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Abstract: The use of numerical methods to solve 
electromagnetic problems with open boundaries 
requires a method to limit the domain in which the 
field is computed. This can be achieved by truncating 
the mesh and setting certain numerical boundary 
conditions on the outer perimeter of the domain to 
simulate its extension to infinity. In this paper, the 
formulation of the perfectly matched layer (PML) is 
applied to the multiresolution time-domain technique 
(MRTD) to effectively simulate free-space. The PML 
region is modelled by means of the two-dimensional 
discrete wavelet transform. In addition, the numerical 
reflectivity of the PML medium is also investigated 
for a variety of thicknesses. 
 
Keywords: Absorbing boundary conditions, PML, 
MRTD, DWT. 
 
 
1. INTRODUCTION 
 
Different wavelet-based discretizations for Maxwell 
equations have been developed in the very recent 
literature. These numerical methods are known as 
multiresolution time-domain (MRTD) techniques and 
its main point of interest is the intrinsic capability of 
wavelets to add higher spatial frecuency contributions 
in the representation of the fields. These methods 
employ numerical analysis based on different wavelet 
functions like Battle-Lemarié [1], Haar [2], and 
Daubechies [3], and have been applied to several 
electromagnetic problems such as scattering, 
radiation, and integrated-circuit component modeling. 
Many of these applications involve modeling 
electromagnetic fields in an unbounded open space. It 
is well known that, since the computational domain is 
limited in space by storage limitations, a certain type 
of boundary condition, which is called absorbing 
boundary condition (ABC) must be implemented to 
effectively simulate open regions and having the 
capability to suppress numerical reflections of the 
outgoing waves. 

Many absorbing boundary conditions have been 
proposed in past years [4]-[6], but since 1994, a new 
improvement has been made in this area by J.P. 
Berenger’s technique designated as the perfectly 
matched layer or PML [7]. This technique is based on 
the introduction of a highly effective absorbing 
material medium to terminate the outer boundary of 
the space lattice. This nonphysical absorbing medium 
has a wave impedance less sensitive to the angle of 
incidence, polarization and frequency of outgoing 
waves, and therefore a perfectly matched interface is 
derived. 

In this paper, the PML principle has been 
implemented into the multiresolution time-domain 
technique.  This technique uses Daubechies 
compactly supported wavelet functions denoted as 
DM [8], and the PML medium has been modelled 
using the discrete wavelet transform (DWT). 
 
 
2. APPLICATION OF THE PML ABSORBER TO 
THE MRTD TECHNIQUE 
 
A. Fundamentals of the PML theory 
 
In the PML theory described in [7] it is assumed that 
the PML region is characterized by a free-space 
permittivity ε0 and permeability µ0, and electric and 
magnetic conductivities σ and σ*, respectively. Then, 
if the following PML relationship is satisfied 
 

 
0

*

0 µ
σ

ε
σ

=  (1) 

 
the impedance of the medium matches that of 
vacuum and no reflection occurs when a plane wave 
propagates normally across a vacuum-medium 
interface. Since sharp variations of conductivity can 
create numerical reflections, for a PML region of 
thickness δ, the conductivities are chosen to vary 
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from zero at the vacuum-layer interface to a maximun 
value σMAX at the outer side of the layer 
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Usually the PML area is terminated with a PEC, thus 
the maximun value σMAX is determined by a 
designated apparent reflection coefficient R at normal 
incidence, which is given by the relationship [7] 
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By choosing the theoretical reflection coefficient 
(typically R = 10-4 or R = 10-5) and the PML thickness 
δ, the maximun value σMAX can be obtained from (3). 
 
B. Implementation of the PML absorber 
 
In this section, we will analyze the implementation of 
the PML absorber into the MRTD scheme. This 
implementation does not involve a special treatment 
if scaling functions are used to expand the field 
components. Otherwise, if two or more resolution 
levels are applied, that is, scaling and wavelet 
functions are used to expand the field components, 
we must model the PML medium before its 
implementation into the algorithm. For simplicity in 
this presentation, let us assume a one dimensional 
problem. That is, the simplest case of a TEM plane 
wave propagating in free-space, with Ex and Hy 
fields, is considered. In order to simulate open 
boundaries, we will locate two PML areas of 
thickness δ at both ends, with  an electric 
conductivity σ and a magnetic conductivity σ* 
satisfying the relation (1) and with a parabolic spatial 
distribution, that is, a spatial profile like (2) with n = 
2 (Fig. 1). Within the PML area, the equations to 

solve are 
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Thus, according to the exponential time stepping [9], 
these equations are discretized in time as 
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According to the notation given in [8], an 
approximate solution at level J can be obtained using 
scaling functions of J-th order to expand each field 
component respect to space. The final set of 
discretized equations are expressed in matrix form as 
follows 
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z
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z
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1

 1σσ1 ++

∆
−= 21
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where n[Hφ]J and n[Eφ]J are column vectors whose 
elements are the scaling coefficients at level J, 
evaluated at time t = n∆t, of the magnetic and electric 
field expansions, respectively. The matrix [dJ] = DJ is 
the derivative matrix at level J (Fig. 2) [8]. 
 

 
Fig. 1. Parabolic spatial distribution of σ and σ* 

within the PML area. 

 
Fig. 2. Derivative matrix DJ: Only non zero 

elements have been ploted. 
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The matrices [ σ1 ]J, [ σ2 ]J, [ σ1
* ]J, and [ σ2

* ]J are 
diagonal matrices whose elements are function of the 
time discretization interval ∆t, the permitivity ε0, the 
permeability µ0, and the electric and magnetic 
conductivity, σ and σ*, respectively, and are distinct 
from zero only at each point z = k∆zJ = k2-J∆z within 
the PML area of thickness δ = L∆zJ. These matrices 
are given by the set of equations (7.a) to (7.d). 
Now, the spatial resolution can be increased by 
adding wavelet functions to the field expansion. 
Therefore, adding wavelet functions of J-th order to 

the field expansion results in an approximate solution 
at level J+1 with a spatial discretization interval 
∆zJ+1. The formulation of the fields within the PML 
region is written in matrix form as indicated in 
equation (8.a) and equation (8.b), where a derivative 
matrix at level J+1 (DJ+1) [8] has been used, and the 
matrices related to the conductivity of the PML 
medium have been modeled using the two-
dimensional discrete wavelet transform DWT2D [10]. 
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The procedure depicted in Fig. 3 to obtain these 
matrices is as follows: first, we compute the σ-
matrices corresponding to level J+1, that is, double 
sample points with a spatial discretization interval 
∆zJ+1 (see Fig. 4). Then, we apply the one 
dimensional discrete wavelet transform in a 
successive manner to its rows and to its columns. 
This procedure results in a matrix composed of four 
submatrices arranged this way 
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Fig. 3. Modelling of the σ-matrix using the two-

dimensional discrete wavelet transform. 
 
 

 
Fig. 4. Spatial discretization of the PML zone at level 

J and at level J+1. 
 
 

3. NUMERICAL RESULTS 
 
In order to evaluate the numerical effectivity of the 
implemented PML technique, the propagation of a 
TEM pulse, incident on the boundaries of the 
computational domain, has been simulated, and the 
response of the PML layer has been analyzed. A 
benchmark test has been done comparing the 
reflection coefficient S11 computed for three different 
thicknesses of the PML medium and using three 
different Daubechies wavelet functions (D1, D2, and 
D3) in each case. The expansion of the field 
components with respect to space has been done 
using scaling and wavelet, and the time marching 
algorithm is then described by equations given in (8). 
Therefore, a numerical simulation with two levels of 
resolution has been done using scaling plus wavelet 
functions of zero order (J = 0). We have chosen a 
spatial discretization interval ∆z1 = 1 mm (∆z = 2 
mm) and a time discretization interval ∆t = 3.34 ps. 
The thicknesses of PML used in this test have been δ  
= 5∆z, δ  = 10∆z, and δ  = 15∆z. A quadratic 
variation in PML conductivity is assumed for all 
cases, with maximun theoretical reflection coefficient 
of 10-4. From equation (3), the maximum value σMAX 
obtained in each case was 3.67 S/m, 1.83 S/m, and 
1.22 S/m, respectively. The reflection coefficient 
obtained in each case has been depicted in Figs. 5(a) 
through 5(c), corresponding to a PML thickness of 
5∆z, 10∆z, and 15∆z, respectively. As it can be 
appreciated from these figures, the scheme with field 
components expanded in terms of Daubechies 
wavelet functions D1 is more sensitive to variations in 
the PML thickness. A great improvement is obtained 
with the increase of the thickness. Otherwise, the 
schemes with field components expanded in terms of 
Daubechies wavelet functions D2 and D3 are less 
sensitive to variations in the PML thickness and 
present a better behaviour than the other scheme 
when narrow thicknesses are used. 
 
 
4. CONCLUSION 
 
A procedure to implement PML absorbing boundary 
conditions into the MRTD scheme based on the 
discrete wavelet transform has been developed. This 
PML technique can be directly implemented into the 
algorithm when scaling functions are used, and for 
higher resolutions, the multilevel decomposition of 
the conductivity of the PML area needed has been 
done by means of the two-dimensional discrete 
wavelet transform. The numerical effectivity of the 
method has been also investigated for different 
thicknesses of the PML area, and using different 
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Daubechies wavelet functions for the expansion of 
the fields. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
 

Fig. 5. Reflection coefficient S11 versus frequency 
computed using different Daubechies’ 
wavelet functions and different thicknesses 
of PML: a) δ=5∆z, b) δ=10∆z, and c) 
δ=15∆z. 
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