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Abstract 
 
MEMS are minimized electromechanical devices and 
systems that are realized using integrated micro 
fabrication methods. And the technology is growing 
rapidly in RF field, because of the advantages over 
p-i-n diode or FET switches. The main application 
areas of MEMS devices in the future are Information 
Technology, Bioelectromagnetic, Medical Science. For 
the accurate design of RF MEMS structures, effective 
computationally modeling of their transient and steady 
state behaviors including the accurate analysis of their 
time-dependent moving boundaries is essential. This is 
because an accurate knowledge of the electromagnetic 
field (EM) evolution around a moving or rotating body 
is very important for the realization of new optical 
devices or microwave devices, such as the RF-MEMS 
structures used in phase-shifters, couplers, filters, 
tuners or antennas. The technique proposed in this 
paper to model MEMS structures is based on the 
finite-difference time-domain (FDTD) method with an 
adaptive implementation of grid generation. Here, this 
simulation method is applied to the analysis of a 
two-dimensional MEMS variable capacitor with 
non-uniform motions, such as accelerated motions. The 
acceleration of the MEMS capacitor is derived under 
the equilibrium between the spring force and electrical 
force. Using this acceleration, the motion characteristic 
for each time step is derived. The numerical results that 
express the relationship between the acceleration of the 
plates and the spring constant and the mass of the 
plates are shown and the transient effect is accurately 
modeled. 
 
1. Introduction 
 

As compared with PIN diode and Transistor 
switches, RF MEMS have many excellent advantages 
such as high isolation and low power consumption, and, 
as a result, MEMS technology is growing rapidly in 
RF field [1]-[3]. An addition, RF MEMS have many 
application areas, such as switches, antennas or tuners. 

For the modeling and optimization of microwave 
devices, as in the case of the RF MEMS structures 
used in phase-shifters, couplers, filters, tuners or 
antennas, an accurate knowledge of the 
electromagnetic field distribution around a moving or 
rotating body is required. But due to the limitations of 
the conventional numerical techniques for the time 
changing boundaries, it is tedious to solve these 
problems numerically for the electromagnetic fields [4]. 
Computational techniques for moving boundary 
problems have been pursued mainly in heat and fluid 
flow area [5]-[8]. In this paper, we propose a new 
numerical approach for the analysis of this type of 
problems that alleviates the limitations of the 
conventional time-domain techniques. This method is 
expanded to analyze MEMS devices with moving parts 
with the FDTD method for EM fields [9]-[10]. 
Employing a transformation in the time factor, it is 
possible to apply the grid generation technique of [11] 
to the time-domain analysis of a moving object.  With 
such a grid, the FDTD method [12] can be solved very 
easily on a “static” (time-invariant) rectangular mesh 
regardless of the shape and the motion of the physical 
region, something that makes it an especially good tool 
to analyze structures of arbitrary shape and motion.  

In this paper, this simulation method is applied to 
the analysis of a two-dimensional MEMS variable 
capacitor with accelerated motion. The acceleration of 
the plates are derived from the equilibrium between the 
spring force and electrical force. Using this 
acceleration, the relation between the mass, the spring 
constant and the oscillation of the plates are shown. 
This acceleration is useful in determining the switching 
time of the MEMS device. For the validation of this 
method, the computational results of the transient 
capacitance are compared with the theoretical results. 

 
2. Two-Dimensional Variable Capacitor with 
Acceleration Effect 
 

The dynamic behavior of the MEMS structure is 
shown in Fig. 1. The top plate is suspended by a spring. 
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Under the combined effect of mechanical and electrical 
force, the top plate moves until the equilibrium 
between the electrostatic and mechanical forces is 
reached. Fm means spring force and Fe means 
electrostatic force, that is defined as the gradient of the 
stored energies and these forces are expressed in the 
following equations, respectively, 
 

    kxbxmxFm ++= '" ,      (1) 

2

2
1 V

x
CFe ∂
∂

= ,         (2) 

 
where m is the mass of the plate, b is the mechanical 
resistance, k is the spring constant, and V is the bias 
voltage. From the equilibrium between the spring force 
and the electrostatic force, the following equation is 
derived, 
 

kxxbV
x
Cxm −′−
∂
∂

=′′ 2

2
1 .         (3) 

 
From eq. (3), the acceleration x ′′  is obtained.  

The geometry to be considered here is shown in Fig. 
2. Under the combined effect of mechanical and 
electrical force, the two fingers are assumed to move 
with different velocities for the x-direction. For the 
two-dimensional TM-propagation case, as shown in 
Fig. 2, there are only Ex, Ey, and Hz nonzero 
components with a time variation given by the 
following equations, 
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where ε , µ  are the constitutive parameters of the 
respective medium. The configurations of the physical 
and of the computational regions are shown in Fig. 2. 
  Employing the transformation with the time factor, 
the partial differential equation in the physical region 
(x, y, t) is related to the computational region ),,( τηξ  
as follows: 
 

),,( τηξxx = ,         (7) 
),,( τηξyy = ,      (8) 

             ),,( τηξtt = .              (9) 
 
The inverse transformation is given by 
 

    ),,( tyxξξ = ,      (10) 
),,( tyxηη = ,      (11) 
),,( tyxττ = .      (12) 

 
According to the transformation, the first derivatives 
are transformed as follows, 
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The inverse transformation is given by, 
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Fig. 1.  Functional model of MEMS capacitor 
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where the matrices K and L are given by 
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and 
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By this transformation, there is a unique 
correspondence between the computational region and 
the physical region. The transformed region can be 
easily solved in the rectangular computational region 
by FD-TD method. 

Under the combined effect of mechanical and 
electrical force, the plates are assumed to move for 
x-direction with velocities v and u, and the acceleration 
av, au, respectively. Using a coordinate transformation 
technique, written from eq. (7) to eq. (16), the 
time-changing physical region (x,y,t) 
can evolve to a time-invariant computational domain. 
For the geometry of Fig. 2, the transform equations 
between the physical and the computational regions are 
chosen as:  
 

)()(
)(

1 thth
thx

nn

n

−
−

=
+

ξ ,          (17) 

 
)()(

)(

1 tyty
tyy

mm

m

−

−
=

+

η ,          (18) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 t=τ ,             (19) 
 

where n=1,2,3, m=1,2,3, and )(),(),(),( 4321 thththth  
are written in the following form assuming that the 
plate accelerations and velocities remain time changing 
values for the whole time of their motion, 
 

    2
11 2

1)( tavtxth v++= ,      (20) 

2
22 2

1)( tautxth u++= ,      (21) 

    2
33 2

1)( tavtxth v++= ,        (22) 

2
44 2

1)( tautxth u++= .        (23) 

 
The functions )(1 th , )(2 th , )(3 th , )(4 th  describe 
the movement along the x axis, and allow for the 
realization of a rectangular grid with stationary 
boundary conditions. The partial time-derivatives in 
the transformed domain ),,( τηξ  can be expressed in 
terms of the partial derivatives of the original domain 
(x,y,t) using eqs. (17)-(23). The FDTD technique can 
provide the time-domain solution of the 
rectangular ),,( τηξ grid. The stability criterion in this 

case is chosen as 2δ≤∆tc , where 00 yx ∆=∆=δ , 
assuming the grid is uniformly discretized in both 
directions. In general, δ is a space increment for x  
and y direction when the grid increment is minimum 
(minimum cell size). 
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Fig. 2. (a) Physical region and (b) computational region. 
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3.  Numerical Results 
 

To validate this approach, numerical results are 
calculated for a two-dimensional variable capacitor 
with the movement of the finger only to the x-direction. 
The grid includes 200 x 200 cells, input frequency is f 
= 20 GHz 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and λ5==== LLLL zyx , 200Lyx =∆=∆ , and 

(sec)10125.3 13−×=∆t . The initial plate separation is 
5L and the grid is terminated with Mur’s absorbing 

boundary conditions. Here, the left plate is assumed to 
move due to the coupling of the electrostatic and the  
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range of V=0 (V) to 50 (V) are compared with the theoretical 
result. 
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mechanical forces. Fig. 3 displays the computational 
algorithm used in this calculation. Initial values of the 
velocity are assumed u0=0, v0=0, and au=0. From 
eq.(3), the acceleration value is derived. Inputting this 
acceleration value into the transform function )(1 th , 

)(3 th , the new capacitance C and displacement d∆ , 
transformation function )(1 th , )(3 th ,and acceleration 

va are obtained. Then from the capacitance and 
displacement, the new acceleration is obtained. 
Iterating this algorithm, it is easy to obtain the 
capacitance, acceleration and displacement controlled 
by the coupling of spring and electrostatic force.  

Numerical results are given in Fig. 4, Fig. 5, and Fig. 
6.  Fig. 4 shows the computational results of the time 
dependence of the capacitance for bias voltage values 
in the range of V=0(V) to V=50(V), for a motion 
lasting 3010 time steps. The stationary values, when 
the velocity is zero, are displayed as a reference, and 
show that stationary values have good agreement with 
the theoretical values. Fig. 5 displays the time 
dependence of the acceleration for each mechanical 
resonant frequency values in the range of 

2
17

10/ == mkω  to 2
19

10/ == mkω , when the 
plate moves away from the bottom one. The 
mechanical resonant frequency in Fig. 5(c) is 10  
times of the resonant frequency in Fig. 5(b) and 10 
times of the resonant frequency in Fig. 5(a). According 
to these values, the ratio of the resonant frequency is 
shown accurately in each figure. In Fig. 5, when the 
mechanical resonant frequency is low, the amplitude 
remains almost constant value. In Fig. 6, time 
dependence of the acceleration, the velocity and the 
displacement are shown, where 2

17
10=ω , )(10 VV = . 

It is effectively demonstrated that when the value of 
the acceleration is zero, the velocity value takes on a 
stationary value and, conversely, when the value of the 
velocity is zero, the value of the acceleration takes on a 
stationary value. 

Since the typical MEMS device has low mass 
around 10-10 kg and spring constant around 5-30 N/m, 
the mechanical resonant frequency is 30-100 kHz and 
bias voltage is 10-30 V [13].  In this paper, the values 
of the mechanical resonant frequency are in the order 
of 710 , but if a longer computation time is taken, it is 
possible to obtain results around the order of 105. The 
results derived in this paper for acceleration and 
mechanical resonant frequency are very important for 
determing the switching time. 
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Conclusions 
 

A novel time-domain modeling technique that has 
the capability to accurately simulate the transient effect 
of variable capacitors with accelerated motion 
controlled by the coupling of the electrostatic and 
mechanical forces is proposed. This technique is a 
combination of the FDTD method and the body fitted 
grid generation technique. The key point of this 
approach is the enhancement of a space and a time 
transformation factor that leads to the development of 
a time-invariant numerical grid. Using this technique, 
the numerical results of the relation between the 
acceleration, the velocity and the displacement of the 
motion are shown for a MEMS capacitor that 
demonstrate its unique computational advantages in 
the modeling of microwave devices with moving 
boundaries.  
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Abstract  —  Radio Frequency Microeletromechanical 

System (RF MEMS) switches are useful for providing low-
loss switching elements in high frequency devices. Since 
these devices contain a mechanical and an electrical 
component to their operation, predicting their performance 
is not trivial. Computational analysis can be extremely 
complicated due to the large number of variables that need 
to be incorporated. Using a multi-physics simulation tool 
seems like the only solution, but most simulators are 
optimized for only one engineering realm (i.e. mechanics or 
electronics). Combining different engineering realms into 
one simulated model will usually compromise the accuracy 
of the results. Often simulators cannot model a multi-realm 
device at all. This paper offers a solution to this problem by 
proposing a technique for combining computational analysis 
with simulation to determine the pull-down voltage and RF 
characteristics of an RF MEMS switch. Measurement 
results agree closely with the simulated results using this 
technique.  

I. INTRODUCTION 

 RF MEMS switches have become a popular area of 
research in recent years due to their small size, low loss, 
good isolation, and low cost. Solid-state switches at high 
frequencies are lossy and cause more distortion. An 
example of a doubly-supported (air-bridge type) 
capacitive MEMS switch is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Rendering of RF MEMS switch in UP and DOWN state. 

 

The switch works by deflecting the beam towards the 
bottom metal layer and causing an RF short circuit. The 
inductive regions behave like springs and make it easier 
to deflect the beam. A spring constant can be determined 
which evaluates the amount of force necessary to deflect 
the beam a given distance. Changing the shape or 
dimensions of the inductive region will increase or 
decrease the spring constant. The capacitive regions are 
responsible for creating an electrostatic force between the 
DC biased beam and the metal layer below it. This force 
is responsible for decreasing the “gap” between the metal 
layers. Changing the gap length, height, or the area of the 
capacitive region will increase or decrease the 
electrostatic force necessary to deflect the beam.  

Across the capacitive region, the charge density in the 
metal should be uniform. Otherwise, the beam will not 
deflect parallel to the bottom metal layer. Any skewing of 
the beam caused by fabrication misalignment or non-
symmetric inductive regions will result in a larger 
capacitance and a poor RF open circuit. As long as the 
switch is adequately thick (2-3 skin depths), made from a 
high-quality, highly conductive metal (copper or gold, 
usually), and properly aligned (to equalize the fringing 
electric fields on all sides) charge density in the metal 
will be uniform. MEMS switches that are not deflecting 
uniformly are usually caused by fabrication 
misalignment, non-uniform metal thickness, or 
contaminants in the capacitive region metal. The latter 
two issues prevent the charge density from being uniform 
by hampering the flow of electrons in the metal and can 
be rectified by altering the fabrication recipe. 

Electrically, the inductive and capacitive regions 
behave as their name implies. Changes in these regions 
will change the RF performance of the switch. The 
dielectric layer provides high capacitance when the 
switch is in the down state and is used to prevent stiction 
between the two metal layers. A very thin layer (~2000Å) 
of silicon nitride is typically used and generally has a 
negligible effect on the mechanics of the switch. That is, 
the bending of the beam is not directly effected by the 
presence of the silicon nitride. However, electrons can 
accumulate in this thin layer which can build up a large 
enough charge to effect the electrostatic actuation of the 
switch. Dielectric charging is especially pronounced in 
silicon nitride layers that are deposited using Plasma 
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Enhanced Chemical Vapor Deposition (PECVD) because 
of the large number of atomic defects generated from the 
plasma. Charging effects can be greatly reduced by 
properly grounding the silicon nitride to prevent electron 
accumulation. This can be improved further by thermally 
growing the dielectric layer instead of using PECVD [1]. 

Modeling MEMS switches for optimal electrical and 
mechanical performance can be a daunting task and is 
often substituted with a less accurate method. For 
instance, MEMS switches are often designed for optimal 
electrical properties (such as a low RC time constant [2]) 
or optimal mechanical properties (such as a low actuation 
voltage [3]). There are four popular inductive region 
configurations [4]. These designs, labeled 1-4, are shown 
in Figure 2. 

 
 

    
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2. Switch designs 1-4. 

 
 Deriving the equations for predicting MEMS switch 

performance that utilizes these inductive and capacitive 
regions is difficult. Very general equations can be 
investigated but the results can only be used as rough 
estimates [5-6]. Those who have tried predicting MEMS 
switch behavior using only theory often report a 
discrepancy upwards of a factor of ten between predicted 
and measurement results [7]. Certainly design 
optimization can not be done this way.  Using simulation 
software is the only way to take into account most of the 
idiosyncrasies of device performance. However, it is not 
always possible, or effective, to use a simulator to predict 
mechanical performance due to an electrostatic force.  

RF MEMS switch feature sizes are often on the order 
of λ/1000 or smaller. This is much smaller than the 
typical element size of a Finite Element Method (FEM) 
or Finite-Difference Time-Domain (FDTD) simulator, 
whose typical element sizes are λ/20 to λ/10, although 
simulations with small feature sizes are still possible with 
these methods [8]. A Method of Moments (MOM) 
simulator could be used to model the small feature sizes, 
but if the switch is being simulated with other devices 
(i.e. filters or antennas) or on a multilayer substrate then 
an FEM simulator would be more accurate because of the 
improved cell size. Clearly there is a trade off. 
Alternatively, hybrid simulators have been investigated 
which attempt to utilize the advantages of both types of 
simulation. No matter which type of simulator is used, 

when devices with small feature sizes (i.e. RF MEMS 
switches) are simulated in a complex environment (i.e. 
when surrounded by an electric field) assumptions must 
be made within the simulator and results will be 
compromised [9].  

Often, when multiple physical realms are involved in a 
problem, the optimal solution method is to use a 
simulator to solve the problem in the more complicated 
realm and to combine those results manually with theory 
from the simpler realm. For the RF MEMS switch, we 
are combining a mechanical beam dynamics problem 
with an electrostatic problem. The theory that deals with 
the electrostatics of a capacitive region is well known and 
straightforward, whereas the dynamics of a beam with 
complicated springs is much more difficult to solve. 
Solving the problem in one simulation that couples the 
two physical realms does not always give the most 
accurate results because of assumptions and 
simplifications used in the simulator. Instead, this paper 
presents a straightforward method for modeling an RF 
MEMS switch by simulating first in an optimized FEM 
mechanical simulator then calculating the pull-down 
voltage by using simple electrostatic equations. The 
measured results match very closely with the results from 
this method, which demonstrates its effectiveness. 

II. MECHANICAL ANALYSIS OF RF MEMS 
SWITCHES  

Equations for predicting the bending of cantilever and 
doubly-supported beams have been around for decades 
[10]. Unfortunately, applying simplistic equations to 
complex MEMS devices can be cumbersome. The two 
most important mechanical features of a MEMS switch 
are the pull-down voltage and the deflection. Both of 
these quantities can be calculated by treating the MEMS 
switch as a mechanical spring. In order to calculate the 
pull-down voltage, one must equate the force pulling 
down on the beam by the electrostatic force between the 
metal layers  

 2

22down
AVf
g

ε
=  

 
and the force pushing up from the spring (Hooke’s Law) 
[11], 
 

( )up of k g g= − − . 
 
 
For these equations, ε is the permittivity, A is the area, V 
is the voltage, k is the spring constant, go is the initial 
gap, and g is the evaluated gap. We can use these simple, 
spatially independent equations since we know the 
charge density (and therefore the force) is uniform across 
the capacitive region. It has been well documented that 
for parallel plate electrostatic actuation, when the gap 
reduces to 2/3 of the original gap, the beam becomes 
unstable and experiences a “pull-in” effect [11]. That is, 
the MEMS switch does not deflect over the entire gap 
according to the formula in (1). Instead, when the gap 

(1)

(2)
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reaches a certain threshold, namely 2/3 the original gap, 
the switch will snap down. Magnets experience the same 
effect. As two magnets of opposite polarity are brought 
closer together the attractive force is barely noticeable 
until they reach a certain distance apart. At this point they 
snap together and the force between them is great.  

Equating (1) and (2) where the gap is 2/3 the original 
gap and solving for the pull down voltage gives 
 
 38

27
o

PI
kgV

Aε
= . 

 
 
The maximum deflection can also be calculated from 

the spring constant by the equation [10] 
 

F
kδ −=  

 
where δ is the deflection, F is the force pushing down on 
the spring (in Newtons) and k is the spring constant. 

The values for the permittivity, area, and gap can be 
designed for and implemented in fabrication. The only 
two unknowns for a given MEMS switch are the spring 
constant and the downward force. The spring constant 
can be derived for a meandered line by the equation [4]: 
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where w is the width of the meander, t is the thickness of 
the metal, v is the Poisson’s Ratio of the metal, Ls is the 
overall width of the spring, and Lc is the distance from 
the end of the spring to the start of the meander. These 
dimensions are illustrated below. 

 
 

 
 
 

 
 

 
Fig.3. Illustration of dimensions for (5). 

 
For a non-meandered spring, the spring constant is 

given by [12] 
 3

3

32
non m

EWHk
L− =  

 
where E is the Young’s Modulus, W is the width, H is 
the thickness, and L is the length. 

The effective spring constant, keff, for the entire MEMS 
switch can be determined by combining the simple spring 
equations in a fashion similar to capacitors. That is, 

springs in parallel add directly and springs in series add 
as the inverse of the sum of the reciprocals. Therefore, 
the effective spring constants for the four switch designs 
presented in this paper are: 
 

Design 1 
 3

3

32
eff

EWHk
L

=  
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where km is the meandered spring constant given by (5) 
and kn-m is the non-meandered spring constant given by 
(6). Substituting keff from (7)-(10) into (3) for k will give 
the theoretical pull down voltages.  

III. MECHANICAL SIMULATION OF RF MEMS 

Before any complex mechanical simulations are 
performed, it is necessary to validate the model. Careful 
attention must be given to material properties, boundary 
conditions, and the applied forces. One way to validate a 
simulation model is to compare simulated values with 
theoretical values for a simple case. If the results agree, 
more complicated configurations can be simulated and 
the results can be trusted.  

A. Verification of Simulation Tool 

The FEMLAB 3.0 static structural mechanics module 
from Comsol was used for the mechanical simulations. 
FEMLAB is a multiphysics simulation tool, which is 
commonly used in industry and university settings [13]. 
The 3D MEMS switch structure with non-meandered 
springs (Design 1) was simulated with a uniform force 
pushing down on the center capacitive region.  

The theoretical deflection profile can be determined by 
taking advantage of spring superposition. This procedure 

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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is demonstrated in the figure below for the distribution of 
force, q. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 4. Spring superposition. 

 
 
The deflection equation for a uniformly actuated beam 

is given by [10] 
 ( )2 2 2

3

2
( )

2
x L Lx x q

x
EWH

δ
− +

=  
 

where x is the position along the beam, L is the length of 
the beam, and q is the force applied per length. These 
parameters are exemplified in Figure 5. 
 
 
 
 
 

 
 

 
Fig. 5. Illustration of dimensions for (11). 

The deflection equation for a partially actuated beam is 
given by [11]: 
 
 
 ( )

( )

2

4 3 2 2 3 4

3 3 2                                   for 0 x a
12

4 6 4       for a x
24

qbx L a x
EI
q x Lx L x a x a L
EI

δ


− + − ≤ ≤= 
− − + − + ≤ ≤


 
 
 
where a is the distance from the anchor that the force 
begins, b is the length of the beam that the force is 
applied to, and I is the moment of inertia given by [12]: 
 3

12
HWI =  

 
where H is the thickness and W is the width of the beam. 
Figure 6 shows a plot of the deflection given by 
FEMLAB and the results from the superposition of (11) 
and (12). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Comparison of Simulated and Analytical  

displacement of non-meandered switch. 
 
Since the simulation results agree closely with the 

analytical results, it is safe to assume that the simulator 
will be reasonably accurate for the more complicated 
spring configurations. The simulated deflection profile of 
the four switch designs is shown in Figure 7.  
 

 
 
 
 
 

 
 
 
 

Fig.7. 3D Deflection Profile of RF MEMS Switches. 

B. Deriving Pull-down Voltage from Simulation 

Using FEMLAB, it is easy to determine the force 
necessary to deflect the MEMS switch a desired distance. 
Ideally, it is necessary to deflect the MEMS switch the 
same distance as the gap between the beam and the metal 
layer below it (usually 1.5-3µm). The equation that 
relates force to pull-down voltage in terms of the gap is 
given by [10] 

 
 22

PI
g FV
ε

=  
 

where F is the force per area. This equation is derived 
from the pull-down voltage in (3), where F incorporates 
the spring constant. Doing a unit analysis between (3) 
and (14) will result in the same outcome, volts. 

Changing the force per area acting on the capacitive 
region until the deflection matches the gap will determine 
the force. Although a guess-and-check method is 
necessary to determine the value, this can be performed 
quickly using interpolation since force and deflection are 
linearly related. This force can then be used in (14) to 
calculate the pull-down voltage. 

(11)

(12)

(13)

(14)
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IV. ELECTRICAL SIMULATION OF RF MEMS 

In addition to the mechanical performance of MEMS 
switches, it is important to evaluate the RF 
characteristics. The springs exhibit an inductance, the 
actuation region exhibits a capacitance, and the metal 
beam exhibits a resistance. All together, the beam 
behaves like a series RLC circuit. These values can be 
calculated within an order of magnitude by using 
fundamental RLC equations. The resistance can be 
calculated using [14]: 

 LR
HW
ρ

=  
 
where ρ is the metal resistivity and L is the length of the 
beam. The capacitance can be calculated using [14]: 
 AC

g
ε

=  
 
Knowing the resonant frequency from measurements, the 
inductance can be calculated using [14]: 
 

 
2 2

1000
4

L
Cfπ

=  
 

where f is the resonant frequency given in GHz, C is 
given in pF, and L is calculated in nH. Papers have been 
published which investigate elaborate circuit models for 
MEMS switches [15-16]. However, if results within an 
order of magnitude are suitable, these simple equations 
are more than adequate.  

V. MEASUREMENTS 

All four switch designs were fabricated and measured 
to determine the actual pull-down voltage and resonance 
frequency. The process steps are shown in Figure 8. The 
coplanar waveguide (CPW) signal lines were fabricated 
by electron beam evaporating a titanium – gold (Ti-Au) 
layer. Silicon nitride (Si3N4) was deposited using Plasma 
Enhanced Chemical Vapor Deposition (PECVD) and 
patterned using a Reactive Ion Etch (RIE). A sacrificial 
photoresist layer was spun on and hard baked. The 
sacrificial layer was removed using a photoresist stripper 
and a carbon dioxide (CO2) critical point drying process 
was used to release the switches. 

Scanning electron pictures of two of the switches are 
shown in Figure 9. 

Measurements were taken with Thru-Reflect Line 
(TRL) calibration to deembed the cable and connector 
losses. 

VI. RESULTS 

Results for the mechanical and electrical characteristics 
of the four spring designs are presented in the following 
sections. Measurement results were taken for each 
design. The measured pull-down voltage is within 5V of 
the minimum pull-down voltage. Voltage ramping must 
be done quickly to minimize charge accumulation in the 
underlying dielectric region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Fabrication process for MEMS switches. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 9. SEM photos of fabricated switches. 

 
 

A. Comparison of Mechanical Analysis 
 

Table 1 displays the comparison between the purely 
theoretical, the simulated method presented in this paper, 
and the measured pull-down voltage. 
 

TABLE I 
COMPARISON OF THEORETICAL, SIMULATED, AND MEASURED VPI  

Design Theoretical Simulated Measured Avg 
Error 

Avg % 
Error 

1 117.135V 127.5V 100V 13.75 11.97% 
2 40.547V 38.4V 35V 3.85V 10.14% 
3 31.875V 27.8V 30V 2.98V 9.97% 
4 69.050V 72.8V 70V 2.35V 3.33% 

 
The measurement results agree closely with the 

theoretical and simulated results. The average error is 
within the measurement ramping tolerance (5V).  

The theoretical results are generally within 5-8% of the 
simulated values. The small discrepancy is mainly due to 
the Poisson ratio of the metal, which the simulator takes 
into account and theory does not [10,13]. The Poisson 
ratio relates a change in the width as the length of the 
beam is increased. There is a small discrepancy between 

(15)

(16)

(17)
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simulated and theoretical values due to simulator 
meshing tolerances.  
 
B. Comparison of Electrical Analysis 
 

The switches were measured to determine the 
resonance frequency. This is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10. Resonance frequency of MEMS switches. 
 

Using the measured resonance frequency and the 
capacitance calculated from (16), the inductance can be 
determined by (17). The resistance can be calculated 
from (15). Table 2 shows the resonance frequency values 
and the calculated capacitance, inductance, and 
resistance. 
 

TABLE II 
CAPACITANCE, INDUCTANCE, AND RESISTANCE OF RF MEMS 

Design Resonant 
Frequency 

C L R 

1 22.8175GHz 2.2pF 22pH 0.3Ω 
2 11.3625GHz 2.9pF 65pH 0.6Ω 
3 12.1525GHz 2.8pF 60pH 0.5Ω 
4 21.83GHz 1.9pF 28pH 0.2Ω 

 
The measurement results were compared to a series 

RLC circuit with the same values as Table 2 to verify the 
model. One such comparison is shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. RLC Circuit vs. Measurement Results. 

 
These results agree very closely with each other. The 

electrical model is satisfactory. 

 

VII. CONCLUSION 

In this paper, four different RF MEMS switch designs 
were analyzed using theory and simulations. By 
combining mechanical simulation results with simple 
electrostatic equations, a prediction for the pull-down 
voltage and RF performance was achieved. This 
prediction was more accurate and much easier to 
determine than using only theory or only simulations. To 
verify our mechanical simulation model, it was shown 
that for a simple switch geometry, the simulated 
deflection closely matched the theoretical displacement 
found by using spring superposition. A pull-down 
voltage for each switch was determined by using the pull-
down force given by the mechanical simulator with an 
equation that relates force to voltage. Measuring the 
resonant frequency and calculating the resistance, 
capacitance and inductance determined the electrical 
circuit model. These RLC values can be used to design 
other RF MEMS switches. Measurement results agreed 
very well with predicted values, thus demonstrating that 
simulation results can be conveniently combined with 
analytical results to achieve accurate predictions.  
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Abstract: In this paper a numerical approach for the 
analysis of the behaviour of micro electro mechanical 
systems (MEMS) is presented. The method is applied to 
the simulation of movable plate MEMS variable 
capacitors that are of common use in the CMOS voltage 
controlled oscillators (VCOs). An accurate study of 
MEMS devices requires a coupled electro-mechanical 
analysis. The mechanical analysis has to take into 
account the deformation of the plates of the capacitor 
and the electromagnetic one has to consider the 
distribution of charges and currents and the presence of 
dielectric materials. 
We first perform a coupled elastic-electrostatic analysis 
in order to obtain the tuning characteristic of the 
system; subsequently, once the positions of the plates 
have been determined, an electromagnetic analysis of 
the system is performed via an integral formulation 
based on an electric equivalent circuit. 
The proposed method has been validated by analysing 
two and three plate tuneable parallel-plate capacitors. 
 
Keywords: Integral Formulations, Method of Moments, 
MEMS, Finite Element Method. 
 
 
1 Introduction 
 
Micro Electro Mechanical System (MEMS) is a 
technology able to produce miniature mechanical 
structures, devices and systems by the use of the state of 
the art of integrate circuit (IC) fabrication [1] - [3]. The 
advantages inherited by IC technology are mainly the 
cost reduction (through batch fabrication) and the 
opportunity of the dimensional downscaling. As a 
consequence of the latter, the power consumption has 
been decreased with an important improvement of the 
overall performance. The mechanical property of silicon 
has given the opportunity of the fabrication of MEMS 
by compatible materials with the IC technology. This 
has led to the realization of monolithic integrated 
electromechanical systems including accelerometers, 
pressure sensors and micro switches. 
When used as radio frequency (RF) components MEMS 
devices are showing great potentialities. They 

demonstrate higher linearity and lower loss than similar 
components built by other technologies. In this 
perspective RF MEMS, such as RF switches, tuneable 
capacitors and high-Q inductors, may serve as 
fundamental building blocks and are becoming more 
and more used in several critical applications where 
increased functionality has to be conjugated with 
reduced power consumption and severe constraints of 
electromagnetic compatibility [3] - [5]. 
As an example it is sufficient to consider modern 
communication systems, such as the GSM cellular 
telephone system, where stringent requirements on the 
intermediate filters and on the VCOs are present. In 
particular the dynamic range of the filters and the noise 
level of a RF VCO depend (in opposite fashion) on the 
overall Q-factor of the resonator. 
A proper design procedure for these devices depends on 
an accurate analysis of the resonator whose tuneable 
component can be advantageously realized by a MEMS 
capacitor [6] – [8]. Unbiased base capacitance, tuning 
ratio, quality factor, associated inductance and 
consequent electric self resonance frequency are figures 
of merit of current use in association with tunable 
capacitors. Their evaluation requires a deep analysis of 
the device. The long computation times usually required 
by full wave coupled analysis result in the introduction 
of approximations with consequent inaccurate 
predictions producing an unacceptable design process 
through trial and error. 
A MEMS simulator should be able to perform a coupled 
electro-mechanical analysis [4], [5], [9]. The rigid-body 
motion hypothesis of the movable plate is no longer 
valid because of the high width to thickness ratio. The 
deformations of the moving plate may heavily affect the 
overall performance of the system as the effective 
stiffness of the system decreases and as a consequence 
the mechanic self resonant frequency and the pull-in 
voltage decrease as well. The accurate determination of 
the electrical figures of merit of MEMS tunable 
capacitors requires the evaluation of the charge and 
current distributions. Fringing effects and the presence 
of dielectric materials influence the values of the 
capacity at the various bias levels; the effective 
distribution of the currents in the device determines the 
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actual ohmic losses that, in conjunction with the 
dielectric losses, are used to evaluate the quality factor. 
A correct evaluation of the quality factor has to take 
into account the inductive effects of the currents 
influencing the overall reactance of the system at a 
given frequency. In addition the evaluation of the 
inductive effects is essential in the calculation of the 
electric self resonant frequency. 
The mechanic self resonant frequency of a MEMS 
capacitor usually lies in the range 10 100 KHz÷  while 
the RF signal is in the range 0.1 10GHz÷ . The RF 
frequencies are at least three orders of magnitude of 
mechanical bandwidth; as known this wide separation 
allows a simplified electromechanical coupling. The 
position and the deformations of the moving plate are 
unlikely to be caused by the RF signal and may be 
determined as a function of the bias voltage only. At the 
corresponding low frequencies the charge distribution 
and the electric field play a dominant role in the 
evaluation of the force distribution. The system in the 
new geometric configuration so determined is 
considered at rest under the effects of the RF signal. 
This paper discusses various aspects of a method for the 
electromagnetic analysis based on an integral 
formulation via an equivalent network. 
Conductors and dielectrics (assumed linear) are 
subdivided in elementary volumes in which uniform 
distributions of current density and electric polarization 
are assumed. Ohm’s law and continuity equation for the 
current are written for conductive materials; these are 
coupled with the constitutive equation for the dielectrics 
leading to a set of equations that can be viewed as the 
equilibrium equations of an electric network. 
The knowledge of the currents, charges and distribution 
of the polarization allows evaluating the most important 
figures of merit of the device. 
 
 
2 Formulation 
 
As stated in the introduction two analyses have to be 
performed on a MEMS device: first a coupled 
electromechanical analysis and subsequently an 
electromagnetic one. 
The first one is a fully three-dimensional analysis that 
iterates between a mechanical Finite Element Method 
(FEM) solution and an electrostatic Method Of Moment 
(MOM) solution.  
The second one is purely electromagnetic and uses 
results and parameters obtained by the former. 
The electromechanical analysis is explained in detail in 
the literature and it will be summarized with the 
objective to define the parameters that will be exported 
to the electromagnetic analysis. 

Let us consider a system constituted by a conductor and 
by a linear dielectric body. The system is discretized in 
elementary volumes (slabs, cylindrical sectors of 
rectangular cross section).  
Let dN  be the number of the elementary volumes 
resulting by the discretization of the dielectric bodies, 
and cN  the number of the elementary conductive 
volumes. A uniform distribution of the polarization is 
assumed in each dielectric elementary volume. 
 
2.1 Electro-mechanical Analysis 
The discretization of the conductive body produces a 
discretization of the surface of the body itself in sN  
elementary surface elements. Let us assume a uniform 
distribution of the charges on these surface elements. 
The deformable regions (i.e. the moving plate), where a 
mechanical FEM is used, are further meshed according 
with the used structural analysis software [10].  
Two meshes are defined on the same region: the first 
one is used to evaluate the force, the second one to 
calculate the displacements and the deformations. 
The force distribution on the moving plate can be 
evaluated once the charge and polarization distribution 
are known. 
Because of the assumed uniform distribution of the 
electrical quantities we can write the following 
expression for the electric scalar potential: 
 

( ) ( )

, ,
0 , 0 ,1 1

, ,
1 1

1 1( )
4 4

.

S d

j cond j pol

S d

N N
j j

P Q P Qj jS S

N N

P j j P j j
j j

Q Q
P dQ dQ

r r
σ

ϕ
πε πε

α σ

= =

= =

⋅
= + =

= + ⋅

∑ ∑∫ ∫

∑ ∑

P n

Pβ
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In the above expression ,P jα  represents the potential in 
P due to a charge uniformly distributed with unit 
density on the thj  elementary surface of a conductor; 
the vector ,P jβ  relates the electric potential in P to the 

thj  elementary volume where a uniform polarization is 
assumed. In the second integral in (1) ,j polS  represents 

the entire surface of the thj  elementary volume 
resulting by the discretization of the dielectric regions. 
A similar expression can be derived for the electric field 
at P: 
 

( ) ( ) , ,
1 1

S dN N

P j j P j j
j j

P Pϕ σ
= =

= − = +∑ ∑E Pδ Θ∇ . (2) 

 

The meaning of the symbols in (2) is easily understood: 
,P jδ  is a vector column and ,P jΘ  is a second order 

tensor represented by a square matrix. The coefficients 
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,P jα , ,P jβ , ,P jδ , and ,P jΘ  can be quickly and 
accurately evaluated by means of analytical 
expressions. 
The sN  charge densities and the 3 dN  components of 
the polarization vector are unknown quantities whose 
determination is achieved by enforcing the equipotential 
nature of the conductors and the constitutive equation of 
dielectrics.  
Let rε  be the relative permittivity of the linear 
dielectric materials. We write the relation between P , 
E , and D  inside the thi  dielectric elementary volume: 

 

0i i iε= +D E P .     (3) 
 

Substituting it in the constitutive equation of the 
material 0rε ε=D E  yields: 
 

( ) ( ) ( )0 1i r iP Pε ε= −P E .   (4) 
 

Equation (4) is enforced by using the Galerkin 
procedure at every dielectric elementary volume [11]: 
 

( )0 , ,
1 1

1
S dN N

i r i j j i j j
j j

ε ε σ
= =

 
 = − +
 
 
∑ ∑P Pδ Θ   1,.. , di N=  (5) 

 

and the result is projected along the reference axes. 
In the usual operation the bias voltage of every 
conductor with respect to an arbitrarily chosen reference 
conductor is known. Galerkin method is used to enforce 
the equipotential nature of the conductors. If a proper 
numbering of the elementary surfaces is performed (the 
indexes of the surfaces of a conductors are contiguous), 
we can write: 
 

, ,
1 1

S dN N

k k j j k i i
j i

V α σ
= =

= + ⋅∑ ∑β P  ,  1,.. , sk N= . (6) 

 

The terms kV s have to be constant if the elementary 
surfaces identified by the index k are on the same 
(equipotential) conductor. 
The coefficients ,i jδ , ,i jΘ , ,k jα , and ,k jβ  in eqs. (5) 
and (6) are obtained by the corresponding ones in eqs. 
(1) and (2) by averaging them on the thi  dielectric 
elementary volume and on the thk  elementary surface 
[12]. 
Once the linear algebraic system formed by eqs. (5) and 
(6) is solved (giving the charge and polarization 
distributions) it is possible to evaluate the force 
distribution on the moving plate. 
The structural analysis software is then able to evaluate 
the movement and the deformation of the armatures. At 
this newly evaluated geometric configuration we have 
to repeat the above described electrostatic analysis. A 
new force distribution is evaluated and the structural 

analysis is again performed. Usually a reduced number 
of iterates are necessary to reach the convergence. 
 
2.2 Electromagnetic Analysis 
In the most general case the deformed geometry cannot 
be discretized by using slabs and cylindrical sectors of 
rectangular cross section. General hexahedral elements 
are needed. The described analysis can be performed 
with these volumes but with longer calculation time 
because of the non availability of fast and accurate 
analytical expressions for the evaluation of the fields 
and potentials. Because of the limited extent of the 
deformations the hexahedra can be “approximated” by 
slabs with a negligible loss of accuracy and the 
analytical expressions can still be used. 
This same approximation is used in the electromagnetic 
analysis; the cN  conductive volumes are 
advantageously considered as slabs or cylindrical 
sectors of rectangular cross section.  

We now consider the centers of the elementary 
volumes of the discretized conductor and connect the 
centres of nearby elements (by segments or by circle 
arches). We also consider the centre of each exterior 
surface and connect it to the centre of the elementary 
volume to which it belongs. A 3-D grid is so obtained 
[13]. The total number of the points of the grid is then: 

c SN N+ . 
We then associate to each segment of the grid a new 

elementary volume having four edges parallel to the 
segment and the faces normal to the segment with their 
centres placed at the nodes of the grid. Inside each 
elementary volume a uniform distribution of current 
density J is assumed. This current is directed parallel to 
the segment above used. Its direction is then 
perpendicular to the two bases of the new elementary 
volumes, and is parallel to its lateral surface. These 
newly built volumes are the branches of the equivalent 
electric network; let bN  their number. The nodes of this 
network are the c SN N+  points introduced above. The 
procedure is shown in fig. 1. 
Let us consider a volume of the original discretization 
and the associated node; we see that it is located at the 
centre of an intersection of branches crossing its 
surfaces. This is shown in the figure 1f. This volume is 
in the inner part of the conductor and the sum of the 
currents flowing in the branches leaving the node is 
zero. 
If the node is on the boundary of the conductor, i.e. it is 
associated to an exterior surface, charges may 
accumulate on it. The governing equation can be 
deduced by the continuity equation of the electric 
current. 
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 (a)    (b) 

 
 (c)    (d) 

 
(e) 

 
(f) 

 

Fig. 1. Construction of the branches of the equivalent network. 
 
Because of the assumed (uniform) distribution of 
currents and charges we can write: 
 

,

ext
in k
k hJ

t
σ∂

= −
∂

.     (7) 
 

In eq. (7) h refers to the node associated with a volume 
in the inner part of a conductor and k refers to the node 
associated to an exterior surface. ,

in
k hJ  and ext

kσ  
respectively are the current leaving the surface and the 
charge densities on it. 

Because of the assumed distribution of the currents on 
the branches, the vector potential at a point P can be 
written as: 
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Let us consider the thi  branch and write the Ohm’s law 
at a point P inside it: 
 

( ) ( ) ( ) ( ), , , ,P t P t P t P t
t

ρ ϕ ∂
= = − −

∂
J E A∇   . 

Evaluating the line integral along the direction of the 
current, and averaging the result on the transverse cross 
section we obtain: 
 

( ) ( ),
1

( )
bN

i i i i j j
j

dR I t U t M I t
dt=

= −∆ −∑   ,  (9) 

 

where iR  is the resistance of the thi  branch along the 
direction of the current, ,i jM  is the coefficient of 

magnetic coupling with the current of the thj  branch 
and ( )iU t∆  is the voltages between the terminals of the 
branch produced by the distribution of charges on the 
surface of the conductors and by the polarization 
charges on the dielectrics. 
The electromagnetic analysis of the system can be 
carried on the electric network formed by the 
interconnection of the bN  branches described by eq. 
(9). Kirchhoff laws can be used to solve for the currents 
in this circuit. When the Kirchhoff Current Laws 
(KCLs) are written at the boundary volumes they 
assume the form of eq. (7) and the charge densities are 
added to the set of the unknown branch currents. 
Let us now consider a path inside the conductors and 
write the total voltage along this path; this results in 
imposing the Kirchhoff Voltage Law (KVL) and the 
resultant of the ( )iU t∆ s is zero on the closed loops.  
The introduction of new unknowns calls for new 
equations. A relationship has been already obtained 
involving the charge densities on the surfaces and the 
voltages between points on the armatures; it is given by 
the last electrostatic problem solved in iterative 
procedure used to solve for the coupled 
electro-mechanical problem. Equations (5) and (6) have 
to be added to the eqs. (7) and (9). 
Before using (5) and (6) we have to consider that at RF 
the armatures cannot be considered as equipotential 
regions. As a consequence elementary surfaces lying on 
the same armature can have different voltages kV . 
We solve eq. (5) in terms of the unknown polarizations 
of the dielectric elementary volumes expressing them as 
a linear function of the charge densities: 
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Substituting in eq. (6) we obtain: 
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Performing the inversion we have: 
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Substituting eq. (12) in (7) we write: 
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SN
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h k k h k j j

j

J J V
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η
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Equation (13), written at the SN  nodes corresponding 
to the exterior surfaces, may be viewed as the nodal 
equilibrium equations of a network. Each node is fed 
with current generators ( ,

in
h kJ ) entering it, and is 

connected to SN  purely capacitive branches. The 
reference for the voltages involved in (13) is the 
external to the circuit and coincides with the reference 
potential used in the determination of the coefficients 

,P jα and ,P jβ  in eq. (1). 
This capacitive network has to be coupled to the 
network formed by the branches described by eq. (9) 
connected in correspondence of the cN  nodes 
associated to the inner elementary volumes. The 
coupling is performed by observing that the feeding 
currents of the capacitive subnetwork flow through the 
impedances built by the procedure described in fig. 1 
that connect the centres of the external faces with the 
centre of the elementary volume they belong to. It is 
worth to note that these latter impedances are described 
by eq. (9) too. 

 

 
 

Fig. 2. An example of the equivalent network.
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Figure 2 shows an example of the complete equivalent 
network used for the electromagnetic analysis of a 
MEMS capacitor in the RF range. A very coarse 
discretization consisting in four elementary volumes for 
each armature has been adopted and the system is fed 
by a voltage generator. For the sake of clarity the 
capacitors connecting each couple of exterior nodes 
(those labelled with integer numbers) are not shown; 
only the capacitors with respect to the reference node of 
the voltages are indicated. For the same reason the 
inductive coupling between the impedances is not 
shown. The nodes labelled with capital letters (A - H) 
are in the inner of the armature; the nodes labelled with 
integer numbers (1 - 32) are on the external surfaces. 
Node A is connected to the inner nodes B and D and to 
the external nodes 1, 8, 9, and 13. 
Modified Nodal Analysis (MNA) can be used to 
evaluate currents and voltages of the equivalent 
network. The structure of the network and the 
“localization” of the inductive coupling mostly in the 
inner branches and of the capacitive coupling in the 
exterior ones of the network suggest an “ad hoc” 
procedure. 
Figure 3 shows a simplified version of equivalent 
network and it is used to illustrate the procedure under 
the hypothesis of sinusoidal steady state. 
Let us consider the subnetworks derived by the 
armatures; for each subnetwork we can build a surface 
that cuts the branches connecting the inner with the 
outer nodes. The capacitors, not shown in fig. 3, are all 
outside the dashed closed lines that represent the surface 
in this simplified scheme. Let us label with b

jI  the 

current on the cut branch directed toward the thj  outer 
node exiting the surface. The total number of these 
currents is 

1 2S SN N+ , having indicated with 
1SN  and 

2SN  the number of external surfaces of the armature. 
The portion of network enclosed by these surfaces does 
not contain capacitors and it is constituted by branches 
that are magnetically coupled each other. 
A mesh analysis of the subnetworks enclosed by the 
surfaces may be advantageously performed. Let us label 
the mN  loop currents with m

jI . The mesh equations 
written to the central loops of the two subcircuits are: 
 

1 2
, ,

, ,
1 1

0
S Sm N NN

m m m m b b
j jk j k j

j j

Z I Z I
+

= =

= +∑ ∑ , 1, ..., mk N= .     (14) 

 

Superscript m stands for mesh and b stands for branch. 
The first superscript in the coefficients ,

,
m m
k jZ  and ,

,
m b
k jZ  

indicates that we are performing a mesh analysis, the 
second superscript selects between “mesh” or “branch” 
current. 
The nodal equations at the nodes outside the surfaces 
are: 
 

1 2
,

,
1

S SN N
b n n n
k jk j

j

I Y V
+

=

= ∑  
1 2

1, ..., ; 6; 22.S Sk N N k k= + ≠ ≠

                (15a) 
 

The equations at node 6 and 22 respectively are: 
 

1 2
,

6 6,
1

S SN N
b n n n b

j j E
j

I Y V I
+

=

= +∑  ,             (15b) 

1 2
,

22 22,
1

S SN N
b n n n b

j j E
j

I Y V I
+

=

= −∑  ,             (15c) 

 

where b
EI  is the current on the voltage generator 

directed from node 6 to node 22 and n stands for nodal. 
 

 
Fig. 3. Simplified equivalent network. 
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The KCL has to be explicitly imposed on the two closed 
surfaces: 
 

1

1

0
SN

b
j

j

I
=

=∑ ,               (16a) 

2

11

0
S

S

N
b
j

j N

I
= +

= ∑ .               (16b) 

 

The coupling of the mesh and nodal equations is 
performed by expressing the voltage between couples of 
external nodes in terms of the voltage drops along paths 
that connect the two nodes and that are constituted by 
branches lying in the inner parts of the subnetworks.  
As an example we can write: 
 

1 2
, ,

1 2 (1,2), (1,2),
1 1

S Sm N NN
v m m v b b

j j j j
j j

V V Z I Z I
+

= =

− = +∑ ∑ .              (17) 

 

The superscript v is for voltage; the meaning of the 
symbols is similar to that of eq. (14). The number of 
independent paths is 

1
1SN −  for the first subnetworks 

and 
2

1SN −  second one. 
A further equation governing the branch with the 
voltage generator connected to the armatures has to be 
added, 
 

6 22
b

E EV Z I E V= + + .                (18) 
 

The total number of the eqs. (14) – (18) is 

( )1 2
2 1m S SN N N+ ⋅ + +  and it is the same as the 

number of the unknown quantities.  
By inverting eq. (14) we write: 
 

( ) 1, ,m m m m b b−
= −I Z Z I                 (19) 

 

where bold characters are used to denote vectors and 
matrices. 
Coupling eqs. (15) and (18) we can write for the 
voltages at the external nodes the expression: 
 

b E= +V KI H .                 (20) 
 

Equation (17) may be written in matrix form by the 
introduction of the matrix D  that performs the 
difference between two elements of the vector V , 

, ,v m m v b b= +DV Z I Z I .                (21) 
 

Substituting eqs. (19) and (20) in (21) we obtain: 
 

( ) ( ) 1, , , ,b v m m m m b b v b bE
−

+ = − +D KI H Z Z Z I Z I    (22) 
 

that coupled with eq.(16) allows the evaluation of the 
currents bI . Back substitution in (19) and (20) 
completes the solution of the equations. 

3 Example of application 
 
Before showing two examples of application let us 
discuss some properties of the proposed formulation 
that can be of great usefulness in the analysis of MEMS 
capacitors. 
The typical geometries of the conductive and dielectric 
domains are characterized by poor aspect ratios. The 
thickness of the armatures of the capacitor is of the 
order of micron or less, while the other dimensions are 
more than two magnitude orders greater. Realistic 
discretizations of these domains (in terms of number of 
elementary volumes) result in elementary volumes with 
very poor aspect ratio. As a consequence the use of 
analysis tools based on the Finite Element Method 
(FEM) may result in low accuracy. The proposed 
formulation belongs to the class of the integral 
formulations and inherits their properties. In particular 
the aspect ratio of the elementary volumes produced by 
the discretization does not affect the accuracy of the 
computations as in the FEM formulations. 
Without appreciable loss of accuracy it is possible to 
use elementary volumes with poor aspect ratio 
especially in the central portions of the domains where 
the polarization vector, the current and the charge 
densities are likely to be uniformly distributed over 
relatively large regions. The presence of elementary 
volumes having one dimension (the thickness) a 
magnitude order lower than the other two is a common 
practice in those regions.  
The regions near the edges where fringing effects are 
present may be discretized using elementary volumes 
“stick” shaped parallel to the edges. The corners and the 
points where the currents are injected require a finer 
discretization. This is automatically obtained because of 
the structured nature of the discretization. 
The use of elementary volumes with poor aspect ratio 
may cause long computation times in the evaluation of 
the coefficients in eqs. (5) and (6) and of the auto and 
mutual inductance terms in eq. (9). The availability of 
analytical expressions for these coefficients mitigates 
this drawback. 
The presence of the holes in the moving armature can 
be easily modelled and does not result in a dramatic 
increase of the unknowns because the limited fringing 
effects in correspondence of the edges of the holes do 
not require a refinement of the discretization. 
Dielectric materials that at RF may present dispersive 
behaviour with consequent power losses may be easily 
modelled by the proposed method. A complex 
frequency dependent electric permittivity in eqs. (4) and 
(5), when they are written in the frequency domain, 
implies the presence in eq. (13) of complex ,k jη  
coefficients. As a consequence the equivalent network 
portion built starting from eq. (13) has to be completed 
by inserting proper resistances parallel connected to the 
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capacitors already inserted. If a transient analysis has to 
be performed convolution integrals appear in the 
equilibrium equations and long computational time may 
be required unless the dispersive medium is a Lorentz 
or Debye one [14]. 
The reduction of the electromagnetic analysis to a 
network analysis makes very easy the coupling of the 
MEMS capacitors with the external circuit and allows 
an accurate, though extremely CPU consuming, analysis 
of the overall system. 
The proposed formulation has been used to analyse two 
tunable parallel plate capacitors. The complete 
description of the geometries of the devices is reported 
in [6]. The principle of operation assumes that the 
moving plates in both the capacitors behave as rigid 
bodies, i.e move without deformation. This hypothesis 
is not valid because of the shape of the plates whose 
thickness is far less than the other two dimensions. The 
effective stiffness of the systems is lower than that 
estimated by considering the stiffness of the T-type 
suspension only. As a result the pull in voltage and the 
natural frequency also decrease. 
 

 
Fig. 4. Two plate MEMS capacitor natural frequency. 
 

 
Fig. 5. Three plate capacitor natural frequency vs. V2 with 

V1=0. 

Figures 4 - 6 show the natural frequency versus the bias 
voltage for the two and three plates MEMS capacitors 
respectively. 
 

 
Fig. 6. Three plate capacitor natural frequency vs. V1 with 

V2=0. 
 

 
Fig. 7. Tuning characteristics of the two plate capacitor. 
 

 
Fig. 8. Tuning characteristics of the three plate capacitor vs. 

V2 with V1=0. 
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Fig. 9. Tuning characteristics of the three plate capacitor vs. 

V1 with V2=0. 
 
As expected the natural frequencies are smaller than 
those evaluated in [6] where the rigid motion of the 
armature is assumed; furthermore a dependence of the 
natural frequencies with the applied bias voltage is 
evidenced. 
Figure (7) shows the tuning characteristic of the two 
plate tunable capacitor. The tuning ratio is 
approximately 1.45 and the pull-in occurs at about 4 V. 
Figures 8 and 9 show the tuning characteristics of the 
three plates capacitors with respect to two bias voltages. 
Figure 8 refers to the voltage between the bottom and 
the suspended plate, and fig. 9 to the voltage between 
the top and the moving plate. Pull –in occurs when 4.2 
V are applied to the bottom plate and when 1.65 V are 
applied to the top plate. 
All the three simulated tuning characteristics 
significantly differ from the experimental ones reported 
in [6]. The cause of these differences is likely due to the 
effects of the deformations produced by the 
compressive stress in polysilicon layer that in our 
analysis has been neglected. 

 
Fig. 10. Simulated “Q” quality factor. 

Figure 10 shows the simulated quality factor for the two 
plate capacitor. A satisfactory agreement with the data 
reported in [6] is obtained so confirming the ability of 
the proposed method. 
 
 
4 Conclusion 
 
In this paper we propose a numerical technique for the 
simulation of MEMS devices. The method is based on 
the coupling between electrical and mechanical 
analysis, taking into account both the deformations and 
the electromagnetic interactions. A standard FEM 
structural formulation is coupled with the MoM for the 
bias analysis; an equivalent network approach based on 
an integral formulation is used for the electromagnetic 
analysis and allows to be interfaced with a full wave 
model of the entire devices. 
The method has been tested on a MEMS capacitor, 
giving consistent results. 
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Abstract: Two-dimensional (2-D) coupled 
electrostatic-mechanical model of RF MEMS switches 
has been developed, in which the effect of residual 
stress due to the fabrication process and axial force 
resulting from the beam stretching have been taken into 
account. The electrostatic model is based on the 
application of the finite difference (FD) technique to 
quasi-static solution of a 2-D plane cut of the MEMS 
switch structure. The electrostatic model calculates the 
induced electrostatic force on the membrane due to the 
applied dc bias voltage. From the resulting electrostatic 
potential, the force distribution, the switch capacitance, 
and the beam deformation have been calculated. The 
computed pull down voltage for different structures 
agrees well with published data. The developed 
simulation program combines the electrostatic and 
mechanical analyses together and gives accurate results 
in short running time. 

Keywords: 2-D MEMS modeling, Residual stress, 
Axial force, Coupled electro-mechanics, Shunt 
Capacitive MEMS switch, RF MEMS switches. 

1. Introduction 

RF MEMS switches are constructed using thin 
metal membrane, which can be electrostatically 
actuated using dc-bias voltage. Since they are designed 
on scales where the electrostatic force is capable to 
move or deform the membrane, 3-D or at least 2-D 
coupled electrostatic-mechanical model is needed for 
accurate prediction of the switch behavior. A simple 
one-dimensional lumped model, assumes that the shape 
of the deformed beam remains flat independent of its 
position has been presented earlier in [1]. This model is 
the simplest and most intuitive analytically, but its 
accuracy is very poor. Its purpose is for quick analysis 
to gain physical insight and understand overall behavior 
of the MEMS switches for RF and microwave 
application.  

Two-dimensional electromechanical simulations 
assuming that the beam is made up of many horizontal-
plate-to-ground-plane capacitors connected in parallel 

along the length of the beam have also been analyzed 
[2]. A three-dimensional quasi-static electro-
mechanical model, as an application of CoSolve-EM 
software by combining the electromagnetic and 
mechanical simulators to determine the beam 
deformation, has been addressed in [3]. Although the 
latter gives very accurate results, the 3-D EM and 
mechanical simulators are sophisticated, expensive and 
require huge simulation time. An accurate solution, 
without sophistication, can easily be obtained using a 
two-dimensional mechanical model that is coupled to 
the electrostatic force distribution, and this is the core 
of this article. 

Fig. 1. Schematic diagram of fixed-fixed beam RF 
MEMS switch, (a) 3-D structure,  (b) 2-D structure, 
x- y plane section. 
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The studied switch in this paper is electrostatically 
actuated and is doubly supported beam. A doubly 
supported or fixed-fixed beam RF MEMS switch 
usually consists of two parallel plates. One plate is 
fixed on the substrate, lower electrode, and the other is 
a movable membrane and is formed by a thin film metal 
that has good mechanical properties like Au or Cu 
prepared by electroplating process. A schematic 
diagram of a fixed-fixed beam shunt-capacitive RF 
MEMS switch is shown in Fig. 1. When a dc voltage is 
applied between the fixed and movable plates of the 
switch, the movable plate can move down onto the 
fixed electrode as a result of the electrostatic force 
induced due to the applied voltage. When the threshold 
(pull down) voltage is reached, the switch goes into the 
down state or OFF-state, and when no voltage is 
applied it goes into the up state or ON-state. 

The purpose of this paper is to improve the 
algorithm, which has been presented elsewhere [4] to 
determine the deformation of the bridge in the shunt-
capacitive RF MEMS switch as a function of the 
applied voltage. In [4] the effects of the residual and the 
axial stresses were not considered and also the 
electrostatic model was based on solving Laplace’s 
equation. Most of the publications, either neglect the 
effect of the residual stress or the axial force or both of 
them [5]. To the authors’ knowledge, the electrostatic 
force calculated in the literature is not in very accurate; 
some time the fringing field is neglected or used an 
approximate expression or the electrostatic force 
assumes uniformly distributed along the membrane [6-
7]. Through this study the effect of the residual stress 
and the axial stress have been considered as well as the 
electrostatic force which has been calculated very 
accurately and as a non-uniform force distributed along 
the beam. The electrostatic model is based on Gauss’s 
law applied to an inhomogeneous region with non-
uniform discretization for accurate numerical 
simulation. The pull down voltage required to actuate 
the MEMS switch has been evaluated using the 
developed simulator. The main advantages of the 
proposed solution is that both electrostatic and 
mechanical models are combined in one simple Matlab-
based program to determine the deformation of the 
switch’s bridge, which is based on quasi-static solution 
in two-dimensions using the finite difference method 
(FDM). The choice of the fixed-fixed beam is based on 
the fact that this mechanical structure is the most 
common and the most basic to the surface-micro-
machined MEMS structures. However, the developed 
simulation tool is easy to adapt to other configurations 
of MEMS structures. 

 
 
 

2. Mathematical Algorithm 

The starting point is to solve for the quasi-static 
potential in two-dimensions. Hence, the field 
distributions and the force induced on the membrane 
can be determined. Having the force distribution on the 
membrane makes it possible to activate the mechanical 
model in order to calculate the deformation in the 
membrane, which in turns alters the electrostatic field 
distribution. This cycle of electromechanical model is 
considered as one iteration. The program goes back and 
forth between the electrostatic and mechanical models 
until the difference between the maximum-deformation 
in the membrane in two successive iterations is less 
than 10-4 µm, which can be the program convergence 
criterion as defined by the user. 

A.  Electrostatic Model 

The electrostatic model starts by generating the 
meshes with non-uniform grid sizes in both directions 
to get the minimum execution time with the highest 
possible accuracy. Next, Gauss’s law is applied in the 
meshed region along with the finite difference 
technique to approximate the derivatives. The boundary 
conditions are V = Vo on the lower electrode (CPW 
signal line) and V = 0 on the upper electrode (MEMS 
bridge) and the outer boundary. On the dielectric 
interface and at any node in the computational domain 
other than those on the electrodes, Gauss’s law is 
applied.  

The solution of the potential at the nodes of the 
grid inside the computational domain based on Gauss’s 
law starts with 

0 ˆˆˆ =•







∂
∂

+
∂
∂

− ∫
l

nyx dlaa
y
Va

x
Vε                (1) 

where the finite difference approximations translate this 
integral equation on the closed contour described in 
Fig. 2 to the following [8], 

Fig. 2. A general voltage node C in the computational 
domain is surrounded by four voltage nodes, L, R, B, 
and T with four different media and the Gauss’s contour.
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yâ

xâ
C 

Gauss’s 
Contour

27HAMAD, ELSHERBENI, SAFWAT, OMAR: TWO-DIMENSIONAL COUPLED MODEL FOR RF MEMS SWITCHES



 

[ ] [ ]

[ ] [ ] 0 )( )(  )( )(

 )( )(  )( )(

4321

4132

=−+−
−
−

−−+−
−
−

+

−+−
−
−

−−+−
−
−

εεεε

εεεε

LCCR
BC

BC
CRLC

CT

CT

BCCT
LC

LC
BCCT

CR

CR

xxxx
yy
VVxxxx

yy
VV

yyyy
xx
VV

yyyy
xx
VV

                      (2) 

where the subscripts L, R, T, and B denote left, right, 
top, and bottom, respectively. This equation can be 
rearranged in the following general form:  
 
 VC = CRVR + CL VL + CTVT + CBVB                    (3) 
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Equation (3) has been solved using an iterative 

technique to find out the potential distribution 
everywhere in the computational domain. After solving 
for the potential distribution, the electric field vector 
can be calculated from the relation VE −∇=  at every 
node, such that 

x
VE x ∂

∂
−=        and             

y
VE y ∂

∂
−= . 

Since we are using non-uniform grid, the potential can 
best be described at any arbitrary node using 
Lagrange’s polynomials approximation, where 

Lagrange’s interpolating polynomial is described as: 
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where P2(x) is a second order degree polynomial which 
coincides with the exact function V(x) at three nodes L, 
R, and C as shown in the Fig. 3. 

Lagrange’s interpolating polynomial is 
differentiated to obtain an approximation for the first 
order derivative and thus, the electric field vector 
components can be computed at any node x by 

2( )( )   
( )( )

22  .
( )( ) ( )( )

C R
x L

L C L R

L CL R
C R

C L C R R L R C

x x xdV xE x V
dx x x x x

x x xx x x V V
x x x x x x x x

− −
= − = −

− −
− −− −

− −
− − − −

                      (4) 

In the same way, the y-component at any node y can be 
computed. 

The electrostatic model calculates the electrostatic 
force induced on the movable beam when a dc-bias 
voltage is applied between the upper and lower 
electrodes. When a dc-bias voltage is applied between 
the two plates, charges are induced on the membrane 
and opposite charges accumulate on the lower 
electrode. The induced charges per unit length ρ  
induced on the membrane are calculated using Gauss’s 
law in two-dimensions as follows: 

∫ •
∂
∂

−=
l

n dlan
n
V ˆˆερ                 (5) 

where l is a closed contour surrounding each subsection 
of the membrane as shown in Fig 4. Here nâ is the 
normal unit vector to the contour segments. By dividing 
the contour to four segments we obtain, 
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ε ε
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∫ ∫

∫ ∫

 

Assuming the field outside the metallic boundary 
and the voltage applied to the bridge to be zero, and the 
adjacent medium to the bridge surface is air with εr = 1. 
Thus, the accumulated charge per unit length 
distributed in the z-direction for any segment on the 
membrane centered at (xc, yc) can be calculated as: 

( ) .
2

B R L
C o

C B

V x xx
y y

ρ ε − =  −  
 Fig. 3. Lagrange interpolation. 
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Dividing this equation by the segment length (xR - xL)/2 
to find the charge density and multiplying it by b, the 
beam width, one can obtain the distributed charge per 
unit length on the bridge along the x-axis for any 
segment centered at xc as:  

b
yy

Vx
BC

B
oC −

= ερ )(  .         (6) 

Having the electric field components, the 
electrostatic force induced on the bridge can be 
determined. The normal electrostatic force per unit 
length can be determined in terms of the storage energy 
U per unit length as: dyyxdUxf ),()( −= , where 
U is defined as ∫=

s

dxdyEU 2 )2/1( ε , and s is the 

surface contour shown in Fig. 4. Thus, 

∫=
l

dxExf 2 )2/1()( ε  in Newton per unit length 

along the z-direction. Therefore, the amount of the 
electrostatic force induced on a certain segment of 
length ∆x on the membrane is calculated by: 

xyxExf o ∆=∆ )bridge at the ,(  )2/1()( 2ε . 

Dividing this equation by ∆x to find the force 
density and multiplying it by the beam width b gives 
the distributed force per unit length in the x-direction 
induced on the bridge, thus at any arbitrary node x the 
distributed force per unit length is given as: 

( )22

2
)( yxo EEbxf += ε  .               (7) 

In order to calculate the switch capacitance one 
needs to compute the total charge on the lower 
electrode then divide it by the applied voltage. 
Applying Gauss’s law around the lower electrode as 
shown in Fig. 5. This leads to the following expression 
for the total enclosed charge.  
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                    (8) 
 

The capacitance C per unit length is given next by 

o
enc VC ρ= , where Vo is the applied voltage 

between the lower and upper electrodes. 

Fig. 5. Computation of the total charge 
accumulated on the lower electrode.   
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Fig. 4. (a) Notation of the potential and media 
properties in terms of the node coordinates for 2-D 
problem  (b) Computational domain with the mesh 
distribution. 
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The accuracy of the results is completely 
dependant on the number of iterations, for this reason 
the program has been run for different numbers of 
iterations to get the optimal number. The maximum 
induced electrostatic force, the maximum deformation, 
and the switch capacitance in terms of the number of 
iterations are illustrated in Fig. 6-a, 6-b, and 6-c, 
respectively. The CPU time on a PC with Pentium IV, 
1.4 GHz processor, and 2.0 GB RAM in terms of the 
number of iterations is plotted in Fig. 6-d as well. The 
maximum electrostatic force and the maximum 
deflection have been saturated after about 1000 
iterations but the capacitance saturated after 2000 
iterations. All subsequent data presented in this paper 
are generated on basis of 2000 iterations. 
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Fig. 6. (a) Maximum force vs. number of iterations (b) 
Maximum displacement vs. number of iterations (c) 
Capacitance vs. number of iterations (d) CPU time vs. 
number of iterations. The number of meshes are nx = 72, ny 
= 88 in the x and y directions, respectively. The mesh size 
is non-uniform in both x and y directions for more accurate 
solution, and it’s minimized where fine geometrical details 
are present. dxmin = 2.8 (over the lower electrode region, 
where most of the field is confined), dxmax = 9 (at the end of 
the bridge, where approximately no field), dymin = 0.0375 
(in dielectric layer, the smallest thickness in the y-
direction), and dymax = 2.23 (at the bottom of substrate, 
where the field is decayed), all dimensions are in µm. 

 

For the shunt-capacitive RF MEMS switch given 
in [1], where L (bridge length) = 300 µm, b (membrane 
width) = 80 µm, t (membrane thickness) = 2 µm, go 

(initial gap height) = 1.5 µm, W (lower electrode width) 
= 100 µm, tm (lower electrode thickness) = 0.8 µm, tox 
(oxide layer thickness) = 0.4 µm, td (dielectric layer 
thickness) = 0.15 µm, the potential distribution after 
solving the static problem in the computation region is 
shown on Fig. 7. The charge distribution per unit length 
on the bridge based on Eq. (6) has been calculated with 
dc bias voltage of 30 Volts and plotted in Fig. 8-a. The 
corresponding distributed electrostatic force per unit 
length calculated using Eq. (7) is depicted in Fig. 8-b. 
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Fig. 7. Potential distribution in the computational domain 
with dc bias voltage of 30 Volts. 
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(b) 

Fig. 8. (a) Charge distribution per unit length over the 
membrane with bias voltage of 30 Volts, (b) Force 
distribution per unit length induced on the membrane at 
bias voltage of 30 Volts. 

 

B. Mechanical Model 

Figures 1 and 9 show the fixed-fixed beam 
diagram and the load configuration, respectively. The 
step-up support in this beam has been approximated as 
a “fixed” boundary condition [9]. The transverse 
deflection of the movable beam w(x) is governed by 
Euler-Bernoulli beam equation given in [10] as: 
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4

xf
x
wTT
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wIE ar =

∂
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+−
∂
∂               (9) 

 

 

 

 

 

Fig. 9. Schematic diagram of the deformed electrostatic 
loaded double-supported beam. 

where f(x) is the distributed force per unit length (the 
beam here is electrostatically loaded and f(x), which is 
the electrostatic force calculated from the electrostatic 
model couples the mechanical model and the 
electrostatic model). w(x) is the beam displacement, 
E = E/(1-v2) is the beam modulus where E is 

Young’s modulus, v is Poisson’s ratio, 12~ 3btI =  
is the beam moment of inertia, t and b are the beam 
thickness and width, respectively. Tr is the residual 
force and is formulated by btTr σ̂= , where σ̂  is the 

residual stress which equals )1( νσ −o for the doubly 

supported beam, where oσ  is the biaxial residual 
stress. Ta is the axial force and is formulated by 

∫ 

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

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L

a dx
dx
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L
btET

0

2

2
.  

To find the general solution of equation (9), it is more 
convenient to rewrite it in the form: 
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Equation (10) is a fourth order nonlinear, non-
homogenous differential equation. If the axial force 

term ∫ 





L

dx
dx
dw

Lt
b

0

2

2

6  is neglected k will be constant 

equals to
IE
bt
~

σ̂ . Thus the 4th order differential 

equation will be linear but still non-homogenous. The 
general solution of a higher order non-homogenous 
linear differential equation can be found easily using 
the method of variation of parameters [11]. The general 
solution of this equation while, initially, assuming k is 
constant can be found by assuming the general solution 
of the homogenous equation of (10) to be in the form 

     kxkx
oc eaeaxaaxw −+++= 321)( .              (11) 

Furthermore, by setting wo(x) = 1, w1(x) = x, w2(x) = ekx, 
and w3(x) = e-kx in the last equation, one can use the 
method of variation of parameters for determining the 
particular solution wp(x) of Eq. (10) by determining 
four functions uo, u1, u2, and u3 such that 

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).p o ow x u x w x u x w x u x w x u x w x= + + +
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For these functions to be determined, four conditions 
must be specified. The Wronskian W of functions wo, 
w1, w2, and w3 is the determinant: 
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while 
W
W

u k
k =′ , where Wk is the determinant obtained 

by replacing the kth column of the Wronskian by the 
column consisting of the elements (0,0,0, F(x)). Simple 
integration can be used to obtain uo(x), u1(x), u2(x), and 
u3(x), while substitution in Eq. (12) yields the particular 
solution 
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Thus, the general solution of w(x) equals wc(x) + wp(x), 
which can be found as: 
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where a0, a1, a2, and a3 are constants to be determined 
by applying the boundary conditions w(0) = 0 = w’(0) 
and w(L) = 0 = w’(L), with assumed clamped-clamped 
beam. The coefficients a0, a1, a2, and a3 can be 
determined from the following matrix equation: 
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The integrals for the b coefficients are all finite and are 
computed numerically.  

Now to include the axial force in this analysis, we 
use the resulting w(x) to determine the axial force term 

2

2
0

6 Lb dw
dx

Lt dx
 
 
 ∫ and then calculate the new value of  k 

and substitute back in Eq. (13) using the new values of  
the a coefficients calculated from Eq. (14) to determine 
the new w(x).  Repeating this process until the 
difference between two successive iterations for k is 
within pre-determined value. In our procedure the error 
was set to be lower than 10-10 m-1.  

C. Coupled Electrostatic-Mechanical Model 

When a dc voltage is applied to the un-actuated 
MEMS switch shown in Fig. 1, it induces charges on 
the surface of the membrane that in turn induce a 
normal electrostatic force over the membrane, as given 
by Eq. (7). The electrostatic force causes the beam to 
deform. Such deformation will lead to a reorganization 
of the surface charges. The force distribution on the 
beam is schematically shown in Fig. 6-b. If this 
reorganization of charges is large enough to cause 
further deformation, the process is necessary to resolve 
the electrostatic problem to recalculate the new induced 
electrostatic force and this is considered as a coupled 
electro-mechanical behavior. The new electrostatic 
force is used by the mechanical model to determine the 
new transverse deflection. Going back and forth 
between these two models is carried out until the 
difference between two successive iterations for the 
transverse deflection is in a pre-determined specified 
error. In our procedure the error has been set to be less 
than 10-10 m.  

For MEMS analysis, it is usually assumed that the 
pull down occurs when the microstructure deflects 
down to (2/3)go, where go is the initial gap height. This 
is considered the unstable mechanical position of the 
bridge. Hence the back and forth switching between the 
electric and mechanical models converges as long as 
the switch works in the mechanical stability region 
other-wise it may diverge. Therefore, the iterations is 
stopped when the maximum deflection is greater than 
or equal (2/3)go, which corresponds to the pull down 
voltage for the MEMS switch. 
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3. Results and Discussion  

To validate the obtained numerical results, we 
compare the results of the maximum deflection 
calculated using our approach to those reported in [1] 
with the parameters shown in Fig. 1 for doubly 
supported beam of the dimensions given in section 2-A. 
The silicon-nitride Si3N4 and silicon-oxide SiO2 
dielectric layers have relative dielectric constants of 7.6 
and 3.9, respectively. The Young’s modulus E amounts 
to 80 GPa, the Poison’s ratio ν is equal to 0.42, and the 
biaxial residual stress σo is equal to 20 MPa. 

The computed maximum displacement and the gap 
capacitance as functions of the number of iterations are 
shown in Fig. 10. The steady state condition has been 
reached after 9 iterations between the electrostatic and 
mechanical solutions. The iterations stopped when the 
error in the maximum deflection curve falls below a 
tolerance value (here given as 10-4 µm) or the 
maximum deflection increases than (2/3)go, which 
means the applied voltage is greater than or equals the 
pull down voltage. Figure 11-a illustrates the gap height 
versus applied voltage, while Fig. 11-b illustrates the 
gap capacitance versus applied voltage. The shape of 
the bridge as a function of applied voltage is 
investigated in Fig. 12. The computed pull down 
voltage amounts to 35 Volts while the experimental 
value for similar configuration is usually reported to be  
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Fig. 10. (a) Maximum displacement and (b) Switch 
capacitance as a function of the number of iterations of 
going and back between the electrostatic and mechanical 
models at dc bias voltage of 30 Volts. 

in the range of 30 Volts. The computed up-position 
capacitance of the MEMS switch is 85 fF while the 
experimental value is 70 fF. The theoretical results are 
very close to the experimental values reported in the 
literatures. 
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Fig. 11-a. Gap height versus applied voltage. 
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Fig. 11-b. Capacitance versus applied voltage. 
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Fig. 12. Shape of the membrane as a function of applied 
voltage. 

4. Conclusion 

In this paper, a novel two-dimensional coupled 
electro-mechanical model has been developed, where 
the axial and residual stresses are taken into 
consideration. A Simulation program is developed to 
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determine the deformation of the bridge in RF MEMS 
switches as a function of the applied voltage. The 
electrostatic model is based on solving Gauss’s law in a 
two-dimensional Cartesian coordinates system using 
the central difference approximation for the derivatives. 
An iterative procedure is implemented for the solution 
of the potential distribution. The algorithm is very 
efficient to determine the pull down voltage of the 
shunt-capacitive MEMS switch. However, it can be 
used for other types of MEMS switches like series or 
shunt configuration, capacitive or resistive contact as 
well. 

The developed algorithm and the program 
presented are capable to determine the bridge 
deformation, pull-in voltage and to investigate the 
effect of source fluctuations on the switch performance 
efficiently. Due to its numerical efficiency and small 
CPU time requirement, the proposed technique can be 
integrated easily in computer-aided design tools for 
MEMS switches. 
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FDTD Analysis of a Probe-Fed Dielectric
Resonator Antenna in Rectangular Waveguide
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Abstract— Dielectric resonator antennas (DRA) are charac-
terized for operation in a guided-wave environment with the
ultimate goal of their use in modeling of waveguide-based DRA
amplifier arrays for spatial power combining. Performance of
a single probe-fed DRA element in rectangular waveguide is
analyzed by varying design parameters of the DRA and the
feeding probe to optimize the structure for the scattering char-
acteristics (port matching and coupling). The effect of hard walls
on the DRA behavior is also studied. The numerical analysis of
waveguide-based DRA elements is based on the Finite-Difference
Time-Domain (FDTD) method and a coaxial probe is modeled by
a thin wire approximation implemented in the FDTD algorithm.
The numerical results are compared with those generated by
using commercial software and exhibit a very good agreement.

Index Terms— Dielectric resonator antenna, rectangular
waveguide, hard wall, Finite-Difference Time-Domain method.

I. INTRODUCTION

D IELECTRIC resonator antennas (DRA) became poten-
tially useful as antenna elements a few decades ago

[1]. The DRA’s have several attractive features, such as small
size, light weight, inherently wideband nature, high radiation
ef cienc y, and high power handling capability as compared
with microstrip antennas, which suffer from higher conduction
loss and surface waves in antenna array applications. The use
of additional structural parameters (shape, volume, etc.) and a
wide range of permittivities makes the design of DRA’s more
 e xible. In addition, different feeding mechanisms can be used
for the excitation of DRA elements, which allows for control
of DRA input impedance, bandwidth, and radiation pattern.
This includes the excitation by slots, probes, microstrip lines,
coplanar lines, and dielectric image guides [2]-[4]. Also, the
use of dielectric materials with high permittivity in DRA’s
enables enhancement of the radiation resistance of electri-
cally short probes and loops [5]. Subsequently, systematic
theoretical and experimental investigations of DRA’s have
been reported in [6]-[12] and extensive results of DRA’s of
cylindrical [1], [3], [8]-[10], rectangular [6], and spherical [7]
shapes have been published.

In this paper, coaxial probe-fed DRA elements are studied
for operation in a rectangular waveguide with the ultimate
goal of their use in waveguide-based DRA ampli er arrays
for spatial power combining. Traditionally, the spatial power
combiner is formed by an array of amplifying unit cells, with

The authors are with the Department of Electrical Engineering, Univer-
sity of Mississippi, University, MS 38677, USA (e-mail:zyz@olemiss.edu;
ahmed@olemiss.edu; yakovlev@olemiss.edu; aglisson@olemiss.edu).

each cell receiving, amplifying, and then radiating a signal
into free space [13]-[15]. The key challenges of spatial power
combining design are the modeling of receive/transmit antenna
elements and the uniform excitation of the antenna arrays.
Thus, modeling of one element in rectangular waveguide is
important to fully understand the behavior of the DRA in
the waveguide environment. Regarding the uniform excitation
of ampli er arrays, hard electromagnetic walls have been
recently realized by dielectric loading along narrow sides of
the waveguide to obtain a uniform  eld distribution in the
waveguide cross-section [16], [17]. The interaction between
the DRAs and the hard walls needs to be studied since it
signi cantly affects the resonance frequency and matching
characteristics of the DRA.

Here, a single probe-fed DRA element is  rst investigated
for operation in a rectangular waveguide. The scattering
parameters are studied by varying geometrical and material
parameters of the DRA and the coaxial probe feed. Then, the
effect of a dielectric-loaded waveguide on the DRA perfor-
mance is analyzed. The FDTD method [18], [19] is chosen for
the numerical analysis since it provides a full-wave solution
of the electrically large and complicated structures, which
include different dielectric materials. In the proposed FDTD
algorithm, DRA elements and the rectangular waveguide are
discretized by using a traditional Yee-cell gridding and the
coaxial probe is modeled by a thin wire approximation. The
scattering parameters are computed using the FDTD method
and compared with the results obtained using the commercial
software QuickWave3D [20] and HFSS [21].

The paper is organized as follows. In Section II, a brief de-
scription of the FDTD method used in the numerical analysis
of waveguide-based probe-fed DRA’s is presented. In Section
III, an initial design of a single free-space DRA element is
presented, followed by the analysis of DRA behavior in an
open-ended rectangular waveguide using WIPL-D [22]. Next,
the developed FDTD algorithm is used for the parametric anal-
ysis of a probe-fed DRA element in a rectangular waveguide
to optimize the structure for the scattering characteristics (port
matching and coupling). Section IV presents the analysis of a
dielectric-loaded waveguide and the effect of hard walls on the
DRA performance. Conclusions are summarized in Section V.

II. THEORY

The structure to be analyzed here consists of a coaxial
probe-fed DRA element inside a rectangular waveguide as
shown in Fig. 1. The geometry is analyzed by using the FDTD

1054-4887 © 2006 ACES
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method, wherein the DRA element and rectangular waveg-
uide are discretized by traditional Yee cells. A sinusoidally
modulated Gaussian pulse is used for the excitation, and the
PML absorbing boundary [23] is implemented to terminate
both the waveguide port [24] and the coaxial line port. The
scattering parameters are calculated in terms of port voltages
normalized by characteristic impedances of the waveguide and
coaxial probe, respectively. The S-parameters of the waveguide
section with coaxial probe-fed DRA are given by

rc rw ld

d

ad

hd

PML

Coaxial line

Port 1Port 2

x
y

z

ld probe length

d offset from the centerline of
waveguide

hd height of DRA

ad width of DRA

rw probe radius

rc coaxial line radius

Fig. 1. Geometry of a waveguide-based coaxial probe-fed DRA.

S11 =
V −

w

V +
w

=
V total

w − V +
w

V +
w

S21 =
V +

c

V +
w

√
Zw

Zc
(1)

where V −
w is the voltage calculated from the re ection  eld

at the waveguide port, V +
w(c) is the voltage calculated from

the incident  eld at the waveguide (coaxial) port, V total
w is the

voltage obtained from the total (incident plus re ected)  eld at
the waveguide port, and Zw(c) is the characteristic impedance
of the waveguide (coaxial line), given by

Zw =
ωµ

β
=

ωµc√
ω2 − ω2

c

Zc =
Vke−jω∆t/2√

Ik−1Ik

. (2)

Here, c is the velocity of light, β and ωc are the phase constant
and cutoff frequency of the dominant mode of rectangular
waveguide, and Vk and Ik are the voltage and current of
the kth cell in the coaxial line. Since both the electric and
magnetic  elds are separated by half a cell in space and
time, the geometric average of two currents (Ik−1 and Ik)
is taken to compensate for the space difference, and a time
delay (exponential term in (2)) is introduced to compensate
the difference in time [25].

The time-domain modal voltage in the rectangular waveg-
uide can be calculated from the total electric  eld as the

following integral over the waveguide cross-section a × b

V (z0, t) =
∫ b

0

∫ a

0

�E(x, y, z0, t) · �e(x, y) dxdy (3)

where V (z0, t) is the time-domain modal voltage of the dom-
inant mode at z = z0, �E(x, y, z0, t) is the total time-domain
electric  eld in the waveguide cross-section, and �e(x, y) is the
electric- eld vector wave function of the dominant mode [26].

The integral over the waveguide cross-section in (3) can be
discretized as follows (Fig. 2),

V (z0, t) =
Nx∑
i=1

∫ b

0

∫ xi

xi−1

Ex(xi, y, z0, t)ex(x, y) dxdy

+
Ny∑
j=1

∫ yj

yj−1

∫ a

0

Ey(x, yj , z0, t)ey(x, y) dxdy (4)

where Nx and Ny are the numbers of cells in the x− and
y−direction, respectively. The components of electric- eld
vector wave function can be written in the following form
by separating the x− and y−variables

ex(x, y) = Cxφx(x)φx(y)
ey(x, y) = Cyφy(x)φy(y) (5)

where Cx and Cy are constants.

Ex

Ey

0 a

b i

j

yj

yj-1

xixi-1

Fig. 2. Discretization of waveguide cross-section in the calculation of voltage.

Substituting equations (5) into equation (4), we obtain

V (z0, t) = Cx

Nx∑
i=1

∫ b

0

Ex(xi, y, z0, t)φx(y)dy

∫ xi

xi−1

φx(x)dx

+ Cy

Ny∑
j=1

∫ a

0

Ey(x, yj , z0, t)φy(x)dx

∫ yj

yj−1

φy(y)dy (6)

where the integrals in (6) can be discretized as follows,
∫ b

0

Ex(xi, y, z0, t)φx(y)dy

=
Ny∑
j=1

∫ yj

yj−1

Ex(xi, y, z0, t)φx(y)dy
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=
Ny∑
j=1

∆yj

2
[Ex(xi, yj , z0, t)φx(yj)

+Ex(xi, yj−1, z0, t)φx(yj−1)],

∫ a

0

Ey(x, yj , z0, t)φy(x)dx

=
Nx∑
i=1

∫ xi

xi−1

Ey(x, yj , z0, t)φy(x)dx

=
Nx∑
i=1

∆xi

2
[Ey(xi, yj , z0, t)φy(xi)

+Ey(xi−1, yj , z0, t)φy(xi−1)].
(7)

Integrals
∫ xi

xi−1
φx(x)dx and

∫ yj

yj−1
φy(y)dy in (6) are calcu-

lated in closed form.
The coaxial line is modeled by rectangular prisms instead of

two concentric cylinders, since the amount of power travelling
into the coaxial line is mainly dependent on the characteristic
impedance of the coaxial line [27] and weakly dependent on
its speci c shape. The inner conductor of the coaxial line can
be represented either by a thin wire or by a number of cells. In
our work the inner conductor is approximated as a thin wire
with radius smaller than half of the FDTD mesh size [28]. With
Ez(i, j, k) = 0 along the wire axis, the spatial dependence of
magnetic  elds in the vicinity of the wire can be calculated
by

H
n+ 1

2
y (i, j, k) =H

n− 1
2

y (i, j, k)

+
∆t

µ∆z
[En

x (i, j, k) − En
x (i, j, k + 1)]

+
2∆t

µ∆x ln(∆x
r0

)
En

z (i + 1, j, k), (8)

H
n+ 1

2
x (i, j, k) =H

n− 1
2

x (i, j, k)

+
∆t

µ∆z
[En

y (i, j, k + 1) − En
x (i, j, k)]

− 2∆t

µ∆y ln(∆y
r0

)
En

z (i, j + 1, k), (9)

where the wire radius r0 is assumed to be less than half of
the cell size.

III. SINGLE DRA ELEMENT IN RECTANGULAR WAVEGUIDE

Our investigation begins with information available in the
literature and then we learn step by step about the DRA in
different environments. Therefore, we start with a DRA in free
space and end up with a DRA in a waveguide loaded with
hard walls. Since the FDTD method is one of the methods
used in the analysis, the rectangular DRA is a geometry that
can be easily analyzed. A single, probe-fed rectangular DRA
placed on an in nite ground plane and radiating in free space,
as shown in Fig. 3(a), is considered  rst, and is analyzed by
commercial Method of Moments (MoM) software WIPL-D

open end

(b)(a)

Open-ended waveguide
Infinite ground plane

rd

0

da
da

dh

Fig. 3. (a) Geometry of in nite conductor-backed, probe-fed DRA; (b)
Geometry of probe-fed DRA inside semi-in nite waveguide.
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Fig. 4. Re ection coef cient for different con gurations of the DRA. Case
A: DRA of Fig. 3(a); Case B: DRA with parameters of Fig. 3(a) placed in
waveguide as in Fig. 3(b); Case C: DRA in waveguide with hd = 9.5 mm
and δd = 1.5 mm as in Fig. 3(b).

[22]. The initial dimensions of the DRA structure ad = 5.0
mm, hd = 12.0 mm, εrd = 12.0 are chosen so that the
resonant frequency of the TE11δ mode is centered around 10
GHz [29]. The probe length ld is 4 mm, the probe axis is
offset by δd = 1.0 mm from the waveguide centerline in the
vertical direction, and the probe radius rw is 0.3 mm. Then,
the probe-fed DRA with dimensions from case A (Fig. 3(a))
was placed into an open-ended standard X-band waveguide
with cross-sectional dimensions a = 22.86 mm and b = 10.16
mm (case B with geometry shown in Fig. 3(b)).

Figs. 4 shows dispersion behavior of the re ection coef -
cient for the geometries shown in Figs. 3(a) and 3(b) (cases A
and B in Fig. 4). Due to placement of the DRA inside of the
rectangular waveguide, the resonant frequency of the DRA in
case B is shifted to a frequency higher than 11 GHz, which is
out of frequency band of interest. Subsequently, the height of
the DRA and the probe position were tuned to hd = 9.5 mm
and δd = 1.5 mm, respectively, and results are presented as
case C. Considerable changes of the resonant frequency and
bandwidth are observed in Fig. 4. These dimensions serve as
starting values for a numerical study that follows.

An analysis of the waveguide-based coaxial probe-fed DRA
(Fig. 1) with the parameters from case C is performed by
the full-wave FDTD method described in Section II. For the
rectangular coax of radius 1.2 mm and  lled with the dielectric
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Fig. 5. S-parameters for the waveguide-based probe-fed DRA (ad = 5.0mm,
hd = 9.5mm, δd = 1.5mm, ld = 4.0mm).

of permittivity εr = 2.56, the characteristic impedance Z0 is
51.98 Ω, and only the TEM mode is supported as the cutoff
frequency of the TE11 coaxial line mode is approximately 26
GHz [30]. The probe length ld is 4 mm and the probe position
is offset by δd = 1.5 mm from the waveguide centerline in
the vertical direction. Fig. 5 shows the dispersion behavior
of the S-parameters. The bandwidth for this case, based on
-10 dB level, is 10% (compared to the 3% bandwidth of a
microstrip patch antenna used in a similar con guration [31]).
The results in Fig. 5 are veri ed with commercial FDTD
software QuickWave3D [20] and HFSS [21] and exhibit very
good agreement. Once our FDTD code is veri ed, we depend
on it in the following analysis.

The effect on port matching and bandwidth of different
parameters of the DRA are then investigated. For the structure
operating in the X-band, it is found that position and length of
the probe both have a signi cant effect on the matching as well
as the overall frequency response. Figs. 6(a) and 6(b) show
the return loss and insertion loss of the structure with different
values of ld. It is found that a short probe couples weakly to the
DRA. As the probe length increases, the coupling is increased
and a shift to lower resonant frequency is observed. When
the probe lengths equal 3.5 mm and 4.0 mm, wide bandwidth
and less re ections are achieved, respectively. As the probe is
increased to 4.5 mm and beyond, the coupling to the DRA
starts decreasing.

The effect of the probe position δd with respect to the
waveguide centerline is illustrated in Figs. 7(a) and 7(b), which
show the return loss and insertion loss of the structure for
different values of δd with ld = 4.0 mm. It is found that the
maximum -10 dB bandwidth occurs when δd reaches 2.0 mm
and also good insersion loss is achieved. It is clear that both
the probe length and position can be used to tune and control
the response for both port matching as well as wide bandwidth.
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Fig. 6. Effect of varying the probe length ld in the DRA on (a) return loss
and (b) insertion loss, (ad = 5.0mm, hd = 9.5mm, δd = 1.5mm).

IV. SINGLE DRA ELEMENT IN DIELECTRIC LOADED
RECTANGULAR WAVEGUIDE

The ultimate goal of this work is to design an ef cient
spatial power combining system which needs to achieve a
uniform power division among the antenna elements in the
DRA array by using hard walls. For one element design, hard
electromagnetic walls in the hollow rectangular waveguide
can be created by loading its narrow walls with dielectric
material. By appropriately choosing the dielectric thickness
for a given dielectric material, a uniform  eld distribution
can be achieved over the cross-section of the waveguide. In a
standard X-band waveguide, the PEC boundary de nes the
TE10 mode of propagation. The dielectric material loading
along the sidewalls in the rectangular waveguide changes the
boundary condition so that the LSE10 mode will propagate.
The LSE10 mode provides a uniform  eld distribution in the
inner waveguide region (in between dielectric slabs) when the
dielectric thickness d is calculated according to the following
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Fig. 7. Effect of varying the probe position δd with respect to the DRA
centerline on (a) return loss and (b) insertion loss, (ad = 5.0mm, hd =
9.5mm, ld = 4.0mm).

formula [32]:

d =
λ

4
√

εr − 1
(10)

where λ is the wavelength in free space and εr is the relative
permittivity of the dielectric material. Hence, at the center
frequency of operation, the thickness of the dielectric wall
is approximately λd/4, where λd is the wavelength in the
dielectric. In Fig. 8, the electric  eld amplitudes for the LSE10

mode of the dielectric loaded waveguide and the TE10 mode
of the hollow waveguide are plotted along the x-axis at 10
GHz. Both of these amplitudes are normalized to unity power.

Since the  eld distribution for the TE10 mode of operation
in a standard X-band rectangular waveguide is sinusoidal in
the waveguide cross-section as shown in Fig. 8, the electric
 eld in the middle of the waveguide is stronger than that
offset from the centerline. Consequently, the coaxial probe-
fed DRA couples more energy when it is placed in the middle
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Fig. 8. The electric  eld magnitude of the TE10 mode in a hollow rectangular
waveguide and the LSE10 mode in rectangular waveguide with hard walls at
10 GHz.
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Fig. 9. (a) return loss and (b) insertion loss of the DRA element offset from
the centerline of the waveguide, (ad = 5.0mm, hd = 9.5mm, δd = 1.5mm,
ld = 4.0mm).
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of the waveguide. As seen in Figs. 9(a) and 9(b), the scattering
parameters are obtained for the cases when the DRA is placed
in three different positions: in the  rst case the DRA is in the
middle of waveguide, the second and the third cases are for
the DRA placed 2.5 mm and 5 mm offset from the waveguide
centerline in the horizontal direction, respectively. Figs. 10(a)
and 10(b) show the  eld distributions (at 10 GHz and λ/2
away from the surface of the DRA) for the coaxial probe-fed
DRA in the center of the waveguide and 5 mm offset from the
centerline, respectively. In Fig. 10(b), 8 dB power difference
between the middle and 5 mm offset can be observed from the
magnitude of the  eld. These results verify that the element
closest to the side wall of the waveguide will couple less power
from the source than the one in the middle.
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Fig. 10. (a) return loss and (b) insertion loss of the DRA element offset
from the centerline of the waveguide loaded with hard walls, (ad = 5.0mm,
hd = 7.5mm, δd = 2.0mm, ld = 3.5mm).

As seen in the inset in Fig. 11(a), a coaxial probe-fed DRA
is placed in the rectangular waveguide with dielectric hard
walls. The approximate depth of the hard wall, d = 6.48 mm,
is calculated by Eq. (10) and the length of the hard wall L

equals to 30 mm. The choice of dielectric material affects
the bandwidth of the uniform  eld. It has been found that
dielectrics with permittivities from 1.2 to 2.2 can be used to
achieve a good uniform  eld distribution across the waveguide
aperture [32] and, therefore, εr = 2.2 is used in our analysis.
The coaxial probe-fed DRA element is placed in three different
positions: in the middle of waveguide, and 2.5 mm and 5
mm offset from the waveguide centerline. Figs. 10(a) and
10(b) demonstrate that the resonance frequency and scattering
parameters of these three cases do not change signi cantly as
compared to the cases of DRA in the waveguide without hard
walls (Figs. 9(a) and 9(b)). The  eld distributions (at 10 GHz
and λ/2 away from the surface of the DRA) for the coaxial
probe-fed DRA in the center of the waveguide loaded with
hard walls and 5 mm offset from the centerline are shown in
Figs. 12(a) and 12(b). One can see (Fig. 12(b)) that 3 dB power
difference between the middle and 5 mm offset is achieved,
so the DRA element couples approximately the same energy
around the center frequency for these three different positions,
which veri es that the uniform  eld distribution is achieved
across the waveguide aperture as shown in Fig. 8. 
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Fig. 11. Field distribution of the DRA element; (a) in the center of the harded
waveguide and (b) offset 5 mm from the centerline of the waveguide loaded
with hard walls, (ad = 5.0mm, hd = 9.5mm, δd = 2.0mm, ld = 3.5mm).
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V. CONCLUSION

A coaxial probe-fed DRA in a rectangular waveguide
excited by the dominant mode was analyzed by using a
custom FDTD technique. This analysis provides the necessary
information for the optimization of design parameters, such as
DRA dimensions and the position and length of the feeding
probe. Consequently, 10% bandwidth was achieved over the
frequency band of interest. A waveguide loaded with hard
walls was studied to obtain a uniform  eld distribution at
the waveguide aperture. It is shown that the DRA element
couples approximately the same energy around the center
frequency when it is placed in the middle of the waveguide
and offset from the centerline. This study is a useful step in
the extension to the case of the DRA array for increasing
the output power and the power combining ef cienc y of
waveguide-based spatial power combiner.
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Abstract: A sub-cell tensor based technique for 
modeling dielectric interfaces is introduced into a 
(2,4) FDTD method. For each cell containing an 
interface, a tensor based method that enforces 
continuity conditions is used to determine the fields 
on both sides the sloped interface. These fields are 
then volumetrically averaged. The approach is used 
to calculate a corrected field value at each grid 
point of the large fourth-order stencil. The 
combined algorithm is computationally 
homogeneous, unlike most previous algorithms of 
this type, and thus lends itself to parallel 
processing. Additionally, the method may be used 
with other higher-order stencils. The accuracy is 
tested using the exact Mie series solution for 
scattering from a dielectric sphere. It is shown that 
using the (2,4) tensor method results in ~50-70% 
less error than the (2,4) standard Yee method in the 
vicinity of a dielectric sphere.  
 
Introduction: The finite-difference time domain 
(FDTD) method is one of the most widely 
employed methods in computational 
electromagnetics. As it has been pointed out in 
many articles, the method has problems when there 
are curved boundaries, which are represented by 
staircases on a Cartesian grid. If continuity 
conditions are not properly maintained across these 
curved interfaces, inaccuracies in the field 
components can occur. Nadobny et. al. [1] 
developed a 3D tensor method for the treatment of 
dielectric interfaces to enforce continuity of the 
appropriate field components. Their paper was a 
major extension of the work of Lee and Myung [2] 
and demonstrated much improved accuracy for the 
standard (2,2) algorithm.  

In this paper we adapt the tensor method for 
use with fourth-order methods. Fourth and other 
higher order methods permit modeling on coarser 
grids. This is important because fourth-order 
methods, although very accurate in homogeneous 
regions, generally present accuracy problems at 
material boundaries. One remedy for this problem 

is to employ a hybrid formulation of (2,4) FDTD 
and sub-grid (2,2) FDTD methods [3], where (2,4) 
stands for second-order accurate in time and fourth-
order accurate in space. In [3] a coarse (2,4) grid is 
used in the homogeneous regions and a finer (2,2) 
sub-grid near conducting walls and other structures. 
Another method [4] uses a large (2,4) region and a 
buffer layer of (2,2) cells between the (2,4) region 
and the interfaces. 

In [5] an efficient higher-order alternating-
direction implicit (ADI) finite-difference time-
domain method for unconditionally stable analysis 
of curvilinear electromagnetic compatibility (EMC) 
problems is presented. The method is practically 
dispersionless and offers improved accuracy for 
curved boundaries. Another paper [6] also discusses 
the reduction of numerical dispersion of the finite-
difference time-domain method based on a (2,4) 
computational stencil. Rather than implementing 
the conventional approach, based on Taylor 
analysis for the determination of the finite-
difference operators, two alternative procedures that 
result in numerical schemes with diverse wide-band 
behavior are proposed. The method is shown to 
outperform the standard (2,4) method. 

The method proposed here uses the same (2,4) 
algorithm and grid spacing for the homogenous 
regions and across boundaries as opposed to mixing 
different accuracy (second and fourth-order) 
algorithms. This is important for parallel 
processing, i.e. using the Message Passing Interface 
(MPI), where having a homogeneous algorithm is a 
great advantage so that each processor executes the 
same instructions. It also is an advantage 
computationally if a fourth-order accurate method 
can be used to model an electrically large structure 
on a smaller coarser grid, without any special sub-
gridding. We gauge the relative accuracy of the 
standard Yee fourth-order and combined sub-cell 
tensor fourth-order methods by comparing 
computed results with the exact Mie series solution 
for plane waves scattering from a dielectric sphere.  
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Sub-cell Tensor Method: The differential form of 
Maxwell’s equations is given by: 
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 ,    (2)            

where  
 

ED ε=  .    (3)                                                                                      
In the homogeneous cells, where there are no 
interfaces, Eq. (3) can be used to obtain E. 
However, in those cells with interfaces, boundary 
conditions must be explicitly satisfied.  

At a dielectric interface these continuity 
conditions must be maintained at the interface 
between media 1 and 2: 

 
0( 2211 =⋅− n)EE εε ,     (4) 

 (Continuity of the normal components of D), 
 

0)( 21 =×− nEE ,    (5) 
(Continuity of the tangential components of E), 
 
where n  is the unit normal vector to the interface. 
 
Eqs. (4) and (5) can be solved for E2 in terms of E1 : 
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where the elements of the transformation matrix A~  
are: 
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For Yee cell faces cut by an interface the 
electric fluxes through the faces are broken into two 
parts: 

 
22

2
11

1 xxxxx SESEdSD εε +=∫∫ ,   

22
2

11
1 yyyyy SESEdSD εε +=∫∫ ,    (7) 

22
2

11
1 zzzzz SESEdSD εε +=∫∫ , 

 
where the S’s are areas and the superscripts stand 
for side 1 or 2. This is illustrated in Fig. 1. 

Combining Eqs. (6) with (7), the following 
tensor relationship is obtained between the average 
electric flux density and electric field in medium 1, 
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where ε~  is a 3 by 3 permittivity tensor with 
components: 
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Fig. 1. Center slice (face) of Yee cell centered 

around ),,( kjiEx . There are two flux areas 
separated by the dielectric interface.  

 
At each point in the stencil for updating the H 

field components the volume average of the E 
fields is used. The fourth-order update equation 
for zH  obtained by discretizing Eq. 1 is: 
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where 
0µx
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∆
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= and for example,  

21

2
2

1
1 ,

)(
VVV

V
EVEV

E xx
x +=

+
= ,    (10)                                                                          

where 1V  and 2V  are the volumes on sides one and 
two of the interface. It should be noted that Eq. (9) 
is identical in form to the standard (2,4) update 
equation, the only difference being that each term is 
replaced by the volume averaged field. There are 
analogous update equations for xH and yH .  

Standard fourth-order update equations 
for xD , yD  and zD  may be obtained by 
discretizing Eq. 2. For example: 
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where
0εx

ts
∆
∆

= . 

The term ),,( kjiEx in Eq. (9) represents the 
volume averaged field in the Yee cell centered 
on ),,( kjiEx . For any point in the stencil with an 
interface in that cell, Eq. (10) is used to correct for 

the interface. This concept is illustrated in Fig. 2.  If 
there is no interface, then 

ε
x

x
D

E = .        (12) 

This algorithm amounts to using a corrected field 
value at each point in the stencil to account for any 
interfaces cutting through the stencil volume in an 
arbitrary way.  If the stencil volume has no 
interfaces the algorithm reduces to the standard 
(2,4). The entire algorithm may be briefly 
summarized as follows for one update: 

[1] Perform standard (2,4) update of D  
using xH , yH  and zH . 
[2] Test all 8 E cells for interfaces within the 
fourth-order stencil for updating H . 
If E cell has an interface then use the sub-cell 
tensor method:  

(a) Compute electric field from average 
electric flux density, DεE ⋅= −1

1
~ . 

(b) Obtain electric field on other side of 
interface, 12

~EE A=  .    
(c) Volume average electric field, 

( )
V

EVEV
E xx

x

2
2

1
1 +

=   

 else if the E cell has no interface then, 

(a) Compute electric field from 
ε

x
x

D
E =   

 [3] Perform standard (2,4) update for H  using 
xE , yE and zE . 

 
 
 
   

 
 

  
                                        
 
    
 
 
 
 
 
 
 
Fig. 2. The stencil for the (2,4) FDTD method 

showing the 8 E field cells (squares) and H 
field cell (circle). Two of the E field cells 
are cut by an interface (dotted line) at an 
angle and require the sub-cell corrections. 
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Computational Cases: Six computational cases are 
performed to test the accuracy of the standard (2,4) 
and tensor (2,4) algorithms. Scattering problems are 
done with a plane wave scattering from a dielectric 
sphere with a large dielectric change to emphasize 
errors near the interface. The incident plane wave is 
polarized in the z direction and travels in the +y 
direction, as illustrated in Fig. 3. The total- 
field/scattered-field (TF/SF) formulation is used to 
introduce a plane wave into the volume. Uniaxial 
perfectly matched layers (UPML), 10 cells wide, 
are used for the absorbing boundaries. Case I uses a 
sphere with a relative dielectric constant of 4 and a 
uniform grid spacing of 10 points per wavelength 
(ppw) in the sphere. The parameters for various 
cases are summarized in Table I.  
 
 
Table I. Parameters for Cases. 
 

Freq. 
(GHz) 

Dielectric 
Constant 

ppw Sphere 
Radius  

Case I     5.0      4    10     7.5 
Case II     5.0      4    20   15.0 
Case III     5.0      8    10     7.5 
Case IV     5.0      8    20   15.0 
Case V     5.0     12    10     7.5 
Case VI     5.0     12    20   15.0 

 
 

 

 
 
 

 
 
 

 
zeEE tkyii ˆ)(

0
ω−=  

 
Fig. 3.  Diagram of incident wave, dielectric sphere, 

coordinate system and y-cut at z value. 
 

Fig. 4 shows a typical computed cut for Case 
III, parallel to the y-axis and through grid point 
(x=0,z=1), near the sphere center. Shown is 
Ey(0,y,1) computed using the (2,4) tensor method 
and the (2,4) standard Yee method against the exact 
Mie series solution. Fig. 4 shows that the (2,4) 
tensor method agrees much better with the exact 
solution than the (2,4) standard method, along the 
entire cut.  

 
Fig. 4. Case III. Comparison of (2,4) tensor and 

(2,4) standard methods with exact Mie 
series. The sphere lies between grid points 
24 and 40. 

 
Fig. 5 shows a comparable cut for Ey(0,y,5) for 

Case V. The (2,4) tensor method is closer to the 
exact solution inside the sphere, at the sphere 
boundaries, and outside the sphere.  The standard 
Yee method also exhibits pronounced overshoots at 
the interfaces.  

 
 

 
Fig. 5. Case V. Comparison of (2,4) tensor and 

(2,4) standard methods with exact Mie 
series. The sphere lies between grid points 
56 and 72. 

 
 
Error Evaluation: In order to assess the relative 
errors of the tensor and standard methods a 
numerical comparison is made between the 
computed values and the exact Mie series solution. 
The solution is computed in spherical coordinates 
and transformed into Cartesian coordinates along 
cuts through the sphere (shown in Fig. 3), to 
correspond in space to the FDTD spatial cuts. 

x 

y 

y z 
z=4 

z 
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The following error measure function is used: 

∑
∑ −

=
exact

computedexact

E

EE
error  .  (13) 

This error function is computed along a cut through 
the sphere and extending 1 radius beyond the 
sphere boundary on both sides so that the cuts are 4 
radii in length. The exact value is taken to be the 
average of the analytical value at center of the Yee 
cell, obtained from the Mie series solution. Using 
the spatial average of the exact solution is 
necessary near the jump discontinuities to properly 
compare to the computed values which are really 
the average values at the center of the Yee cells.  
Table II shows the errors computed for the six cases 
along y-cuts at 4 different z values for increasing 
dielectric constants. The ratio r shown is the tensor 
average error divided by the standard average. 
Table II shows that r is about 0.3 at 20 ppw and .6 
at 10 ppw for the six cases. Cases II and IV both 
show a decrease of about 50% in the average error 
by going from 10 ppw to 20 ppw for the tensor 
method. The standard method shows worse 
convergence. Case VI shows only about a 20% 
decrease in the average error by going to 20 ppw. 
 
Table II. Errors for Cases I – VI. 

 
Case I ez(1) ez(4.5) ey(1) ey(4) av. 

ten(2,4) 1.79 2.30 2.31 2.11 2.13 

sta(2,4) 1.94 3.53 4.85 4.06 3.60 
             r=.59 

Case II ez(1) ez(8.5) ey(1) ey(8) av. 

ten(2,4) 0.61 0.88 1.46 0.98 0.98 

sta(2,4) 1.80 1.78 4.83 4.41 3.21 
             r=.31 
Case III ez(1) ez(4.5) ey(1) ey(4) av. 

ten(2,4) 3.98 5.62 2.54 3.13 3.82 

sta(2,4) 6.67 11.30 6.99 5.68 7.66 

             r=.50 

Case IV ez(1) ez(8.5) ey(1) ey(8) av. 

ten(2,4) 2.15 2.16 1.94 1.48 1.93 

sta(2,4) 4.64 4.95 6.26 7.00 5.71 

             r=.34 

Case V ez(1) ez(4.5) ey(1) ey(4) av. 

ten(2,4) 3.45 3.25 2.77 3.26 3.18 

sta(2,4) 3.86 5.33 8.31 5.32 5.71 

             r=.56 

Case VI ez(1) ez(8.5) ey(1) ey(8) av. 

ten(2,4) 2.66 2.90 2.67 1.67 2.48 

sta(2,4) 5.87 3.55 8.48 8.88 6.70 
            r=.37 

Efficiency: The (2,4) tensor is compared with the 
(2,4) standard Yee for total CPU time and 
additional memory requirements. The computations 
were all performed on an IBM p690 parallel 
computer using 16 processors. This case uses a grid 
size of 168×168×168 and 2000 time steps. The 
(2,4) tensor method uses 373 s of CPU time 
compared to 251s for the (2,4) standard Yee, or a 
ratio of 1.49. The tensor method also requires some 
additional memory primarily to store the 9 1~−ε  
tensor components and the 9 transformation matrix 
components of the A~  matrix for each interface cell. 
For this case there are 786 interface cells for each 
of the staggered field positions xE , yE  and zE .  
Also the volume fractions must be stored for each 
interface cell. The total additional memory 
overhead compared with the standard (2,4) method 
amounts to only about 0.2 Mbytes for this case. 
 
Conclusions: A tensor method to handle dielectric 
interfaces has been combined in a straightforward 
way with a standard (2,4) FDTD algorithm and 
results in a computationally homogeneous 
algorithm suitable for parallel computing. The 
numerical cases, using scattering from a dielectric 
sphere, demonstrate that the combined (2,4) tensor 
method significantly improves the accuracy of the 
(2,4) standard Yee method near interfaces. The 
tensor method may be combined with any higher-
order FDTD algorithm, involving a large stencil.  
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Abstract – A mixed element approach using 
right hexahedral elements and right prism 
elements for the finite element-boundary 
integral method is presented and discussed 
for the study of planar cavity-backed 
antennas.  The mixed element method is 
shown to decrease the required 
computation time for geometrically 
constrained geometries by reducing the 
unknown count on the open aperture on the 
cavity. By reducing the unknown count on 
the surface, the memory and computational 
cost associated with the boundary integral 
portion of the solution is decreased versus 
solutions using only prism elements.  The 
accuracy of the mixed element approach is 
shown to be comparable with that of a 
single element approach, especially for far 
field parameters such as radiation pattern 
and radar cross section.   
 

I. INTRODUCTION 

Efficient numerical modeling of antennas is an 
integral part of the antenna design process. 
Numerical modeling can aid in the rapid 
design of an antenna prior to prototype 
fabrication, therefore drastically reducing the 
design time and reducing cost.  One of the 
challenges inherent in the numerical modeling 
of antennas is how to model the antenna in the 
most accurate, yet efficient manner.   
 
Various numerical techniques have been used 
to model antennas with size on the order of a 
few wavelengths.  One of the most popular of 

these techniques is formulated using an 
integral equation (IE) and implemented using 
the Method of Moments (MoM) or one of its 
variants. One particularly relevant example, a 
spiral antenna, is given in [0].  While this 
method is highly accurate and well studied, it 
suffers from the fact that it produces fully 
dense matrices leading to memory demands of 
( )2NO  and computational complexity of 
( )3NO  where N  is the order of system. In 

addition, the most efficient MoM formulations 
are based on surface equivalence and hence 
are restricted to piecewise homogeneous 
materials.  
 
Recently, techniques have been developed to 
reduce the computational complexity of 
integral equation formulations to ( )NlogNO 2  
by exploiting the fact that many of the 
unknowns are physically distant from other 
unknowns [0].  A different approach, the 
Finite Element (FE) method [0-0], is based on 
a partial differential equation (PDE) approach 
and therefore leads to very sparse system 
matrices that can be stored and solved in a 
very efficient manner. In addition, since it is a 
PDE-based approach, the FE method readily 
permits analysis of inhomogeneous materials 
in an antenna design.  However, the FE 
method does not enforce the Sommerfeld 
radiation condition for electromagnetic waves 
as part of its formulation and hence is 
susceptible to spurious reflections from the 
mesh truncation surface. To solve this 
problem, often local conditions, such as an 
absorbing boundary condition (ABC) or 
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Perfectly Matched Layers (PML) are used. 
These methods are particularly useful for 
scattering calculations since the Radar Cross 
Section (RCS) is a far-zone quantity and hence 
the effect of local errors on the solution tends 
to be diminished via integration. Solution 
accuracy is a particular concern for antenna 
modeling using such an approximate condition 
since important antenna parameters (e.g. input 
impedance, mutual impedance, etc.) depend on 
accurate local field solutions. A technique 
combining the FE method and an integral 
equation, termed the Finite Element-Boundary 
Integral (FE-BI) method, is an attractive 
alternative since it implements an exact 
relationship between tangential electric and 
magnetic fields on the mesh boundary as well 
as the Sommerfeld radiation condition [0-0] 
via a properly constructed Green’s function. A 
third approach uses a harmonic expansion of 
the exterior field as a mesh closure condition 
[0]. An excellent summary of these various 
conditions is given in [0].    
 
However, the FE-BI method suffers from a 
well-known drawback: The boundary integral 
portion of the system takes up the majority of 
memory and time for solution.  In two 
dimensional cases, the use of triangular 
elements on the surface of the geometry to 
achieve the greatest modeling flexibility can 
lead to electrical oversampling which causes 
larger than needed memory demand and 
computational time.  Quadrilateral elements, 
while not as flexible in modeling, can be used 
to reduce the unknown count for some cases 
[0], e.g. narrow slots.  The mixture of 
triangular and quadrilateral elements can 
therefore allow a flexible modeling solution 
while reducing the effects of oversampling.  
For the case of three-dimensional cavity-
backed antennas, quadrilateral elements can be 
extruded into right hexahedral elements while 
triangular elements can be extruded into right 
prism elements. Hence, the volumetric 
efficiency of quadrilateral elements can be 

combined with the flexibility of prisms to 
reduce overall complexity of a solution. 
 
This paper presents the mixed element 
formulation as applied to three-dimensional 
cavity-backed antennas.  Section II of the 
paper develops the theory for the mixed 
element formulation.   Section III shows some 
numerical results comparing the mixed 
element formulation with the single element 
formulation.  Section IV compares the 
computational time required for the two 
methods.  Section V presents some 
conclusions and future directions for this 
work. 
 
II. FORMULATION 
Figure 1 illustrates a cavity-backed aperture 
lying in an infinite, metallic groundplane. The 
computational, and antenna, volume is denoted 
by V while the aperture is denoted by S. The 
portion of the groundplane, including any 
metal in the aperture, is indicated by pecS . The 
fields within the computational volume are 
denoted by ( )intint ,HE  while the external fields 
are indicated by ( )extext ,HE . The material 
within the cavity may in general be 
inhomogeneous and anisotropic; however, for 
this work a simplified formulation assuming 
isotropic materials is presented. Expressions 
for anisotropic cases can be found for prisms 
in [0] while expressions for hexahedral 
elements may be similarly developed.  

 
Figure 1: Cavity backed aperture recessed in an 
infinite ground plane with multiple loading layers. 
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This type of geometry represents flush-
mounted cavity-backed antennas where the 
local surface in the vicinity of the antenna is 
planar.  Antennas found in this type of 
configuration include both narrow bandwidth 
apertures (e.g. microstrip and slot antennas) as 
well as wide bandwidth apertures (e.g. packed 
elements such as I-dipoles as well as spiral and 
log-periodic antennas). A systematic modeling 
of these antennas through the use of highly 
efficient computational algorithms is important 
to determine the optimal configuration of these 
systems.  
 
The problem domain is separated into two 
distinct regions, the region composed of the 
interior volume of the geometry, and the 
region composed of the surrounding free space 
area above the ground plane.  The interior, FE, 
region is then coupled to the exterior, BI, 
region by enforcing tangential magnetic field 
continuity, intext n̂n̂ HH ×=× , on the aperture 
surface ( )S  while tangential electric field 
continuity, intext n̂n̂ EE ×=× , on that same 
surface is assured via the use of similar basis 
function for the interior and exterior 
representations. The final hybrid expression, 
usually known as the finite element-boundary 
integral equation, is given by  

( ) ( )

( )( )

int 2 int
0

2 int
0 2

0 0

1

ˆ ˆ, | ,
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i i

i j
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where iL  is the vector testing function 
associated with the ith row while impJ  
represents an impressed current source as the 
antenna feed. The relative material parameters, 

rε and rµ , are associated with each element 
and may vary on an element-by-element basis 
while 0k  and 0Z  are the free-space 
wavenumber and wave impedance, 
respectively. The electric dyadic Green’s 

function of the second kind, 2eG , is taken to 
be the half-space Green’s function [0].  

The unknown electric field is expanded 
using the same functions as used for testing 
(e.g. Galerkin’s method) is   

∑
=

=
N

1j
jj

int E LE   (2) 

where jE  indicates complex-valued unknown 
expansion coefficients. Inserting (2) into (1), 
the final expression is given as 
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This matrix equation is separated into two 
parts, one representing the finite element 
portion, written as FE

ijI , and the other 
representing the boundary integral portion, 
written as BI

ijI  as 
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   (5) 
where the latter has support only when both 
test and source edges lie in the aperture. These 
integrals represent the matrix entries in the 
following linear system 
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where S
jE indicates unknown field expansion 

coefficients associates with the aperture 
surface, int

jE are the expansion coefficients for 

the interior basis vectors and int
if  is the 

excitation term associated with an interior 
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current source.  Evaluation of (4) and (5) 
require specification of the basis functions, 

jL . These will be different for the different 
types of elements used in the mesh; hence their 
will be two different specifications of FE

ijI , one 
for prisms and one for hexahedra, and four 
different specifications of BI

ijI  to represent all 
possible combinations of surface element 
coupling. The functions for a right prism are 
presented first followed by those for a right 
hexahedral. 
 
Right Prisms 
Right prism elements have been used 
successfully in the FE-BI method in the past 
[0].  These basis functions posses the required 
properties to be used in the FE-BI method.  
They enforce tangential field continuity across 
element faces and are curl conforming. The 
elements used in this work are also 
divergence-free and CT/LN elements [0].   
 
Prisms have the advantage of providing great 
flexibility in modeling geometries that are 
irregular in two dimensions but regular in the 
third dimension, such as cavities recessed in 
ground planes, the case presented here. Prisms 
also have the advantage of making it quite 
simple to extrude a three-dimensional mesh 
from a two-dimensional mesh composed of 
triangles.  In addition, the prism basis 
functions are derived from the two 
dimensional basis functions for triangles so 
they reduce to the two-dimensional triangular 
basis functions used in the boundary integral; 
hence, prisms are similar to triangle elements 
and therefore automatically enforce the 
essential boundary condition in the aperture.  
However, for some geometries such as narrow 
slot spiral antennas, prism elements have the 

disadvantage of oversampling the aperture and 
therefore inefficiently using resources. Figure 
2 illustrates one possible realization of a right 
prism element where the local node numbering 
scheme is shown along with the encircled local 
edge numbering scheme. 

 
Figure 2: Right prism element shown with its defined 
local nodes and local edges (encircled numbers). 

The nodes are ordered in a counter-clockwise 
direction in order to ensure that the normal 
vector of the element points towards the top of 
the element and therefore points out of the 
computational volume in the aperture of a 
cavity-backed antenna.  The edge-based 
expansion functions for the prism element are 
derived from the Rao-Wilton-Glisson (RWG) 
basis functions for triangles [0] with a linear 
depth variation to allow for three-dimensional 
support.  Assigning prism vector expansion 
functions as ii WL = , the nine vector functions 
associated with the prism are given by 
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 (7)
where il is the length of the thi  edge, is  is the 
sign of the thi  edge to ensure field continuity 
between elements , ( )ii yx ,  are the global 
coordinates the local nodes, ( )ul zz ,  are the 
global coordinates of the upper and lower 
faces of the prism, lu zzc −=  is the height of 
the prism, and eS  is the area of the triangle 
that forms the top (or bottom) of the prism. For 
the vertical edges, 1k  and 2k  are defined in 
Table 1 
Table 1. Definition of the indices used to construct 
the vertical prism expansion functions. 

χ k1 k2 
7 2 3 
8 3 1 
9 1 2 

 
where χ  is the local edge number and ( )21 k,k  
indicate local nodes. The curls of these basis 
functions are defined as 
 

2 1 1 2

ˆ ˆ ˆ[( ) ( ) 2( ) ],
2
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ˆ ˆ[( ) ( ) ] .
2

i i
i i i le

i i
i i i ue

k k k k
i e

l s x x y y z z
cS

l s x x y y z z
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x x y y

S

∇× = − − + − − −

∇× = − + − + −

− + −
∇× =

V x y z

M x y z

x yK

 (8) 
Note that these expansion functions are 
functionally identical to [0]; however, since 
they are expressed in global rather than local 
coordinates, it is relatively easy to use these 
functions in conjunction with anisotropic 
materials specified in terms of global 
properties.  

Right Distorted Hexahedrals 
A common example of a regular hexahedra 
element is the brick element where all the 
edges are either parallel or orthogonal to any 
other edge in the element [0]. Distorted 
hexahedral elements have edges that are not 
necessarily parallel or orthogonal to the other 
edges. Distorted hexahedral have been used by 
[0] and discussed in [0]; however, not in 
conjunction with other elements.   The edges 
in the extrusion direction are orthogonal to the 
quadrilateral element used to form the 
hexahedron. Distorted hexahedral elements are 
important because they have the ability to 
model irregular surface geometries with 
potentially fewer edges than prisms (e.g. 
narrow slots).  This leads to less computational 
and memory demand for the same geometry 
modeled with hexahedral elements as opposed 
to prism elements.  Distorted hexahedral 
elements, however, have the disadvantage of 
not having closed-form matrix entry formulae 
and hence require more computational effort 
as compared to prisms with similar field 
representation capability. 
 
The basis functions used for hexahedral 
elements are the so-called rooftop functions.  
Rooftop basis functions are most often used in 
brick elements [0-0].  Brick elements are very 
easy to use but suffer from the fact that they 
can only model Cartesian-type geometries 
effectively.  In order to model more irregular 
geometries distorted hexahedral elements can 
be used.  Due to their distortion however the 
integrals in (5) can be very difficult to 
compute numerically.  Numerical integration 
over brick shaped volumes is readily 
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implemented and for this reason it is 
advantageous if a hexahedral element is 

mapped into a brick before integration. 

Figure 3 shows the transformation of a distorted hexahedral element in the ( )zyx ,,  coordinate 
system to a unit cube in the ( )ςηξ ,,  coordinate system. 
   
 

 
Figure 3: Hexahedral in (x, y, z) coordinates mapped into a cube in (ξ, η, ζ) coordinates. 

where the edges of the hexahedral and the 
brick are defined in Table 2. 
Table 2 : Local edge numbering for a distorted 
hexahedral element. 

Edge Node 1 Node2 
1 1 2 
2 3 4 
3 1 4 
4 2 3 
5 5 6 
6 7 8 
7 5 8 
8 6 7 
9 1 5 
10 2 6 
11 3 7 
12 2 6 

 
From [0] the vector edge-based basis functions 
can be written as 

(1
8
i i

i i i
l s η η ζ ζ ξ= + )(1 + )∇N   

(9) 

for the edges parallel to the ξ direction 

(1
8
i i

i i i
l s ξ ξ ζ ζ η= + )(1 + )∇N   

(10) 
for the edges parallel to the η direction, and 
finally 

(1
8
i i

i i i
l s ξ ξ η η ζ= + )(1 + )∇N   

(11) 
for the edges parallel to the ζ direction, where 

il  denotes the length of the thi  edge. Based on 
the definition of the gradient, these equations 
can be equivalently written as  
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Therefore, the basis functions for hexahedral 
elements are now defined in the mapped 
coordinate system where numerical integration 
can be performed over a cube rather than a 
hexahedral volume. 
 
The integrands in (5) are still represented in 
terms of global Cartesian coordinates.  
Defining the Jacobian matrix as 

x y z

x y z

x y z

ξ ξ ξ

η η η

ζ ζ ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

J  

  (13) 
the elemental volume of the integral can be 
written as [0] 
 

det[ ]dV dxdydz d d dξ η ζ= = J . 
 (14) 
From [0] the following vector operations can 
be defined 

1ˆ ( )
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ξ η
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z N
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N
J

ξ η ζ
 (16) 

 
The above equations can be used to derive the 
equations needed to implement the FE-BI 
method using hexahedral elements. 
Mixed Element Formulation 
Traditional formulations of the FE-BI method 
use one of the previous two elements 
described as the sole type of element used to 
model the geometry.  This works well in 
practice and many implementations of this 
type have been successful.  Each method has 
its advantages and disadvantages as described 
previously.  To gain benefits not obtainable 

using one element or the other, the two types 
of elements can be combined.  This allows the 
use of prism elements where their flexibility is 
needed, such as at sharp contours and areas of 
rapid varying fields, while still allowing the 
use of hexahedral elements where fewer 
unknowns are needed, such as areas of slowly 
varying fields or for narrow slots.  Only a few 
additional equations need to be introduced in 
order to make this mixed element formulation 
possible.  To be more specific, only the 
boundary integral terms where a prism edge is 
interacting with a hexahedral edge need to be 
derived.   
 
The equations for mixed element interactions 
via the boundary integral can be derived by 
using the basis functions for the triangular and 
quadrilateral elements in (5).  For the case 
when triangles are used as test elements and 
quadrilaterals are used as source elements, the 
following equations are used 
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where 22 )()( yyxxR ′−+′−=  
 
Conversely when quadrilaterals are used as 
test elements and triangles are used as source 
elements, the following equations are derived. 
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Using the following relations 
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the equations needed to implement the mixed element formulation are written 
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where p denotes the fact the either the test or 
source edge are associated with a prism 
element. 

III. Numerical Results 
To validate this mixed element formulation, 
two simple test cases were constructed.  The 
first was a 3cm x 2cm slot antenna cut into a 
6cm x 5cm x 2cm cavity.  The cavity was 
filled with a dielectric material with a 
dielectric constant of 17.2r =ε . The geometry 
was modeled once with only prism elements 
and a second time with a mixture of prism 
elements and hexahedral elements.  The RCS 
of this antenna is shown in Figures 4 and 5. 
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Figure 4: Radar Cross Section of a 6cm x 5cm x 2cm 
cavity with a 3cm x 2cm slot aperture, θθ-pol. 
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Figure 5: Radar Cross Section of a 6cm x 5cm x 2cm 
cavity with a 3cm x 2cm slot aperture, φφ-pol. 
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The results above show that the mixed element 
formulation is nearly identical to the single 
element formulation when modeling the radar 
cross-section of the slot antenna. 
 
The second test case consisted of a 3cm x 2cm 
patch antenna residing in a 6cm x 4cm x 
0.0762cm cavity filled with a dielectric 
material with εr = 3.2.  The patch antenna was 
excited by a probe feed located at x = 3cm, y = 
2.1cm.  As with the slot antenna this antenna 
was modeled once with only prisms and again 
with a mixture of prism elements and 
hexahedral elements.  Figure 6 shows the 
radiation pattern of the patch antenna at 5.4 
GHz and Figure 7 shows the input resistance 
of the probe feed from 5-6 GHz.   
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Figure 6: Normalized radiation pattern for a 3cm x 
2cm patch antenna in 6cm x 4cm x 0.0762cm cavity. 

 
Figure 7: Input resistance of a 3cm x 2cm patch 
antenna in 6cm x 4cm x 0.0762cm cavity. 

The above results show that the mixed element 
formulation again matches the prism-only 
formulation results very closely.  Different 
mesh densities around the feed point for the 
two different methods cause the discrepancy in 
the value of the input resistance at the resonant 
point of the patch antenna.  Due to the extreme 
local nature of input impedance small changes 
in electric field values caused by slightly 
different sampling rates at the feed point can 
lead to moderately different results for the 
value of the input impedance.  Also, probe 
feeds such as the one used in the above 
example can be extremely sensitive to small 
changes in the field, which makes them 
somewhat unreliable for accurate simulations 
of input impedance value.  The most important 
result in the above example is that the structure 
has a resonant point at the same frequency 
using both the prism element formulation and 
the mixed element formulation.  

 
IV. Solution Efficiency Comparison 

To compare and contrast the computational 
demand required to model geometries with 
only prism elements as opposed to a mixture 
of prism and hexahedral elements a few, more 
complex, cases were considered.  These cases 
were chosen since they represent a class of 
problems where the triangles used with prisms 
to represent the aperture, “oversample” the 
aperture from an electromagnetic viewpoint. 
This is best understood by considering a 
narrow slot antenna. Since the electric fields in 
the slot have only a component perpendicular 
to the slot sides, quadrilateral elements very 
efficiently model this slot. In contrast, using an 
identical sampling density, triangle elements 
would require one additional degree-of-
freedom (e.g. edge) per equivalent 
quadrilateral element.  
The first of these cases included a four-arm 
spiral antenna with one, two, and three turns.  
The second was an I-dipole array consisting of 
one, four, nine, and sixteen dipoles.  The time 
required computing a single radiation pattern 
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cut, with an INTEL XEON 550 MHz 
processor running the Linux operating system, 
was recorded for each of the aforementioned 
geometries.  Figure 8 shows examples of the 
different geometries used for the results along 
with the meshing used.  Table 3 describes the 
different mesh parameters for the example 
geometries.  A single pattern cut was 
computed in the X-Z plane at a frequency of 

12 GHz for the spiral antenna and 4GHz for 
the I-dipole array.  Figure 9 illustrates the time 
required to compute a radiation pattern cut for 
the four-arm spiral antenna versus the number 
of turns in the spiral.  Figure 10 illustrates the 
time required to compute a single radiation 
pattern cut for the I-dipole array versus the 
number of dipoles in the array. 

 

 
(a) (b) 

 

 
(c)      (d) 

Figure 8: A four-arm, one-turn spiral and a 3x3 I-Dipole array (a) spiral with mixed elements, (b) spiral with 
prism elements, (c) I-Dipole array with mixed elements, (d) I-Dipole with prism elements. 

 
 
Table 3: Mesh comparison for a four-arm, one-turn spiral antenna and a 3x3 I-Dipole array. 
 

 

 

 

 
 

 

 Spiral Mixed Spiral Prism I-Dipole Mixed I-Dipole Prism 
Surface Elements 1313 2338 2280 3600 
Surface Edges 2544 3569 3980 5437 
Surface Unknowns 1296 1941 2880 4013 
Total Elements 14443 25718 15960 25200 
Total Edges 44080 56380 43747 56362 
Total Unknowns 37684 48579 37705 48539 

R = 2.0cm 

3.5 cm

3.14 cm
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Figure 9: Required computation time for a single 

radiation pattern cut for a four arm spiral antenna. 
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Figure 10: Required computation time for a single 
radiation pattern cut for an I-dipole array antenna. 

 
As can be seen from the above results the 
mixed element formulation scales much better 
for geometrically constrained problems, such 
as spiral antennas and I-dipole arrays, as 
compared to the prism-only formulation.  
 
V. Conclusions 

A mixed element formulation was 
developed to model three-dimensional planar 
cavity-backed aperture antennas. This 
formulation was shown to be equivalent to a 
formulation using only prism elements but was 
more efficient in terms of memory and 

computational demand.  The main memory 
and computational savings were due to the fact 
that the mixed element formulation produced 
fewer surface unknowns, for a comparable 
electromagnetic representation, than the prism 
element formulation for the same geometry. 
  Slight discrepancies between the mixed 
element and prism element formulations were 
seen in the modeling of impedance for 
complex geometries. Dissimilar mesh densities 
surrounding the feed points causing different 
input powers to be produced at the feeds 
caused these discrepancies.  These 
discrepancies were not seen in radar cross-
section simulations as RCS measurements do 
not include a feed model. 
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Abstract— The performance of an explicit, residual-based, a
posteriori error indicator for directing a single level p-refinement
of the finite element method, electromagnetic analysis of multi-
port waveguide structures is evaluated experimentally by con-
sidering three different structures. The error indicator consists
of a linear combination of element volume and element face
residuals. It is found that the indicator is generally very effective
in identifying elements that need to be refined. It is also found
that the relative weighting of the volume and face residual
contributions to the error indicator plays an important rol e in
its performance.

I. I NTRODUCTION

The Finite Element Method (FEM) can be used very effec-
tively in the analysis of waveguide structures. References[1],
[2], [3], [4] represent some examples of the driven problem and
[5], [6] represent some examples of the eigenvalue problem.
There are fundamental differences between the driven- and
eigenvalue problems. The eigenvalue problem is typically
a 2D analysis of the waveguide transverse plane with the
purpose of finding the modal field distributions and cutoff
frequencies, whereas the driven problem can be in 2D (see
[4]), but is generally constructed in 3D (see [1], [2], [3]).The
driven problem needs to include the waveguide port(s) within
the variational formulation as an inhomogeneous, Dirichlet
boundary condition (the voltage-current approach, see [4])
or as a special type of Neumann boundary condition (the
incident-reflected approach, see [1], [2], [3]).

In this paper we will use curl-conforming, vector elements
to analyze 3D, multi-port, inhomogeneously filled, waveguide
structures at specific frequencies (a driven problem), using
Neumann boundary conditions to model the ports. These
elements posses fundamental advantages over scalar elements,
as discussed in numerous publications [6], [7], [8], [9]. The
waveguide port variational boundary value problem and the
resulting FEM is discussed in Section II.

The main contribution of this paper is the experimental per-
formance evaluation of an explicit, residual-based, a posteriori
error indicator when used to direct a single levelp-refinement.
Error indicators are commonly used for refining finite element
discretizations in an iterative manner.

The error indicator is presented in Section III and is a
proper bound on an approximate energy norm. It can be

derived from the waveguide port variational boundary value
problem, as shown in [10], [11]. It is explicit in nature and
based on volume and trace residuals. The indicator is of the
same general form as a residual-based indicator presented in
[12, eq.(3.18)] for the general, scalar, elliptic boundaryvalue
problem case, bounding the proper energy norm. There are
clearly some important differences between our indicator and
the one in [12], but these will not be discussed further. Other
examples of indicators, similar to the one used here, can be
found in the literature. Reference [6, Appendix G] presents
an explicit, residual-based indicator tailored to the vector
wave equation, but it does not incorporate the waveguide
port formulation that we employ and only deals with 2D
problems. Reference [13] presents an explicit, residual-based
estimator for 3D, electrostatic problems. Explicit, residual-
based indicators that bound theL2 norm of the error as
opposed to the (approximate) energy norm, can also be derived
— see [12], [14] for the scalar elliptic case and [15] for the
Maxwell system case where an open boundary, hybrid FEM
is considered, employing spherical harmonics, similar in some
respect to the unimoment method [16].

Ideally, one would like to investigate the performance of an
error indicator experimentally by considering problems with
analytical solutions. Unfortunately, very few such problems
are available for the type of multi-port waveguide structures
that are considered here. Therefore, we resorted to considering
the errors with respect to higher order solutions as a measure
of the true performance. This still is of great practical value,
since the maximum available order solution represents the
closest possible approximation of the true solution for a
given discretization, in any case. We restrict ourselves to
two elements of different order that are widely used: the
Constant Tangential/Linear Normal (CT/LN) and Linear Tan-
gential/Quadratic Normal (LT/QN) elements [9]. Section IV
describes the investigative procedure followed. In Sections V,
VI and VII, investigative results of three different waveguide
port structures are presented and discussed.

We end by drawing some overall conclusions in light of all
the available results.

In this paper, the subscriptw will indicate entities associated
with the feeding waveguides and/or their corresponding port
apertures.
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II. T HE WAVEGUIDE, FINITE ELEMENT FORMULATION

The electric field, vector wave equation, boundary value
problem on the volumeΩ, is as follows [1]:


∇×
1

µr

∇× E− k2
0ǫrE = −jk0Z0J on Ω,

n̂ × E = 0 on ΓD,
n̂ ×∇× E = N on ΓN ,

(1)

where ΓD represents the homogeneous, Dirichlet boundary
andΓN represents the inhomogeneous, Neumann boundary.J

represents an impressed current distribution andN represents
a general Neumann boundary condition.

The electric field, vector wave equation, boundary value
problem can be expressed as a variational boundary value
problem [11], yielding



∫
Ω

{
1

µr

∇× E · ∇ × W − k2
0ǫrE · W

}
dV

= −

∫
ΓN

1

µr

N · W dS − jk0Z0

∫
Ω

J ·W dV

∀ W ∈ W ; E ∈ W

(2)

with

W = {a ∈ H(curl, Ω) | n̂ × a = 0 on ΓD} . (3)

Dominant,TE10 mode modeling of a waveguide port is
included in the variational boundary value problem via a
Neumann boundary condition at the port apertureSw, as
described in [1]. The resulting variational boundary value
problem is as follows:



∫
Ω

{
1

µr

∇× E · ∇ × W − k2
0ǫrE · W

}
dV

+
jkw

µrw

∫
Sw

(n̂ × E) · (n̂ × W) dS

=
2jkw

µrw

∫
Sw

(n̂ × E
inc
w ) · (n̂ × W) dS

∀ W ∈ W ; E ∈ W.

(4)

Note that the impressed, electric current source term was
dropped in equation (4), since no such sources will be present
in the waveguide problems considered here.

E
inc
w andkw represent the incident,TE10 wave at the port

and the feeding waveguide,TE10 mode propagation constant,
respectively. They are defined in terms of the local port
coordinate system shown in Figure 1, as follows [17]:

E
inc
w = E inc

w sin
(πx

a

)
ŷ. (5)

kw =

√
k2
0 −

(π

a

)2

. (6)

A finite element discretization is employed in order to solve
equation (4) in an approximate manner. The electric field is
represented as

Eh =

NF∑
i=1

EiNi, (7)

with the Ei representing the unknown degrees of freedom
and theNi representing the basis functions. By choosing the

x


y


a


b


Fig. 1. Waveguide aperture. Definitions of the local coordinate system and
dimensions.

testing functions equal to the basis functions, equation (4)
leads to a symmetric matrix equation[A]{E} = {b} in terms
of the degrees of freedom.

Curl-conforming, hierarchal, vector basis functions of mixed
order are used [9]. Since the elements are of mixed order, they
model the unknown field and its curl to the same polynomial
degree, with the least possible degrees of freedom [18]. Note
that both of these quantities play roles of equal importancein
equation (4). Normal field continuity is not enforced by curl-
conforming elements; the associated benefits are outlined in
[7]. The elements are hierarchal, which means that elements
of different polynomial order can easily be used within the
same mesh.

In the rest of this paper, the hierarchal property of the
elements is of great importance, since CT/LN (H0(curl)) and
LT/QN (H1(curl)) elements are used together. The definitions
of the basis functions used, can be found in [19].

III. T HE WAVEGUIDE, EXPLICIT, RESIDUAL-BASED, ERROR

INDICATOR

Define the error field as

eh = E− Eh. (8)

DefineK as a single, elemental volume of the mesh and define
f as a single, facial area of the mesh, withNK as the number
of elements in the mesh andNf as the number of faces in the
mesh. Further define

hK(i) = diam(Ki), (9)

hf(m) =

{
max

{
diam(K(1)), diam(K(2))

}
internal face,

diam(K(1)) boundary face,
(10)

where the superscripts(1) and (2) indicate the two elements
sharing the face concerned and diam(K) indicates the diameter
(maximum dimension) of elementK.

The following explicit, residual-based, error bound can be
derived for the discretized, waveguide variational boundary
value problem of equation (4) [10], [11]:

‖eh‖
2
Ea(Ω) ≤ CV

NK∑
i=1

h2
K(i)‖RV ‖2

L2(Ki)

+ Cf

Nf∑
m=1

hf(m)‖Rf‖
2
L2(fm), (11)
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with the approximate energy norm defined as

‖a‖Ea(Ω) ≡

[
NK∑
i=1

|a|
2
(H1(Ki))3

]−
1
2

·

∣∣∣∣
∫

Ω

{
1

µr

∇× a · ∇ × a − k2
0ǫra · a

}
dV

+
jkw

µrw

∫
Sw

(n̂ × a) · (n̂ × a) dS

∣∣∣∣ (12)

where|a|(H1(K))3 designates the Sobolev semi-norm of order
1, on elemental volumeK [20]. The volume and face residuals
in equation (11) are defined as

RV = −∇×
1

µr

∇× Eh + k2
0ǫrEh in Ki; i = 1, ..., NK .

(13)

Rf =




n̂(12) ×

[
1

µ
(1)
r

∇× E
(1)
h −

1

µ
(2)
r

∇× E
(2)
h

]

on fm \ Sw; m = 1, ..., Nf

1

µr

n̂ ×∇× Eh −
jkw

µrw

n̂ ×
[
n̂ ×

(
2Einc

w − Eh

)]
on fm ∩ Sw; m = 1, ..., Nf .

(14)
It is clear that‖eh‖Ea(Ω) is not a proper norm of the

error field, because it does not conform to the well known
specifications of a proper norm [21], since‖eh‖Ea(Ω) = 0 6⇒
eh = 0. However,eh = 0 ⇒ ‖eh‖Ea(Ω) = 0 and one can
further observe that the residuals (and therefore the RHS of
equation (11)) will go to zero whenEh satisfies the vector
wave equation and the Maxwell continuity conditions [17].
Therefore: the RHS of equation (11) can reliably indicate the
presence of an error, but not the absence thereof. This is not
ideal, but it will be shown to be quite useful.

Equation (11) can be rewritten in terms of elemental con-
tributions to the bound on‖eh‖

2
Ea(Ω). It is assumed that

the facial contributions are shared equally between elements.
The boundary face contributions are also scaled by1/2 even
though they are not shared, since they represent the same
Maxwell continuity condition as the internal face residuals
and should therefore be treated in the same way. Equation
(11) becomes a summation of elemental error indicators:

‖eh‖
2
Ea(Ω) ≤

NK∑
i=1

(
CV h2

K(i)‖RV ‖
2
L2(Ki)

+
1

2
Cf

∑
fm⊂∂Ki

hf(m)‖Rf‖
2
L2(fm)

)
.

(15)

The unknown constantsCV and Cf in equation (15) can be
replaced with two new constants,C andα, resulting in

‖eh‖
2
Ea(Ω) ≤ C

NK∑
i=1

(
αh2

K(i)‖RV ‖2
L2(Ki)

+
1

2
(1 − α)

∑
fm⊂∂Ki

hf(m)‖Rf‖
2
L2(fm)

)
,

(16)

with
0 ≤ α ≤ 1. (17)

The valueα clearly represents the relative contributions of the
volume- and facial residuals to the elemental indicators. The
effect of this parameter on the indicator performance will be
studied in the subsequent sections.

IV. I NVESTIGATIVE PROCEDURE

This section describes a procedure for evaluating the effect
of the parameterα on the performance of the error indicator
of equation (16), for a specific problem and at a specific
frequency.

After an all-CT/LN solution, the following elemental error
indicator is calculated for every elementKi, i = 1, .., NK ,
with fixed α:

αh2
K(i)‖RV ‖2

L2(Ki)
+

1

2
(1 − α)

∑
fm⊂∂Ki

hf(m)‖Rf‖
2
L2(fm).

(18)
The problem is then re-solved, but with a percentage of
elements with the highest error indicator values upgraded to
LT/QN elements. Since the quality of the upgraded solution
must lie between that of an all-CT/LN- and an all-LT/QN
solution, the relative solution quality errorǫQ, measured in
terms of the reflection coefficientS11, is defined as follows:

ǫQ =

∣∣∣∣∣
S11 − SLT/QN

11

SLT/QN
11

∣∣∣∣∣ . (19)

The valueǫQ is called relative, since it is a measure of the

solution quality error
∣∣∣S11 − SLT/QN

11

∣∣∣, relativeto the magnitude

of the highest order solution,
∣∣∣SLT/QN

11

∣∣∣.
Various ǫQ values are obtained for the current value ofα,

by changing the percentage of elements that are upgraded
to LT/QN. In all graphs to be presented, the following set
of percentages were used:0.0%, 2.5%, 5.0%, 7.5%, 10.0%,
12.5% and100.0%. This defines a curve ofǫQ as a function
of the number of degrees of freedom. A set of such curves is
generated at a given frequency point by considering a range
of α values and will henceforth be referred to as aperfor-
mance graph. On every performance graph a curve denoted
“Random” is included for reference purposes. These curves
were generated by upgrading randomly selected elements.
Considering a specific problem, a distinct performance graph
can be generated by the above described procedure, at any
frequency.

As an example, consider Figure 4, the performance graph
of a waveguide through problem atf = 8.5 GHz, to be
discussed in Section V. The first cluster of data points, around
1500 degrees of freedom, represents an upgrade of2.5% of
the elements. Following clusters represent the other upgrade
percentages used. These clusters can be quite spread out,
since the upgrading of two neighbouring elements results in
fewer additional degrees of freedom than the upgrading of
two free-standing elements (upgrading an element necessitates
the partial upgrading of its neighbours in order to maintain
tangential field continuity). At a specific upgrade percentage,
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the number of degrees of freedom depends on the element
selection scheme and will thus vary withα. The number of
degrees of freedom (rather than the upgrade percentage) was
chosen as thex-axis variable of the performance graphs, since
it is a good indicator of relative computational effort.

Various performance graphs of various problems will be
considered in order to ascertain whether a pattern is present.

V. RESULTS: PERFORMANCE GRAPHS OF A WAVEGUIDE

THROUGH PROBLEM

This section considers a waveguide through problem. The
geometry of the problem is a straight, empty length of standard
X-band waveguide. Figure 2 shows the finite element mesh.
Figure 3 compares the reflection coefficient values obtained
with all-CT/LN- and all-LT/QN elements, with the analytical
solution, showing that the LT/QN result is indeed an improve-
ment upon the CT/LN result.

Performance graphs for this structure were calculated atf =
8.5 GHz, f = 9.5 GHz, andf = 10.5 GHz. In this case the
solution quality error was not divided by

∣∣∣SLT/QN
11

∣∣∣, because the
true reflection coefficient is zero. Figures 4, 5 and 6 show the
performance graphs.

There seems to be no consistent tendency in the perfor-
mance graphs. The error indicator performance is generally
poor. We propose the following reason for this behaviour:

The actual field possesses no variation in amplitude along
the guide length, only a sinusoidal variation in phase. In the
transverse plane there is only a sinusoidal, amplitude variation
in the local (see Figure 1)x-direction. Since the actual field
variations are clearly very slow and uniform throughout the
whole structure, the actual error distribution is relatively flat,
compared to the other problems considered in this paper. Thus,
one actually needs to upgrade the mesh uniformly, rather than
selectively, for optimal error reduction.

Fig. 2. Finite element mesh of the waveguide through problem. 1194
elements, average edge length is4.5 mm. The ports are transverse to the
longest dimension of the structure. The transverse waveguide geometry is as
shown in Figure 1, witha = 22.86 mm andb = 10.16 mm.

VI. RESULTS: PERFORMANCE GRAPHS OF A WAVEGUIDE

IRIS PROBLEM

This section considers a waveguide iris problem. The ge-
ometry of the problem is a straight, empty length of X-band
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Fig. 3. S11 vs. frequency of the waveguide through problem.
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Fig. 4. Solution quality error vs. number of degrees of freedom for the
waveguide through problem atf = 8.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error is zero for all α, is
6836.

waveguide, except for an infinitely thin PEC iris located at its
center. Figure 7 shows the iris geometry. Figure 8 shows the fi-
nite element mesh. Figure 9 compares the reflection coefficient
values obtained with all-CT/LN- and all-LT/QN elements, with
an approximate, analytical result by Marcuvitz [22], showing
that the LT/QN result is indeed an improvement upon the
CT/LN result. Marcuvitz’s results are lumped-element circuit
models; in [3] the procedure required to obtains-parameters
from these was outlined.

Performance graphs for this structure were calculated atf =
8.5 GHz, f = 9.5 GHz andf = 10.5 GHz. Figures 10, 11 and
12 show the performance graphs.

Observe the following tendency in the performance graphs:
when considering only a small increase in the number of
degrees of freedom (≤ 2.5% upgraded elements), a dominant
surface contribution leads to superior results (α < 0.5), but
if one intends to upgrade≥ 5% of the elements, a value of
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Fig. 5. Solution quality error vs. number of degrees of freedom for the
waveguide through problem atf = 9.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error is zero for all α, is
6836.
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Fig. 6. Solution quality error vs. number of degrees of freedom for the
waveguide through problem atf = 10.5 GHz. The all LT/QN number of
degrees of freedom, at which the solution quality error is zero for all α, is
6836.

α ≥ 0.5 seems to be required.
A possible explanation for this tendency, which is also

confirmed by inspection of the geometric distribution of the
volume and face residual values, is as follows:

When a small enough number of elements are to be up-
graded, exclusive use of the face residuals leads to the best
results, because they are most effective in identifying the
elements along the iris edge, where one would expect the
greatest error in the approximate field representation to occur.
It is well known that the electric field strength at such a re-
entrant corner is singular and changes direction extremelyfast
in its vicinity [7]. The elements are of finite size and the
polynomial orders of the basis functions are also finite, thus
large inter-element discontinuities will be present as a matter
of course. Away from the singularity, the variation in the true

field is less intense and the volume residuals overshadow the
face residuals in importance.

Figures 13 and 14 show the2.5% elements with the largest
error indicator values atf = 9.5 GHz, as identified by the
α = 0.1 and α = 0.9 indicators respectively. Comparison of
these two figures clearly shows the initial, superior capability
of the α = 0.1 indicator in identifying the elements along the
iris edge in the middle of the waveguide.

From the performance graphs it can be seen via inspection
that α = 0.5 leads to the best all-round results for the
waveguide iris problem. The valueα = 0.5 causes the relative
solution quality error to decrease at a near optimal initial
gradient in two out of three cases and leads to optimal relative
solution quality error values at the highest upgrade percentage
(12.5%) in all three cases.

PEC


x


y


a


b

d


Fig. 7. Waveguide iris geometry.a = 22.86 mm, b = 10.16 mm and
d = 5.08 mm.

Fig. 8. Finite element mesh of the iris problem.1889 elements, average
edge length is4.3 mm.

VII. R ESULTS: PERFORMANCE GRAPHS OF A WAVEGUIDE

BEND PROBLEM

This section considers a waveguide bend problem. The
problem geometry is an E-plane,90◦, standard X-band, waveg-
uide bend. Figure 15 shows the finite element mesh. Figure
16 compares the reflection coefficient values obtained with
all-CT/LN- and all-LT/QN elements, with an approximate,
analytical result by Marcuvitz [22], showing that the LT/QN
result is indeed an improvement upon the CT/LN result.
Again, [3] discusses the relevant manipulations of Marcuvitz’s
lumped-element model.

Performance graphs for this structure were calculated atf =
8.5 GHz, f = 9.5 GHz andf = 10.5 GHz. Figures 17, 18 and
19 show the performance graphs.
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Fig. 9. S11 vs. frequency of the waveguide iris problem.
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Fig. 10. Relative solution quality error vs. number of degrees of freedom
for the waveguide iris problem atf = 8.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 10144.

Observe the following tendency in the performance graphs:
throughout the range of degrees of freedom (upgrade percent-
ages) considered, theα ≥ 0.5 indicators resulted in superior,
near-identical performances in every graph.

The observed tendency is close to that of the waveguide
iris problem in Section VI, except that at small upgrade
percentages (≤ 5%), the α ≥ 0.5 indicators remain superior
to theα < 0.5 indicators.

In the light of this similarity, we propose that the reason for
the behaviour exhibited by the waveguide bend performance
graphs are the same as that proposed for the waveguide iris
problem’s performance graphs. The difference in behaviour
in the case of small upgrade percentages can be accounted
for by noting that the field singularity at the re-entrant corner
of the waveguide bend is of a lower order than that of the
iris problem (r−

1
3 vs. r−

1
2 , where r is a radial coordinate

perpendicular to the re-entrant corner — see [23, p.178] for
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Fig. 11. Relative solution quality error vs. number of degrees of freedom
for the waveguide iris problem atf = 9.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 10144.
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Fig. 12. Relative solution quality error vs. number of degrees of freedom
for the waveguide iris problem atf = 10.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 10144.

Fig. 13. The2.5% elements with the largest error indicator values for the
waveguide iris problem atf = 9.5 GHz, α = 0.1.

details). This means that the upgrade percentage below which
the exclusive use of face residuals leads to superior results, is
smaller than in the waveguide iris case. In fact, this percentage
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Fig. 14. The2.5% elements with the largest error indicator values for the
waveguide iris problem atf = 9.5 GHz, α = 0.9.

is below2.5% and thus, it is not shown in Figures 17, 18 and
19.

Figure 20 shows the2.5% elements with the highest error
indicator values in the case ofα = 0.5 and f = 9.5 GHz.
Note how the re-entrant corner of the bend is covered, as one
would expect (as motivated in Section VI for the iris edge).

As noted before within this section,α ≥ 0.5 leads to the
best results for the waveguide bend problem.

Fig. 15. Finite element mesh of the waveguide bend problem.3331 elements,
average edge length is3.5 mm. The port geometries are as shown in Figure
1, with a = 22.86 mm andb = 10.16 mm.

VIII. C ONCLUSION

In this experimental investigation of an explicit, residual-
based, a posteriori error indicator (presented in Section III) for
driving a single levelp-refinement of a related waveguide FEM
formulation (presented in Section II), it seemed that the error
indicator’s performance is far superior to a benchmark, random
selection, element upgrade scheme. The only poor results were
encountered when considering the uniform, through problem,
but as it is proposed in Section V, the through problem
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Fig. 16. S11 vs. frequency of the waveguide bend problem.
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Fig. 17. Relative solution quality error vs. number of degrees of freedom
for the waveguide bend problem atf = 8.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 17628.

represents a special case that should be considered separately
when evaluating the error indicator’s general behaviour.

Though it was seen in Section VI that the face residuals
may prove more important than the volume residuals in some
regions and vice a versa, it is important to keep in mind that
both residuals together are needed to form an upper bound on
the approximate energy norm of the error field (see equation
(11)), therefore they should both be present within a general
indicator. This brings us to the choice of the parameterα
in equation (18). Although it was found that the use of the
indicator nearly always results in element selections thatare
superior to the random scheme, no matter the value ofα, it
does seem from the available results, thatα ≈ 0.5 gives the
most consistent results, but only marginally.

It was seen that the indicator considered here can be very
effective; however, a couple of limitations should be kept in
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Fig. 18. Relative solution quality error vs. number of degrees of freedom
for the waveguide bend problem atf = 9.5 GHz. The all LT/QN number of
degrees of freedom, at whichǫQ = 0 for all α, is 17628.
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Fig. 19. Relative solution quality error vs. number of degrees of freedom
for the waveguide bend problem atf = 10.5 GHz. The all LT/QN number
of degrees of freedom, at whichǫQ = 0 for all α, is 17628.

mind. Firstly, the error indicator only indicates relativeerror
and not absolute error, which is a consequence of the unknown
constants present within equation (11). This implies that it
cannot be used as a termination condition of an iterative
analysis procedure that guarantees a specified solution error
bound. Secondly, the error indicator does not bound a proper
norm of the true error and is therefore not guaranteed to
perform consistently. Both of these limitations, which are
inherently part of the indicator considered here, may possibly
be overcome, to varying degrees, by considering other typesof
error indicators, error estimators and/or measures of the error.

Although not the topic of this present work, which has
considered only the usual mixed-order elements, subsequent
work has shown that for specific problems, full-order elements
may be desirable. The waveguide iris problem is a good

Fig. 20. The2.5% elements with the largest error indicator values for the
waveguide bend problem atf = 9.5 GHz, α = 0.5.

example of such a structure. An extended discussion and
results may be found in [24], and an adaptive scheme targeted
specifically at such problems has been presented in [25].
A general adaptive scheme within which the error indicator
discussed here could be employed, is presented in [26].
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Abstract 
The effect of the gaps between the panels of 

a reflector, used as a radio-telescope, is analyzed in 
this paper via the multiscale and array factor 
approach. Initially, the simulation is carried out by 
numerical integration as well as the Finite Difference 
Time Domain (FDTD) Method for a reflector with a 
moderately large diameter, and the results are then 
scaled for the actual size, which is thousands of 
wavelengths in diameter in the frequency range of 
interest. The array factor concept is employed to 
demonstrate the fact that the grating lobe cannot arise 
for the typical gap size of the reflector.  

 
Multiscale approach 
 We investigate a large reflector antenna, 
which is a 120 ft (36.57 m) diameter radio-telescope, 
originally designed for operation up to 10 GHz, but 
now being considered for application at higher 
frequencies. However, in higher frequencies the 
quasi-periodic structure of the gaps in the reflector 
might cause grating lobes in the far-field pattern. The 
gaps consist of the hollow rings and strips dividing 
the panels similar to the Fig. 1. The width of the gaps 
is one wavelength (in the frequency of interest) 
whereas the length of the panels is in order of 1000 
wavelengths. The diameter of the main parabolic 
reflector is on the order of 10,000 wavelengths, 
which makes it impractical for the direct numerical 
simulation. Therefore we use a multiscale approach 
to study the grating lobes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To estimate the level of the grating lobes, 
first we compute the far-field pattern due to the 
circular aperture of 34 wavelength diameter with the 
gaps of one wavelength (where the surface current is 
set to zero in the shadow of the gaps in the aperture) 
between the 5-wavelength long panels shown in Fig. 
1. In this approach (shadowing) the assumption is 
that the current is uniformly distributed on the panels. 
The H- and E-plane far-filed patterns of the circular 
aperture (solid panel) vs. slotted (with panels) are 
shown in Figs. 2 and 3, respectively. It is seen that 
the first grating lobe arises around 10 degrees. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In the next step to validate the shadowing 
approach we compute the scattered far-field of the 
same size flat circular reflector with and without the 
gaps, illuminated by a normally incident plane wave 
using the Finite Difference Time Domain (FDTD) 
Method [1]. The scattered-field formulation of the 
FDTD Method is used to simulate the flat reflector 
[2]. The normally incident wave is analytically 
introduced everywhere in the computational domain 
particularly on the surface of the perfect electric 
conductor of the reflector. Next the scattered field is 
computed throughout the domain by setting the 
tangential components of scattered electric fields to 

Fig.1. Illustration of circular reflector (diameter 34 
lambda); panels (5 lambda) and gap width 1 
lambda; x and y axes show the cell numbers. 

Fig.2. H-plane far-field pattern of circular aperture 
with and without panels with diameter of 34 
lambda (shadowing approach). 

1054-4887 © 2006 ACES

72 ACES JOURNAL, VOL. 21, NO. 1, MARCH 2006



  

negative of those of incident field on the surface of 
the reflector. Upon the completion of the simulation 
the equivalent surface currents at the frequency of 
interest on the Huygens box surrounding the 
reflector, which was stored throughout the simulation 
is used to compute the scattered far-field pattern via 
the near-to-far-field transformation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The comparison of the patterns for the solid 
panels in both H- and E-planes using the two 
methods, presented in Figs. 4 and 5, respectively, 
shows that the difference is limited to the far-end 
lobes. This is due to the fact that in the shadowing 
approach the edge diffraction is ignored. The same 
comparison is shown in Figs. 6 and 7 for the slotted 
case using these two methods. Once again, the 
difference is limited to the far-end lobes. One can 
conclude that the diffraction effect due to the gaps is 
insignificant and that the shadowing approach 
predicts the level of the grating lobes adequately.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the above simulation we can 
predict the pattern of the slotted reflector simply by 
arraying the panels with uniform current 
distributions. The grating lobes level and the 
locations depend on the length of each element and 
the inter-element separation. Consequently, we use 
the array factor concept to predict the performance of 
the slotted reflector. For simplicity we consider only 
the linear array of panels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  In the linear array of panels the grating lobe 
levels and locations depend on a, the length of each 
element and d, the inter-element separation, as shown 
in Fig. 8. At first we assume a linear array of 5 panels 
with a = 5λ, and d = 6λ (therefore the gap between 
the panels is g = λ). The pattern of the single element,  

Fig.3. E-plane far-field pattern of circular aperture 
with and without panels with diameter of 34 
lambda (shadowing approach). 

Fig.4. H-plane far-field pattern of solid circular disc 
with diameter of 34 lambda. 

Fig.5. E-plane far-field pattern of solid circular disc 
with diameter of 34 lambda. 

Fig.6. H-plane far-field pattern of circular 
reflector with diameter of 34 lambda with 
panels. 
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array factor, and pattern multiplication is shown in 
Fig. 9. The pattern multiplication is also compared by 
the pattern of the solid panels (a = 6λ, d = 6λ, and g = 
0). The first grating lobe again shows up around 10 
degrees (first peak angle qp) where the array factor 
has the grating lobe. However, it can be shown as the 
inter-element spacing is decreased (in other words 
when the gap becomes small compared to the panel 
size) the null of the single element pattern (first null 
angle qn) moves closer to the grating lobe of the array 
factor, and this, in turn, reduces the difference 
between the patterns of the solid and slotted panels.  
 

The individual panel far-field pattern has the 

Sinc function form 
2/sin

)2/sinsin(
θ
θ

ka
kaE =  and the 

first null occurs when the argument of the Sinc 
function is equal to π and, therefore, where aλ is the 
electrical length of the panel. 
 
 
 
 

On the other hand, the array factor 
expression is given by [3] 

)2/sinsin(
)2/sinsin(

θ
θ

kd
kNdAF = , which has the first peak 

when πθ =2/sinkd  hence 
))/(1(sin)/1(sin 11

λλλθ gadp +== −− , where 
aλ and gλ are the electrical dimensions of the panel 
and gap respectively. 

 
By comparing the expressions for the qp and 

qn, one can see that as long as the gap size is small 
compared to the length of the panel, the difference 
between these angles is insignificant. This is shown 
in Fig.10 for the array of 11 panels, with a length of 
1170λ and a gap of λ. The difference between the 
two patterns is seen to be insignificant, for the reason 
given above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.7. E-plane far-field pattern of circular reflector 
with diameter of 34 lambda with panels. 

d = a+g 

a g 

panel 

Fig.8. Illustration of linear array of N panels with length a and spacing d. 

Fig.9. Far-field pattern of linear array of 5 panels 
(a = 5λ, d = 6λ, and g = λ).  
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Fig.10. Far-field pattern of linear array of 11 
panels (a = 1170λ, and g = λ). 
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Abstract: Root-based direction finding 
algorithms (DF) have several advantages over 
search-based DF algorithms. A key advantage is 
the fact that they do not require the array 
steering vector; this is because these algorithms 
presume equalized element radiation patterns. In 
this paper, the WIPL-D code is used in 
designing an array of rectangular probe-fed 
patch antennas with equalized radiation patterns 
for measuring the range and bearing of RF 
emitters in the PCS band (1900-1920 MHz). 
Direction of arrival (DoA) estimation results 
based on simulations and measured data are 
presented and used as a measure of element 
patterns deviation from equality. 
 

1. INTRODUCTION 
Direction finding (DF) algorithms for 

DoA estimation is a topic that has been studied 
thoroughly in the past few decades mainly by 
researchers in the signal processing and antenna 
theory communities. From signal processing 
point of view the focus has been on maximizing 
the number of DoAs that can be accurately 
estimated and at the same time reducing the 
computational cost involved in this work. 
Several algorithms exist and can be used to 
estimate the DoA of incident signal on an 
antenna structure [1]-[3]. DF algorithms are 
classified as either search-based or root-based. 
We refer to the former class as S-DF algorithms 
and to the later class as R-DF algorithms. R-DF 
algorithms have several advantages over S-DF 
algorithms. In addition to their less computation 
cost, where DoAs are calculated by finding the 
roots of a polynomial of certain order rather than 
going through intensive search in the whole 
angular domain, a key advantage of using R-DF 
algorithms is the fact that they do not require the 
array steering vector. This is because these 
algorithms presume equalized element patterns 
and their accuracy depends on how much the 
element patterns deviate from equality.  

This paper investigates the design and 
performance analysis of antenna structures with 
equalized element patterns for R-DF algorithms. 
Adding a number of passive elements around the 

center active elements and terminating them 
using a suitable set of loads minimize the 
deviation of the element patterns of the center 
elements from equality [4]. Return loss and 
element patterns of two antenna structures 
comprised of a number of rectangular probe-fed 
patch antennas are calculated using the WIPL-D 
code [5]. The first structure consists of four 
elements and no passive elements. In the second 
structure three passive elements are added on 
both sides of the four active elements and were 
terminated in 50 Ω. DoA estimation results 
using the two antenna structures are compared 
with DoA estimated using measured data. The 
DoA accuracy is used as a measure of how much 
element patterns deviate from equality. The 
paper is organized into four sections. Following 
this introductory section, in section two return 
loss and element patterns calculated using 
WIPL-D are presented for the two antenna 
structures mentioned before. DoA estimation 
results using either WIPL calculated patterns or 
measured data are compared and presented in 
section three. Finally conclusions are provided 
in section four. 

 
2. EQUALIZATION OF ELEMENT PATTERNS 

As shown in figure (1), equalization of 
element patterns is done through adding a 
number of passive elements around the middle 
active elements. The top structure in figure (1) is 
for an array of 4-element of patch antennas with 
no passive elements. In the bottom structure 3 
passive elements on each side of the active 
elements were used, respectively. We refer to the 
top and bottom structures as Array1 and Array2, 
respectively. Figure (2) (top) shows top and 
bottom view of a 4-element array of patch 
antennas modeled in WIPL. The dimensions of 
the patch, ground plane and coax were identical 
to those given in [6]. The inter-element spacing 
for Array1 and Array2 was kept fixed and equal 
to λ/2. The bottom and top views of the 
10-element array of patches (Array2) are shown 
in figure (2) (bottom). The whole structure is 
modeled in the same way as with Array1 except 
that passive elements were terminated in 50 Ω. 
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Fig. 1. 4-element array, top, and 10-element 

array with 3 passive elements on each 
side, bottom. 

 
Fig. 2. A 4-element (top) and 10-element 

(bottom) array of patch antennas 
modeled in WIPL.  

 
Fig. 3. Return loss of Array1 (top), Array2 

(bottom). 

The return loss in the (1.9-1.92) GHz 
frequency band of Array1 and Array2 calculated 
using the WIPL-D code and are shown in figure 
(3). For both arrays it is observed that the 
resonant frequency of each of the middle 
elements is tuned and shifted by 1MHz 
compared to the outer elements. 

Element patterns of Array1 calculated at 
1.91 GHz are presented in figure (4), for fixed ϕ 
and fixed θ, respectively. Results for Array2 are 
presented in figure (5). It is clear from the 
figures that the element patterns of the four 
elements significantly deviate from equality.  

 
 

 

 
 
 

 
 

Fig. 4. Element patterns of array Array1 at  
ϕ=π/4 (top) and at θ=44o (bottom). 

 
The accuracy of DoA estimation using 

the element patterns of Array1 and Array are 
presented in the following section and are 
compared to DoA results based on measured 
data with Array2. 
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Fig. 5. Element patterns of the active 4 elements 

of Array2 at ϕ=π/4 and at θ=44o 
(bottom). 

 

3. NARROWBAND ROOT-BASED DIRECTION 
FINDING ALGORITHMS 

 
In this section accuracy of DoA 

estimation using the modified root-Pisarenko 
(MRP) [7] is analyzed. The analysis will be 
done for Array1 and Array2 and are compared to 
measured data collected from an antenna system 
consisting of Array2. 

 
Fig. 6. Geometry of the antenna array.  

 
Referring to figure (6), the narrowband signal 
model is assumed and is described with  
           ( ) ( ) ( )t t t= +z As v           (1) 

where z(t) is the output of the I-Q channels, A is 
the steering vector, s is the unknown source 
signal and v is vector of additive Gaussian noise. 
The number of antenna elements is N and the 
number of sources is L. Elements of the steering 
matrix are 

      ( )
0

ˆ m ni
nm n m

iA f eλ
ζ

⋅= − Ω k D  .      (2) 

In equation (2) n̂f  is n-th element pattern in the 
terminated array environment including mutual 
coupling effects. For uniformly spaced linear 
arrays along the x-axis, the steering vector is 
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...
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                             (3) 
where sin cosξ θ ϕ=  and d is the inter-element 
spacing. When element patterns are equalized 
the steering vector in equation (3) reduces to   
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λ
θ ϕ θ ϕ
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ξ ξ
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×
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a

.   (4) 

 
Table 1 summarizes results of DoA 

estimation using MRP algorithm and Uniform 
Linear Array (ULA) consisted of 4 active and 6 
passive rectangular probe-fed patch antennas. 
The true position measured by transit is 19.180. 
In DoA estimation from measured data one ULA 
with 6 passive and 4 active elements was used. 
The array was a part of the RF emitter range 
estimation system comprised of two antenna 
arrays. In DoA estimation from simulated data 
Array1 and Array2 configuration were used with 
element radiation patterns calculated 
numerically using the WIPL-D code [5]. ULA 
configuration with passive elements exhibited 
better DoA accuracy in both cases with 
measured and with simulated data.     
 
 
Table 1. DoA estimated from simulations and  

measured data using Array1 and 
Array2. 

Estimated from measured data using Array2 19.86o 
Estimated from simulation using Array2 20.25o 
Estimated from simulation using Array1 21.61o 
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Fig. 7. DoA estimation roots using Array1 

(top) and Array2 (bottom). 
 
 

4. CONCLUDING REMARKS 
 

An array of rectangular probe-fed 
patch antennas with equal radiation patterns 
for root-based direction finding algorithms 
was modeled using the WIPL-D code. Adding 
three passive elements on both sides of four 
active elements and terminating them in 50Ω 
sufficiently equalize patterns of the active 
elements. DoA estimation results using this 
array with equalized patterns shows the 
accuracy improvement when compared to 
array without passive elements. Finally, the 
DoA estimation results obtained from 
simulated data agree with DoA estimation 
results obtained from measured data. 
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ABSTRACT 
 

With recent increases in operating frequencies, 
the modeling and extraction of on-chip 
inductance is becoming an increasingly 
significant consideration. The inductance models 
include the “loop inductance” models and the 
“partial inductance” models. In this paper, we 
develop a stochastic solution methodology for 
the extraction of partial inductances in IC 
interconnect structures. An important advantage 
of this approach is that it requires no 
discretization meshing of either the volume or 
the surface of the problem domain. As a result, it 
has very low memory requirements compared to 
the more conventional deterministic techniques. 
Another advantage of this approach is that it is 
inherently parallelizable and a linear increase in 
speed is expected with the increase in the 
number of processors. Excellent agreement has 
been obtained with analytical benchmark 
solutions.  
 
Keywords: IC Interconnect modeling, Partial 
Inductance, Stochastic algorithm, Monte Carlo.  
 

INTRODUCTION 
 

As a consequence of scaling in sizes, the 
interconnect model used in the chip industry has 
undergone several changes. Presently, low 
resistance nets are described by purely capacitive 
models, while high resistance nets are described 
by relatively more accurate RC models. 
However, with operating frequencies reaching 
the multi-GHz range, the role of on-chip 
inductance is becoming increasingly important, 
as the inductive impedance is directly 
proportional to the frequency of operation. The 
inclusion of inductance in the interconnect model 
is particularly necessary in clock distribution 

networks, signal and power lines, which have 
wide wires and hence low resistance. The 
detrimental effects of inductive impedance on 
system performance include increase in signal 
delay times and signal overshoot which can 
cause breakdown of the gate-oxide layer. The 
introduction of low resistance copper 
interconnects has further increased the 
significance of inductance in IC design and 
accurate modeling and extraction of inductance 
is necessary. 
 
The principal complexity in the extraction of 
inductance is that one needs to have the 
knowledge of currents in advance. However, the 
current distribution in today’s complicated 
interconnect structures depends on the device 
and interconnect resistances, inductances and 
capacitances. Therefore, the modeling of the 
current distribution is a difficult proposition. The 
conventional approaches to inductance extraction 
involve loop inductance models [1], which make 
various simplifying assumptions in determining 
the current distribution. In these loop inductance 
models, typically the capacitive effects are 
omitted during resistance and inductance 
extraction. A RLC model is then constructed by 
adding lumped or distributed interconnect 
capacitance to the extracted resistance and 
inductance.      
 
A radically different approach [2] to the 
modeling of inductance has been suggested in 
literature, which precludes the need to determine 
the current distribution in advance. This 
approach is based on the Partial Element 
Equivalent Circuit (PEEC) [3] method. In this 
approach, the interconnect lines are divided into 
wire segments and self and mutual inductances 
are extracted for these “partial elements”. These 
extracted inductances are then glued together 
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with various resistances and capacitances to form 
an effective RLC circuit model. It has been 
demonstrated [2] that this PEEC-based approach 
is more accurate than the loop inductance models 
in that the latter overestimates the signal delay 
time and the undershoot. The primary reason 
behind this lies in the fact the PEEC-based 
models take into account the mutual inductances 
between the different “partial elements” of a 
particular loop, while the loop inductance models 
take into account only the mutual inductance 
between different loops. The subject of this 
paper is a stochastic extraction of the self and 
mutual inductance of these partial elements. 
 
IC interconnect structures are rectilinear in 
nature. At low frequencies, when the wire 
segments are parallel to each other, exact 
analytical expressions [4] exist for the self and 
mutual inductances of the wire segments, 
assuming uniform current distribution across the 
wire cross sections. However, there is absence of 
such expressions for arbitrary wire-geometry, 
and even in the case of parallel rectangular wire 
segments, these analytical expressions for mutual 
inductance are numerically unstable for wire 
segments separated by a large distance. 
 
In this work, we develop a novel stochastic 
algorithm [5] for the extraction of the self and 
mutual partial inductances. This algorithm is 
characterized by the absence of discretization 
meshing of either the volume or the surface of 
the problem domain. Hence, for today’s 
complicated interconnect structures, the memory 
requirements are expected to be significantly less 
than discretization based algorithms. Another 
advantage of this proposed stochastic algorithm 
is that it should be completely parallelizable and 
the speed of computation is expected to increase 
linearly with the increase in the number of 
processors. The fundamentals of the algorithm 
were briefly presented in Ref. [6], along with its 
applications to frequency-independent 
inductance extraction. In this work, we present 
the details of the algorithm, along with its 
applications to both frequency-independent and 
frequency-dependent problems.  
 

INTEGRAL FORMULATION FOR 
INDUCTANCE 

 
The most general formulation [7] for self and 
mutual inductance in conductor systems follows 
from a definition of inductance based on 
magnetic energy. The magnetic energy stored in 

a two-conductor system, where the two 
conductors are designated as i and j is given as 
 

.
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1 22

jiijjjii IIMILILW ++=         (1)                                    

 
Above, W represents the magnetic energy stored 
in the two-conductor system; iL  and jL  
represent the self-inductances of the i-th and the 
j-th conductor; iI  and jI  represent the 
respective currents, while ijM  represents the 
mutual inductance between the conductors. The 
total magnetic energy can also be written in an 
integral formulation involving the current 
densities in the two conductors and equating that 
to the expression for current density in equation 
(1), the following expressions for self and mutual 
inductances are obtained [7]: 
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Above, the self inductance is formulated as a six-
dimensional integral over the position 
coordinates of the i-th conductor, while the 
mutual inductance is formulated as a six-
dimensional integral over the position 
coordinates over the i-th and the j-th conductor; 
x, v, J  with an appropriate suffix represent the 
position coordinate, volume and current density; 

xd 3  with an appropriate suffix represents an 
infinitesimally small volume element and 0µ  is 
the magnetic permeability of free space. 
 
The current density J, is given as a solution of 
Maxwell-Helmholtz equation [8] and in the 
frequency-domain is written as 
 

0,JJ =−∇ 22 γ                          (3)                                   
 
where, γ is the propagation constant of the 
medium given by µσωµεωγ i+−= 22 ; 

σεµ ,, andω are the permeability, permittivity, 
conductivity and frequency respectively. The 
current density, )(rJ at a given point r, subject 
to appropriate Dirichlet boundary conditions, can 
be written as a surface integral over the surface 
of the problem domain [9]: 
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Above, ),( 'rrG  represents the volumetric 
Green’s function to equation (3), and is a 
solution to equation [9] 
 

).(),(),( 22 ''' r-rrrrr δγ =−∇ GG        (5)                                   
 
Above )( 'rr −δ  is a dirac-delta function 
centered at 'r  and homogeneous Dirichlet 
boundary conditions are imposed in calculating 
the volumetric Green’s function. The integral 
formulation given in (4) can be substituted in 
equation (2) for the calculation of self and 
mutual inductances. As a result, the task of 
inductance extraction involves evaluating a 
multi-dimensional integral, which in this work 
has been done stochastically. At low frequencies, 
the current densities in equation (2) can be 
assumed to be constant. Hence the stochastic 
evaluation of self and mutual inductances is in 
effect a Monte Carlo integration [10] of the 
integrals given in equation (2) over the position 
coordinates of the respective conductors. We will 
now describe briefly the fundamentals of the 
Monte Carlo integration technique used in this 
work, known as the Sample Mean Monte Carlo 
[10]. 

 
Let us consider a function f(x) defined over the 
interval .bxa ≤≤  Our desire is to estimate the 
integral 
 

.)(∫=
b

a
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In the event, the integral is improper, absolute 
convergence [11] is assumed. We select an 
arbitrary probability density function p(x). A 
random variable ξ  is defined corresponding to a 
probability density function )(xp . We now 
introduce another random variable κ  defined as 
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Then, the expectation value of the random 
variable κ , written as ( )κM , is an estimate of 
the integral I , which can be rewritten as 
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The integral can be evaluated by sampling the 
quantity )()( xpxf  within box brackets 
according to the probability density function p(x) 
with the help of a random-number generator [12] 
and averaging over a statistically large number of 
such samples. It can be noted that the Monte 
Carlo integration technique is ideally adapted to 
the estimation of multi-dimensional integrals 
such as the ones in equation (2), as only the 
integrand needs to be sampled irrespective of the 
dimensionality of the integral. Also, the 
integration technique is inherently parallelizable, 
as the stochastically independent samples can be 
sampled in different processors with very little 
inter-processor communication. 
 
For the extraction of frequency-dependent 
inductance, an expression for the volumetric 
Green’s function to the Helmholtz equation in 
(3) needs to be obtained in heterogeneous 
problem domains. However, there is an absence 
of an analytical expression for the volumetric 
Green’s function in materials of arbitrary 
heterogeneity. Keeping that in mind, we have 
developed an approximate expression for the 
solution of equation (5) based on iterative 
perturbation theory. The details of this work 
have been published [13, 14] and we will discuss 
it briefly within the context of two-dimensional 
problems.    
 
The Green’s function ),( 'rrG  is estimated over 
a circular problem domain and is assumed to be 
zero on the boundary of the circular domain, as 
the frequency-dependent problem studied in this 
work is a Dirichlet problem.  
 
 
Let us define the zeroth-order approximation G(0) 
for G , subject to Dirichlet boundary conditions. 
Therefore, 
 

).(2 )0(
orr −=∇ δG                   (9)                  

Above, r(ρ, θ) is the point where the zeroth-order 
approximation is calculated given a delta 
function centered at ro(ρo, θo). Using (5) for 
iteration, we can then generate a first-order 
approximation G(1) in terms of G(0): 
 

.)( )0(2)1(2 GG γδ +−=∇ orr          (10)                                    
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Figure 1. A circle of arbitrary radius R over 
which the Green’s function given by the solution 
of equation (5) is estimated.  
 

                                                   
The solution to Poisson equation (9) is well 
known; it has the form, in polar coordinates [9] 
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Now, we are in a position to evaluate )1(G  from 
equation (10). Using the expression for 

)0(G from equation (11) and with the right hand 
side of equation (10) as the Poisson source term, 
we find an expression for the first-order 
approximation to the solution of equation (5) 
given by 
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Note that )1(G given by equation (12), is an 
approximate expression for G as given by the 
solution of equation (5). The integration variable 
in equation (12) represents an infinitesimal area 
element on the circular-domain surface S in Fig. 
1. It can be noted that homogeneous Dirichlet 
conditions are satisfied by the approximate 
Green’s function expression in Eq. (12). 
 
We next use this approximate Green’s function 
G(1) to develop a general solution to equation (3) 
within our circular domain in Fig. 1. In our 

problem, the two-dimensional problem domain is 
in x-y plane, and a time-harmonic current at a 
given frequency is impressed in the z-direction. 
Based on [9] and equations (4) and (12), the 
current density at the center of the circular 
domain is given by a line integral about the 
domain circumference C as 
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For simplicity, above, we take 2γ  to be 

piecewise constant with respective values qγ in 
θ -quadrants q = 1, 2, 3, and 4. The quantities 
within square brackets in equation (13) are 2D 
versions, respectively, of surface and volume 
Green’s functions encountered in 3D problem 
domains. The function Wq represents 
perturbative corrections arising from the J2γ  
term in the original Maxwell-Helmholtz equation 
(3). In equations (13) and (14), η  and ξ are 
variables of integration. η  takes values between 
0 and R, while θ  assumes values between 

2/)1( π−q  to 2/πq  for a particular quadrant. 
Equations (13) and (14) constitute the starting 
point for defining a random-walk [13, 14] 
algorithm for solving (3) in 2D domains with 
arbitrary piecewise-constant spatial variation in 
γ , subject to arbitrary Dirichlet boundary 
conditions.  
 
The total current, ZI , through the cross section 
can be calculated by integrating the current 
density given in equation (3) over the problem 
domain (ds being an infinitesimal area unit) and 
can be written as 
 

.z
S

JdszI ∫∫=                    (15)                                    

 
The integral expression for the current density 
from equation (13) is substituted in equation (15) 

S: 
C: ρ =R 
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to obtain a multi-dimensional integral expression 
for total current through the conductor surface.  
 
The internal impedance per unit length is defined 
as [8] 
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)(
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valuedcE

Z z
i =                   (16)                                                     

 
At this point, the crucial thing to note is that for 
estimating frequency-dependent impedance, we 
need not estimate electric field or current density 
at any point within the problem domain. The 
problem of impedance extraction is reduced to 
estimating the overall multi-dimensional integral 
expression for current obtained from (15) using 
the floating random-walk method [13, 14] and 
then using (16) to evaluate the internal 
impedance per unit length. We will now discuss 
the details of the floating random-walk method. 
 
The floating random-walk algorithm is a Monte 
Carlo evaluation of an infinite series of multi-
dimensional integrals. In our chosen benchmark 
problem, a time-harmonic current density in the 
z-direction at a single frequency is impressed on 
a circular conductor in the x-y plane. Our goal is 
to calculate the current through the conductor as 
given by equation (15). The starting point of a 
random-walk is based on a pre-determined 
probability distribution. 
 
The random-walks propagate as “hops” of 
different sizes from circle centers to 
circumferences, consistent with a statistical 
interpretation [13, 14] of equation (15). 
Maximally sized circles, subject to limitations 
imposed by iterative perturbation theory, are 
used with hop-location probability rules again 
consistent with equation (15).  
 
We define, with each hop, a numerical weight 
factor derived from equation (15) in conjunction 
with equations (12), (13) and (14). The product 
of these weight factors over a walk, multiplied 
by the solution at the problem boundary—where 
the walk must terminate—gives a statistical 
estimate for zI . We can thus obtain an accurate 
statistical estimate for zI  by averaging over a 
statistically large number of random-walks. 
Mathematically, we can write such an estimate 
as 

 ,1
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n
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N
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where N is the number of walks and )(nI  is the 
contribution from the nth-walk. The error in the 
result has two components: 

1) A deterministic error arising from the 
truncation of the iterative perturbation based 
Green’s function in equation (12) and can be 
controlled by controlling the radius of the hop. 

 2) A statistical 1-σ error, σ , given by [15] 

 

,
N
Eσ

σ =                                 (18)                                             

where Eσ  is the standard deviation of the 
estimates from different random-walks and N is 
the number of random-walks. As a result, the 
statistical error can be controlled by controlling 
the number of random-walks.  
 
It can be seen that computational resources need 
not be wasted in evaluating the currents or fields 
at any point in the problem domain. Instead one 
just needs to evaluate the multi-dimensional 
integrals given by equation (15).  It can again be 
noted that similar to the situation of the 
frequency-independent problem, the approach is 
completely parallelizable, as the integrand can be 
sampled in different processors at the same time. 
We now give the details of the benchmark 
problems that have been handled in this work.  
 

Figure 2. A schematic diagram of a circular cross 
section is shown. One-, two-, and three- hop 
random-walks are represented.  

 
RESULTS 

 
Frequency-independent benchmark problems: 
The algorithm has been benchmarked against 
several mutual inductance extraction problems in 
one, two and three dimensions. The numerical 

A (n)
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r1

r1

r2

r3

r2
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results have been matched with analytical 
solutions given in Ref. [4] and excellent 
agreement has been obtained. The results are 
given in Table 1 and the benchmark problem 
geometries are presented in Figures (3) to (7). In 
these benchmark problems, A = B = C = D = R = 
T = 5 µm and Q = S = U = V = 1 µm. For each 
of these problems, we have taken 5000 sample 
points and the error from the analytical solution 
has been restricted to a fraction of one percent in 
each case. The computational time for each one 
of these benchmark problems has been seen to be 
a fraction of a second in MATLAB 6.1 on a 1.8 
GHz Intel Pentium IV personal computer. The 
exact and statistical errors are computed and they 
are seen to be in close agreement. 
 
 
Table 1. Analytical and numerical results for the 
benchmark problems. Columns: A = Benchmark 
problems, B = Analytical results (pH), C = 
Numerical results (pH), D = Exact errors 
normalized to the analytical results, E = 
Statistical errors normalized to the analytical 
results. 
 
A B C D E 
1. 0.35844 0.35859 0.0004 0.0005 
2. 0.28797 0.28830 0.0011 0.0010 
3. 0.28698 0.28630 0.0023 0.0025 
4. 0.21326 0.21323 0.0001 0.0002 
5. 0.28800 0.28878 0.0027 0.0024 
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Figure 3. Two parallel filaments of negligible 
width and thickness. The current is in the x-
direction. 
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Figure 4. Two parallel tapes of negligible 
thickness. The current is in the z-direction.  
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Figure 5. Two tapes of negligible thickness, 
whose axis are parallel and widths are 
perpendicular. The current is in the z-direction. 
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Figure 6. A thin filament of negligible width and 
thickness is placed parallel to a rectangular bar. 
The current is in the z-direction. 
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Figure 7. Two rectangular bars placed parallel to 
each other. The current is in the z-direction. 
 
Frequency-dependent benchmark problem: For 
the frequency-dependent problem, a z-directed 
time-harmonic and spatially invariant current is 
impressed on a single circular conductor. The 
frequency-dependent impedance contains a 
resistive term and an inductive term. Table (2) 
shows the results for the frequency-dependent 
self impedance of a cross section of radius 1.0 
µm at frequencies ranging from 1 GHz to 25 
GHz. The resistivity for conducting material is 
given by cm8.1 −Ω= µρ  and the magnetic 
permeability is assumed to be that of free space. 
For extracting impedance, a total of only 1000 
random-walks were performed at each 
frequency. It can be seen from Table (2), that the 
error in the estimate of frequency-dependent 
resistance and inductive impedance is around 1 
percent and the absolute error is comparable to 
the statistical error. The resistance and inductive 
impedances are plotted as a function of 
frequency in figures (8) and (9) respectively. As 
in the case of the frequency-independent 
problem, numerical computations have been 
performed in MatLab 6.1 on a 1.8 GHz Intel 
Pentium IV personal computer, and the 
computation time at 25 GHz frequency is of the 
order of a few seconds. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Numerical results for the frequency-
dependent self-impedance of a conducting 
circular cross section. Columns: A = Frequency 
(GHz), B = Skin depth as a fraction of radius, C 
= Analytical result (ohm/meter), D = Random-
walk result (ohm/meter), E = Exact error 
(ohm/meter), F = Statistical error (ohm/meter). 
 

 
 

A 

 
 

B 

 
 

C 

 
 

D 

 
 

E 

 
 

F 
 

1 2.14 5735+ 
314i 

5738+ 
312i 3-2i 1+1i 

5 0.96 5870+ 
1552i 

5917+ 
1534i 47-18i 40+1

5i 

10 0.68 6262+ 
2997i 

6315+ 
2962i 53-35i 55+3

0i 

15 0.55 6827+ 
4268i 

6888+ 
4225i 61-43i 59+4

1i 

20 0.48 7482+ 
5347i 

7549+ 
5297i 67-50i 70+4

5i 

25 0.43 8159+ 
6252i 

8234+ 
6193i 

75- 
59i 

72+5
1i 

 

 
Figure 8. Frequency-dependent resistance per 
unit length for a conductor of 1 µm radius with a 
resistivity of  cm8.1 −Ωµ  and magnetic 
permeability of free space. 
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Figure 9. Frequency-dependent inductive 
impedance per unit length for a conductor of 1 
µm radius with a resistivity of  cm8.1 −Ωµ  and 
magnetic permeability of free space. 

 
 

CONCLUSION & FUTURE WORK 
 

Summarizing, a stochastic algorithm for the 
extraction of partial inductances in IC 
interconnect structures has been developed. The 
algorithm has been validated with the help of 
frequency-independent and frequency-dependent 
benchmarks. The extension of this algorithm to 
more complicated frequency-dependent 
benchmark problems will form the basis of 
future work. Stochastic solution of the PEEC-
based RLC circuit matrix will also be 
emphasized. It is believed that with additional 
development, this algorithm can be developed 
into an IC CAD tool for inductance extraction. 
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Abstract: An extrapolation method based on the 
solution of induce current is introduced to rapidly 
perform angle and frequency sweep in the far-
field calculation using the sparsely sampled 
solutions. This method is based on the observation 
of the characteristics of the current distribution as 
a function of incident angles and frequency. It is 
easy to be implemented for in core processing, 
and needs a small extra memory. In addition, the 
extrapolation applies to both angle and frequency 
sweeps. Numerical examples for conducting and 
material scatterers show that the far-field 
scattering results generated by the extrapolation 
method agree to that provided by the direct 
solution, but the extrapolation method uses about 
the same amount of memory, and much less CPU 
time than that of the brute-force approach. 
 

I.   Introduction 
The algorithms based on the iterative solution of 
the integral equations and accelerated by fast 
solvers provide efficient and accurate ways to 
calculate the scattering by large and complex 
objects. The application of the fast solvers such as 
the multilevel fast multipole algorithm [1] has 
greatly reduced the computational complexity of a 
matrix vector multiplication for the iteration 
process. To further increase the efficiency in 
producing multi-angle and multi-frequency 
scattering data, attentions are focused on (a) 
developing precondition techniques to reduce the 
number of iterations for a converged solution, (b) 
developing advanced post processing methods 
which use the information of the existing solution 
to predict as much scattering data as possible. 
Several algorithms have been studied such as the 
frequency interpolation on current or scattered 
field, and the bi-static to mono-static 

approximation [2, 3, 5-10].  
For frequency loop acceleration, a straight 
forward method is to perform interpolation using 
the scattered field samples that are obtained 
directly via a numerical solver. This method is 
simple in implementation, but it applies to densely 
sampled scattered field only, and has poor 
prediction accuracy if applied to frequencies 
outside the frequency samples. A more 
sophisticated algorithm exploits the characteristics 
of scattered field vs the frequency. Basically, it 
assumes that scattered field at a given frequency 
can be written as a series of exponentials. This 
method tries to estimate the expansion coefficients 
using a set of scattering field samples. Since only 
the field samples are used, it can be implemented 
out of core (i.e., it can be performed when all the 
field samples are available). This method can also 
be applied to the induced current. In this case, the 
induced current at target mesh samples must be 
saved for every frequency samples, leading to 
increased memory requirement and processing 
CPU time for in-core processing. 
 
For angle loop acceleration, there are also similar 
methods as above. One of the popular and 
effective methods is the approximation of mono-
static RCS using bi-static results. This method 
was originally applied to process the measurement 
RCS data where the exact mono-static 
configuration is difficult to realize.  
 
In this paper, an approximate extrapolation 
method is introduced to rapidly fill the angular 
and frequency far-field points using the solutions 
at sparsely sampled points. This method is based 
on the characteristics of the induced current on the 
target surface. It assumes that the leading term of 
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the induced current at every surface depends on 
the frequency and incident angles via a complex 
exponential function. With this assumption, the 
solution at a fixed angle can be processed by 
replacing the angle dependency factor with a 
similar factor for the new incident angles. This 
process is called “normalization”. One advantage 
of this method is that the normalization can be 
performed for angle variables as well as 
frequency. In the following, the exponential 
dependency is first verified from the point of view 
of the method of moment solution. Then 
numerical verification and application examples 
are provided. The time factor used in this paper is 
exp( )i tω−  and is suppressed from the equations. 
 

II.    Formulation 
The following derivation is for a three-
dimensional perfectly conducting scatterer. The 
procedure can also be applied to scatterers of 
dielectric material and material coating on 
conducting object. In fact, in Sec. 3, there is an 
example that shows the application of 
extrapolation to material coated object. Consider 
the discretization of the surface integral equation 
for a scattering problem by the method of 
moments. For simplicity, it is assumed that the 
target surface is divided into a set of patches, each 
of which has dimension of one tenth of a 
wavelength. The induced current on the target 
surface is represented by a set of N  basis 
functions. Each basis function ( )nf r  is defined for 
an interior edge, which is shared by two patches. 
Following the standard MoM procedure with 
Galerkin testing scheme, a set of linear algebra 
equations is obtained as 

mn n m
n

Z a V=∑                       (1) 

where, Zmn  is an impedance matrix element, na is 
an expansion coefficient for basis function ( )f rn , 
and Vm is an element of excitation vector that is 

related to the excitation field incE  (also called 
incident field) as 

( ) ( )incV f r E r dSmm
Sm

= − ⋅∫ .              (2) 

For a plane wave incidence at direction ˆik , 
exp( )0

inc iE E ik r= ⋅ , where ˆ0
i ik k k= , and k0 is the 

free-space wave number. Using a numerical 

quadrature rule to approximately evaluate (2) 
gives rise to   

 

( ) 0

( )( ) .0

iik rqV w f r E eq m qm q

i iik r ik r rm q me w f r E eq m q
q

⋅ ∑= − ⋅ 

⋅ ⋅ − ∑= − ⋅ 

 

In the above equation, rm  is the center position of 
basis-m, wq  is the weighting coefficient, rq  is the 
quadrature point that lies inside the domain sm of 
basis-m. Since | |r rq m− is at most of the size of the 
domain which is about two tenth of the 
wavelength, the factor exp( ( ))i

q mik r r⋅ −  is a slow 
varying function of frequency and angle. Also, 

0E , wq , and the test function fm  are not functions 
of angle and frequency. As a result, the excitation 
element Vm  can be written as 

iik rmV V em m
⋅=              (3) 

where Vm is a slow varying function of frequency 
and incident angle. If the system of equations in 
(1) is inverted symbolically and the right hand 
side in (3) is used to replace Vm  in (1), then the 
solution for the unknown expansion coefficient 
an  will be given by 

     

1[ ]

( )1[ ]

iik rma Z V enm mn m
i iik r ik r rn m ne Z V enm m

m

⋅−∑=

⋅ ⋅ −−∑=

   (4) 

where 1[ ]Z nm
−  is an element of the inverse 

impedance matrix. It is known that the impedance 
matrix elements are related to the 3D Green’s 
function, hence it contains the factor of 
exp( | |)0ik r rm n− . As a result, if rn  is close to rm , it 
is a slow varying function of frequency (it is not a 
function of incident angles) compared to the factor 
of ˆexp( )iik rn⋅ . For the exponential factor 
exp( ( ))iik r rm n⋅ − in (4), it is also a slow varying 
function of frequency and angle if rn  is close to 
rm . If the two positions are far away, this factor 
becomes a rapidly varying function of frequency 
and angles. However, for most of the elements, 
the interaction becomes weaker when they are far 
from each other (there are exceptions that will be 
stated later in the numerical result sections). As a 
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result, it is concluded that  
ˆiik rna a en n
⋅= ,              (5) 

where an  is a slow varying function of frequency 
and angles for most of the elements. In the 
following, na  is called the normalized coefficient, 
and na  is the un-normalized coefficient. Based on 
this observation, the solution of the current 
coefficient for the same basis function for any 
near-by incident plane wave 2

ik  can be 

approximated by exp{ ( ) }i ia i k rn n+∆ ⋅ . In this 
expression,  2

i i ik k∆ = −  is small in magnitude, 
and it  represents the small shift in frequency and 
angles from the previous plane wave with ik . 
Since the induced current at a point in a patch is a 
superposition of the basis functions that are 
associated with that patch, the current solution has 
the same expression as  (4), i.e., 

ˆ( ) ( ) exp( ),iJ r J r ik r= ⋅ where ( ),J r  a component of 
surface induced current, is a slow varying function 

of frequency and angle, but it is a function of 
position.  
 
To demonstrate the above observations, consider a 
target that is made by five spheres that are 
uniformly placed on x-axis, each of which has 
radius of 0.3 m, as shown in Figure 1. The center 
distance between two neighbor spheres is 0.45 m. 
The spheres are discretized into 3,000 
quadrilateral patches. The frequency of the 
incident plane wave is 1 GHz and is vertically 
polarized. Figure 2 shows the solution for basis 
number 1345 which is centered at (0,0.18,0). It 
can be seen that the normalized coefficient (dash 
lines) is indeed varying slowly with incident angle 

iφ  compared to the un-normalized version of the 
same coefficient (the solid lines). Because of this 
property of the normalized coefficient, it can be 
accurately represented by a linear interpolation for 
a large angular range. 

  
 
 
 
 
 
 
 
 

Figure  1. Five conducting spheres on x-axis. Each sphere has radius 0.3m, and the center distance of 
two neighbor spheres is 0.45 m.  
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Figure 2.  The real part (left) and imaginary part (right) of the solution for basis number 1345. The 
incident angle θ  i = 90o, and the horizontal variable φ i varies from 0o to 90o. 
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The implementation of the current extrapolation is 
straighforward. It only involves two steps. First 
the system of equations (1) is solved to obtain the 
coefficient for one angle/frequency sample. From 
this solution, the normalized coefficient is 
extracted using equation (4). Then, in the second 
step, the normalized coefficient is multiplied by a 
correction factor of exp( ( ) )ii k rn+∆ ⋅  to obtain the 
basis function coefficient for any near-by 
frequency and angle samples.  
 

III.   Numerical Results 
In this section, examples will be shown to 
demonstrate the application of the current 
extrapolation method. The results are generated 
using a multilevel fast multipole algorithm [11] 
that is implemented for the solution of hybrid 
surface-volume integral equations [1]. The first 
example shows the comparison of the RCS for the 
five-sphere target given in Figure 1. The results 
are plotted in Figure 3 for the V-V and H-H 
polarized incident cases. It can be seen that the 
extrapolated results using five samples are very 
close to that obtained by brute-force method (in 
which, the solution to the system equation is 
obtained for every incident angles). In the plot of 
Figure 3, the horizontal axis AZ is defined as iφ− . 
 
The second example consists of a simple airplane 
model that is made by two conducting plates (as 
wings) attached to a cone-cylinder-hemisphere 
structure.  The mesh description is shown in 
Figure 4 and the radar cross sections as function 
of frequency, calculated using the brute-force 
approach (solution for every point of RCS output) 
and the extrapolation method, are shown in Figure 
5. The mono-static angles for this result are 

o30 ,iθ =  o30iφ = . 
 
The third example considers scattering of a model 
airplane VFY218 [1] at 300 MHz. Figure 6 shows 
the comparison of the 361 RCS points (0.5 

degrees step size) on the horizontal plane 
( o o0 180− range) using (1) the brute-force approach 
which calculates the solution for every output 
point (the solid dots), (2) the current extrapolation 
method of this paper (the solid line) using the 
solutions at the sampling points (the circles), and 
(3) the bi-static to mono-static approximation 
method provided in [3] (the dash line).  In both of 
the two approximations ((2) and (3)), the number 
of sampling angles is 31. This sampling rate is 
determined by the approximate formula that the 
angle increments between two neighbor samples 
is 25 / Dλ , with D  being the target’s physical 
dimension. It can be seen that the agreements of 
the approximate methods with the direct solution 
are reasonably well. 
 
It should be pointed out that the overall saving of 
the CPU time is slightly smaller that the ratio of 
the numbers of the dense sample (brute-force 
solution) and the sparse sample (for 
extrapolation). For example, in the VFY218 
example introduced above, the CPU time for the 
direct solution of all output points is 12.03 hours 
on a HP Supercomputer, and the CPU times for 
both of the two approximate methods are 142 
minutes, and 138 minutes, respectively (a 
theoretically expected values for the approximate 
method would be 120 minutes which is 6 times 
less than that of the brute-force approach). The 
reason behind the phenomena is the increased 
iteration number for the same convergence 
criterion in the brute-force solution and the 
extrapolation. The algorithm used in generating 
the data of the above examples employed an 
implementation for the iteration, in which the 
solution from the previous incidence is applied to 
approximate the initial guess of the next incident 
point. It is known that the denser the solution 
samples, the closer the two solutions of the 
adjacent sampling points. 
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Figure 3. The comparison between brute-force solution and extrapolation for the RCS of the five 
conducting spheres shown in Figure 1. 
 

                       
 
Figure 4. An airplane-like model made of 5 pieces: two trapezoidal plates (as wings), a cone, a circular 
cylinder, and a hemisphere. The cone’s profile is parabolic with height 0.36 m, the radius of the circular 
cylinder and the hemisphere tail is 0.12 m, the length of the cylindrical part is 1.0 m, the two plates are 
identical in shape and size, the two parallel sides are 0.32 m and 0.16 m, respectively. The other 
parameters are shown in the sketch. 
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Figure 5. The comparisons of RCS that is directly calculated and extrapolated for the simple airplane 
model in Figure 4. The number of frequency samples used to generate the extrapolated result is 10. 
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Figure 6. The directly calculated (brute-force) and the extrapolated RCS results of VFY 218 at 300 MHz 
in the horizontal plane ( o90iθ = ). The circles indicate the sampling points from which the RCS of the 
dense output points (the solid line) are generated. The dot-dash line is the result using the bi-static to 
mono-static approximation method. 
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Figure 7. A conducting box with dielectric coating. The thickness of the box (bottom part) is 0.08 m, and 
the coating slab thickness is 0.04 m. The number unknowns for the conducting part is 12720, and the 
number of unknowns for the material part is 19140. 
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Figure 8. The mono-static RCS of dielectric slab calculated by brute-force, and by extrapolation. The 
number of RCS points is 181, and the number of samples is 13 for the extrapolation. 
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Figure 9. The mono-static RCS of a conducting box coated by a layer of dielectric slab calculated by 
brute-force, and by extrapolation. The number of RCS points is 181, and the number of samples is 13 for 
the extrapolation. 
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IV.    Discussions and Summary 
There are some remarks that must be pointed out 
for this method. First, in section 2 above, it has 
been assumed that the interactions among the 
basis functions are typically strong when they are 
close, and are weak when they are far away from 
each other. This assumption is not valid if there 
are strong multi-bounce contributions to the far-
field. An example is a single 90 degree corner 
reflector (or aligned array of such reflectors). It 
has strong two bounce interactions that contribute 
directly to the backscattered field. Another 
example is a deep cavity which has multiple wave 
bounces inside the interior walls. As a result, the 
simple current extrapolation method introduced 
above does not apply to these two types of targets. 
Secondly, as is seen in the numerical example, the 
CPU time saving does not necessarily 
proportional to the ratio between the numbers of 
actual output points and the samples. This is due 
to the use of the current solution as initial guess to 
predict the next near-by solutions. In an iterative 
solver, the number of iterations is normally small 
if a better initial guess is built. When the output 
points (angle and frequency) are close, then the 
solutions are expected to be close as well. As a 
result, the solution at one point can be used as the 
initial guess for the next (near-by) point. For the 
brute-force approach, solution is made for each 
output point. Hence, the “distance” between two 
neighbor points is much smaller than that of the 
samples in the extrapolation method, leading to a 
smaller number of iterations per solution in the 
brute-force approach. Finally, it is also noted that 
for the angular loop, the extrapolation method has 
about the same level of accuracy as the bi-static to 
mono-static approximation approach. 
 
To summarize, a current extrapolation method is 
introduced to rapidly perform angle and frequency 
sweep in the far-field calculation using the 
sparsely sampled solutions. Numerical examples 
show that the results agree reasonably well to that 
provided by the direct solution, but the 
extrapolation method uses about the same amount 
of memory, and much less CPU time than that of 
the brute-force approach. There are two 
advantageous for this method. First, it is easy to 
implement (no out-of-core processing is needed), 
and it has small extra memory (in fact, the extra 
memory required is equal to N complex numbers, 

where N is the number of basis functions used in 
the solution). Secondly, the extrapolation applies 
to both angle and frequency sweeps. 
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Abstract: The asymptotic waveform evaluation 
(AWE) technique based on fast lifting wavelet 
transform  (LWT) is applied to the method of 
moments to solve the combined-field integral 
equation (CFIE). The wide-band radar cross 
section of an arbitrarily shaped two-dimensional 
perfectly electric conduct object is calculated. The 
employment of CFIE eliminates the interior 
resonance problems. Numerical results presented 
in this paper are compared with the results 
obtained by the method of moments. It is shown 
that the computational efficiency is improved 
greatly. 

 
I.  INTRODUCTION 

The solution of the combined-field integral 
equation (CFIE) via the method of moments 
(MOM) has been a very useful method for 
accurately predicting the radar cross section (RCS) 
at a certain frequency [1], but many electro- 
magnetic applications require the computation of 
frequency responses over a broad band rather than 
at one or a few isolated frequencies. To obtain the 
RCS over a wide band using MOM, a set of 
algebraic equations must be solved repeatedly, 
which will greatly increase the central processing 
unit time and the storage required. Therefore, there 
is a need to find approximate solution techniques 
that can efficiently simulate a frequency response 
over a broad band. 

Over past few years, a similar technique called 
asymptotic waveform evaluation (AWE) has been 
proposed for the timing analysis of very large scale 
integration (VLSI) circuits [2], [3]. Recently, a 
detailed description of AWE applied to 
frequency-domain electromagnetic analysis was 
presented in [4], [5]. The traditional AWE presents 
great superiority when the electrical size of the 
problem is small enough. But the interior 
resonance problems take place frequently as the 
target size increasing, and the dimension of the 
dense impedance matrix also increased. Based on 
these facts, the traditional AWE almost can hardly 
deal with electrically large targets. Therefore, a 
new method called asymptotic waveform 
evaluation technique based on fast lifting wavelet 

transform (LWT-AWE) is presented here [6], in 
which the combined-field integral equation (CFIE) 
is reduced to a matrix equation, and the LWT is 
applied to the equation to get a new sparse matrix 
equation. Then the AWE technique is applied to 
the new equation, and finally, the inverse LWT is 
employed to obtain the electric current distribution 
quickly at any frequency point within the given 
frequency band. Numerical results are compared 
with the results obtained by the method of 
moments; CPU time and storage required are 
decreased drastically. 

 
II.  FORMULATION 

For a perfectly conducting object, the CFIE can 
be shown to be 

tanˆ ( ) ( )S Sα
η

− × −n H J E J  

tanˆ i iα
η

× += n H E        (1) 

where n̂ is the surface normal, iE and iH , 
denote the incident electric and magnetic fields 
respectively, and η  is the wave impedance. The 
weighting parameter α can be viewed as an 
arbitrary real constant range between 0 and 1 [7]. 
 
AWE implementation 

By MOM method, Eq.1 can result in a matrix 
equation in the following form: 

( ) ( ) ( )k k k=Z I V .           (2) 
Now let us consider a wavelet matrix transform; 

Eq.2 is transformed to 
( ) ( ) ( )k k k=Z I V            (3) 

where ( ) ( ) Hk k=Z W Z W , ( ) ( )k k=I W I , and 
( ) ( )k k=V WV ; W is assumed to be a N N×  

orthogonal wavelet matrix. 
The ith derivative of Z and the nth derivative of 

V  can be computed by 
( ) ( )( ) ( )i i Hk k=Z W Z W ,      (4) 

( ) ( )( ) ( )n nk k=V W V .       (5) 
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To obtain the solution of (3) over a wide 
frequency band, we expand ( )kI  into a Taylor 
series 

0
0

( ) ( )
N n

n
n

k k k
=

= −∑I m        (6) 

where 0k  is the expansion point, nm  denotes 
the unknown coefficients, and N  denotes the 
total number of such coefficients. Substituting this 
into (3), one can obtain 

0 0 0( ) ( )k k=Z m V            (7) 
( )

0
0

( )( ) [
!

n

n
kk

n
= −

VZ m  

( )
0

1

( ) ]
!

in
n i

i

k
i

−

=
∑

Z m
.  (8) 

To improve the computational efficiency, 
substitute (4) and (5) into (8) and carry out the 
associative law, one can obtain 

( )
0

0
( )( ) [
!

n

n
kk

n
= −

VZ m W  

( )
0

1

( )( )]
!

i Hn
n i

i

k
i

−

=
∑

Z W m
 .  (9) 

Then the multiplications between matrices in Eq.4 
degenerated to be multiplications between 
matrixes and vectors. Computing the coefficients 

nm  ( 0,1, 2, )n N= by iterative solvers, one can 

easily obtain ( )kI  in the given frequency band 
from Eq.6. Then the wavelet inverse transform is 
applied to ( )kI ( ( ) ( )Hk k=I W I ); the electric 
current distribution ( )kI  and the radar cross 
section over a wide band will be obtained. 

For a given threshold value, 0( )kZ  will become 
a sparse matrix, namely, Eq.7 and Eq.9 become 
sparse matrix equations, which can be efficiently 
solved by a sparse solver. 

Since the Taylor expansion has a limited 
bandwidth, ( )kI can be represented with a 
better-behaved rational Padé function [2], 

0
0

0
0

( )
( )

( )

L i
i

i
M j

j
j

k k
k

k k
=

=

−∑
=

−∑

a
I

b
      (10) 

where L M N+ = ， L M= or 1M + ，and 0 1b = . 
The unknown coefficients can be calculated by 
substituting (6) into (10). Multiplying (10) by the 
denominator of the Padé expansion and matching 
the coefficients of the equal powers of 0k k− , 

leads to the matrix equation 

1 2 1 1

1 1 2 2

2 1 3 3

1 2 3

L L L L M

L L L L M

L L L L M

L M L M L M L M

− − − +

+ − − +

+ + − +

+ − + − + −

   
   
   
   
   
   
      

m m m m b
m m m m b
m m m m b

m m m m b

 

= −

1

2

3

L

L

L

L M

+

+

+

+

 
 
 
 
 
 
  

m
m
m

m

 ,            (11) 

0

1

2

L

 
 
 
  =
 
 
  

a
a
a

a

0

1 0 1

2 1 0 2

1 2

0 0 0 1
0 0

0

ML L L L M− − −

  
  
  
  
  
  
    

m
m m b
m m m b

bm m m m

. (12) 

 
Fast lifting wavelet transform scheme  
 In discrete wavelet transform (DWT), the wavelet 
matrix W  can be constructed by wavelet filter 
coefficients [8].  

However, traditional implementation method 
caused auxiliary memories consumed by wavelet 
matrices, while operating wavelet using lifting 
scheme can avoid this limitation. 

In the lifting scheme, we don’t need to construct 
a wavelet matrix W , but to operate the impedance 
matrix itself directly.  

 

 
     Fig. 1. Filter bank for wavelet transform. 
 
The finite filter wavelet transform can be 

viewed as subband transform using finite impulse 

response (FIR) filters illustrated in Fig. 1. Forward 

transform uses two analysis filters h  (low pass) 

and g  (high pass), followed by subsampling, 

while inverse transform first upsamples and then 

uses two synthesis filters h  (low pass) and g  

100 ACES JOURNAL, VOL. 21, NO. 1, MARCH 2006



 

(high pass). The perfect reconstruction (PR) 

property is defined by Eq. (13) [6], 
1 1

1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

h z h z g z g z

h z h z g z g z

− −

− −

+ =

− + − =
      (13) 

where 1z−  in analysis filters is time reversion that 

compensates the delays in filters. 

The polyphase representation of filter h , is 

given by 
2 1 2( ) ( ) ( )e oh z h z z h z−= +          (14) 

where 2( ) k
e k

k
h z h z−=∑ contains the even 

coefficients, 2 1( ) k
o k

k
h z h z−+=∑ . 

Define the new polyphase matrices 

( ) ( )
( )

( ) ( )
e e

o o

h z g z
P z

h z g z
 

=  
 

 ,           (15a) 

( ) ( )
( )

( ) ( )
e e

o o

h z g z
P z

h z g z

 
=  
  

 .          (15b) 

Then the PR condition can be rewritten as 
1( ) ( )HP z P z u− =             (16) 

where u  is an identity matrix. 

 The problem of finding an FIR wavelet transform 

thus amounts to finding a matrix ( )P z . Once we 

have such a matrix, ( )P z  and other filters for the 

wavelet transforms follow immediately. From (16) 

it follows that 

1 1( ) ( ) , ( ) ( ) ,e o o eh z g z h z g z− −= = −   (17a) 

1 1( ) ( ) , ( ) ( ).e o o eg z h z g z h z− −= − =   (17b) 

For the transforms with Daubechies wavelets, 

ih  and ig  are the coefficients involved in the 

two-scale relations of the Daubechies wavelets: 
2 1

0
( ) 2 (2 )

mN

n
n

x h x nφ φ
−

=

= −∑  ,       (18a) 

2 1

0
( ) 2 (2 )

mN

n
n

x g x nψ φ
−

=

= −∑        (18b) 

where φ  and ψ  are the scaling and wavelet 

functions, respectively. mN  is the number of 

vanishing moments. 

Daubechies has proved that given a 

complementary filter pair { , }h g or { , }h g , then 

there always exist Laurent polynomials ( )is z  and 

( )it z  for 1 i m≤ ≤  and a nonzero constant K  so 

that 

1

1 01 ( ) 0
( )

( ) 10 1 0 1/
m i

i i

s z K
P z

t z K=

    
=∏     

    
,  (19a) 

1

1
1

1 0 1/ 01 ( )
( )

( ) 1 00 1

m
i

i i

Kt z
P z

s z K

−

−
=

   −  
=∏     −    

 . (19b) 

We can get inverse wavelet transform factoring 

formulation by simply inverse the forward 

formulation, switch additions and subtractions, and 

switch multiplications and divisions, 

11 1 01/ 0 1 ( )
( )

( ) 10 0 1
i

i m i

K s z
P z

t zK
−

=

−    
=∏     −    

 ,  (20a) 

111
1

1 00 1 ( )
( )

( ) 10 1/ 0 1
i

i m i

K t z
P z

s zK

−
−

−
=

   
=∏    

    
 .  (20b) 

We also describe lifting step by predict step and 

update step, which can be outlined in the following 

three basic operations. 

Split: Divide the original data ( [ ]nx ) into odd 

subsets ( [ ]o nx ) and even subsets ( [ ]e nx ), 

[ ] [2 1]o n n= −x x , [ ] [2 ]e n n=x x .   (21a) 

Predict: Generate high frequency component 

( )nd as the error in predicting odd subsets from 

even subsets using prediction operator Q , 

[ ] [ ] ( [ ])o ed n x n Q x n= − .       (21b) 
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Update: Generate low frequency component 

[ ]nc  as a coarse similarity to original signal by 

applying an update operator U  to the wavelet 

coefficients and adding to even subsets, 

[ ] [ ] ( [ ])en n U n= +c x d .        (21c) 

The operators Q  and U  are decided by the 

polyphase matrixes. 

 To illuminate the steps for the fast lifting 

wavelet transform scheme, a D4 wavelet example 

is presented here. 

The h  and g  filters are given by: 

1 2 3
0 1 2 3( )h z h h z h z h z− − −= + + + ,    (22a) 

2 1 1
3 2 1 0g z h z h z h h z−= − + − +（ ）     (22b) 

with 0
1 3
4 2

h +
= , 1

3 3
4 2

h +
= , 2

3 3
4 2

h −
= , and 3

1 3
4 2

h −
= . 

The polyphase matrix is 
1 1

0 2 3 1

1 1
1 3 2 0

( )
h h z h z h

P z
h h z h z h

−

−

 + − −
=  

+ +  
   (23) 

and the factorization is given by 

-1

.

1 01 - 3
3 3-20 1 14 4

3 1 01 2
0 1 3 10

2

( )
z

z

P z
             

 
 

   
   
    

 
 

=
+

+

×
−

   

Forward row transforms ( ( ) HkZ W ) for impedance 

matrix ( )kZ  will be given by ( )P z : 

Set x  to be one row of impedance matrix 

( )kZ , x  to be one row of impedance matrix 

( )kZ  correspondingly. 

Step1 (Split): 

   (0)[ ] [2 1]n n= −d x , (0)[ ] [2 ]n n=c x . 

Step2 (Predict): 

(1) (0) (0)[ ] [ ] 3 [ ]n n n= −d d c . 

Step3 (Update): 

(1) (0) (1) (1)3 3 2[ ] [ ] [ ] [ 1].
4 4

n n n n−
= + + −c c d d

Then repeat step2 and step3: 

 (2) (1) (1)[ ] [ ] [ 1]n n n= + +d d c  , 

(1)3 1[2 ] [ ]
2

n n+
=x c  , 

(2)3 1[2 1] [ ]
2

n n−
− =x d  . 

Similarly, the forward column transforms 

( ( )kWZ or ( )kWV ) for impedance matrix ( )kZ  

will give by ( )P z which can be computed by Eq.17 

and Eq.15b; the inverse current vector transform 

( )H kW I  will be operated by 1( )P z− . The 

transform ( )kZ W  is not needed in this paper, and 

it can be operated by 1( )P z− . 

 

III.  NUMERICAL RESULTS 
To validate the analysis presented in the 

previous sections, a few numerical examples are 

considered. For perfectly conducting infinite 

objects excited by a TM plane wave at an angle of 

incident iθ , RCS calculations over a frequency 

band are done for a cylinder with perimeter 

0.36C = m ( 0iθ = ), a square cylinder with length 

0.1a = m ( 0iθ = ), and a strip with length 

w =0.25m and width d = 0.001m ( / 4iθ π= ). In 

the numerical examples presented below, the 

expansion frequency is chosen to be the center 

frequency of the band of interest. Fig.2 shows the 

nonzero components distribution of the impedance 

matrix after transforms. The results over a given 
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frequency band are calculated by the LWT-AWE 

method with Padé approximation ( 4L = , 3M = ). 

 

 
Fig. 2. Impedance matrix of cylinder  

   after transforms. 

 

Fig. 3. RCS frequency response of the cylinder. 

 
Fig. 4. RCS frequency response of the  

     square cylinder. 

 

The CPU time consumed by LWT-AWE and the 

moment methods are given in Table I. All the 

computations reported are done on a PIV 

2.66G/256MB computer. 

 

 
Fig. 5. RCS frequency response of the strip. 

 

Table I.  CPU time required comparison. 

Examples Figure 3 
time(s)  frequencies  

Figure 5 
time(s)  frequencies 

MOM 
LWT-AWE 

763.7         31 
194.2        301 

947.4        41     
279.1       401  

 

IV. CONCLUSIONS 
An implementation of AWE combined with 

LWT for frequency-domain MOM is presented. 

The RCS for different PEC objects are computed. 

From the numerical examples presented, 

LWT-AWE method is found to be superior in 

terms of the CPU time to obtain a frequency 

response: CFIE eliminates interior resonance 

problem, and the employment of LWT produces a 

sparse system of linear equations that are treated 

effectively by a sparse linear system solver. 
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