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Abstract: Two-dimensional (2-D) coupled 
electrostatic-mechanical model of RF MEMS switches 
has been developed, in which the effect of residual 
stress due to the fabrication process and axial force 
resulting from the beam stretching have been taken into 
account. The electrostatic model is based on the 
application of the finite difference (FD) technique to 
quasi-static solution of a 2-D plane cut of the MEMS 
switch structure. The electrostatic model calculates the 
induced electrostatic force on the membrane due to the 
applied dc bias voltage. From the resulting electrostatic 
potential, the force distribution, the switch capacitance, 
and the beam deformation have been calculated. The 
computed pull down voltage for different structures 
agrees well with published data. The developed 
simulation program combines the electrostatic and 
mechanical analyses together and gives accurate results 
in short running time. 

Keywords: 2-D MEMS modeling, Residual stress, 
Axial force, Coupled electro-mechanics, Shunt 
Capacitive MEMS switch, RF MEMS switches. 

1. Introduction 

RF MEMS switches are constructed using thin 
metal membrane, which can be electrostatically 
actuated using dc-bias voltage. Since they are designed 
on scales where the electrostatic force is capable to 
move or deform the membrane, 3-D or at least 2-D 
coupled electrostatic-mechanical model is needed for 
accurate prediction of the switch behavior. A simple 
one-dimensional lumped model, assumes that the shape 
of the deformed beam remains flat independent of its 
position has been presented earlier in [1]. This model is 
the simplest and most intuitive analytically, but its 
accuracy is very poor. Its purpose is for quick analysis 
to gain physical insight and understand overall behavior 
of the MEMS switches for RF and microwave 
application.  

Two-dimensional electromechanical simulations 
assuming that the beam is made up of many horizontal-
plate-to-ground-plane capacitors connected in parallel 

along the length of the beam have also been analyzed 
[2]. A three-dimensional quasi-static electro-
mechanical model, as an application of CoSolve-EM 
software by combining the electromagnetic and 
mechanical simulators to determine the beam 
deformation, has been addressed in [3]. Although the 
latter gives very accurate results, the 3-D EM and 
mechanical simulators are sophisticated, expensive and 
require huge simulation time. An accurate solution, 
without sophistication, can easily be obtained using a 
two-dimensional mechanical model that is coupled to 
the electrostatic force distribution, and this is the core 
of this article. 

Fig. 1. Schematic diagram of fixed-fixed beam RF 
MEMS switch, (a) 3-D structure,  (b) 2-D structure, 
x- y plane section. 
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The studied switch in this paper is electrostatically 
actuated and is doubly supported beam. A doubly 
supported or fixed-fixed beam RF MEMS switch 
usually consists of two parallel plates. One plate is 
fixed on the substrate, lower electrode, and the other is 
a movable membrane and is formed by a thin film metal 
that has good mechanical properties like Au or Cu 
prepared by electroplating process. A schematic 
diagram of a fixed-fixed beam shunt-capacitive RF 
MEMS switch is shown in Fig. 1. When a dc voltage is 
applied between the fixed and movable plates of the 
switch, the movable plate can move down onto the 
fixed electrode as a result of the electrostatic force 
induced due to the applied voltage. When the threshold 
(pull down) voltage is reached, the switch goes into the 
down state or OFF-state, and when no voltage is 
applied it goes into the up state or ON-state. 

The purpose of this paper is to improve the 
algorithm, which has been presented elsewhere [4] to 
determine the deformation of the bridge in the shunt-
capacitive RF MEMS switch as a function of the 
applied voltage. In [4] the effects of the residual and the 
axial stresses were not considered and also the 
electrostatic model was based on solving Laplace’s 
equation. Most of the publications, either neglect the 
effect of the residual stress or the axial force or both of 
them [5]. To the authors’ knowledge, the electrostatic 
force calculated in the literature is not in very accurate; 
some time the fringing field is neglected or used an 
approximate expression or the electrostatic force 
assumes uniformly distributed along the membrane [6-
7]. Through this study the effect of the residual stress 
and the axial stress have been considered as well as the 
electrostatic force which has been calculated very 
accurately and as a non-uniform force distributed along 
the beam. The electrostatic model is based on Gauss’s 
law applied to an inhomogeneous region with non-
uniform discretization for accurate numerical 
simulation. The pull down voltage required to actuate 
the MEMS switch has been evaluated using the 
developed simulator. The main advantages of the 
proposed solution is that both electrostatic and 
mechanical models are combined in one simple Matlab-
based program to determine the deformation of the 
switch’s bridge, which is based on quasi-static solution 
in two-dimensions using the finite difference method 
(FDM). The choice of the fixed-fixed beam is based on 
the fact that this mechanical structure is the most 
common and the most basic to the surface-micro-
machined MEMS structures. However, the developed 
simulation tool is easy to adapt to other configurations 
of MEMS structures. 

 
 
 

2. Mathematical Algorithm 

The starting point is to solve for the quasi-static 
potential in two-dimensions. Hence, the field 
distributions and the force induced on the membrane 
can be determined. Having the force distribution on the 
membrane makes it possible to activate the mechanical 
model in order to calculate the deformation in the 
membrane, which in turns alters the electrostatic field 
distribution. This cycle of electromechanical model is 
considered as one iteration. The program goes back and 
forth between the electrostatic and mechanical models 
until the difference between the maximum-deformation 
in the membrane in two successive iterations is less 
than 10-4 µm, which can be the program convergence 
criterion as defined by the user. 

A.  Electrostatic Model 

The electrostatic model starts by generating the 
meshes with non-uniform grid sizes in both directions 
to get the minimum execution time with the highest 
possible accuracy. Next, Gauss’s law is applied in the 
meshed region along with the finite difference 
technique to approximate the derivatives. The boundary 
conditions are V = Vo on the lower electrode (CPW 
signal line) and V = 0 on the upper electrode (MEMS 
bridge) and the outer boundary. On the dielectric 
interface and at any node in the computational domain 
other than those on the electrodes, Gauss’s law is 
applied.  

The solution of the potential at the nodes of the 
grid inside the computational domain based on Gauss’s 
law starts with 
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where the finite difference approximations translate this 
integral equation on the closed contour described in 
Fig. 2 to the following [8], 

Fig. 2. A general voltage node C in the computational 
domain is surrounded by four voltage nodes, L, R, B, 
and T with four different media and the Gauss’s contour.
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where the subscripts L, R, T, and B denote left, right, 
top, and bottom, respectively. This equation can be 
rearranged in the following general form:  
 
 VC = CRVR + CL VL + CTVT + CBVB                    (3) 
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Equation (3) has been solved using an iterative 

technique to find out the potential distribution 
everywhere in the computational domain. After solving 
for the potential distribution, the electric field vector 
can be calculated from the relation VE −∇=  at every 
node, such that 

x
VE x ∂

∂
−=        and             

y
VE y ∂

∂
−= . 

Since we are using non-uniform grid, the potential can 
best be described at any arbitrary node using 
Lagrange’s polynomials approximation, where 

Lagrange’s interpolating polynomial is described as: 
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where P2(x) is a second order degree polynomial which 
coincides with the exact function V(x) at three nodes L, 
R, and C as shown in the Fig. 3. 

Lagrange’s interpolating polynomial is 
differentiated to obtain an approximation for the first 
order derivative and thus, the electric field vector 
components can be computed at any node x by 
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In the same way, the y-component at any node y can be 
computed. 

The electrostatic model calculates the electrostatic 
force induced on the movable beam when a dc-bias 
voltage is applied between the upper and lower 
electrodes. When a dc-bias voltage is applied between 
the two plates, charges are induced on the membrane 
and opposite charges accumulate on the lower 
electrode. The induced charges per unit length ρ  
induced on the membrane are calculated using Gauss’s 
law in two-dimensions as follows: 

∫ •
∂
∂

−=
l

n dlan
n
V ˆˆερ                 (5) 

where l is a closed contour surrounding each subsection 
of the membrane as shown in Fig 4. Here nâ is the 
normal unit vector to the contour segments. By dividing 
the contour to four segments we obtain, 

 
( ) ( )

     ( ) ( ) .

right top

left bottom

V Vy dy x dx
dx dy

V Vy dy x dx
dx dy

ρ ε ε

ε ε

∂ ∂
= − −

∂ ∂
+ +

∫ ∫

∫ ∫

 

Assuming the field outside the metallic boundary 
and the voltage applied to the bridge to be zero, and the 
adjacent medium to the bridge surface is air with εr = 1. 
Thus, the accumulated charge per unit length 
distributed in the z-direction for any segment on the 
membrane centered at (xc, yc) can be calculated as: 

( ) .
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 Fig. 3. Lagrange interpolation. 
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Dividing this equation by the segment length (xR - xL)/2 
to find the charge density and multiplying it by b, the 
beam width, one can obtain the distributed charge per 
unit length on the bridge along the x-axis for any 
segment centered at xc as:  

b
yy

Vx
BC

B
oC −

= ερ )(  .         (6) 

Having the electric field components, the 
electrostatic force induced on the bridge can be 
determined. The normal electrostatic force per unit 
length can be determined in terms of the storage energy 
U per unit length as: dyyxdUxf ),()( −= , where 
U is defined as ∫=

s

dxdyEU 2 )2/1( ε , and s is the 

surface contour shown in Fig. 4. Thus, 

∫=
l

dxExf 2 )2/1()( ε  in Newton per unit length 

along the z-direction. Therefore, the amount of the 
electrostatic force induced on a certain segment of 
length ∆x on the membrane is calculated by: 

xyxExf o ∆=∆ )bridge at the ,(  )2/1()( 2ε . 

Dividing this equation by ∆x to find the force 
density and multiplying it by the beam width b gives 
the distributed force per unit length in the x-direction 
induced on the bridge, thus at any arbitrary node x the 
distributed force per unit length is given as: 

( )22

2
)( yxo EEbxf += ε  .               (7) 

In order to calculate the switch capacitance one 
needs to compute the total charge on the lower 
electrode then divide it by the applied voltage. 
Applying Gauss’s law around the lower electrode as 
shown in Fig. 5. This leads to the following expression 
for the total enclosed charge.  
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The capacitance C per unit length is given next by 

o
enc VC ρ= , where Vo is the applied voltage 

between the lower and upper electrodes. 

Fig. 5. Computation of the total charge 
accumulated on the lower electrode.   
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problem  (b) Computational domain with the mesh 
distribution. 
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The accuracy of the results is completely 
dependant on the number of iterations, for this reason 
the program has been run for different numbers of 
iterations to get the optimal number. The maximum 
induced electrostatic force, the maximum deformation, 
and the switch capacitance in terms of the number of 
iterations are illustrated in Fig. 6-a, 6-b, and 6-c, 
respectively. The CPU time on a PC with Pentium IV, 
1.4 GHz processor, and 2.0 GB RAM in terms of the 
number of iterations is plotted in Fig. 6-d as well. The 
maximum electrostatic force and the maximum 
deflection have been saturated after about 1000 
iterations but the capacitance saturated after 2000 
iterations. All subsequent data presented in this paper 
are generated on basis of 2000 iterations. 
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Fig. 6. (a) Maximum force vs. number of iterations (b) 
Maximum displacement vs. number of iterations (c) 
Capacitance vs. number of iterations (d) CPU time vs. 
number of iterations. The number of meshes are nx = 72, ny 
= 88 in the x and y directions, respectively. The mesh size 
is non-uniform in both x and y directions for more accurate 
solution, and it’s minimized where fine geometrical details 
are present. dxmin = 2.8 (over the lower electrode region, 
where most of the field is confined), dxmax = 9 (at the end of 
the bridge, where approximately no field), dymin = 0.0375 
(in dielectric layer, the smallest thickness in the y-
direction), and dymax = 2.23 (at the bottom of substrate, 
where the field is decayed), all dimensions are in µm. 

 

For the shunt-capacitive RF MEMS switch given 
in [1], where L (bridge length) = 300 µm, b (membrane 
width) = 80 µm, t (membrane thickness) = 2 µm, go 

(initial gap height) = 1.5 µm, W (lower electrode width) 
= 100 µm, tm (lower electrode thickness) = 0.8 µm, tox 
(oxide layer thickness) = 0.4 µm, td (dielectric layer 
thickness) = 0.15 µm, the potential distribution after 
solving the static problem in the computation region is 
shown on Fig. 7. The charge distribution per unit length 
on the bridge based on Eq. (6) has been calculated with 
dc bias voltage of 30 Volts and plotted in Fig. 8-a. The 
corresponding distributed electrostatic force per unit 
length calculated using Eq. (7) is depicted in Fig. 8-b. 
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Fig. 7. Potential distribution in the computational domain 
with dc bias voltage of 30 Volts. 
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(b) 

Fig. 8. (a) Charge distribution per unit length over the 
membrane with bias voltage of 30 Volts, (b) Force 
distribution per unit length induced on the membrane at 
bias voltage of 30 Volts. 

 

B. Mechanical Model 

Figures 1 and 9 show the fixed-fixed beam 
diagram and the load configuration, respectively. The 
step-up support in this beam has been approximated as 
a “fixed” boundary condition [9]. The transverse 
deflection of the movable beam w(x) is governed by 
Euler-Bernoulli beam equation given in [10] as: 
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Fig. 9. Schematic diagram of the deformed electrostatic 
loaded double-supported beam. 

where f(x) is the distributed force per unit length (the 
beam here is electrostatically loaded and f(x), which is 
the electrostatic force calculated from the electrostatic 
model couples the mechanical model and the 
electrostatic model). w(x) is the beam displacement, 
E = E/(1-v2) is the beam modulus where E is 

Young’s modulus, v is Poisson’s ratio, 12~ 3btI =  
is the beam moment of inertia, t and b are the beam 
thickness and width, respectively. Tr is the residual 
force and is formulated by btTr σ̂= , where σ̂  is the 

residual stress which equals )1( νσ −o for the doubly 

supported beam, where oσ  is the biaxial residual 
stress. Ta is the axial force and is formulated by 
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To find the general solution of equation (9), it is more 
convenient to rewrite it in the form: 
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Equation (10) is a fourth order nonlinear, non-
homogenous differential equation. If the axial force 

term ∫ 
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6  is neglected k will be constant 

equals to
IE
bt
~

σ̂ . Thus the 4th order differential 

equation will be linear but still non-homogenous. The 
general solution of a higher order non-homogenous 
linear differential equation can be found easily using 
the method of variation of parameters [11]. The general 
solution of this equation while, initially, assuming k is 
constant can be found by assuming the general solution 
of the homogenous equation of (10) to be in the form 

     kxkx
oc eaeaxaaxw −+++= 321)( .              (11) 

Furthermore, by setting wo(x) = 1, w1(x) = x, w2(x) = ekx, 
and w3(x) = e-kx in the last equation, one can use the 
method of variation of parameters for determining the 
particular solution wp(x) of Eq. (10) by determining 
four functions uo, u1, u2, and u3 such that 
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For these functions to be determined, four conditions 
must be specified. The Wronskian W of functions wo, 
w1, w2, and w3 is the determinant: 
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k =′ , where Wk is the determinant obtained 

by replacing the kth column of the Wronskian by the 
column consisting of the elements (0,0,0, F(x)). Simple 
integration can be used to obtain uo(x), u1(x), u2(x), and 
u3(x), while substitution in Eq. (12) yields the particular 
solution 
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Thus, the general solution of w(x) equals wc(x) + wp(x), 
which can be found as: 
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where a0, a1, a2, and a3 are constants to be determined 
by applying the boundary conditions w(0) = 0 = w’(0) 
and w(L) = 0 = w’(L), with assumed clamped-clamped 
beam. The coefficients a0, a1, a2, and a3 can be 
determined from the following matrix equation: 
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The integrals for the b coefficients are all finite and are 
computed numerically.  

Now to include the axial force in this analysis, we 
use the resulting w(x) to determine the axial force term 

2

2
0

6 Lb dw
dx

Lt dx
 
 
 ∫ and then calculate the new value of  k 

and substitute back in Eq. (13) using the new values of  
the a coefficients calculated from Eq. (14) to determine 
the new w(x).  Repeating this process until the 
difference between two successive iterations for k is 
within pre-determined value. In our procedure the error 
was set to be lower than 10-10 m-1.  

C. Coupled Electrostatic-Mechanical Model 

When a dc voltage is applied to the un-actuated 
MEMS switch shown in Fig. 1, it induces charges on 
the surface of the membrane that in turn induce a 
normal electrostatic force over the membrane, as given 
by Eq. (7). The electrostatic force causes the beam to 
deform. Such deformation will lead to a reorganization 
of the surface charges. The force distribution on the 
beam is schematically shown in Fig. 6-b. If this 
reorganization of charges is large enough to cause 
further deformation, the process is necessary to resolve 
the electrostatic problem to recalculate the new induced 
electrostatic force and this is considered as a coupled 
electro-mechanical behavior. The new electrostatic 
force is used by the mechanical model to determine the 
new transverse deflection. Going back and forth 
between these two models is carried out until the 
difference between two successive iterations for the 
transverse deflection is in a pre-determined specified 
error. In our procedure the error has been set to be less 
than 10-10 m.  

For MEMS analysis, it is usually assumed that the 
pull down occurs when the microstructure deflects 
down to (2/3)go, where go is the initial gap height. This 
is considered the unstable mechanical position of the 
bridge. Hence the back and forth switching between the 
electric and mechanical models converges as long as 
the switch works in the mechanical stability region 
other-wise it may diverge. Therefore, the iterations is 
stopped when the maximum deflection is greater than 
or equal (2/3)go, which corresponds to the pull down 
voltage for the MEMS switch. 
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3. Results and Discussion  

To validate the obtained numerical results, we 
compare the results of the maximum deflection 
calculated using our approach to those reported in [1] 
with the parameters shown in Fig. 1 for doubly 
supported beam of the dimensions given in section 2-A. 
The silicon-nitride Si3N4 and silicon-oxide SiO2 
dielectric layers have relative dielectric constants of 7.6 
and 3.9, respectively. The Young’s modulus E amounts 
to 80 GPa, the Poison’s ratio ν is equal to 0.42, and the 
biaxial residual stress σo is equal to 20 MPa. 

The computed maximum displacement and the gap 
capacitance as functions of the number of iterations are 
shown in Fig. 10. The steady state condition has been 
reached after 9 iterations between the electrostatic and 
mechanical solutions. The iterations stopped when the 
error in the maximum deflection curve falls below a 
tolerance value (here given as 10-4 µm) or the 
maximum deflection increases than (2/3)go, which 
means the applied voltage is greater than or equals the 
pull down voltage. Figure 11-a illustrates the gap height 
versus applied voltage, while Fig. 11-b illustrates the 
gap capacitance versus applied voltage. The shape of 
the bridge as a function of applied voltage is 
investigated in Fig. 12. The computed pull down 
voltage amounts to 35 Volts while the experimental 
value for similar configuration is usually reported to be  
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Fig. 10. (a) Maximum displacement and (b) Switch 
capacitance as a function of the number of iterations of 
going and back between the electrostatic and mechanical 
models at dc bias voltage of 30 Volts. 

in the range of 30 Volts. The computed up-position 
capacitance of the MEMS switch is 85 fF while the 
experimental value is 70 fF. The theoretical results are 
very close to the experimental values reported in the 
literatures. 
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Fig. 11-a. Gap height versus applied voltage. 

 

0 10 20 30 40
80

100

120

140

160

180

200

220

V oltage  [volt]

C
ap

ac
ita

nc
e 

[fF
]

 
Fig. 11-b. Capacitance versus applied voltage. 
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Fig. 12. Shape of the membrane as a function of applied 
voltage. 

4. Conclusion 

In this paper, a novel two-dimensional coupled 
electro-mechanical model has been developed, where 
the axial and residual stresses are taken into 
consideration. A Simulation program is developed to 
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determine the deformation of the bridge in RF MEMS 
switches as a function of the applied voltage. The 
electrostatic model is based on solving Gauss’s law in a 
two-dimensional Cartesian coordinates system using 
the central difference approximation for the derivatives. 
An iterative procedure is implemented for the solution 
of the potential distribution. The algorithm is very 
efficient to determine the pull down voltage of the 
shunt-capacitive MEMS switch. However, it can be 
used for other types of MEMS switches like series or 
shunt configuration, capacitive or resistive contact as 
well. 

The developed algorithm and the program 
presented are capable to determine the bridge 
deformation, pull-in voltage and to investigate the 
effect of source fluctuations on the switch performance 
efficiently. Due to its numerical efficiency and small 
CPU time requirement, the proposed technique can be 
integrated easily in computer-aided design tools for 
MEMS switches. 
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