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ABSTRACT  The human visual system has an 
immense capacity for compensating for poor or 
incomplete data.  Psycho-visual coding schemes make 
use of the brain’s ability to extrapolate and interpolate 
independently of conscious awareness to reduce data 
(bit) rates but maintain the same level of ‘information’ 
within a video signal.  However, when attempting to 
produce a simple method for comparing data-sets, 
primarily for validation of computational 
electromagnetics, could give rise to a problem.  Namely 
that someone undertaking the visual inspection of (e.g.) 
modeled data against experimental data will see the 
same picture whether sampled at N, 100N or 0.01N 
data points whereas the software undertaking the 
comparison would process three very different data 
sets.  The Feature Selective Validation (FSV) method 
was developed to attempt to mimic the group response 
of a number of experts undertaking the visual 
comparison.  Hence, the quality of performance of the 
FSV method should not be severely affected by the 
number of data points if this assertion is to hold, despite 
the obvious potential for variation.   This paper 
investigates the FSV performance as a function of data 
density and shows that the accuracy of its performance 
remains largely unimpeded by variations in the 
precision of the data supplied. 
 

 
I.  INTRODUCTION 

 
In order for this paper to investigate the effect of data 
density on the FSV method, it needs to consider two 
issues.  The first is to review the FSV method, 
clarifying what data is being used (including what this 
paper considers as data density), how it is being used, 
why and how the data density impacts on the 
underlying equations.  The second factor is how does a 
normal graphical representation of data differ from how 
the data is presented to the FSV method.  This section 
will overview the FSV method and the issues 
surrounding graphical representation and then lead on 
to a more detailed review of the FSV heuristics and 
then to tests to ascertain the quality of performance of 
the FSV method.  

I.1. FSV OVERVIEW 
 
A typical scenario for the validation of computational 
electromagnetics involves the modeling of a system that 
can be directly measured.  The resulting pair of data 
sets are then presented graphically to those involved in 
this exercise who will ascribe a quality level to the 
comparison: such as ‘good’.  Closer inspection may add 
a qualifier to this descriptor: such as ‘good, but…’.  The 
Feature Selective Validation (FSV) method was 
conceived as a technique to support this exercise, 
providing a numerical value to the quality of a 
comparison constructed from components analogous to 
the general approach used by humans.  Namely, 
comparing the trends of the two data sets and 
comparing the individual features, perhaps resonant 
features, and combining these to give an overall 
confidence in the goodness of fit.  The reason for the 
development of FSV over using existing methods, such 
as correlation, was that the existing methods do not 
offer sufficient discrimination or potential for feedback 
to the users. 
 
The basis for the FSV method is to low pass and high 
pass filter the original two data sets, take differences of 
the low pass data to give the Amplitude Difference 
Measure (ADM) and take a mix of differences of 
derivatives of the low and high pass data to give the 
Feature Difference Measure (FDM).  These represent 
the trend / envelope difference and the resonant-type 
feature difference discussed earlier.  These are then 
treated as independent components and a Global 
Difference Measure (GDM) obtained from the ADM 
and FDM.  More detail is given in section 2 and in 
references [1 – 3]. 
 
I.2. REPRESENTATION ISSUES 
 
When a set of measurements is taken and represented 
graphically, it is usual to present the data with lines 
joining the points, as in Figure 1.  
 
Figure 2 shows the same data but represented more in 
the manner that a computer would ‘see’ it. 
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Figure 1. Normal presentation of data using lines. 
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Figure 2. “Non-interpolated” presentation of data. 
 
While we look at continuous lines on a graph, the 
computer ‘sees’ points (more correctly a table of 
numbers). The presence of lines gives a sense of 
certainty to the locations in both ordinate and abscissa, 
however, representation as points shows the possibility 
of uncertainty in the location.  While this is a trivial 
example, it can be seen that having fewer points on a 
graph increases the uncertainty, but presents less noise 
in the form of high frequency components.  However, 
more data points increases the precision of the data but 
increases the noise present.  Effectively, manipulating 
the number of data points may have virtually no effect 
on the visual representation of the data but will have a 
substantial effect on the data presented for analysis; for 
example halving the number of data points reduces the 
amount of data available for analysis by 3 dB but 
results in virtually no difference in the visual effect. 
 
I.3. PURPOSE OF STUDY 
 
Bringing together the two themes discussed so far we 
can see that the use of a tool like the FSV method for 
the validation of CEM should, as far as possible, predict 
the response of a large group of users.  By doing this, a 

level of confidence can be attributed to the quality of 
the comparison.  The response of the large group of 
users will be done ‘by-eye’ based on lines on a graph, 
suggesting continuous functions, further implicitly 
suggesting a level of precision that may not be 
realistically expected from the data. However, the 
response of the computer program will be obtained by 
following a clear and predetermined algorithm based on 
discrete points, i.e. non-continuous functions with the 
implication of uncertainty between these points. 
 
Hence, the purpose of, and the research question for, 
this study is to see if varying the number of points 
presented to the FSV method will leave the output 
relatively unchanged, and certainly in line with user 
opinion.  From this, it may be possible to issue some 
guidelines recommending good practice in the use of 
the FSV method so as to ensure a high level of 
consistency between applications. 
 
There is the further issue that should be considered 
regarding the fact that as the number of data points used 
to represent the systems being compared is increased or 
decreased, the information content is either increased or 
decreased, the precision in the data (i.e. the tolerance of 
each point along the x axis) varies and the noise content 
(or aliasing effect due to sampling effects) varies.  
Hence, while comparing data with, for example, 400 
points in one instance and 100 points in another 
instance, may look identical, they are clearly separate 
sets of results.  Issues surrounding data density and the 
veracity of the conclusions to be drawn from this are 
common in other walks of engineering (e.g. [4, 5]). 
 
The next section will review the mathematics behind 
the FSV method and this will be followed by the tests 
to address the research question set out above. 
 

II.  THE FSV METHOD 
 
The FSV method was outlined above.  This section 
reviews the governing equations and the methods used 
to represent the FSV output to users. 
 
II.1. FSV EQUATIONS 
 
The governing equations are as follows.  Note x is the 
independent variable, Loi and Hii are the low pass and 
high pass filtered versions of  ith data set i = 1,2 (the 
subscript indicating the data set) and the single and 
double primes show the first and second derivatives 
with respect to x obtained using a central difference 
scheme, 
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In the summary, single value representations of the 
ADM, FDM, and GDM are obtained by taking the 
mean value over the range of x of interest. 
 
Given that a central difference scheme has been used 
for the derivatives, it is assumed that the data points are 
evenly spaced.  So, from Table I it can be seen that  
 

'( 4)   ( ( 5) -  ( 3) ) /  ( 5 -  3)y x y x y x x x= .    (7) 
 
Table I. Representation of trial data. 

Point number Data value 
1 y(x1) 
2 y(x2) 
3 y(x3) 
4 y(x4) 
5 y(x5) 
6 y(x6) 

 
However, in an undersampled version of this, as 
indicated in Table II 
 

'( 4) ( ( 6) -  ( 5) ) /  ( 6  -   5)y x y x y x x x= .    (8) 
 
Table II. Under sampled data of Table I. 

Point number Data value 
3 Y(x2) 
4 y(x4) 
5 Y(x6) 

 

There are two practical implications for using this data 
in FSV.  The first is that where there is a low rate of 
change in the data, then  y(x5) – y(x3) ≈  y(x6) – y(x5) and 
a high rate of change may render this approximation 
incorrect.  The second point is that in Table II the 
separation of data points is 2∆x, where ∆x is the 
separation in Table I.  However, in the FSV equations 
employing derivatives, the derivatives appear in both 
the numerator and denominator of the equations, so the 
∆x effect will cancel.  Of course, this is only true if the 
∆x used for derivatives of dataset 1 is equal to the ∆x 
used for derivatives of dataset 2. This assumption has 
been made in this analysis. 
 
This leaves the issue of whether ∆ya is sufficiently close 
to ∆yb where a and b represent two different sampling 
rates.  This will be implicitly investigated in the next 
section. 
 
In order to help interpret the results in the next section, 
methods used to represent the FSV data to users will be 
reviewed. 
 
II.2. FSV REPRESENTATION 
 
The basic representation of the FSV output can be 
either simply numeric (i.e. single figure values for the 
ADM, FDM and GDM) or point-by-point values ( {A, 
F, G}DM(x) as in the previous equations).  However, 
one of the design requirements for FSV was to provide 
a range of diagnostic information [2].  Bearing in mind 
the aim for the FSV method to mirror the opinions of a 
group of engineers, it has been found that the 
proportions of each of the measures that falls into the 
definitions of the natural language descriptors, given in 
Table III, provides a useful histogram which is 
suggestive of the proportions of a large group who, 
when assessing the original comparisons would 
categorize them according to the categories [3].  These 
are called the confidence histograms for each of the 
measures.   
 
Table III. Natural language descriptors for FSV {A, F, 
G}DM. 

FSV value 
(quantitative) 

Natural language 
descriptor 

Value ≤ 0.1 Excellent 
0.1 ≤ Value < 0.2 Very good 
0.2 ≤ Value < 0.4 Good 
0.4 ≤ Value < 0.8 Fair 
0.8 ≤ Value < 1.6 Poor 
1.6 ≤ Value Very poor 

 
Given that the confidence histograms aim to provide a 
synthetic group response, a wide spread of similar 
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height categories would lead to the interpretation that 
there can be a low confidence in attributing a single 
epithet to a comparison.  For example, if the confidence 
histogram showed an approximately even distribution 
between Good, Fair, and Poor, it would be 
inappropriate to describe the comparison as Fair; it 
would be better to describe it as Good – Poor.  In order 
to capture this in a more algorithmic manner, the 
‘spread’ of the confidence histograms has been 
introduced [6].  The Spread is the number of categories 
that contains 85% of the data points (taking the 
difference between the most and least favourable 
category).  So, for example, if in the previous example, 
30% of the points fell into each of the Good, Fair, and 
Poor categories, then the Spread would be 3.  If, on the 
other hand, approximately half fell into the excellent 
category and nearly half into the Very Poor category, 
then the spread would be 6.  Effectively, the Spread is a 
measure of the variance of the histogram data. 
 
In order to balance the Spread, where a Spread of 2 
could equally result from a combination of Excellent-
Very Good as it could from Poor – Very Poor, a Grade 
measure has also been introduced alongside the Spread.  
Whereas the Spread could be thought of as a variance 
measure, the Grade is similar to an upper action line in 
process control.  The Grade is the number of categories, 
starting with Excellent that need to be included for 85% 
of the data points in the particular measure to be 
counted.  Thus, in the Good-Fair-Poor illustration the 
Grade would be 5; in the Excellent-Very Good 
illustration, the Grade would be 2 but the Poor-Very 
Poor illustration would have a Grade of 6.  So together, 
the Grade-Spread gives a simple indication of the 
quality and reliability of the comparison.  
 
The following analysis uses Grade-Spread in addition 
to the summary values to quantify the differences that 
varying the data density has on the comparison results. 
The results were obtained using a stand-alone FSV 
application [7, 8]. 
 

III.  TESTS 
 
In order to assess the performance of FSV when faced 
with varying data density, tests with three different data 
types have been performed.  These are (1) EMC 
modelling of a via performance (2) very high feature 
density performance and (3) sinusoid representations.  
In doing this (1) is representative of real data that will 
commonly be presented to FSV, (2) is representative of 
data at one extreme of complexity and (3) is 
representative of data at the other extreme of 
complexity. 
 
 

III.1. VIA PERFORMANCE 
 
The system was modeled with 5768 points per data set, 
this is shown in Figure 3, and the data was then down 
sampled to a minimum of 177 points: Figure 4. 
 

 
 
Figure 3. Via models: 5768 samples. 
 

 
 
Figure 4. Downsampled data of Figure 3: 177 samples. 
 
Table IV. FSV summary values for various data 
densities between the representations of Figures 3 and 
4. 

 ADM FDM GDM 
No of Data 
points 

 

5768 0.165 0.604 0.665 
2839 0.152 0.536 0.587 
1419 0.139 0.395 0.448 
709 0.132 0.321 0.374 
384 0.132 0.277 0.332 
177 0.140 0.274 0.334 
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Initial visual observations of this data suggest that the 
downsampling, as would be expected, has reduced the 
level of ‘high-Q’ features resulting in an overall visual 
improvement in the Feature (i.e. the ‘high-Q’ aspect) 
component of the original data, leaving the Amplitude 
(i.e. the envelope / trend) information relatively 
unaffected.  The effect of the changes can be seen in 
Table IV which lists the ADM, FDM and GDM 
components for various data densities. 
 
From a natural language descriptor equivalent, the 
ADM is unchanged at Very Good, whereas the GDM 
has gone from Fair to Good, reflecting a likely visual 
analysis.   
 
However, in order to address possible researcher bias, 
the Grade-Spread information, as discussed in Section 2 
was noted.  For all the data densities, the ADM Grade 
remained at 3 and the Spread at 3.  On the other hand, 
the Grade for the FDM and GDM was 5 for 5768 points 
– 709 points inclusive and was 4 for the remaining two 
comparisons.  The Spread was mostly 4 for the FDM 
and GDM (it did nudge into 5 for the FDM and GDM 
of 2839 samples and for the FDM of 1419 samples).  
However, together this data suggests that the FSV 
routine is only particularly sensitive to the number of 
data points used as far as the eye is sensitive to the 
filtering and smoothing effects of the reduction in the 
number data points used to present the graphs. 
 
III.2. HIGH FEATURE DENSITY 
 
In this test, very highly structured and noisy data was 
downsampled.  Figure 5 gives the original data and 
Figures 6 and 7 give undersampled versions of this 
data. 
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Figure 5. Original data: 3000 samples. 
 
From these three figures, it is clear that the general 
structure of the data becomes visibly clear once the 

original data has been downsampled to 50%.  Once the 
structure has become visibly clearer, it is not 
immediately obvious what effect the reduction in data 
density will have on the quality of comparison.  Table 
V gives the Difference Measures for various data 
densities. 
 

 
 
Figure 6. Downsampled data of Figure 5: 1500 samples. 
 
 

 
 
Figure 7. Downsampled data of Figure 5: 97 samples. 
 
 
Table V. FSV summary values for various data 
densities between the representations of Figures 5 and 
7. 
 ADM FDM GDM 
No of Data 
points 

 

3000 0.354 0.609 0.772 
1500 0.547 0.681 0.977 
750 0.550 0.709 0.995 
375 0.521 0.658 0.928 
187 0.558 0.649 0.937 
93 0.584 0.727 1.027 
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It is interesting to note that as the graphs become 
visibly more structured, i.e. moving from Figure 5 to 
Figure 6, the FSV analysis becomes reasonably 
constant (below one decimal place).  This is interesting 
because the similarities between Figures 6 and 7 are 
well defined and there is a high probability that they 
would be noted as such by most users.  However, the 
similarity between Figures 5 and 6 are not so easy to 
see. 
 
This observation is also reflected in the Grade-Spread. 
Excluding the 3000 point comparison, the grade is 
constant at 5 for the ADM, GDM and FDM for all 
comparisons except the GDM for 750 and 93 where it 
tips over to 6.  Never-the-less a consistent performance.   
 
For the Spread, the FDM is constant at 5 and the ADM 
and GDM both go from 4 (1500 sample) to 3 (93 
sample).  These results reflect the effect of reducing the 
data density on the visual interpretation, increasing the 
probability for consistency between users. 
 
So far, the tests have only shown that the FSV method 
reflects the likely interpretation of the results by expert 
users because this data is highly structured and, 
therefore, relatively easy to identify visual changes to 
the structure of the data.  The more demanding task, in 
these circumstances, is to take a simple structure, which 
will barely change visually and analyze this with FSV. 
 
III.3. SINUSOIDS 
 
In this final test, two sinusoids were compared after 
differences were introduced between them.  These 
differences were changing the amplitude so one was 
10% of the amplitude of the other and secondly, one 
was 90% of the amplitude of the other; the final test 
was to introduce a phase shift between the two curves. 
 
III.3.1. 10% Relative Amplitude 
 
The two curves, one at peak amplitude of 10 V and the 
other with peak amplitude of 1 V were compared over 
one period with a range of data points from 50 to 800.  
The comparison of these curves is illustrated in Figure 
8.  The summary values for the ADM, FDM and GDM 
are listed in Table VI. 
 
Clearly, there is a consistency in all the figures.  The 
slight variations in the GDM arise through the point-by-
point nature of the summation and are illustrated in the 
confidence histogram in Figure 9. 
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Figure 8. Two sinusoids of very different amplitude. 
 
 
Table VI. FSV summary values for various data 
densities for a 10 V and 1 V sinusoid. 

 ADM FDM GDM 
No of Data 
points 

 

800 1.091 1.318 1.803 
400 1.091 1.318 1.802 
200 1.091 1.318 1.811 
100 1.091 1.318 1.823 
50 1.091 1.318 1.831 
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Figure 9. GDM confidence histogram for two sine 
waves of 10 V and 1 V amplitude. 
 
III.3.2. 90% Relative Amplitude 
 
The same test as in section 3.3.1 was performed, but 
this time 10 V and 9 V amplitude sine waves were 
compared, as illustrated in Figure 10.  Table VII lists 
the summary values. 
 
Again, there is practically very little difference in the 
results, as illustrated with the GDM confidence 
histogram in Figure 11 
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Figure 10. Two sinusoids of similar amplitude. 
 
Table VII. FSV summary values for various data 
densities for a 10 V and 9 V sinusoid. 

 ADM FDM GDM 
No of Data 
points 

 

800 0.071 0.127 0.156 
400 0.07 0.102 0.132 
200 0.07 0.086 0.118 
100 0.07 0.085 0.117 
50 0.07 0.085 0.118 

 
The greatest difference that can be seen from this figure 
is that there has been some shifting between Excellent 
and Very Good for the 800 point data.  This is probably 
because of the proportion of the GDM at approximately 
0.1, i.e. the boundary between the two categories. 
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Figure 11. GDM Confidence histogram for two sine 
waves of 10 V and 9 V amplitude. 
 
III.3.3. Phase Difference 
 
The last of the sinusoidal tests involved taking two 
similar sinusoids and adding in a one radian phase shift.  
To add additional difficulty in the tests, the comparison 
was made over two cycles of the original data with data 
densities ranging from 10000 points to 20 points.  In the 
case of 20 points, i.e. 10 data points per cycle, the 
curves clearly depart from smooth sinusoids.  The 20 
data point curve is shown in Figure 12 and the 100 data 
point curve, for comparison, is shown in Figure 13. 
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Figure 12. Two poorly defined sinusoids, each with 10 
samples per cycle. 
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Figure 13. Two well defined sinusoids. 
 
The comparison of the Difference Measure results is 
given in Table VIII. 
 
Table VIII. FSV summary values for various data 
densities for two offset sinusoids. 

 ADM FDM GDM 
No of Data 
points 

 

10000 0.673 0.894 1.074 
1000 0.674 0.689 1.063 
100 0.674 0.722 1.094 
20 0.712 0.844 1.206 

 
Figure 14 shows the effect of changing the data 
densities on the GDM. 
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Figure 14. GDM for two offset sinusoids as a function 
of data density. 
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Figure 14 shows how consistently the FSV method 
assesses the comparison of these two data sets. 
 
 

IV. CONCULSIONS 
 
This paper has considered the effects of varying data 
density on the results of FSV analysis of varying data 
sets. 
 
The FSV method is a promising approach to the formal 
and quantifiable comparison of data for tasks such as 
computational electromagnetic (CEM) validation, 
experimental repeatability and assessment of the 
amount of change when models are manipulated.  
However, as part of the validation of FSV itself, its 
robustness to changes in input data needs to be 
assessed.  This paper has done this with three different, 
typical data sets, ranging from the structurally trivial 
(sinusoids) to the structurally highly complex.  
 
The main conclusion that that can be drawn from the 
results is that FSV is robust in that it does not change 
the output values appreciably when the input data 
density changes, providing the data remains visually 
unchanged.  This was clearly seen with the sinusoidal 
data where the overall levels of agreement did not 
change substantially once the data density was past the 
point where it appeared smooth and continuous. 
 
The important general recommendation from this work 
is that there should be consistency in the number of 
points used to represent the data and that number 
should be chosen because of the way in which the data 
is represented.  That is, it is important to choose the 
correct number of points to represent the data to be 
compared so that the visual representation is precisely 
that which needs to be compared.  It was clear with the 
first two examples in this paper that the effective data to 
be compared could be changed considerably depending 
on whether more or fewer points were displayed.  
Clearly, this factor has more of an impact on the 
assessment of the quality of a comparison than anything 
else.  Perhaps a standard question during validation 
should be “why has the data been displayed with this 
level of data density?”    
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