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Abstract - A method for the evaluation of the 
integral of the free-space Green’s function on a 
planar patch, that is exact to machine precision, is 
developed.   The results are used to evaluate two 
other, commonly used, methods - singularity 
extraction and singularity cancellation.   It was 
found that these two methods produced 
unacceptable results.   It is shown what steps need 
to be taken to improve the performance of these 
methods for patches with varying aspect ratios. 
 

I. INTRODUCTION 
 

The matrix entries arising within numerical 
solutions of the electric field integral equation, 
EFIE, for a wide range of applications involve an 
evaluation of integrals of the form 
 

I(x,y) = f ( ′ x , ′ y )
e− jkR

R
d ′ x d ′ y ∫∫  (1) 

 
where f is usually a bounded, well-behaved 
function 2k π

λ=  and R  is given by 

 
R = (x − ′ x )2 + (y − ′ y )2 . (2) 
 

These calculations are most difficult when the 
test point ( ),x y  is within or near the source cell 
over which the integral is performed, due to the 

( )1O R  behavior of the Green’s function, jkRe R− . 
 

One widely-used method of evaluating (1) is 
the singularity extraction (SE) procedure, often 
implemented as 
 

1( , ) ( , ) ( , )

1( , ) .

jkReI x y f x y f x y dx dy
R R

f x y dx dy
R

− 
′ ′ ′ ′= − 

 

′ ′+

∫∫

∫∫

 
 (3) 

 
The first integral in (3) is to be evaluated by 

quadrature, while the second yields an analytical 
result for triangular or rectangular domains [1].  
The first integrand in (3), although bounded, is still 
not analytic in the vicinity of 0R = .   Therefore, 
the accuracy of the result obtained with standard 
quadrature rules for that integral may be limited. 
 

A second approach for evaluating (1) is the 
singularity cancellation (SC) method, often known 
as the Duffy transformation [2].  Suppose that the 
domain of integration is the rectangle 0 'x a< < , 
0 'y b< < , and the test point (singularity) is 

0x y= = .  The SC method requires that the 
domain be divided into two triangles, each of 
which is transformed into a rectangular domain 
according to (4), 
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K  is the cell aspect ratio 
 

K =
b
a

. (5) 

 
The change of variable 
 

′ y = K ′ x  u,     d ′ y = K ′ x  du  (6) 
 
is used in the first integral and the substitution 
 

′ x =
1
K

′ y  v,     d ′ x =
1
K

′ y  dv  (7) 

 
is used in the second.  In the new first integral, at 
the test point, the integrand is now given by 
 

2 2 2
0

2 2

( , )( , )
( )

( ,  ) .
(1/ )

jkR

x

e f x y Kxf x y Kx
R x Kx u

f x y
K u

−

′→

′ ′ ′
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′ ′+
′ ′
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+

    
( )

 
 (8) 

 
In the second, the integrand is 
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 (9) 

 
These results are both nonsingular at the 

original test point, permitting the two integrals in 
(4) to be evaluated using standard numerical 
quadrature routines.  As shown below, the 
cancellation of the singularity depends on the cell 
aspect ratio, K , and  the SC approach can yield 
poor overall accuracy when K  is very small or 
very large. 
 

A third approach is an extension of the SE 
method described above, obtained by extracting a 
second term from the integrand [3].  The extended 
singularity extraction (ESE) approach may be 
implemented as 
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(10) 
A closed-form expression for the final integral 

in (10) is described in the following section.  The 
first integral, as in the SE method, is to be 
evaluated by quadrature. 
 

In order to evaluate the effectiveness of the 
above approaches a method capable of providing 
high accuracy is needed.   One such approach is 
based on a MacClurin series expansion of the 
Green’s function [4], followed by the closed-form 
evaluation of the integrals of each term in the 
series.  This series closed-form (SCF) approach is 
described in the following section. 
 

II. FORMULATION OF THE SCF METHOD 
 

For illustration, consider the evaluation of (1) 
for a rectangular cell 0 'x a< < , 0 'y b< < , 
f ( ′ x , ′ y ) =1, and the test point (singularity) at 

0x y= = .  The Green’s function may be expanded 
as 
 
e− jkR

R
= S1 − jS2  (11) 

 
where 
 

S1 =
1
R

−
k 2

2!
R +

k 4

4!
R3 −

k 6

6!
R5 + ...  , (12) 

 

S2 = k −
k 3

3!
R2 +

k 5

5!
R4 −

k 7

7!
R6 + ...  . (13) 

 
Since the expansion in (13) is regular and causes 
no undue difficulty, we focus on (12) and the 
integral 
 

2 4 6
3 51 ...

2! 4! 6!
k k kI R R R dx dy

R
 

′ ′= − + − 
 

∫∫ . (14) 

The SC approach can be applied to (14) to yield 
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I = I0 + I1 + I2 + ... (15) 
 
where  

1
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and the n-th term can be expressed as 

2

1 2 1
2 2 2 2

0 0

1 2 1
2 2 2

2
0 0

( 1)
(2 )!

( ) 1/

.
1 ( )

n
n

n

a n
n n

x u

b n
n

n
y v

kI
n

K x K u dudx

y v K dvdy
K

−

′= =

−

′= =

= −

  ′ ′+   ×  
  ′ ′+ +   

∫ ∫

∫ ∫

 

       

(18) 
The problem reduces to finding an analytical 
evaluation of 
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The identity used in the final statement of (20) is 
found in [5; 2.519.2 & 2.526.9].   In practice the 
number of terms required for the evaluation of (15) 
to full quad precision is approximately 15, 
although it was always evaluated to machine 
precision using as many terms as necessary, per 
(23). 
 
The formulation can be expanded to include 
polynomials such as 
 

( ), p qf x y x y=  (21) 
 
or by any function that can be represented by 
combinations of such  polynomials. The associated 
integrals have the form  
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(22) 
Evaluation of these integrals proceeds in a manner 
similar to the earlier method. 
 

With the aid of the transformation tanz uδ= , 
2secdz uduδ= , 1

1
1tanu δ

−= , equation (19) can 

be written as  
 

III. METHODOLOGY 
 

The present study investigates the numerical 
accuracy obtained from the preceding methods, and 
the relative computational efficiency (run times) 
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required for each method to produce a specified 
level of accuracy.  The use of single, double, and 
quad precision for some or all of the calculations is 
considered.   The objectives of the testing were: 
 
 To examine the effect of machine precision on 

the accuracy of the SCF method. 
 To investigate the accuracy of the SE and SC 

methods. 
 

The location of the test point is rarely at the 
exact corner of a patch and so, in practice, the 
domain is divided into four rectangular sub-patches 
each with a corner at the test point.   These sub-
patches will frequently have aspect ratios 
significantly different from 1.0K = .   As the 
location of the test point may well be the result of 
using a quadrature rule, it is instructive to examine 
the location of test points required by various 
quadrature formulae.   In particular, one is 
interested in the smallest dimension involved in an 
application.   Examples are shown in Table I.   The 
third rule, “Linlog+Sqrt singularity” possesses the 
capability to integrate a log singularity and a square 
root singularity at the same end point. 
 

 
From Table I, one can see that in some 

instances the location of the test point may result in 
rectangles with aspect ratios of 910K −≈ . Therefore 
the range over which tests were conducted was 

101.0 10 1.0K−× ≤ ≤ . Two tests were designed. In 
the first, the location of the test point is at the corner 
of a patch that has one side dimension of 0.1λ  and 
the other a dimension of 10 n− , where 1 11n≤ ≤ .   
The second test uses a constant patch size 
of 0.1 0.1λ λ× .   The test point is located on the line 
stretching from the center of the patch, at 

( )0.05,0.05  to the corner of the patch, at ( )0.0,0.0 , 
in steps of 10.0 n−  where 0 10n≤ ≤ . The integration 
over the patch is achieved by dividing it into four 
sub-patches each with a corner at the test point.   
The purpose of the second test is to evaluate the 
impact of the high aspect ratio sub-cell on the 
overall integral. 
 

As a baseline for comparison, a reference result 
for the series (15) was evaluated in Multi-Precision, 
MP, arithmetic [8] using an epsilon value of 

40010.0−  and reported out in quad (REAL*16) 
precision.   Such precision may seem extreme.   
However, the comparative accuracy of the other 
results was based on these reference values. 
 

The effect of machine precision was 
investigated not only for the present new 
formulation but also for the SE and SC methods.   
The integrals requiring the use of quadrature rules 
were evaluated with an adaptive Gauss-Kronrod-
Patterson, GKP, procedure using tabulations 
derived in MP from an algorithm published by 
Patterson [9].   These integrals were evaluated so 
that: 
 

1 2n n

n

I I
I

ε−−
≤                                                      (23) 

 
where nI  is the value of the integral after the thn  
evaluation.   Epsilon, ε , is defined as the difference 
between 1.0 and the smallest number which is 
greater than 1.0, that can be represented by the 
compiler.   Two other compiler parameters needed 
to be considered - tiny and huge - which are the 
smallest and largest positive numbers respectively 
that can be represented by the compiler.   These are 
shown in Table II for single, double and quad 
precision, as well as for the level of precision used 
in the MP calculations performed in this study. 
 
Relative error was used to evaluate the different 
schemes using: 
 

10log ref

ref

I I
Error

I
−

=  .                                       (24) 

 
 

Table I.   Locations of the first test point for 
various Gaussian quadrature rules, 0 1x≤ ≤  

Type of quadrature rule # of nodes 
in the 

quadrature 
rule 

Gauss-
Legendre 

Linlog 
[6] 

Linlog + 
Sqrt 

singularity 
[7] 

16 5.30E-3 8.28E-5 4.99E-6 
32 1.37E-3 5.69E-6 9.86E-8 
48 6.14E-4 1.15E-6 9.35E-9 
64 3.47E-4 3.73E-7 1.73E-9 
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Here, I  and refI  are the values of the relevant 
integral, evaluated in the stated machine precision, 
and the reference value respectively. 
 

IV. NUMERICAL RESULTS 
 

The results for the SE method, the SC method 
and the SCF method when evaluated in quad 
precision are shown in Figure 1. 
 

The susceptibility of the SC method to aspect 
ratio has already been mentioned in the literature, 
[4, 10], and investigating this phenomenon was an 
early motivation for this study.   Such suspicions 
appear to be confirmed as that approach essentially 
fails for 410K −< . The criticism of the SE method 
is that although the obvious singularity has been 
removed, the first integral in the right-hand side of 
(3) is still not “smooth” in a mathematical sense due 
to the derivatives of the integral being unbounded at 
one of the integration limits.   Nevertheless, the 
results over the test range are accurate to better than 
double precision.   The results for the SCF method 
show that, even in quad precision, there is 
degradation for the more extreme aspect ratios. 
 

When the same study was carried out in single 
precision, none of the methods provided acceptable 
results.   It is doubtful that one would encounter 
such extreme aspect ratios as 101.0 10K −= ×  when 
using single precision.   Nevertheless the underlying 
causes for these failures were examined as an aspect 
ratio of 61.0 10K −= ×  could arise in single 
precision work. 
 

Two factors were determined to play a role in 
the failures – the value of epsilon and the values of 
tiny/huge in the Fortran complier.   Examination of 
the calculations in the SCF method of (20) indicated 
the need to carry numbers with a wide range of 
values – wider than is available with single 
precision. Routines were written that accepted 
single precision input and returned single precision 

output, but within the routines the working 
precision was either double or quad precision.    
The results for the SCF method are reported in 
Table III. 
 

10-10.0 10-8.0 10-6.0 10-4.0 10-2.0 100.0

Aspect Ratio

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

E
rro

r

SCF method
SE m ethod
SC m ethod

Figure I.   P lots of results for the SCF,
SE and SC m ethods when using quad
precision for all calculations.

 
 

In Table III, the first column reports the aspect 
ratio, AR, for the calculations.   The column headed 
“single” reports the results of simply using single 
precision.   The column headed “tiny” again uses 
single precision throughout but guards against 

2cos ( )n z  being less than the tiny value in Table II.   
When this potential violation is detected, the routine 
exits with the last value calculated prior to the 
detection.   The columns headed “double” and 
“quad” indicate use of the special routines 
mentioned earlier. Use of double precision 
prevented total failure of the SCF method.   
However, quad precision was needed to provide 

Table II.   Compiler specific parameters for various levels of precision. 
precision epsilon Log10(epsilon) tiny huge 
single 1.19E-07 -6.92360 1.18E-38 3.40E+38 
double 2.22E-16 -15.6536 2.22E-308 1.80E+308 
quad 1.93E-34 -33.7154 3.36E-4932 1.19E+4932 
MP 1.00E-400 -400.000 6.19E-14449439 6.19E+14449439 

Fig. 1. Plots of results for the SCF, SE, and SC 
methods when using quad precision for 
all calculations. 
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success over the entire range.   The reason that 
double precision does not provide success over the 
entire range has to do with the calculation of 

2 2R c x= + . Precision is lost whenever the ratio 
of the two numbers, 2c  and 2x , or its reciprocal, is 
less than the  relevant value of ε . This can be seen 
quite clearly in the “double” results, where 
precision is lost when the aspect ratio exceeds 1.0E-
07. 
 

When the SE approach was examined with 
single precision it was found that the integration of 
the “non-singular” part was performing 
satisfactorily, but evaluation of the singular part 
was not good, as seen in the “single” column of   
Table IV.   Once this was performed in double 
precision, the errors were at their lower limit until 
the aspect ratio reached a value of 91.0 10K −= × .   
To cover the entire range, it was necessary to use 
quad precision.   This is an important finding, as the 
SCF method has not yet been developed for more 
general situations and hence one may still need to 
resort to SE and/or SC. 
 

The problems in the SC method can be 
understood when one considers the effect of K  on 
the evaluation of the inner integrals of (4).   When 
K  takes on an extreme value one of the inner 
integrals is essentially independent of the variable 
of integration whereas the other inner integral 
approaches ( )1O R . This latter effect makes the 

Gauss-Legendre integration perform very poorly. 

 
The solution is to use the SE method in conjunction 
with the SC method.   That is, use (3) in each of the 
integrals of (4).   The results are reported in Table 
V. Again the importance of evaluating the extracted 
component in double precision is to be noted.   If 
the extracted component is only evaluated in single 
precision there is a degradation of the accuracy for 
intermediate values of the aspect ratio. 
 

Similar findings were made when using double 
precision as the underlying machine precision.   It 
was necessary to write routines that accepted 
double precision input and returned double 
precision output with the internal calculations 
performed in quad precision.   The relevant results 
are shown in Tables VI.   The heading “Double + 
quad ESE” in this table means that the main 
quadrature routines used double precision while the 

Table IV.   Effect of machine precision on error 
(24) of the SE solution. 

AR Single Double Quad 
1 -6.92369 -6.92369 -6.92369 

0.1 -6.41765 -6.92369 -6.92369 
1.00E-02 -5.94832 -6.92369 -6.92369 
1.00E-03 -5.07121 -6.92369 -6.92369 
1.00E-04 -3.90065 -6.92369 -6.92369 
1.00E-05 -2.42700 -6.92369 -6.92369 
1.00E-06 2.73E-03 -6.92369 -6.92369 
1.00E-07 2.37E-03 -6.92369 -6.92369 
1.00E-08 2.10E-03 -6.92369 -6.92369 
1.00E-09 1.89E-03 -6.92369 -6.92369 
1.00E-10 1.71E-03 -6.10287 -6.92369 

Table III.   Effect of machine precision on error (24) of 
the SCF solution.   (d.b.z. is divide-by-zero fault) 

 Mode 
AR single tiny double quad 

1 -6.92369 -6.92369 -6.92369 -6.92369
0.1 -6.92369 -6.92369 -6.92369 -6.92369

1.00E-02 -5.97828 -5.97828 -6.92369 -6.92369
1.00E-03 -5.64612 -5.64612 -6.92369 -6.92369
1.00E-04 -5.05785 -5.05785 -6.92369 -6.92369
1.00E-05 d.b.z. -4.06992 -6.92369 -6.92369
1.00E-06 d.b.z. 0.00E+00 -6.92369 -6.92369
1.00E-07 d.b.z. 0.00E+00 -6.92369 -6.92369
1.00E-08 d.b.z. 0.00E+00 -6.75083 -6.92369
1.00E-09 d.b.z. 0.00E+00 -6.00224 -6.92369
1.00E-10 d.b.z. 0.00E+00 -5.05588 -6.92369
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evaluation of the extracted components was 
performed in quad precision.   Note that it is 
necessary to extract two terms in the SE method 
that is use ESE, as is also the case in the SC 
method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Returning to the use of quad precision as the 

underlying, and only, precision level, the SE 
method is modified to incorporate the extraction of 
two terms.   The SC method is modified to 
incorporate the incorporation of one term and then 
two terms.   The results appear in Figure 2, which 
has the same scaling as Figure 1 – for direct 
comparison.   It is clear that when two terms are 
extracted in both the SE and SC methods the results  

are close to, if not identical, to the results for the 
SCF method. 
 

So far, the reported results were concerned with 
accuracy.   The timing results for quad precision are 
shown in Table VII.   These show that the SCF 
method is clearly superior to the other two methods.   
It is important to note that all of the calculations are 
performed in the same precision. When one runs 
similar timing tests in double and single precision 
the SE method is superior.   The reason for the shift 
is that the SCF method is still largely performed in 
quad precision, whereas the quadrature routines run 
mainly in double and single precision respectively. 
 

In the second test series the test point was not 
located at a corner of the patch.   Instead it was 
moved on a diagonal extending from the center to 
close to the corner.   The patch was then sub-
divided into four sub-patches each with a corner at 
the test point.   Two of the sub-patches are square 
and two have potentially extreme aspect ratios.   
The test was conducted for each of the three 
methods, incorporating the information learned in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the first test series.  Thus it was unsurprising that 
the integrations all performed well.   An exception 
occurred in the quad precision studies where it was 
found that, in the case of the SE method, better 
results were obtained when the integration area was 
divided into four subsections, each with a corner at 
the location of the (extracted) singularity – just as 
was necessarily done for the SCF and the SC 
methods.   The two results for the SE method are 

Table V. Effect of machine precision on error 
(24) of the SC solution. 

AR Single 
only 

Single + 
single SE 

Single + 
double SE 

1 -6.92369 -6.92369 -6.92369 
0.1 -6.92369 -6.92369 -6.92369 

1.00E-02 -6.92369 -5.97828 -6.92369 
1.00E-03 -6.92369 -5.55185 -6.92369 
1.00E-04 -4.09225 -4.97039 -6.92369 
1.00E-05 -2.08886 -3.98617 -6.92369 
1.00E-06 -1.1023 -2.52202 -6.92369 
1.00E-07 -0.70402 -1.96481 -6.92369 
1.00E-08 -0.53765 -1.30139 -6.92369 
1.00E-09 -0.43983 -1.34868 -6.92369 
1.00E-10 -0.3739 -1.39132 -6.92369 

Table VI.   Error (24) for double precision on the three methods of integration. 
 SCF SE SC 

AR Double Quad 
internal Double Double + 

quad ESE Double Double + 
quad ESE 

1 -13.8785 -15.6536 -15.6536 -15.464 -15.6536 -15.6536 
0.1 -13.2513 -15.6536 -15.6536 -15.6536 -15.6536 -15.6536 

1.00E-02 -7.91709 -15.6536 -14.1219 -15.6536 -15.6536 -15.6536 
1.00E-03 -5.77831 -15.6536 -13.5385 -15.6536 -15.6536 -15.6536 
1.00E-04 -3.82704 -15.6536 -12.2983 -15.6536 -11.2123 -15.6536 
1.00E-05 -3.91093 -15.6536 -11.7914 -15.6536 -5.33437 -15.6536 
1.00E-06 -3.98120 -15.6536 -10.1758 -15.6536 -3.62397 -15.6536 
1.00E-07 -4.04162 -15.6536 -9.18065 -15.6536 -1.50125 -15.6536 
1.00E-08 -4.09416 -15.6536 -8.38368 -15.6536 -0.85638 -15.6536 
1.00E-09 -4.13613 -15.6536 -8.43096 -15.6536 -0.64213 -15.6536 
1.00E-10 -4.12927 -15.6536 -6.14382 -15.6536 -0.52264 -15.6536 
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shown in Table VIII.  In the cases of single 
precision and double precision, integration over the 
entire cell gave results at the limit of precision. 

 
 

10-10.0 10-8.0 10-6.0 10-4.0 10-2.0 100.0

Aspect Ratio

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

E
rr

or

SCF method
SE, 2 terms extracted
SC, 1 term in SE
SC, 2 terms in SE

Figure II.   Plots of results for the SCF,
SE and SC methods when using quad
precision for all calculations and 
incorporating two term extraction.

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSIONS 
 

The SCF method was developed as a fast, 
accurate method to evaluate the integral of the free-
space Green’s function.   This method was also 
used to investigate the effect of machine precision 
on other approaches to this same evaluation.   It was 
found that in order to span the range of aspect ratios 
investigated here: 
 The SCF method needed to be evaluated in 

quad precision regardless of the default 
precision of the compiler. 

 The analytical term(s) extracted in the SE 
method needed to be evaluated in a level of 
precision higher than the default precision. 

 The SC method was successful only when 
singularity extraction was applied to the inner 
integrals, and only if those extracted terms were 
evaluated in a higher level of precision than the 
default level. 

 When extracted terms were evaluated in quad 
precision it was also important to extract a 
second term and evaluate it in quad precision. 

 
When dealing specifically with planar patches 

and polynomial basis functions, the SCF method is 
the fastest approach of the three considered when 
using quad precision.   Otherwise, the SE approach 
is faster. 
 
 
 
 
 

Table VII.   Results for relative times for the 
three different methods when set up for greatest 
accuracy, using quad precision. 

AR SCF SE SC 
1 4.59E-02 4.48 2.20 

0.1 3.91E-02 2.31 4.15 
1.00E-02 4.00E-02 1.46 6.18 
1.00E-03 4.10E-02 1.12 6.18 
1.00E-04 4.00E-02 1.12 6.15 
1.00E-05 4.00E-02 0.86 6.01 
1.00E-06 4.00E-02 0.69 6.12 
1.00E-07 4.10E-02 0.73 6.13 
1.00E-08 3.91E-02 0.17 2.64 
1.00E-09 4.00E-02 0.15 2.14 
1.00E-10 4.00E-02 0.16 2.76 

Table VIII.  Results for error (24) for the SE 
method, using quad precision. 

AR Entire cell 4 sub-cells 
1 -16.7542 -33.5543 

0.1 -18.3499 -32.6836 
1.00E-02 -21.8931 -32.3831 
1.00E-03 -23.9701 -32.3669 
1.00E-04 -27.0118 -32.4292 
1.00E-05 -30.7153 -32.4119 
1.00E-06 -32.1547 -32.2953 
1.00E-07 -32.4289 -32.4651 
1.00E-08 -32.6807 -32.6807 
1.00E-09 -32.3217 -32.3083 
1.00E-10 -32.3644 -32.3797 

Fig. 2. Plots of results for the SCF, SE, and SC 
methods when using quad precision for 
all calculations and incorporating two 
term extraction.  
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