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Abstract — With the advent of neural 
networks, there has been a significant amount 
of research utilizing radial basis functions.  In 
this paper, radial basis functions in 
conjunction with a meshless algorithm are 
used to solve electromagnetics problems in 
both open and closed regions.  The algorithm 
for the solution of partial differential equations 
using the radial basis functions and 
development of the absorbing boundary 
condition will be discussed in detail.  Several 
example problems will be discussed. 
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I. INTRODUCTION 
 

Radial basis functions (RBF) have received 
significant attention in the scientific literature 
over the past several years.  Specifically, they 
have been investigated heavily in the field of 
neural networks.  Until rather recently, RBF’s 
have not been widely used in computational 
electromagnetics.  They have been shown to 
have very good interpolation qualities and this 
has led to their recent use in inverse scattering 
methods in electromagnetics [1-11].  In this 
paper, radial basis functions in conjunction 
with a meshless algorithm are used to solve 
electromagnetics problems in both open and 
closed regions. In the next section, a 
discussion of the method used to solve partial 

differential equations (PDE) using RBF’s will 
be presented and an example will be shown.  
In Section III, the development of an 
absorbing boundary condition (ABC) based on 
the Wilcox expansion of the electric field will 
be presented and results utilizing the ABC will 
be shown.  Finally, section IV will conclude 
the paper with discussions of some of the 
advantages and disadvantages of the proposed 
method. 

II.   SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS USING 

RADIAL BASIS FUNCTIONS 
 
There are several different RBF’s that could 

be used to solve PDEs, but in this paper, the 
focus will be on the multiquadric functions.  
These functions have a function representation 
of   

 
2

21 j

j

x x

c

−
+ . (1) 

 
 These functions have several interesting 
properties.  The function’s magnitude depends 
primarily upon the radial distance from its 
central location, jx .  This results in each slice 
of the function having a circular cross-section.  
In addition, these functions are continuous and 
have an infinite number of continuous 
derivatives at all points in space.   
 The algorithm employed in solving the 
PDEs in this research is termed a “meshless” 
method. This term is derived from the fact that 

127ACES JOURNAL, VOL. 21, NO. 2, JULY 2006



 

only information about nodes has to be known; 
in other words, no connectivity data between 
nodes is required.  This is in contrast to the 
finite element method (FEM), which requires 
the knowledge of how the nodes are connected 
into elements.  Generating a mesh for a 
detailed problem can be quite cumbersome and 
a misconnected node, which can easily go 
unnoticed, could lead to major problems.  
Obviously, since this is not necessary in this 
meshless algorithm, some of the problems 
associated with meshing can be alleviated.  To 
discuss the details of the proposed algorithm, 
consider the closed region problem described 
by  
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The problem domain along with the associated 
boundary conditions is illustrated in Fig. 1.  
The radial basis functions will be used as the 
expansion for the electric field such that 
 

              ( ) ( )2 2

2
1

1 j j

j

N x x y y
z j c

j
E u − + −

=
= +∑ . (3) 

 

 
Fig. 1.  Closed region problem domain. 

 
Here, the 'ju s  are the unknown coefficients.  
The factor, jc , is a scale factor for each RBF.  
In this research, all of the 'jc s  have been 
chosen to be equal to 0.25.  Now, the 
expansion (3) can be substituted into the 
original PDE (2) to obtain  
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At this point, there are N unknown coefficients 
(the 'ju s ) and only one equation.  N equations 
are necessary to solve for the N 'ju s .  The 
method used to obtain the N equations is 
called collocation.  Collocation enforces either 
(4), or the boundary conditions, at the central 
points of the N RBF’s.  This yields a matrix 
equation 
 
                               Mu b=  (5) 
 
in which the matrix, M , will have elements  
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or 
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The right-hand side vector will have elements   
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and the column vector, u , will be the vector 
containing the coefficients for the RBF’s. 

To illustrate that accurate results can be 
obtained for the aforementioned problem, 
consider the case for which 25.0ε =  and 

2 1.0k
πλ = = .  Plots of both the numerical and 

analytic solution along the line 0.3y =  (Fig. 
2) and 0.5x =  (Fig. 3) illustrate the accuracy 
that can be obtained using this method.   
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Fig. 2.  Comparison of analytic and numerical 
   solution (999 RBF’s) along y = 0. 

 
The solutions are obtained by employing 999 
RBF’s (33 equally spaced nodes along the x-
direction and 33 equally spaced nodes along 
the y-direction) in the algorithm.  In both 
cases, the numerical solutions lie nearly on top 
of the analytic solution.   
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Fig. 3.  Comparison of analytic and numerical 
    solution (999 RBF’s) along x=0.5. 

 
This is rather impressive considering that there 
are only 33 basis functions in the y-direction 
and there are 5 wavelengths of variation in the 
y-direction. An investigation of the RMS Error 
as the number of RBF’s is varied is shown in 
Fig.4.   
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Fig. 4.  RMS error as number of RBF’s is 
varied.   

 
This graph shows primarily what is expected.  
That is, as the number of RBF’s is increased, 
the solution converges and the RMS error 
decreases.  It should be pointed out that the 
computational cost of solving the matrix is 
higher than the traditional FEM for example, 
since the resulting matrix for this method is a 
full matrix.  A direct solution technique 
(Gaussian elimination) was employed in the 
solution of the matrix equation.   In addition to 
the disadvantage of having a full system 
matrix, the use of RBF’s can result in ill-
conditioning as the number of functions is 
increased. Ill-conditioning is primarily the 
problem for the increase in RMS error as the 
number of RBF’s increases over 1000.  A plot 
of the condition number as the number of 
RBF’s is varied is shown in Fig. 5.  It is 
important to realize that this graph is plotted 
on log axis; so, there are nearly 18 orders of 
magnitude difference between the smallest 
condition number and the largest condition 
number.   

Further investigation of the condition 
number is required and some techniques to 
help alleviate the ill-conditioning will be 
presented in a separate paper. After seeing 
these results, though, it is clear that the RBF’s 
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Fig. 5.  Condition number as number of RBF’s 

is varied. 
 

can be used to solve closed region problems. 
In the next section, the focus will turn to that 
of the primary topic for this paper; that is, the 
discussion of the development of an ABC for 
an open region problem will be presented and 
then the ABC will be verified through several 
examples. 

III. DEVELOPMENT OF AN 
ABSORBING BOUNDARY CONDITION 

FOR USE WITH RADIAL BASIS 
FUNCTIONS 

 
Consider the scattering of a transverse 

magnetic (TM) incident plane wave on a 
cylinder of radius one wavelength as shown in 
Fig. 6.  The nodes (central points) for the 
RBF’s will be placed in the shaded region and 
along the inner and outer boundaries.  The 
outer boundary will be placed 1.35 
wavelengths away from the center of the 
perfect electrically conducting (PEC) cylinder.  
The equation enforced at collocation points 
that are between the PEC cylinder and the 
outer boundary is the Helmholtz equation 

 
                      2 2 0z zE k E∇ + = . (9) 
 

 
Fig. 6.  Problem domain for circular PEC 

cylinder with circular outer boundary. 
 
For collocation points that are on the circular 
cylinder, the equation enforced is   
 
                     0 for z iE r λ= =  (10) 
 
and for nodes along the outer boundary, the 
equation enforced will be  
 

(1.35, ) (1.30, ) (1.25, )E AE BEz z zφ φ φ= + . (11) 
 
There are several aspects that should be 
pointed out with respect to the implementation 
of the ABC.  Equation (11) states that the 
electric field at the outer boundary is 
proportional to the electric field at two points 
that lie along the same phi plane and are 0.05 
and 0.1 wavelengths interior to the outer 
boundary.  The fact that (1.25, )zE φ  and 

(1.30, )zE φ  need to be known does not mean 
that nodes have to be placed at these locations.  
Since the RBF’s are entire domain basis 
functions, a representation of zE  in terms of 
all of the RBF’s can easily be found 
everywhere in the domain.  Therefore, nodes 
are not necessary at (1.25, )zE φ  and 

(1.30, )zE φ .  Obviously, the constants A  and 
B  in (11) must be obtained.  It is first assumed 
that (1.25, )zE φ  and (1.30, )zE φ  can be 
approximated by the first two terms of the 
Wilcox expansion, which is  
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This assumption allows us to find 1C  and 2C  
in terms of (1.25, )zE φ  and (1.30, )zE φ .  Then, 
once these constants are known, the constants 
A  and B can be found.  After obtaining A  
and B , an expression for zE  along the outer 
boundary is known in terms of zE  at points 
slightly interior to the boundary.  Now, by 
using equations (9),  (10), and (11), a matrix 
equation can be formed and the coefficients 
for the RBF’s can be obtained.  The algorithm 
will initially be tested using 2636 RBF’s.  
Since the region between the cylinder and the 
outer boundary has an area equal to 2.5 square 
wavelengths, this problem domain has been 
discretized to yield approximately 32 
functions/wavelength.  In Figs. 7 and 8, the 
numerical and analytic solutions for the 
magnitude and the phase of the electric surface 
current on the PEC cylinder are compared.  
With this mesh density, a nodal average 
percent error was calculated to be 1.46%.   
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Fig. 7.  Magnitude of the current along the 

cylinder (~32 RBF/wavelength). 
 
Since 32 functions/wavelength is a rather high 
mesh density, the results of a simulation in 
which the mesh density was lowered to 
approximately 23 functions/wavelength (1416 
nodes) are presented in Figs. 9 and 10.  Even 
at this density, the average percentage error 
was still very low at only 1.6%.  At this point, 

the ABC has been verified to work properly 
for a circular outer boundary. 
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Fig. 8.  Phase of the current along the cylinder 
(~32 RBF/wavelength). 
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Fig. 9.  Magnitude of the current along the 
cylinder (~23 RBF/wavelength). 

 
However, one of the problems often 

encountered with ABCs is that special 
meshing is required at the boundary so that the 
ABC can be implemented. For example, this 
could include placing the nodes close to the 
edge of the outer boundary along a constant 
phi plane or having a circular boundary, etc. 
To illustrate the robustness of the developed 
ABC and show that it does not have this 
requirement, the same cylinder will be 
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considered, but the outer boundary will be 
changed from a circular outer boundary to a 
square outer boundary. An illustration of the 
problem domain is shown in Fig. 11. 
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Fig. 10.  Phase of the current along the 
cylinder (~23 RBF/wavelength). 

   

 
Fig. 11.  Problem domain for circular PEC 

cylinder with circular outer boundary. 
 

The center of each side of the square 
boundary will be tangent to the circular 
boundary from the previous example.  Thus, 
the square’s sides will have lengths of 2.7 
wavelengths and the region between the 
cylinder and outer boundary will have an area 
equal to 4.15 square wavelengths.  A total of 
2512 RBF’s were used in the simulation.  This 
resulted in a mesh density of approximately 25 
functions / wavelength.  Comparisons of the 
numerical and analytic solutions for the 
magnitude and phase are presented in Figs. 12 
and 13, respectively.  The average percent 
error per node was 2.08%.   From these 
graphs, one can conclude that switching from a 

circular outer boundary to a square outer 
boundary did not significantly affect the 
results. This is particularly beneficial since it 
is desired to keep this method a “meshless” 
algorithm.  We do not want to have to be very 
specific about where to put the RBF’s in the 
problem domain and we also do not want to 
specify a specific type of outer boundary. 
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Fig. 12.  Magnitude of the current along the 
cylinder (~25 RBF/wavelength)  
with square boundary. 
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Fig. 13.  Phase of the current along the 

cylinder (~25 RBF/wavelength)  
with square boundary. 

IV. CONCLUSION 
 

We have shown in this research a proof-of-

zE

y
x

yH

Square Outer 
Boundary 

PEC Cylinder

132 ACES JOURNAL, VOL. 21, NO. 2, JULY 2006



 

concept that a meshless method employing 
multiquadric radial basis functions and 
collocation can be used to obtain accurate 
results for both closed region and open region 
problems. Among the principle advantages of 
this method are the simplicity of the 
programming and the elimination of the need 
for sophisticated meshing. Among the 
disadvantages of this method is the fact that it 
yields a full matrix and that matrix can be ill-
conditioned as the number of RBF’s is 
increased.  This problem is alleviated 
somewhat by the quickness of which each 
matrix element can be obtained.  In addition, 
ill-conditioning can also result if care is not 
taken.  Future research includes an 
investigation of the condition number and 
ways to prevent and alleviate the ill-
conditioning problem that can result.  Included 
in this investigation will be an investigation of 
node placement strategies as well as choice of 
the shape factor (cval); in addition, future work 
will also investigate what happens with 
discontinuities in the problem domain and how 
they should be handled. 
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