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Abstract − The paper presents a finite element model 
for the calculation of the impedance of an antenna 
over a wide frequency band. The antenna has been 
designed to analyze a rectenna (rectifying antenna) 
in the context of wireless microwave energy transfer. 
The modelling approach combines a 3D edge 
element method (FEM) with a Padé approximation 
procedure. It allows to obtain an explicit expression 
of the impedance over a large frequency band. The 
comparison of the proposed technique with a 
standard finite element method shows that the 
computational cost is significantly reduced.  
 

I.  INTRODUCTION 
 
 Microwave rectennas (rectifying antennas) 
are devoted to power transmission and detection. 
Applications include long distance power beaming, 
signal detection and wireless control systems. Power 
transmitting and receiving systems must be designed 
so that the power transmitted from the transmitting 
antenna is transmitted efficiently to the rectenna and 
is converted into DC power by rectifiers. Efficient 
field-circuit simulations are required in the design 
and characterization of such rectennas since non 
linear lumped elements are included. The knowledge 
of the input impedance of the antenna is of particular 
importance in evaluation the conversion efficiency.   
 
 In [1] a rectenna structure involving a loop 
antenna was studied. This rectenna is devoted to 
low-power applications. The targeted applications 
include microwave power reception from various 
sources in a large frequency range. The operating 
frequency may belong to the industrial, scientific and 
medical band (central frequency of 2.45 GHz). Also 
investigations include radio-frequency identification 
(RFID) applications where wideband signals may be 
used. For these reasons a reliable circuit model of the 
rectenna allowing a global simulation over the band 
[0, 20] GHz was required. The circuit model takes 
into account both distributed electromagnetic 
portions of the antenna and the rectifier circuit. From 
the 3D electromagnetic modelling of the structure 
the input impedance was obtained as a function of 
the frequency. This technique provides an adequate 
way to incorporate the impedance into a non-linear 
circuit simulation. With such an approach the 

impedance has to be calculated over a wide 
frequency band with a 3D modeling tool. This can be 
achieved as in [1] with a standard frequency domain 
method (boundary element method or finite element 
method for example). 

 
 A finite element model provides an efficient 
way for solving electromagnetic problems. In a 
frequency domain analysis the electromagnetic fields 
are discretized over a meshed volume. The 
unknowns are the solution of a linear system whose 
matrix depends on frequency. In a wide frequency 
band analysis the linear system has to be solved for 
each frequency of interest. This often leads to a huge 
computational cost. An alternative approach is to 
search for a power series expansion of the solution 
about a center frequency. The approach requires only 
one single matrix inversion. The radius of 
convergence is limited but it is possible to extend the 
interval using a corresponding Padé approximant. 
This technique is known as an asymptotic wave form 
analysis (AWE). 

The AWE approach has been combined 
with integral equations in 3D [2]-[4] to solve 
scattering problems involving perfectly metallic 
obstacles. For solving general electromagnetic 
problems including inhomogeneous media and 
complex geometries, the finite element method 
(FEM) provides a powerful tool. The AWE approach 
used in connection with FEM was shown to deal 
with electromagnetic problems within bounded 
domains in [5]-[7] where passive microwave devices 
such as waveguides and cavities were studied. In 
these almost closed structures the boundaries of the 
studied domain consist of perfectly conducting walls 
or access planes. Then the efficiency of AWE relies 
on the fact that dominant poles and zeros of the 
network transfer function can be used to build 
rational approximations of the solution. Indeed in 
such a case the resonant modes, can be computed in 
a first step from a generalized eigenvalue problem 
and can be used in a second step to give an 
expansion of the solution. On the other hand, for 
electromagnetic problems in unbounded domains 
like radiation of an antenna in free space or 
scattering problems the fields cannot be expressed 
with resonant modes of the structure and efficient 
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Padé approximation are difficult to obtain. An 
extension of AWE combined with finite elements for 
radiation problems has been proposed in [8] for the 
2D case. In a 2D analysis the structure is infinite 
along one direction and the electromagnetic problem 
reduces to a scalar wave problem (TM case or TE 
case). In such a configuration one of the two fields 
(electric or magnetic) has the same direction that the 
infinitely long structure. The ability of this method 
was demonstrated in the scattering of canonical 
obstacles having simple shapes.  

In this work the AWE technique used in 
conjunction with finite elements is successfully 
extended in three dimensions (3D) for solving 
radiation problems in free space. The approach 
combines the vectorial finite element method and a 
Padé approximation. The numerical method is shown 
to provide a fast computation of the impedance of an 
antenna over a wide frequency band.  The antenna is 
the loop antenna of the rectenna considered in [1] for 
which only a three dimensional analysis allows to 
obtain the distribution of the electromagnetic fields. 
The method is based on first order edge finite 
elements. A Silver-Müller boundary condition is 
used for the truncation of the domain. Once the finite 
element matrix has been built for one frequency an 
explicit expression (power series) of the fields and 
the impedance are available over a frequency band. 
From the power series a Padé approximation 
(rational function) can be derived. It is shown that a 
very good approximation is obtained even if several 
sharp resonance peaks are included in the studied 
range. The comparisons between the presented 
technique and a standard finite element analysis 
clearly underline the advantages of the proposed 
model. 

 
II.  ELECTROMAGNETIC PROBLEM 

 
We consider the 3D problem of an antenna 

radiating in its surrounding medium. The dimensions 
of the studied device are shown in Fig. 1. The loop is 
assumed to be infinitely thin and perfectly 
conducting. However for the sake of generality the 
induced current density J is included in the equations 
since the presented analysis remains also valid in this 
case. The loop is excited by an impressed 
current impJ between the ends of the two arms.  
 

For a full wave analysis we deal with the 
Maxwell equations in the frequency domain: 
 

jω∇× = −E B                                 (1) 

imp jω∇× = + +H J J D ,              (2) 
 
where E and H are the electric and magnetic field  
respectively, µ  is the permeability, ε  is the 
permittivity. 

The constitutive relations are given by: 
 

µ=B  H                                 (3) 
ε=D  E .                               (4)  

 
The Ohm law gives: 
 

 σ=J E  .                                (5) 
 
From equations (1-4), we establish the vector wave 
equation in terms of the electric field E: 
 

1 ( ) impj j jω σ εω ω
µ

∇× ∇× + + = −E  E J . (6) 

 

 
 
 

 
III.  FINITE ELEMENT FORMULATION 

 
 A computation using the finite element 
method is performed in a finite region which 
includes the antenna and some of its surrounding 
medium. In order to truncate the volume of the 
computational domain the Silver-Müller condition is 
applied as an absorbing boundary condition [9]. It is 
given by: 
 

tann jk×∇× =E E                  (7) 
 
where k is the wave number in free space and tanE  
is the tangential electric field on the outer boundary 
surface.  
 This ABC preserves the sparsity and 
symmetric features of the final matrix. It is exact for 
normal incidence. Let denote Ω the computational 
domain and Γ the outer boundary. As usual with 
FEM, we define the space of the work: 
 

{ }2 3 2 3( ( )) , ( ( ))V u L u L= ∈ Ω ∇× ∈ Ω .     (8) 

 
A weak formulation of the problem is obtained after 
multiplying the vector wave equation by a test 
function F in V:  

Fig. 1. The loop antenna and its dimensions. 
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1( ) , ,j jω σ ε ω
µΩ Ω〈 + 〉 + 〈 ∇× ∇× 〉 +  E F E F   

, - ,impj jεω ω
µ Γ Ω〈 〉 = 〈 〉E F   J F            (9) 

 
where  Ω〉〈,  denotes the scalar product in V. 
 
To solve equation (9) numerically, the domain is 
discretized with tetrahedral elements. The electric 
field can be written in terms of basis functions 
associated with the edges of these elements [10, 11]. 
From equation (9) and by using test functions F the 
same as interpolation functions (Galerkin method) 
we get: 
 

( )2
0 1 2  A A A v bω ω+ + =           (10) 

 
where v is the unknowns’ vector, b is the excitation 
currents vector and A0, A1, and A2 are matrices which 
only depend on the mesh and on the medium.  
 
IV. AN EFFICIENT COMPUTATIONAL SCHEME FOR 

BROADBAND ANALYSIS 
 
        Consider an arbitrary 0ω such that A0 is 
non-singular, the Taylor series expansion of the 
matrix polynomial in equation (10), about the 
frequency 0ω can be written as: 
 

2
0 0 1 0 2( ) ( ) ( )A A A Aω ω ω ω ω= + − + −  (11) 

 
where the matrices , ( 0,1,2)iA i = can be 
obtained from equation  (10) and equation (11): 
 

2
0 0 0 1 0 2A A A Aω ω= + + ,         (12a) 

1 1 0 22A A Aω= + ,        12b) 

2 2A A= .                         (12c) 
 
The solution vector ( )v ω  has power series 

representation about 0ω , given by: 

0
0

( ) ( )i
i

i
v vω ω ω

∞

=

= −∑ .             (13) 

 
 The power series representation of the excitation 
vector )(b ω is written as: 

0
0

( ) ( )i
i

i
b bω ω ω

∞

=

= −∑ .           (14) 

 

          We can evaluate the coefficients of the 
power series of )(v ω by the following procedure: 
 

( ) ( )( )2

0 0 1 0 2 0( ...A A A vω ω ω ω+ − + − +                           

1 0 0 1 0( ) ...) ( ) ...v b bω ω ω ω− + = + − +      (15) 
 
If we equate both sides of equation (15) term by 
term, we obtain the following iterative expression: 

2
1 1

0 0
1,

   , 0,1,....i i j i j
j j i

v A b A A v i− −
−

= ≤

= − =∑                             

 (16) 
 
It is very important to note that only a single inverse 

1
0A−  is needed in the iteration procedure. 

 
V.  PADÉ APPROXIMATION 

 
 A Padé approximation is derived by 
expanding a function as a ratio of two power series 
and determining both the numerator and denominator 
coefficients. Padé approximations are usually 
superior to Taylor expansion when functions contain 
poles, because the use of rational functions allows a 
good representation, and it provides an extension 
beyond the interval of convergence of the series [12]. 
The solution is expressed as a power series of the 
form: 

0
0

( ) ( )i
i

i
v vω ω ω

∞

=

= −∑ ,              (17) 

where the coefficients ,....2,1,0i ,vi =  can be 
computed iteratively using (16). The expansion is 
convergent within the region R0 <−ωω , where 

R is the radius of convergence of this power series. 
 
 Since ( )v ω is complex, and since the Padé 
approximants are rational functions, we concentrate 
on a single component of ( )v ω , say )(v j ω , and 
we write its power series representation in the form: 

∑
∞

=

−=
0i

i
0

j
i

j )(v)(v ωωω ,          (18) 

where the coefficient j
iv  is scalar. A Padé 

approximant of the power series equation (18) is a 
rational function of the form: 

)(P
)(Q)](M/N[

M

N

ω
ωω = ,               (19) 

where  

i
0

N

0i
iN )(q)(Q ωωω −= ∑

=

 et  
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i
0

M

0i
iM )(p)(P ωωω −= ∑

=

.               (20) 

 
We take 1p0 = , the M+N+1 unknowns can be 
obtained by the condition that the equation    

                                             
)](M/N[)(v j ωω ≈ ,                    (21) 

holds up to terms ).v(O 1MN ++  This equation 
implies that 

i
0

0i

j
iMN )(v)(P)(Q ωωωω −= ∑

∞

=

.     (22) 

Then we have  

i
0

0i
i

i
0

N

0i
i )(l)(q ωωωω −=− ∑∑

∞

==

      (23) 

where  
 

 
0

.
i

j
i i k k

k

l v p−
=

= ∑                     (24) 

Hence iq  and ip can be determined from the 
following system 
 

1p0 =           (25a) 

∑
=

−=
i

0k
k

j
kii qvq ,    if Ni1 ≤≤                     (25b) 

0pi =  ,   if  i N>         (25c) 

∑
=

− −=
i

1k

j
i0k

j
ki vppv  ,  if N i N M< < +     (25d) 

0pi =   ,   if   i M> .        (25e) 
                                                             
Hence the unknown coefficients of the Padé 
approximant can be determined from linear system. 
We use the diagonal Padé approximation 

)( MN = which is more accurate; in this case we 
have 2N+1 unknown coefficients. 
 

VI.  NUMERICAL RESULTS 
 
 Figure 2 shows a typical mesh used in the 
computation for the loop and the surrounding air. 
The electromagnetic analysis was performed over a 
broad band I = [0 GHz, 20 GHz]. In a first step, the 
studied frequency band is divided in L = 4 intervals 

,..,L1i,Ii = such that I1=[0 GHz, 5 GHz], I2=[5 GHz, 
10 GHz], I3=[10 GHz, 15 GHz] and I4=[15 GHz, 20 
GHz]. In each band the centre frequency has been 
chosen in the middle. 

We denote L,..,1i),(]M/N[ i =ω  the 
Padé approximation of the impedance in each 

interval Ii. In this case N=M=2. The impedance can 
be written as: 

1
( ) ( )

L
j

j
Z Zω ω

=

=∑ ,                   (26) 

where 

[ ]2 / 2 ( )
( ) .

0
jj j

if I
Z

otherwise

ω ω
ω

 ∈= 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The comparison between a standard finite element 
model and the Padé approximation is shown on Fig. 
3 and Fig. 4. The two curves are in an excellent 
agreement over the whole wide frequency band. In 
the standard approach the finite element problem has 
been solved for a number of 200 frequencies to 
obtain the behaviour of the curve. With the Padé 
approximation only 4 frequencies are needed. The 
computational cost is then significantly reduced 
since the amount of time required to find the Padé 
coefficients is negligible. 

 
  

 
 
 
 
For three bands it was shown that the Padé 

approximant [3/3] gives very good results. Thus, for 
two bands a [3/3] approximation gives a bad 
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Fig. 2. The volume of the computation. 
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Fig. 3. Argument of the impedance : The 
comparison between 3D model and the 
Pade approximation [2/2] over four bands. 
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approximation at the junction between the two bands 
Fig. 5. In this case an increase of the order of the 
Padé approximant is required: we show the 
corresponding results for a [5/5] approximation in 
Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

VII. Conclusion 
 

 This paper describes an accurate and very 
efficient FEM approach to compute the impedance 
of an antenna over a wide frequency band. The 
electromagnetic problem addressed in this work is a 
fully three-dimensional one. In a standard finite 
element approach the linear system has to be solved 
for each frequency of interest. The power series 
expansion method presented in this work resolves 
this problem very efficiently. The advantage of this 
approach is that only a single resolution of the linear 
system is required to evaluate the series expansion 
using a Padé approximation. Then the approach 

allows one to cover a whole given frequency band 
with a minimum number of resolution of the linear 
system. In particular the resonance peaks are very 
well recovered. It is worth to be noted that 
satisfactory results are obtained when using a Silver-
Müller radiation condition: the impedance is 
computed from the near-field and numerical values 
near the antenna are not very sensitive to the 
boundary condition. Work is in progress to combine 
a Padé approximation with PML (perfectly matched 
layer) in order to address more general radiation 
problems in three dimensions for which global 
quantities have to be obtained over a wide band. 
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