ligf:St;“;gg?ﬁn:haengbar:"fg?ﬁ;Vr‘;]ah‘:“agg'eome"y % performance graphs for this structure were calculatgid-at
8.5GHz, f = 9.5GHz andf = 10.5 GHz. Figures 10, 11 and
12 show the performance graphs.
Observe the following tendency in the performance graphs:
VI. RESULTS PERFORMANCE GRAPHS OF A WAVEGUIDE  \when considering only a small increase in the number of
IRIS PROBLEM degrees of freedom<(2.5% upgraded elements), a dominant
This section considers a waveguide iris problem. The gsdrface contribution leads to superior resulis< 0.5), but
ometry of the problem is a straight, empty length of X-banifl one intends to upgrade 5% of the elements, a value of
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0.04r ‘ ‘ ‘ ‘ ‘ ‘ field is less intense and the volume residuals overshadow the
0,035 face residuals in importance.
Figures 13 and 14 show ti#e5% elements with the largest
_ 0.03¢r error indicator values af = 9.5 GHz, as identified by the
% a = 0.1 anda = 0.9 indicators respectively. Comparison of
> 0025 these two figures clearly shows the initial, superior cafigbi
E 0.02 of the « = 0.1 indicator in identifying the elements along the
z iris edge in the middle of the waveguide.
% 0.015(| "*" From the performance graphs it can be seen via inspection
3 o a=0.3 e that « = 0.5 leads to the best all-round results for the
0.017| ¢ a=05 waveguide iris problem. The value= 0.5 causes the relative
0.005 : g;g:; solution quality error to decrease at a near optimal initial
— Random gradient in two out of three cases and leads to optimal velati

solution quality error values at the highest upgrade peacgn

0\ 1 1 1 1 1 1
1200 1400 1600 1800 2000 2200 2400 2600 (12.5%) in all three cases

Number of degrees of freedom

Fig. 5. Solution quality error vs. number of degrees of faradfor the a
waveguide through problem gt = 9.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error i Zer all o, is

A
\4

6836. A q
A4
0.035~ : : : : : : A b
PEC
0.03f y. -
X
5 0.025
° . S .
> 3 Fig. 7. Waveguide iris geometryy = 22.86 mm, b = 10.16 mm and
'c% 0.02 d = 5.08 mm.
>
T
_g 0.015¢
=
@ 001

0.005¢

9200 1400 1600 1800 2000 2200 2400 2600
Number of degrees of freedom

Fig. 6. Solution quality error vs. number of degrees of faradfor the

waveguide through problem gt = 10.5 GHz. The all LT/QN number of

degrees of freedom, at which the solution quality error i Zer all «, is

6836. Fig. 8. Finite element mesh of the iris probled889 elements, average
edge length ist.3 mm.

«a > 0.5 seems to be required.
A possible explanation for this tendency, which is also’!l- RESULTS PERFORMANCE GRAPHS OF A WAVEGUIDE
confirmed by inspection of the geometric distribution of the BEND PROBLEM
volume and face residual values, is as follows: This section considers a waveguide bend problem. The
When a small enough number of elements are to be ugroblem geometry is an E-plar#)°, standard X-band, waveg-
graded, exclusive use of the face residuals leads to the hgisie bend. Figure 15 shows the finite element mesh. Figure
results, because they are most effective in identifying tH& compares the reflection coefficient values obtained with
elements along the iris edge, where one would expect thi:CT/LN- and all-LT/QN elements, with an approximate,
greatest error in the approximate field representation ¢mmc analytical result by Marcuvitz [22], showing that the LT/QN
It is well known that the electric field strength at such a reesult is indeed an improvement upon the CT/LN result.
entrant corner is singular and changes direction extrefasty Again, [3] discusses the relevant manipulations of Manasi
in its vicinity [7]. The elements are of finite size and théumped-element model.
polynomial orders of the basis functions are also finitesthu Performance graphs for this structure were calculatgd-at
large inter-element discontinuities will be present as dena 8.5 GHz, f = 9.5 GHz andf = 10.5 GHz. Figures 17, 18 and
of course. Away from the singularity, the variation in thadr 19 show the performance graphs.
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0 :
— Marcuvitz e 0=0.1
o CT/LN 0. q=03
e LT/IQN en® 5 e
o .
>
= A
[
& &
m
= 503
x| 5
n ©
%]
202
~15/ s e,
T 0.1
-20 I | | . . 0 L L I Qi
8.5 9 9.5 10 105 2000 2500 3000 3500
Frequency (GHz) Number of degrees of freedom
Fig. 9. Si1 vs. frequency of the waveguide iris problem. Fig. 11. Relative solution quality error vs. number of degref freedom
for the waveguide iris problem at = 9.5 GHz. The all LT/QN number of
degrees of freedom, at whielyy = 0 for all o, is 10144.

o
&)

©
>

Relative solution quality error
o
w

Relative solution quality error
o
w

e 0=0.1 1
0.2f| o q=0.3 ] e =01
Y 3 —_ ‘@ =0.
“:H 0(:8? 0.2F| 0+ 0=0.3 1
0.1f a=u. 1 o 0=0.5
v a=0.9 B =07
— Random 0.17 e g
0 s ‘ ‘ v 0=0.9 :
2000 2500 3000 3500 — Random 'ﬁ,w”
Number of degrees of freedom 0 ‘ ‘ ‘
2000 2500 3000 3500

Fig. 10. Relative solution quality error vs. number of degre@f freedom Number of degrees of freedom

for the waveguide iris problem gt = 8.5 GHz. The all LT/QN number of

degrees of freedom, at which, = 0 for all o, is 10144. Fig. 12. Relative solution quality error vs. number of degref freedom
for the waveguide iris problem gt = 10.5 GHz. The all LT/QN number of
degrees of freedom, at whicly = 0 for all o, is 10144.

Observe the following tendency in the performance graphs:
throughout the range of degrees of freedom (upgrade percent
ages) considered, the > 0.5 indicators resulted in superior,
near-identical performances in every graph.

The observed tendency is close to that of the waveguide
iris problem in Section VI, except that at small upgrade
percentages<{ 5%), the « > 0.5 indicators remain superior
to thea < 0.5 indicators.

In the light of this similarity, we propose that the reason fo
the behaviour exhibited by the waveguide bend performance
graphs are the same as that proposed for the waveguide Fiis 13. The2.5% elements with the largest error indicator values for the
problem’s performance graphs. The difference in behaviofffveguide iris problem af = 9.5 GHz, a = 0.1.
in the case of small upgrade percentages can be accounted
for by noting that the field singularity at the re-entrantrear
of the waveguide bend is of a lower order than that of th#etails). This means that the upgrade percentage belowhwhic
iris problem 6_% vs. r~2, wherer is a radial coordinate the exclusive use of face residuals leads to superior segslt
perpendicular to the re-entrant corner — see [23, p.178] femaller than in the waveguide iris case. In fact, this peagn
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=

s,, (dB)

Fig. 14. The2.5% elements with the largest error indicator values for the
waveguide iris problem af = 9.5 GHz, o = 0.9.

is below2.5% and thus, it is not shown in Figures 17, 18 anc  _;¢ . ‘ ‘ ‘ ‘
10. 8.5 9 - 9.5 oH 10 10.5
Figure 20 shows th@.5% elements with the highest error requency (GHz)
indicator values in the case of = 0.5 andf = 9.5 GHz. Fig. 16. Si1 vs. frequency of the waveguide bend problem.
Note how the re-entrant corner of the bend is covered, as one
would expect (as motivated in Section VI for the iris edge).
As noted before within this sectiomy, > 0.5 leads to the 0.25 ;

best results for the waveguide bend problem. * e a=0.1
E o 0=0.3
0.2 o 0=05 |1
wae 0=0.7
v a=0.9
0.15 — Random | -

0.1-

Relative solution quality error

0.05r 1

03000 3500 4000 4500 5000 5500 6000
Number of degrees of freedom

SRR Gt :

*\YL‘“’ ‘”‘V‘ ki e e r | Fig. 17. Relative solution quality error vs. number of degref freedom

I vaAYy AVLY. ﬂg’é‘*-ii"-lﬂ for th ide bend probl =8. . The all LT/ ber of

RS ) msmi T R
R Avy Ny, b

vy Ay YAy AN
N,

represents a special case that should be considered sdyparat
Fig. 15. Finite element mesh of the waveguide bend prob#331 elements, when evalgatlng the e”?r mdlc_ator’S general behawourj
average edge length &5 mm. The port geometries are as shown in Figure Though it was seen in Section VI that the face residuals
1, with a = 22.86 mm andb = 10.16 mm. may prove more important than the volume residuals in some
regions and vice a versa, it is important to keep in mind that
both residuals together are needed to form an upper bound on
the approximate energy norm of the error field (see equation
(11)), therefore they should both be present within a génera
In this experimental investigation of an explicit, resiuaindicator. This brings us to the choice of the parameter
based, a posteriori error indicator (presented in Sectipfor in equation (18). Although it was found that the use of the
driving a single levep-refinement of a related waveguide FEMndicator nearly always results in element selections #rat
formulation (presented in Section Il), it seemed that threrer superior to the random scheme, no matter the value,dt
indicator’s performance is far superior to a benchmarlgdoam does seem from the available results, that 0.5 gives the
selection, element upgrade scheme. The only poor resutts weost consistent results, but only marginally.
encountered when considering the uniform, through problem It was seen that the indicator considered here can be very
but as it is proposed in Section V, the through problemiffective; however, a couple of limitations should be kept i

VIIl. CONCLUSION
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0.08

b 88
- a=0.1
- 0=0.3
- a=0.5
- a=0.7
0.02r v a=0.9
—— Random

0 1 1 1 1 1 1 1
3000 3500 4000 4500 5000 5500 6000
Number of degrees of freedom

0.06r|

0.04p -

Relative solution quality error

4860 e

Fig. 18. Relative solution quality error vs. number of degref freedom
for the waveguide bend problem #t= 9.5 GHz. The all LT/QN number of
degrees of freedom, at whialyy = 0 for all o, is 17628.

0.14 Fig. 20. The2.5% elements with the largest error indicator values for the
’ waveguide bend problem gt= 9.5 GHz, a = 0.5.

0.12
5
E 0.1 example of such a structure. An extended discussion and
= results may be found in [24], and an adaptive scheme targeted
Z0.08 specifically at such problems has been presented in [25].
s A general adaptive scheme within which the error indicator
% 0.06 discussed here could be employed, is presented in [26].
7] - 0=0.1
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