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Abstract: The electromagnetic enterprise is now over 

a century old.  In the modern world it has expanded in 

various directions. This paper summarizes 

electromagnetics under four headings: analysis, 

synthesis, numerics, and experiment. Each area is 

important, as are the relations between the areas. 

  
I.  Introduction 

 Electromagnetics has come a long way since 

its nineteenth century beginnings.  Most notably with 

the discovery of the Maxwell equations (1864) and their 

experimental verification by Heinrich Hertz (1888), 

things were off and running, leading to today’s state of 

the art.  For more historical details the reader can 

consult [9, 20, 25]. 

 In recent paper [7] I discussed the role of the 

electromagnetic theorist and how it fits in the general 

scientific/engineering enterprise: 

 People often think of dividing the basic and 

applied sides of the technological enterprise as between 

science and engineering, but this can lead to confusion. 

 
This work was sponsored in part by the Air Force Office of 

Scientific Research, and in part by the Air Force Research 

Laboratory, Directed Energy Directorate.  This was originally 

given as an invited paper for the 18th Annual Review of 

Progress in Applied Computational Electromagnetics, 

Monterey, CA, March 2002. 

I think that there is a better three-part division, which 

can shed some light on where electromagnetic (EM) 

theory fits into the structure.  First, there is the basic 

scientific side which has electromagnetics as part of 

physics, and the fundamental question concerns the 

replacement of the Maxwell equations by something 

more accurate, applying to extreme conditions not 

normally encountered.   

 This is not of what we think as 

electromagnetic theory in the usual sense.  Second, we 

have what may be called applied science or basic 

engineering in which we explore the established 

physical laws (the Maxwell equations in this case) to 

see what they imply in the sense of discovering what is 

possible to analyze, synthesize, optimize, etc.  This is 

distinct from the third category which might be termed 

applied engineering which concerns itself with the 

routine implementation of what is known from the 

second category in terms of technological products 

(“practicing” engineering), for example, by selection of 

antenna designs from a product catalog.  Of course the 

reader might prefer some other “diagonalization” but 

this should suffice for the present.   

 Here we are not considering the first category, 

but the second and to some degree the third. Now take 

the Maxwell equations 
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BE J
t

DH J J
t

→→ →

→→ →→

∂
∇ × = − =

∂

∂
∇ × = − + +

∂

             (1.1) 

as given and see what useful things we can do with 

them.  Note that we have separated out source terms 

and that material parameters (e.g., the constitutive 

parameters including boundary conditions) need to be 

specified. 

 There are various aspects of the 

electromagnetics enterprise undertaken by the 

scientific/engineering community since the 

fundamentals were first established.  In this paper we 

divide modern electromagnetics into four categories:  

analysis, synthesis, numerics, and experiment.  Each 

has its place in the overall subject, contributing its own 

important role. 

II. Analysis 

 Initial investigations in electromagnetic theory 

were in a form which we can call analysis.  Initially (for 

good and/or ill) people did not have the modern 

computers to directly solve the Maxwell equations in 

time and/or frequency domains.  As such, various 

mathematical techniques were developed to find exact 

and approximate results for problems concerning 

antennas, scattering, and propagation.  These are 

summarized in various classic texts, e.g., [10, 12, 14, 

17, 18]. 

 These results were key to the many advances 

in communications (radio, television), remote sensing 

(radar), and electric power. 

 Let us list some of the important analytic 

concepts and techniques: 

1. Fourier/Laplace transforms 

− relating time and frequency domains, 

− consequence of linearity and time-invariance 

of common EM problems. 

2. Separation of variables (spatial coordinates) 

− applies to certain coordinate systems. 

3. Analytic properties in complex-frequency 

plane. 

 3.1. Low-frequency method 

  − expansions in powers of s, 

− quasistatic leading term (separation into 

electrostatic and magnetostatic), 

  − multipole expansions. 

 3.2. Singularity expansion method (SEM) 

− expansion in terms of poles in the s-

plane (plus other singularities in some 

cases), 

− factorization of poles in terms of natural 

frequencies, natural modes and coupling  

coefficients depending on different 

parameters of the problem, 

 − damped sinusoids in time domain. 

 3.3. High-frequency method 

 −  ray optics, 

  − diffraction (GTD, UTD, etc.), 

  − high frequency asymptotics, 

                      − asymptotic evaluation of integrals. 

4. Conformal transformation of two-dimensional 

complex coordinates 

− capacitances, inductances of many 

shapes, 

  − TEM modes on appropriate structures, 

  − combination with stereographic 

transformation for conical structure. 

5. Transmission-line theory 

  − exact for TEM structures, 

  − lumped-element transmission lines, 

  − approximate application to wire 

antennas and scatterers, 
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 − multiconductor transmission lines 

(including nonuniform). 

6. Integral equations 

  − special techniques, e.g., Wiener-Hopf, 

  − approximate solution (variational 

techniques), 

  − operator diagonalization (eigenvalues 

and eigenmodes). 

7. Electromagnetic topology 

− dividing electromagnetic systems into 
smaller pieces such that the solution for  
the smaller pieces can be recombined  
to represent the solution of the whole, 

  − graph theory, 

  − BLT equation, scattering matrices, 

  − hybrid analytical/numerical. 

 In some cases these give the complete solution 

where at most one needs to evaluate a few special 

functions.  In others one may have a solution in terms 

of an infinite series which needs to be numerically 

computed.  In yet other cases the solution is only 

approximate. 

 Perhaps the greatest benefit of analytic 

solutions is the understanding they allow one to have 

concerning how the solution varies as a function of the 

various parameters of the problem.  These include the 

various physical dimensions, direction of wave 

propagation, and frequency/time.  This in turn allows 

one to see the possibilities of electromagnetic 

performance over the range of these variables—the 

engineering problem and the beginning of elec-

tromagnetic synthesis (or design). 

 

III.   Synthesis 
3.1. Background 

 In contrast to anslysis which is concerned with 

solving Maxwell equations for a specific set of 

conditions (geometry, constitutive parameters, sources), 

synthesis begins with some desired performance and 

asks if an electromagnetic device can be designed to 

meet this performance.  Then one may ask if there is 

more than one possible design, and which of these is 

optimal in some sense.  This is a kind of inverse 

problem which may not always have a solution, or the 

solution may be nonunique. 

 By analogy it is instructive to recall circuit 

analysis.  Circuit analysis is based on the Kirchoff laws: 

Voltage law:  The sum of the voltage drops around a 

loop in the network is zero. 

Current law:  The sum of the currents entering a node in 

the network is zero. 

 The network is a graph consisting of nodes and 

branches (a kind of topology or structure of 

connectedness). For a linear network (typically with 

branches containing inductances, capacitances, 

resistances, and voltage/current sources) one forms a 

matrix relating the response (voltages or currents) to the 

appropriate sources.  Inverting this matrix gives the 

solution for the response. 

 Circuit synthesis goes beyond analysis to ask 

what such networks can be made to do, and to give 

procedures (algorithms) for synthesizing (designing) 

networks to meet such performances.  This involves 

positive-real functions and matrices for the impedances 

and admittances of linear, passive, time-invariant 

networks. This becomes bounded-real functions and 

matrices for scattering parameters.  Based on these one 

can decide if certain impedance (admittance) functions 

and transfer functions are realizable, and for the 

realizable ones the synthesis procedures.  A common 

text is [11] and a collection of the basic papers is found 

in [13]. 

 Electromagnetic synthesis is then first the 

determination of what kinds of electromagnetic devices 

(systems) with what performance parameters are 
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possible (within specified limitations such as linearity, 

reciprocity, time invariance, etc.).  This is followed by 

the determination of the specific synthesis (design) 

procedure for realizing the desired performance. 

 A classic example of such synthesis is the 

Dolph-Tchebyscheff amplitude distribution for a 

uniform spaced array of antenna elements [16].  This 

finds the minimum achievable beam width for a 

specified sidelobe level.  As this example shows, an 

important aspect of synthesis concerns how one asks 

the synthesis question.  Problem formulation is key to 

obtaining useful results.  Another notable antenna 

success concerns pattern synthesis for reflector 

antennas [21].  Note for these examples that they have 

been considered in a single-frequency (narrow-band) 

context.  We also need to consider time-domain 

properties (large band ratios) of electromagnetic 

systems. 

 In order to extend the possibilities of 

electromagnetic synthesis, we need to extend the 

conceptual framework in which to pose the question.  In 

electromagnetics we are dealing with distributed 

(continuous) systems, giving a more complicated 

problem than a comparatively simple LRC circuit.  On 

the other hand the very complexity of the 

electromagnetic synthesis problem suggests that there 

may be many more possibilities.  Not only do we have 

constitutive parameters and their frequency 

dependences to consider.  We also have spatial 

distributions and shapes (geometry) to synthesize.  

 An approach to electromagnetic synthesis that 

has met with some success begins with a search for 

analytic concepts used in modern mathematics and 

physics, but not commonly used in electromagnetics.  

This is discussed in [3, 7] and summarized here. 

 

 

3.2. Eigenimpedance synthesis 

 Let us first consider a synthesis technique 

which is an extension of circuit synthesis (discussed 

above) into the more general electromagnetic domain.  

This begins with an integral equation of the form 

( )
( , ; ); ( , ) ( , )

inc
Z r r s J r s E r s
↔ → →→→ → →′ =

� ��
          (3.1) 

(with integration over the common coordinate r
→
′ ).  

This could be a surface (S) or volume (V) integral 

equation over the body of interest (the support).  Here, 

for convenience, we take the symmetric impedance (or 

E-field) kernel, based on the dyadic Green function of 

free space.  As with matrices we can find eigenvalues 

and eigenvectors via 

( )

1 21 2
1 2

,
1 2

( , ; ); ( , ) ( , )

( , ); ( , ; ) ,

( , )

( ) ( ),

1  for  
( , ); ( , ) 1

0  for  .

Z r r s j r s Z s j r s

j r s Z r r s

j r s eigenmodes

Z s eigenimpedances eigenvalues

j r s j r s

ββ β

β

β

β

β ββ β
β β
β β

↔ → →→ → →→

→ ↔→ → →

→ →

→ →→ →

′ ′ =

′ ′=

≡

≡

=
= =  ≠

� �

�

�

� �

�
�

�

�

 

(3.2) 

With this we have the eigenmode expansion method 

(EEM) as 

( )( , ; ) ( , ) ( , )Z r r s Z s j r s j r s
ν

ν
β ββ

β

↔ → →→ →→ →′ ′= ∑
� ��

�      (3.3) 

where ν is an arbitrary power. 

Note that the eigenvalues are dimensionally impedances 

(ohms) for a surface type body, and ohm-meters for a 

volume type body.  For a passive, linear, reciprocal 

scatterer, the ( )Z sβ�  are positive real functions like the 

impedance functions considered in circuit synthesis 

discussed previously. 
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 As discussed in [3] for a surface type body one 

can add a sheet impedance ( )Z sA�  everywhere on S.  

This gives new eigenvalues 

( ) ( ) ( )Z s Z s Z sβ β→ + A� � �                    (3.4) 

with no change in the eigenmodes.  A similar result 

holds for volume type bodies [5].  Now knowing the 

behavior of some ( )Z sβ�  we have a circuit synthesis 

problem for ( )Z sA�  to obtain the desired new 

eigenvalue.  An application of this notes that the natural 

frequencies (SEM, Section 2) satisfy 

( ), 0Z sβ β β′ =� ,                        (3.5) 

so one can change the natural frequencies of a target 

(important for identification) to other complex 

frequencies depending on the choice of ( )Z sA� .  An 

example of this is the thin wire [3] for which the lowest 

order natural frequency can be moved to the negative 

real axis of the s plane and even produce a second order 

pole (critically damped scatterer or antenna). 

 

3.3. Symmetry and group theory 

 A branch of mathematics which has found 

much use in quantum mechanics is group theory, 

closely associated with symmetry.  Group theory also 

has much application to symmetries in electromagnetics 

problems (antennas, scattering, propagation) [21].  

Symmetries in antennas and scatterers are associated 

with symmetries in the electromagnetic waves, and can 

be used to design antennas and scatterers and identify 

radar targets. 

 The simple case of a 3 x 3 dyadic 

representation of a group has 

 0G 1, 2 , ,G
↔  = = 
  

A A … A , 

0 =A  group order (finite or infinite) ,      (3.6) 

 
1

G , 1G
−↔ ↔

∈ ≡A  identify G∈ , 

 1 2 GG G
↔ ↔

∈A Ai   for all ordered pairs. 

This form is particularly suitable for the point 

symmetry groups (rotations and reflections) for which 

the dyadics are real and orthogonal.  Other types of 

applicable symmetries include space groups (adding 

translation) and the linear group (dilation symmetry).  

Note that in addition to the geometrical symmetries, 

there are symmetries inherent in the Maxwell equations 

(reciprocity, duality, relativistic invariance) which need 

to be incorporated in the group structure.   

 All early application of symmetries to 

electromagnetics was the case of special waveguide 

junctions (magic T, etc.).  Some of the recent symmetry 

results include [7]: 

1. placement and orientation of EM sensors on an 

aircraft to minimize the influence of aircraft 

scattering on the measurement (reflection 

symmetry R), 

2. high-frequency capacitors (dihedral symmetry 

DN ), 

3. nondepolarizing axial backscatter (two-

dimensional rotation symmetry CN  for N > 3, 

e.g., an N-bladed propeller), 

4. generalized Babinet principle (for dyadic 

impedence sheets) and self-complementary 

structures ( CNc  symmetry), 

5. vampire signature (zero backscatter cross 

polarization in h, v radar coordinates) for mine 

identification (continuous two-dimensional 

rotation/reflection symmetry 2O C a∞=  [10], 

6. separation of magnetic-polarizability dyadic 

( ) ( ) 1 1 ( ) 1z z zz tM s M s M s
↔ ↔→ →

= +
�

� �  into 

distinct longitudinal and transverse parts, for 
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low-frequency magnetic singularity 

identification (diffusion dominated natural 

frequencies) of metallic targets ( CN  

symmetry for N > 3), 

7. categorization of the scattering dyadic for the 

various point symmetries, including 

reciprocity and self dual case. 

 

3.4. Differential geometry for transient lens 

synthesis. 

 We begin with some as yet unspecified 

( 1 2 3, ,u u u ) orthogonal curvilinear coordinate 

system with 

       
2 2 2

2hn
n n n

x y z
u u u

     ∂ ∂ ∂
= + +     ∂ ∂ ∂     

,          (3.7) 

where the scale factors n = 1, 2, 3, and the line element                                              

   [ ] [ ] [ ] [ ] [ ]
3

22 2 2 22

1
hn n

n
d du dx dy dz

=
= = + +∑A . 

 The electromagnetic field and constitutive 

parameters are described as real (indicating they can be 

measured) when expressed in the usual way in 

Cartesian coordinates.  The formal fields and 

constitutive parameters are primed and denote these 

parameters expressed in the ( 1, 2 , 3u u u ) system and 

thought of as though this were a Cartesian system. 

The formal and real fields are related by 

( ) ( )

( ) ( )

( ) ( )

( )

, ,

, ,

1

, , 2

3

2 3
1 2 3

, , 3 1

1 2

, ,

, ,

h 0 0
1 h 0 h 0 ,

0 0 h

h h 0 0
h h h

1 0 h h 0 .
h

0 0 h h

n m n m

n m n m

n m n m n

n m n m
n

E E H H

D D B B

α α

β β

α

β

→ → → →

→ → → →

′ ′= =

′ ′= =

 
 = =  
 
 

 
   = =   
   

 

i i

i i

 

(3.8) 

For the constitutive parameters we have for the special 

case of diagonal dyadics (in the nu  system) 

( ) ( )

( ) ( ) ( )

, ,

2 3
2

1 3 1
, , ,

2

1 2
3

, ,

h h
0 0

h
h h

0 0 .
h

h h0 0
h

n m n m

n m n m n m

ε γ ε µ γ µ

γ β α

↔ ↔↔ ↔

−

′ ′= =

 
 
 
 

= =  
 
 
 
  

i i

i

(3.9) 

The synthesis procedure is to: 

1. postulate waves (e.g., TEM wave propagating 

in the 3u  direction) with simple (e.g., 

uniform) ε
↔
′ and µ

↔
′ , 

2. place some constraint on ε
↔

 and µ
↔

 (e.g., 

nonuniform but isotropic), 

3. ask what coordinate systems ( nµ ) are able to 

satisfy the resulting constraints on the hn , 

4. use solution to 3 to form the basis of a lens, the 

solution for the wave being given by the 

transformation equations. 

 
With postulated frequency-independent constitutive 

parameters such lenses are dispersionless and are called 

transient lenses.  For TEM waves guided by perfect 

conductors (as on TEM transmission lines) the 

conductors follow the curved coordinate lines through 

the lens. 

 Various results have been achieved [7, 19]: 

1. all six components of E
→

 and H
→

 nonzero for 

inhomogeneous but isotropic , , ,ε ε µ′   and 

µ′  (only two possible coordinate systems), 

2. TEM waves propagating in the 3u  direction, 

for inhomogeneous but isotropic , , ,ε ε µ′  
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and µ′  (coordinate systems constrained by 

constant 3u  surfaces being planes or spheres, 

examples including converging, diverging, and 

bending lenses), 

3. two-dimensional lenses for TEM waves (only 

one component each of E
→
′  and H

→
′ nonzero) 

based on conformal transformations (resulting 

in only one of ε  and µ  being 

inhomogeneous, but both isotropic), 

4. lenses with 0µ µ=  but ε  anisotropic and 

inhomogeneous, 

5. TEM waves propagating in the φ  direction in 

a cylindrical ( , , zφΨ ) coordinate system 

(bending lens) with very general transmission-

line cross sections (e.g., bent circular coax) 

with only ε  variation ( 0µ µ= ). 

 

3.5. Electromagnetic topology for electromagnetic 

system design 

 In section 2 (item 7) electromagnetic topology 

was considered as an analytic way of dividing a system 

into smaller parts in a way that the solution for the 

pieces can be recombined to form a mathematical 

description of the whole (BLT equation).  However, the 

original conception was to have a way of quantitatively 

controlling electromagnetic interference, i.e., a method 

of system design [4]. 

 In this design procedure one considers a set of 

closed surfaces called shields or subshields.  (There can 

be a hierarchy of these).  The object is to control all 

electromagnetic signals passing through such surfaces.  

By the electromagnetic uniqueness theorem, controlling 

tangential E
→

 (or H
→

) on such a surface controls the 

fields inside (for sources outside).  Unwanted signals 

are stopped at such shields.  The realization of such 

surfaces may include metal sheets, screens, etc.  The 

important parts of the surfaces are the penetrations 

(apertures, conductors passing through), every one of 

which must be quantitatively described for purposes of 

control. 

 An important concept for such control is 

norms [4] (This is applied in the context of the good-

shielding approximation.)  These reduce the associated 

matrices (including convolution in time domain) to 

simple scalars which can be used to bound the 

penetrating signals.  Not only linear protection devices 

(such as filters), but other types of simple nonlinear 

devices can also be included in the formalism. 

 There is a quantitative side of electromagnetic 

topology in which one writes the BLT equation [4, 26] 

( ) ( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( ) ( )

, , ,,v ,v,v

, ,,v ,v

1 0,

, ; ,

n m n m n m n uu uu

s
n m n m u unu u

u

S s s V s

S s z s V z s

     
          

  ′                 

− Γ

′ ′= Λ

� ��: :

� � �: i :

 

(3.10) 

This involves supervectors and supermatrices.  The 

outer indices (u and v) are topological in that they label 

waves propagating on tubes (multiconductor 

transmission lines) between junctions (or black boxes if 

one prefers).  This corresponds to a graph called the 

interaction sequence diagram which is dual to the 

electromagnetic topology with tubes dual to surfaces 

and junctions dual to volumes.  The inner indices (n and 

m) can be regarded as more “numerical” in nature, 

corresponding to the calculational details in 

constructing the solution to the individual “pieces” of 

the system problem (whether calculated or measured).  

The terms in the BLT equation are 

( )( ), ,vn m u
S s ≡�  scattering matrix from vth wave to uth       

wave, 

( )( ), ,n m u u
sΓ ≡�  propagation matrix for uth wave 

(supermatrix being block diagonal), 
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( )( )( ), ,
, ;n m u u u

z s′Λ ≡� i  integral operator operating on 

distributed sources 

( )( )( ) ,s
n u u
V z s′ ′�  ,                   

( )( )0,n u
V s ≡�  outgoing wave from junction combining 

voltages and currents. 

(3.11) 

 The BLT equation is also generalized to cover 

more general cases, including nonuniform 

multiconductor transmission lines [27].  Special results 

hold for early and late times [28].  Work is proceeding 

to include more and more parts of the electromagnetic 

system in the general BLT formalism [29, 30].  In 

essence the BLT formalism is a way to take the 

solutions (and/or data) for the “pieces”, and 

concantenate them together to solve for the total 

system.  A special issue of the journal Electromagnetics 

is in preparation concerning this general problem, based 

on an RF effects MURI sponsored by AFOSR. 

 

IV. Numerics 
 This is not a discussion of how EM numerics 

are done, but rather where this part of electromagnetics 

fits into the larger picture. 

 

4.1. Complement to analysis 

 One aspect of EM numerics is as a 

complement to analysis.  This has the potential of 

extending the knowledge of basic electromagnetics 

processes by definitive calculations of canonical 

problems, particularly those beyond full analytic 

treatment.  Of even greater significance is the use of a 

hybrid analytical/numerical treatment.  By this is meant 

that analysis is used to partly solve the problem, 

including the division of the problem into analytical and 

numerical parts.  For example, the electromagnetic 

response can be viewed as an analytic function of the 

complex frequency (in various parts of the complex s-

plane).  One can use this fact to reduce the number of 

frequencies used in the computation, the response at 

other frequencies being implied by analytic 

continuation.  This devotails with item 3 in Section 2.  

Note, however, that this type of computation is still 

limited to structures of not-too-great complexity so that 

one can trust the accuracy of the numerical part of the 

solution.  By this procedure one can extend the library 

of canonical solutions of antennas, scatterers, and other 

electromagnetic structures. 

 Various other examples of hybrid 

analytical/numerical solutions are also available.  In the 

case of reflector impulse-radiating antennas (IRAs) [2] 

the impulsive part of the radiation has been reduced 

from a surface integral to a contour integral around the 

aperture.  Stereographic transformation reduces the 

conical feed assembly to an equivalent cylindrical one, 

making the problem one of conformal transformation in 

two dimensions.  While this has an analytic (closed 

form) solution for many interesting cases, more 

complicated feed geometries can be approached by a 

numerical computation of the potential function from 

an appropriate integral equation [2].  The low-

frequency behavior of reflector IRAs depends on the 

electric and magnetic dipole moments.  Not being 

analytically calculable the electric-dipole moment has 

been successfully treated in [1]. 

 

4.2. Role in synthesis 

 Synthesis (Section 3) defines the optimization 

conditions and develops realization algorithms.  

Sometimes there are steps which require numerical 

computation as part of the problem.  See, e.g., Section 

3.2.  Eigenimpedances of the unloaded scatterer are 

needed to begin the synthesis.  These may require 
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numerical computation.  The role of EM numerics is 

then a hybrid one, similar to Section 4.1, in which 

numerical techniques play an essential role. 

 

4.3. Substitute for experiment in not – too -

complicated geometries. 

 One can think of an experiment as an analog 

computation or physical simulation, particularly if some 

electromagnetic scaling (scale model) is involved.  

Within the state of the art of numerical techniques, one 

can think of a numerical computation as a digital 

computation or mathematical simulation.  One can 

think of such problems as semisimple:  beyond analysis 

but within numerical capability.  The scope of such 

problems will increase along with the numerical state of 

the art. 

 At this point we can also mention the role of 

numerics in teaching electromagnetics.  It would seem 

that most students of the subject are headed for industry 

where they are expected to use general numerical EM 

computer codes to address problems like design of 

realistic antennas with various real-world compromises 

included.  So, professors need to teach this (and write 

papers on it). 

 For semisimple problems numerical 

computation will likely replace much experiment, being 

even more accurate than experiment in some cases. 

 

4.4. Role in response of large complex systems 

 For large, complex systems experiment is 

essential and both analysis and numerics play but a 

supporting role.  For example, the maze of wiring and 

conductors in a modern aircraft, communication center, 

etc., is so large that even describing it is difficult, much 

less computing its electromagnetic response (especially 

at high frequencies).  These large problems are too 

complex to reliably calculate.  Even if one could 

accurately calculate the response of such a system, the 

answer would still normally be incorrect because the 

system one calculates differs from the actual piece of 

hardware, the response of which one desires, in 

important ways.  Wires are not always where they are 

supposed to be, additional wires have been added, seals 

have corroded, etc. 

 This is not to say that numerics has no role in 

modeling the response of such systems.  Such 

computations can be used as an adjunct to EM 

experiments (system-level tests) to compare to the 

experimental results and discover what parts of the 

system are not being adequately modeled.  This also 

gives insight into the important system features 

controlling important aspects of the system response, 

and aids in modifying (hardening) the system so as to 

reduce or remove undesirable responses. 

 For complex systems electromagnetic 

topology (Section 3.5) can play an important role in 

such computations.  An important example of such a 

computer code is CRIPTE [23] which has made the 

largest system computations to date with some success.   

This and/or similar computer programs need to be 

further refined and expanded. 

V.     Experiment 
5.1. Simple structures 

 As discussed in comparison with numerics 

(Section 4) measurements of the EM properties of 

simple structures is becoming replaced by numerical 

techniques (for cases that analysis is not sufficiently 

capable).  Even the metal-shear school of antenna 

design is being replaced by the iterative-number-

crunching school of antenna design.  Experiment does, 

however, have some pedagogical benefits and as a 

demonstration to nonexperts in EM in the case of 

simple structures. 
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5.2. Electromagnetic sensors 

 In experiments various electromagnetic 

sensors (special antennas) are needed to measure 

electric and magnetic fields as well as voltages and 

currents.  Much analysis and synthesis has gone into the 

design of such sensors [6, 15].  Numerical techniques 

can be applied here as well.  The point is that EM 

experiments are strongly impacted by other aspects of 

electromagnetics (Sections 2-4). 

 
5.3. Measurement of electromagnetic properties of 

materials and scatterers 

 One measures the constitutive parameters of 

materials by special kinds of experiments in which the 

measured voltage, current, etc., are used to infer these 

parameters.   More generally remote sensing techniques 

(including radar) are used to locate various objects, 

characterize them, and even identify targets from their 

scattering properties.  Fundamental to this are analytic 

concepts relating the scattering to the EM properties of 

a target (inverse scattering in the general case). 

 Target recognition (identification) is, of couse, 

an experimental discipline.  However, this has a strong 

dependence on analysis.  One has some model of the 

scattering in which certain parameters are used for the 

discrimination.  For example SEM (Section 3.2) uses 

the aspect-independent natural frequencies as target 

identifiers [8].  The scattering data needs to be 

processed, an inherently numerical procedure (hybrid 

analytical/numerical technique, Section 4.1), so as to be 

able to use these parameters.  Various data-processing 

algorithms have been developed in this context [8]. 

 

5.4.   Demonstration of performance of products 

 Another common occasion of experiment 

concerns the final performance characteristics of an EM 

system, particularly a commercial one.  For example, a 

radar system will be tested for its capability for 

detecting targets at various ranges.  Note that in such 

tests not only are EM parameters measured but other 

(such as) mechanical parameters as well.  An EM 

system has to operate in various environments. 

 

5.5. Measurement of response of large, complex 

systems 

 As previously commented, the calculation of 

the response of large complex electronic systems to 

arbitrary incident electromagnetic environment is a 

daunting task.  Here we are not concerned with the 

designed response to some communication or radar 

signal, but rather the more general out-of-band “back 

door” response (see Section 4.4). 

The response of large complex electronic 

systems is primarily an experimental problem.  It is, 

however, a difficult problem.  How does one go about 

testing a system to the variety of waveforms and 

frequencies of interest, including full amplitudes, 

variation of polarization and angle of incidence, and 

system configuration as its intended operational 

environment?  One can see that an adequate experiment 

to determine that a system will successfully operate in 

some environment (including appropriate variation of 

the parameters describing the environment) is itself a 

difficult task. 

 The primary reason for doing a full system test 

is that it is in some sense self diagnosing.  The fact that 

we do not have a completely accurate description of the 

system is mitigated by having a real one in front of us.  

Of course, we still need to have it in its operational 

configuration, including especially, all electrical 

connections.  Here one must be cautioned in that many 

tests done to various standards may be incomplete.  I 

am reminded that during the Cold War very extensive 

(and expensive) testing was performed on some 
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military systems (way beyond any MIL standard), for 

the nuclear electromagnetic pulse (EMP).  For large 

complex electronic systems these came quite close to 

reality.  These are the kinds of tests about which I am 

talking. 

Even so, real tests are limited and one must 

deal with various factors (discussed in more detail in a 

previous paper [6 (Section VI)]: 

1. What does it mean for a system to survive a 

given environment? 

2. How does one know that a system will survive 

a given environment? 

3. Complete system test. 

4. Extrapolation. 

5. Influence of system design (topology) on ease 

of testing: penetration tests. 

6. Low-level testing. 

7. Characterization of failure-port response 

parameters. 

8. Probabilistic estimates. 

 

 While analytical/numerical techniques cannot 

hope to make high-confidence predictions for the entire 

system before the test, they can help guide the 

experiment.  Surprises can point to system features that 

were unknown or were assumed insignificant before the 

test.  Making the model agree with the data 

(postdiction) sheds insight into what are important 

signal paths, and what one may need to do to reduce 

certain signals to acceptable levels.  Theory with 

experiment in this case is better than either alone. 

 

VI. Concluding remarks 
               Electromagnetics has expanded into a large 

intellectual edifice with many practical applications 

since the beginning of the electromagnetics age in the 

nineteenth century.  Here we have summarized the 

subjects under four main headings:  analysis, synthesis, 

numerics, and experiments.  Each area is important on 

its own, but the mutual support between each of these 

and the others is also important. 

 It would be interesting to know how the 

subject will advance in the next century.  I expect the 

advancing speed of computers will allow considerably 

larger computation to be performed.  I hope that at least 

some individuals will come up with whole new 

fundamental ideas in the analysis and synthesis areas. 
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ABSTRACT 

Many numerical electromagnetic modeling 
techniques that work very well at high frequencies 
do not work well at lower frequencies. This is 
directly or indirectly due to the weak coupling 
between the electric and magnetic fields at low 
frequencies. One technique for improving the 
performance of boundary element techniques at low 
frequencies is through the use of loop-tree basis 
functions, which decouple the contributions from 
the vector and scalar electric potential. However, 
loop-tree basis functions can be difficult to define 
for large, complex geometries. This paper describes 
a method for improving the low-frequency 
performance of boundary element techniques that 
does not require the explicit definition of loop-tree 
basis functions. The method is a modified version 
of an LU recombination method proposed earlier. It 
automatically detects the linear space spanned by 
the scalar electric potential and corrects numerical 
errors during the LU decomposition of the 
impedance matrix. This method does not require 
special basis functions and is relatively easy to 
implement. Several examples are presented to 
demonstrate the effectiveness of this method. 

I. INTRODUCTION 

The boundary element method is a widely used 
numerical electromagnetic modeling technique. 
Boundary element modeling codes use the method 
of moments to solve an electric field integral 
equation (EFIE) or magnetic field integral equation 
(MFIE) to calculate equivalent currents induced on 
a surface in the presence of an exciting field. There 
are many boundary element modeling codes 
available that do an excellent job of modeling 
complex geometries at high frequencies (megahertz 
and higher). At low frequencies however, these 
codes may exhibit instabilities, particularly when 
using general purpose basis functions such as the 
popular Rao-Wilton-Glisson (RWG) [1] basis 
functions [2, 3, 4]. These instabilities can be 
explained in terms of the natural Helmholtz 
decomposition of Maxwell’s equations [5]. At low 

frequencies, the magnetic vector potential and the 
electric scalar potential become more decoupled. 
Their representations in the impedance matrix 
become heavily imbalanced [3, 6, 7] and this 
imbalance results in the loss of important 
information due to the finite precision of the 
numerical computations. 

Loop-tree basis functions have been proposed to 
overcome this difficulty [3]. These basis functions 
allow the divergence-free and the curl-free 
components of the current, which have different 
frequency dependencies, to be separated [5]. The 
round-off error due to the difference in size of the 
scalar and vector potential contributions is avoided. 
Unfortunately, loop-tree basis functions are not 
widely used because they can be difficult to work 
with; particularly if the geometry being modeled is 
large and complex. 

In [8] an LU recombination method was 
proposed that mathematically forced the scalar 
potential to be zero around loops, without explicitly 
defining new basis functions. It was readily applied 
to existing moment method algorithms. This 
method works well for simple structures like small 
loops but does not model surface currents correctly 
on large plates. 

In this paper we present a modified LU 
recombination method. This method extracts the 
linear dependence information from the L matrix 
and modifies both the L and U matrices to remove 
the error in the linear relations and recover the 
space spanned by the scalar potentials. Examples 
show that this method works better than the 
previous LU recombination method. 

The rest of the paper is organized as follows: 
Section II explains the reason for the low-frequency 
errors in boundary element codes and briefly 
describes loop-tree basis functions; Section III 
introduces the new method based on LU 
decomposition; Section IV presents several 
numerical examples; and finally in Section V, we 
provide a brief summary. 
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II. LOW-FREQUENCY PROBLEM AND 
LOOP-TREE SCHEME 

Consider the electromagnetic scattering from 
perfect electric conductors (PECs). The “mixed-
potential” form of the scattered electric field is 
expressed as 

Φ∇−−= AE ωjsca . (1) 

The first term on the right-hand side of this 
equation is directly proportional to frequency while 
the second term is not.  At low frequencies, the 
scalar potential term dominates. 

The low frequency problem can be understood 
by examining the testing process [9]. A vector 
identity states that the integration of the gradient, 
Φ∇ , is path-independent. If the scatterer mesh 

allows current to flow in closed loops, the testing of 
the scalar potentials associated with the loops 
should cancel. If, due to numerical error, the testing 
of scalar potential is not exactly zero when 
evaluated around a closed loop, the error can 
overwhelm the vector potential term in (1) at low 
frequencies. The solution to the matrix equation 
then becomes unstable. 

The construction of the loop-tree basis functions 
starts with the physical decomposition of current, 

is JJJ += , (2) 

where Js is the solenoidal current and Ji is the 
irrotational component. Loop basis functions are 
used to expand Js and tree basis functions to expand 
Ji. 

A loop basis function is associated with an inner 
node and its surrounding edges. Explicitly, the 
definition in terms of RWG basis functions is [2], 
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where fi is the RWG basis function for the ith edge 
connected to node n. λi is the length of the edge and 
the coefficient σi=±1 forces the current to flow in 
the same direction around node n. 

Tree basis functions are simply chosen from a 
subset of the RWG basis functions and are 
complementary to the loop basis functions. It is 
easy to show that the loop basis functions are 
divergence-free. Physically, that means there is no 
charge associated with the loop basis functions.  

The loop-tree basis function scheme inherently 
forces the numerical integration of Φ∇  over closed 
paths to be exactly zero and preserves the 

information contained in A. However, to take 
advantage of this technique, one has to identify all 
possible closed paths in the mesh. This requires 
searching the mesh to locate the inner nodes, 
identifying shared edges for each inner node, and 
adjusting the basis functions associated with the 
edges to orient them properly. This procedure can 
be cumbersome [2]. 

III. THE MODIFIED LU RECOMBINATION 
METHOD 

The modified LU recombination method 
described here takes advantage of the fact that the 
loop-tree basis functions are linear combinations of 
the RWG basis functions. In this method, the 
reordering of the impedance matrix is performed 
automatically without having to identify current 
loops explicitly. 

Consider the following N×N matrix equation, 

FJC =•  (4) 

obtained after applying the method of moments 
using RWG basis and testing functions. J = [Jn] is a 
vector of the unknown surface current densities 
which are normal to the edges. F = [Fm] is the 
excitation vector. C = [Cmn] is the N×N impedance 
matrix. Each row of C corresponds to an edge in 
the mesh. The elements of C are given by [10], 
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where k is the wave number and η the intrinsic 
impedance. C1 is the vector potential component 
and C2 is the scalar potential component of C. The 
function fn is the RWG basis function defined on 
triangle pair Tn. Tn is composed of two triangles, 

+
nT  and −

nT , sharing edge n. G0 is the free space 

Green’s function. r  and r'  are the observation 
and source points, respectively. We can write the 
elements of C2, the second integral on the right of 
(5), as 
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The surface divergence of the function fn, which 
is proportional to the surface charge density, is 
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where λ is the edge length and A is the area of the 
triangle. Using this property and defining 
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(6) can be written as 
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Suppose an inner node is surrounded by 4 
triangles, Ta, Tb, Tc, and Td and the edges shared by 
these four triangles are edges 1, 2, 3, and 4 as 
shown in Fig. 1. For simplicity, the orientations of 
the edges are defined to be counterclockwise. Now 
consider the integrals for these observation edges 
and a source edge n, also shown in Fig. 1. 
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In (10), C2in is the element on the ith row and nth 
column of C2. It is easy to show that these elements 
are dependent, and satisfy the following equation 
[8], 
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Since n can be any edge in the mesh, (11) 
indicates that rows 1, 2, 3, and 4 of C2 are linearly 

2 

1

3 

4

Ta
Tb

Tc Td

Tn

Tn-

n 

 
Figure 1. Source and observation triangles. 
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dependent. So if there is an inner node in the mesh, 
the row elements in C2 associated with edges 
connecting to this inner node are linearly dependent 
and C2 is a singular matrix. 

After LU decomposition, the C2 matrix can be 
written as the product of a lower triangular matrix, 
L, and an upper triangular matrix, U. If C2 is 
singular, U is also singular and has zeros on its 
diagonal corresponding to the linearly dependent 
rows of C2.  

To illustrate this, we consider the 6 x 6 matrix 
below, 
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where x, y, z, p, q, and s are row vectors and we 
assume, 

zyxq cba ++= , (13.a) 

zps ed +=  (13.b) 

where a, b, c, d, and e are scalar variables. The LU 
decomposition can be written as in (14), or in a 
compact form as 
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Lii, Ldd, Uii, and Udd are square matrices. The 
subscript i denotes the independent rows and d 
denotes dependent rows. C2d contains the 
dependent vectors, q and s. So both Udi and Udd, 
corresponding to C2d, should be zero. In the 
numerical computation however, this zero is always 
a small but non-zero value due to the limited 
precision of the calculations. The LU 
recombination method, described in [8], enforces 
the singularity property by setting Udi and Udd to 
zero. In this way, the method forces the 

contribution of Φ∇  on closed loops to be exactly 
zero. This is not sufficient in all cases though. 
While modifying U maintains the singularity 
property of C2, it does not enforce the correct 
relationship between the dependent rows as 
expressed in (11). 

The L matrix contains the information 
pertaining to how the linearly dependent rows are 
related. If we write the row vectors on the right of 
(14) in terms of lij and uij, and apply (13), we get 
the following equations 
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which can be rewritten in the form 
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or 

RLL ⋅′=′ iidi  (17.b) 

where the prime indicates the transpose and R is a 
matrix recording the relationships between the row 
vectors. 

The square matrix Lii is nonsingular. If we 
know the exact relationship between x, y, z, p, q, 
and s, we can determine Ldi using R and Ldi. We 
can also extract the linear relationship between the 
row vectors from the L matrix by treating R as an 
unknown and solving (17). 
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C2 in Equation (5) is singular if closed loops 
exist in the mesh. The rows forming a loop are 
linearly dependent as shown in (11) and we can 
write them in a form similar to (13), 
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where 
i

i

λ
2C  is the ith row of C2 normalized by the 

edge length. Comparing (18) to (11), it is clear that 
the coefficients a, b, and c should be either 1 or –1. 
It is not difficult to rearrange the edges in the mesh 
so that the LU decomposition of C2 can be written 
as in (15). If we fill (17) with the L matrix and 
solve the equation, the solution R should be a 
vector with integer elements. The non-zero integers 
correspond to edges forming a loop with one of the 
dependent edges, and zero values correspond to 
edges not related to the loop. The numerical 
solution will not be exact. However, it is accurate 
enough for us to identify all the integers. So we can 
determine the edges forming a loop and how they 
are related. Moreover, we can replace the elements 
in the solution with the exact values of the integers 
and recalculate Ldi using (17). This modification, 
together with the modification of U, not only makes 
those rows dependent but also corrects their linear 
relation and recovers the scalar potential space. 

In practice, we decompose C2 in the form, 

LULC ′⋅⋅=2  (19) 

where L is the lower triangular matrix resulting 
from an LU decomposition. Since C2 is symmetric, 
the U matrix in (19) is also symmetric and U is still 
partitioned into four parts as in (15). U can then be 
modified by setting Udi, Uid, and Udd to zero. In this 
manner, we make all modifications symmetrically 
thus maintaining the symmetric property of the new 
C2 matrix. 

After the LU recombination, the errors in C2 are 
eliminated and the information from C1 is 
preserved. This can be seen from the equation 
below. 
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21
, (20) 

where L and U are the same as in (19). D is a 
matrix such that LDLC ′⋅⋅=1 . Udi, Uid, and Udd are 
set to zero in the recombination. Their counterparts, 
Ddi, Did, and Ddd, however, are so small that the new 
C is still poorly conditioned when summing up D 

and U. In previously described loop-tree schemes, 
the frequency scaling property of the operators was 
analyzed and frequency normalization was applied 
to the elements of the EFIE matrix [5, 6]. In the 
modified LU recombination method we reduce the 
imbalance between the magnitudes of the matrix 
elements by scaling the vector potential part, that is, 
the sub matrices Ddi, Did, and Ddd in (20). This 
scaling is based directly on the magnitudes of the 
elements in C1 and C2 rather than on the frequency 
dependence. In our examples, this greatly improves 
the condition of the C matrix. 

IV. NUMERICAL RESULTS 

We applied a boundary element method 
employing RWG basis functions, the LU 
recombination method, and the modified LU 
recombination method to the analysis of the square 
loop circuit shown in Figure 2. The circuit has a 
voltage source and a resistive load. The mesh has 
74 edges and 10 inner nodes. Since the circuit itself 
is a loop, there are 11 loops in this mesh and there 
are 11 dependent rows in the C2 matrix. Figure 3 
shows the current through the load calculated by 
each of the three methods. Both the LU 
recombination method and the modified method 
calculate the current correctly down to frequencies 
as low as 1 Hz while the standard RWG method 
exhibits significant errors below 80 MHz.  

 
Figure 2. Mesh used to model a square loop circuit. 

Figure 4 shows the current on another edge, 
indicated by the thick line in Figure 2. The current 
on this edge can be divided into two parts, one is 
the actual current flowing around the loop, and the 
other is an artificial current circling the inner node. 
The old LU recombination method exhibits errors 
below 10 kHz due to the artificial currents, but the 
modified method works well as low as 1 Hz. 

Figure 5 shows a simple electric dipole antenna 
with a voltage source on the center edge. From the 
mesh we can see that the source edge is not part of 
any loop. Figure 6 compares this current through 
this edge calculated by the three methods. The LU 
recombination method fails for this example, 
  

1-volt 
source

50-ohm 

load
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   Figure 3. Current on the load edge of the loop  

circuit. 
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  Figure 4. Current on a single edge of the loop 

circuit. 

while both the standard RWG method and the 
modified method work fine. Figure 7 compares the 
current on another edge, indicated in Figure 5 by a 
thick line. In this case only the modified LU 
recombination method yields stable results below a 
few MHz. 

 
Figure 5. Mesh used to model a short dipole. 

The dipole has a relatively simple mesh. We can 
readily observe how loops are formed around inner 
nodes in Figure 5, so it is relatively straightforward 
to implement the loop-tree scheme for this 
example. Figure 8 compares the current calculated 
by the modified LU recombination method to the 
current obtained using a loop-tree scheme. The 
results of the two methods match very well. The 

unstable results at frequencies below 100 Hz are 
due to the significant imbalance in the scale of the 
vector and scalar potential terms. When we scale up 
the vector potential, the new method yields good 
results down to a few Hz, as shown in Figure 7. 
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Figure 6. Current on the source edge of the dipole. 
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Figure 7. Current on a single edge of the dipole. 
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Figure 8. Modified LU and loop-tree results. 
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Figure 9 shows a simple circuit board 
configuration. Two traces of the same shape are 
centered over a 100-mm x 8-mm plate. The traces 
have the same length as the plate. They have a 
width of 1 mm and are placed 2 mm apart and 
2 mm above the plate. One trace has a 1-volt source 
on one end and is terminated with a 50-ohm 
resistor. The other trace has 50-ohm resistors on 
both ends. Both the traces and the plate have zero 
thickness and are modeled as PEC surfaces. In 
order to observe conductive crosstalk at very low 
frequencies, a lumped resistance is located across 
the middle of the plate. The model employs 374 
triangles and a total of 440 edges. 

The current on the load resistor of the source 
trace, modeled using the RWG basis function 
method and the modified LU recombination 
method, is shown in Figure 10. Figure 11 shows the 
calculated current through the far-end resistor of the 
victim trace. In both cases, the standard RWG 
method exhibits significant errors below a few 
MHz, while the modified LU recombination 
method is accurate down to 1 Hz. 
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Figure 10. The current on the far end of the source 

trace. 
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Figure 11. The coupled current on the far end of the 

victim trace. 

V. CONCLUSION 

In this paper, a new method to remove the low 
frequency instability inherent in the boundary 
element method using RWG basis functions is 
presented. This method uses LU decomposition of 
the impedance matrix to find the dependent 
components in the integration of the scalar 
potential. It then recovers the correct relationship 
between the dependent components, by modifying 
the L and U matrices.  

This method accomplishes the same goal as 
using loop-tree basis functions. However the new 
method extracts all the necessary information from 
the MoM matrix itself without requiring the user to 
define new basis functions. It enforces a zero scalar 
potential over closed loops and preserves the 
information from the vector potential that otherwise 
would be lost due to numerical error. Dipole and 
loop circuit examples demonstrate that this method 
is capable of working at frequencies as low as a 
few Hz. 

 

50 ohms 

50 ohms 

50 ohms 

1 volt 

10 cm 

(a) 

8 mm 

2 mm 

1 mm 

(b)  
Figure 9. The crosstalk example. (a) geometry; (b) side view. 
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Abstract — This paper describes the application of the 
Finite-Volume Time-Domain (FVTD) method to characterize 
the influence of the substrate on Archimedean spiral antennas. 
The unstructured mesh of the FVTD method permits to model 
precisely the fine spiral structure and the thin underlying 
substrate. Time-domain numerical results permit to demonstrate 
how the substrate affects the distribution of currents propagating 
on the metallic spiral arms. The substrate influence in the active 
region of the spiral is described through an effective permittivity 
which can be related to the transverse mode distribution on the 
arm of the spiral. Application of the FVTD method to conformal 
spiral geometries is also suggested in three examples. 
 
Index Terms—FVTD, spiral antennas, conformal antennas 

I. INTRODUCTION 
Archimedean spiral antennas are characterized by their 

compactness and stable radiation performances over a 
large bandwidth. They have been therefore widely applied 
as circular-polarized broadband radiators. The 
Archimedean spiral is identified through its constant line 
width and fixed distance between successive spiral 
windings. Because of these fixed dimensions, it is not a 
truly frequency-independent radiator. However, circular 
polarization and remarkably stable radiation patterns are 
achievable over a bandwidth of more than one decade. 
The operational frequency limits of the spiral are 
determined by two radii that delimits the spiral extent: 
The lowest operational frequency of the spiral is 
determined by its outer radius which defines the overall 
dimensions of the device, and the upper frequency limit is 
set by the inner spiral radius, required to accommodate 
the physical extent of the feed in the spiral center. A 
typical Archimedean spiral antenna exhibits narrow arms 
and a large number of windings, making it a challenging 
problem for any computational method. Several authors 
have analyzed Archimedean spiral antenna problems 
using different numerical methods. The approaches 
include e.g., the method of moments (MoM) [1],[2], the 
finite-difference time-domain method (FDTD) [3]-[5] and 
the finite-element method boundary integral method 
[4],[6]. Depending on the method used, approximations 
are made such as a thin-wire formulation for the MoM or 

the limitation to square spiral or spiral in free-space in 
FDTD. 

In the present paper, a numerical analysis of 
Archimedean spiral antennas on a thin-substrate is 
performed using the Finite-Volume Time-Domain 
(FVTD) method. The main advantage of the FVTD 
technique is its geometrical flexibility which arises from 
its application in an unstructured mesh. For the presented 
analysis, the curved spiral geometry is approximated 
accurately using an inhomogeneous tetrahedral mesh. 
This permits to resolve the fine features of the overall 
structure, such as the spiral arms and the thin substrate, 
through adaptation of the cell size to the local geometrical 
requirements. 

The numerical analysis presented in this paper is 
addressing two aspects of the modeling of spiral antennas. 
First, the influence of the thin substrate supporting the 
metallic spiral arms (Section III). Particularly the effect of 
varying the permittivity and thickness of the dielectric 
material is characterized through a detailed simulation of 
the current distribution on the spiral arms, the field 
distribution transverse to the arms and the polarization 
bandwidth. Second, the paper explores conformal 
geometries of spiral antennas on conical, spherical, and 
cylindrical surfaces comparing the radiation 
characteristics to those of the corresponding planar 
geometry (Section IV). 

II. FVTD ANALYSIS OF THE SPIRAL ANTENNA 
This section reviews the main steps that lead to the 

FVTD simulation of the Archimedean spiral. Details of 
the geometry of the spiral structure are given as well as 
on the discretization of the models and on the 
computational aspects. 

A. The FVTD Method 
The FVTD method has been introduced at the end of 

the 80's [7],[8] as a numerical technique to solve 
Maxwell's equation in an unstructured mesh. It is inspired 
from finite-volume techniques that solve conservation 
equations in computational fluid dynamics. In 
electromagnetic applications, the method uses a 
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conservative form of Maxwell's curl equations integrated 
over finite volumes iV  
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For discrete solutions of these coupled differential 
equations, the finite volumes iV  are defined as the 
elementary cells of a partition of the computational 
volume. The boundary of the volume iV  is the surface 

iV∂  with outward-pointing normal vector nG . Among the 
several FVTD algorithm variations, the formulation 
applied in this investigation is characterized by a 
collocation of all field components (electric and 
magnetic) in space and time. Specifically, all field 
components are located in the barycenter of the 
tetrahedral cells and are updated simultaneously during 
the march-in-time iteration. The explicit update equations 
are obtained using a flux-splitting method [9] and second-
order in time is obtained using a predictor-corrector 
scheme. 

B. The Archimedean Spiral Antenna 
An Archimedean spiral is defined in polar coordinates 

( , )ρ φ  as  
( )aρ φ φ= +0 0                               (2) 

where a0  defines the winding tightness and φ0  is the 
starting angle that determines the inner radius of the 
spiral. To define the metallization of the two arms of the 
spiral antenna, four such curves rotated in increment of 
90 degree are needed. The 90 degree rotation angle 
results in a self-complementary spiral where the arm 
width Sd  is equal to the inter-arm spacing. 

The spiral modeled in this investigation is composed of 
11 turns. It has an arm width Sd =  0.25 mm, an outer 
radius R =  11.25 mm, and an inner radius r =  0.25 mm. 
The metallic spiral is supported by a substrate with a 
thickness of h =  0.254 mm (Fig. 1). All these 
dimensions make the device a challenging problem for 
time-domain simulations because of the discrepancy 
between the different scales involved: The full length 
along each spiral arm is around SL =  400 mm, which 
represents ~1600 times the arm width Sd . 

C. Discretized Spiral Model 
To create the discretized FVTD spiral model, the 

boundary surfaces are first triangulated, and a tetrahedral 
volume mesh is constructed on the basis of this surface 
mesh(Fig. 2).This unstructured mesh is advantageous for 
two main reasons. First, the triangular discretization 
ensures an accurate approximation of the spiral. Second, 

an inhomogeneous tetrahedral mesh permits to adapt 
locally the cell size to the dimensions of the fine 
structures  
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Fig. 1. Geometry of the analyzed Archimedean spiral. The 
two-arm spiral consists of 11 turns and has a fixed arm width d

S
 

of 0.25 mm. The thin substrate under the substrate is also 
represented. It breaks plane symmetry of the device and is used 
to define directions for front (F) and back (B) radiation. 

that need to be resolved (here both, the fine spiral arms 
and the thin substrate). As illustrated in Fig. 2 for the 
discretized model, the linear size of the tetrahedrons 
grows quickly from min /λ 100∼  in the close proximity of 
the spiral to min /λ 10∼  in free-space, where minλ  is the 
smallest wavelength of interest. This inhomogeneity of 
the mesh keeps the total number of cells in the model at a 
reasonable level.  

The transition from small cells to large cell can occur 
over a relatively short distance in a tetrahedral mesh. 
Nevertheless, a certain spatial range is required for the 
intermediate zone since a rapid transition decreases the 
mesh quality. The quality of a tetrahedron can be judged 
(among other criteria) by considering the ratio of its 
volume iV  to the sum of the area of its 4 faces 

( , , , )kS k = 1 2 3 4 . Tetrahedrons with elongated or flat 
shapes (i.e. that have a small volume/surface ratio) should 
be avoided as much as possible for best results. In 
addition, this ratio is used to determine the time step 
necessary for stable FVTD computation, according to [9] 

min
4

1

1 i

i
kk

V
t
c S

=

   ≤      ∑
+  .        (3) 

Therefore, the “worst” or the smallest tetrahedron in 
the whole mesh determines the fundamental time step for 
stability. This requirement can be relaxed by combining 
the spatial inhomogeneity of the mesh to an 
inhomogeneous temporal discretization, implemented in 
the form of local time steps introduced in [10]. This 
scheme automatically separates the computational domain 
in sub-domains where time steps corresponding to power 
of two multiples t− ∆12A  ( , , ,...)= 1 2 3A  of the 
fundamental time step t∆  are applied. Typically, for the 

187FUMEAUX, BAUMANN, VAHLDIECK: FVTD CHARACTERIZATION FOR ARCHIMEDEAN SPIRAL ANTENNAS



 
 

 

type of inhomogeneity necessary to mesh the spiral, 5 
levels of time steps are used, corresponding to local time 
steps between t∆  and t∆16 . 
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Fig. 2. Cut through the tetrahedral mesh of the spiral 
antenna. The lower part of the image shows the triangulation of 
the spiral plane, with a magnified view illustrating the 
resolution of the spiral arms. 

D. Feed Model 
In practical spiral antenna designs, a broadband balun 

is used for a balanced feeding of the radiating spiral. 
Simulations of such a practical balun has been 
demonstrated in [11] and compared to experimental data. 
The balun needs to be designed to provide nearly constant 
input impedance for the device over the operational 
frequency band. It is the component mainly responsible 
for the return loss of a practical spiral antenna. 

The analysis of the balun can be in principle performed 
separately, and therefore, in the present simulation, a 
simple port is used to provide excitation of the spiral. The 
modeled port consists of 8 triangles located at the apex of 
the spiral (Fig. 2) where the excitation is provided 
through impressed electric fields between the starting 
points of the spiral arms. Both harmonic and broadband 
(1-20 GHz Gaussian pulse) excitations have been applied 
in this study. 

E. Convergence and Computational Load 
The side length of the triangles on the spiral plane 

corresponds to half the line width Sd  (magnified view in 
Fig. 2). This fine discretization is necessary for the 
simulation to converge. It should be noted, that the strong 
inhomogeneity of the tetrahedral mesh permits to save 
computer memory. Despite a large number of triangles 
(>10k triangles per arm) on the spiral surface, a spiral 
model requires less than 250 MB computer memory 
(~400k tetrahedrons). Large simulation times however are 
necessary to allow the low-frequency components of the 
wave to propagate along the full length of the spiral arms, 
and to be reflected. 

F. Validation 
For validation of the analysis method, the FVTD 

simulation results of a practical cavity-backed spiral 
antenna have been compared to measurements. The 
device has been modeled including the 26 turns two-arm 
spiral, the thin-substrate, the absorber-loaded cavity, the 
balun and the fine feed (Fig. 3). Far-field data measured 
in an anechoic chamber showed an excellent agreement 
with simulation and provided validation of the numerical 
analysis. A full analysis will be published elsewhere. 

III. RESULTS – SUBSTRATE EFFECTS 
In this section, the effects of the substrate under the 

Archimedean spiral on the radiation properties are 
characterized through numerical analysis. The variation 
of substrate characteristics, such as permittivity and 
thickness, are related to changes in the simulated current 
distributions. A characterization of the observed effects is 
obtained by defining an effective permittivity in the active 
region of the spiral antenna. 

Absorber loaded cavity

Balun

Feed

Absorber loaded cavity

Balun

Feed

 
Fig. 3. Model of the cavity-backed Archimedean spiral 
analyzed for validation of the method. The substrate and the 
metallic housing of the device are shown transparent. 

A. Substrate Permittivity Dependence 
The current density on the metallic arms of the spiral is 

retrieved from the FVTD simulations. Instantaneous 
pictures of the current density at 8 GHz are shown in 
Fig. 4 for six different values of substrate permittivity. In 
these representations, the sign of the current density is 
defined considering the vectorial component of the 
current tangential to the spiral curve: A current 
propagating towards the outer end of the spiral is by 
convention positive, whereas a current directed toward 
the spiral feed is defined as negative. 
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The increase of the substrate permittivity rε  is clearly 
apparent through the shrinking of the central area of the 
spiral where the current density distribution is visible. 
This shrinking is caused by the shortening of the effective 
wavelength effλ  of the wave propagating along the spiral 
arms, which is defined introducing an effective 
permittivity effε  so that 

eff
eff

λ
λ

ε
= 0  .  (4) 

Classically, the active radiating region of the spiral is 
defined as annular band around a radius ar  where one full 
turn of the spiral corresponds to one effective wavelength, 
i.e. 

eff arλ π= 2  .   (5) 

Past the active region, the current density becomes 
insignificant, and the contribution to radiation irrelevant. 
The dashed circles in the six images of Fig. 4 indicate the 
circles with approximate radius of ar . A more precise 
characterization is obtained by considering the current 
distribution along the arms, as demonstrated in the next 
paragraph. 

 

B. Effective Permittivity 
To estimate the effective permittivity in the active 

region, the current density is plotted as a function of the 
length of the path along the spiral arms, starting from the 
feed. Fig. 5 shows an example of this 1D representation 
of the instantaneous current distribution at 8 GHz. The 
active region corresponds to the location on the spiral 
where the effective wavelength effλ  is equal to a turn 
length L+  of the spiral (as highlighted in the figure at 
around 5-6 turns). There, the currents on adjacent arms of 
the spiral are nearly in phase. On the inner windings of 
the spiral, before the active region, the current distribution 
takes the form of a damped sinusoid. Past the active 
region, on the outer turns of the spiral, the current 
distribution exhibits a non-sinusoidal standing-wave 
characteristic shaped by reflections at the end of the arms 
and by crosstalk between the windings. 
The effective permittivity effε  in the active region of the 
spiral is retrieved by measuring the effective wavelength 
effλ  from graphs similar as the one represented in Fig. 5. 

The region taken into account for the estimation of effε  
encompasses one turn of the spiral where eff Lλ ≈∆ . The 
results of the analysis are represented in Fig. 6 for 
substrate permittivities rε  ranging from 1.0 (free-space) 
to 12.0. The uncertainty grows with increasing rε , since 
the measured quantity effλ  has a nonlinear dependence 
(4) on effε . 
 

εr = 1.0 εr = 2.2

εr = 4.4 εr = 6.6

-Jmax

Jmax

0

εr = 8.8 εr = 11.0
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εr = 4.4 εr = 6.6εr = 4.4 εr = 6.6

-Jmax

Jmax

0

-Jmax

Jmax

0

εr = 8.8 εr = 11.0εr = 8.8 εr = 11.0

 
Fig. 4. Instantaneous current distribution on the spiral arms at 
8 GHz for the six different permittivities ε

r
 indicated. The 

thickness of the substrate is equal to h = 0.254 mm. The dashed 
circles indicate the estimated location of the active region. 

 

∆L

λeff

∆L

λeff

 
Fig. 5. Current distribution along the length of one spiral arm 
at 8 GHz. The permittivity of the substrate is ε

r
 = 2.2 and its 

thickness h = 0.254 mm. The instantaneous current distribution 
is shown as solid line and the envelope as dotted lines. The 
upper scale indicates the turns on the spiral. 
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For comparison, the effective permittivities of two 
different coplanar strip (CPS) line geometries (shown in 
Fig. 7) are also represented in Fig. 6 as a function of the 
substrate permittivity. The first of these geometries (CPS 
1) corresponds to the transverse dimensions of two 
adjacent spiral arms, i.e. with both the gap width G and 
the strips widths W1 equal to Sd . It is observed that the 
effective permittivity of the CPS computed from closed-
form expressions [12] is higher than the effε  in the active 
region of the spiral. To obtain a good match between a 
CPS geometry and the spiral, wider strips are necessary. 
In the coplanar geometry CPS 2, the strips widths are 
doubled to get a resulting effε  dependence that matches 
that of the spiral. 

 

 
Fig. 6. Estimated effective permittivity for the propagation of 
the waves in the active region of the spiral antenna as a function 
of the substrate permittivity. The error bars indicates 
uncertainty, which is mainly arising from the influence of the 
reflected waves. Also shown for comparison are the εeff  of the 
coplanar strip (CPS) lines depicted in Fig. 7. 
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h
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GW2 W2

h
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GW2 W2
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W1 = 0.25 mm
G = 0.25 mm

CPS 1:
W1 = 0.25 mm
G = 0.25 mm

CPS 2:
W2 = 0.50 mm
G = 0.25 mm

CPS 2:
W2 = 0.50 mm
G = 0.25 mm

 
Fig. 7. Transverse dimensions of the coplanar strips used for 
comparison of the effective permittivity with that in the active 
region of the spiral. The dimensions of CPS 1 correspond to the 
transverse dimensions of two adjacent spiral windings. CPS 2 
considers an increased width of the conducting strips. 

C. Substrate Thickness Dependence 
In a second numerical experiment, the permittivity 

.rε = 4 4  of the substrate is kept fixed, and the thickness 
h is varied. Fig. 8 shows the current distribution on the 
spiral for four different substrate thicknesses, from h = 0  
(spiral in free-space) to h → ∞  (semi-infinite substrate 

in the lower half-space) for .rε = 4 4 . The variation 
clearly affects the effective permittivity that describes 
propagation of the currents on the spiral arms: As the 
substrate thickness grows, the active area shrinks towards 
the center of the spiral. However, by comparing the two 
bottom images of Fig. 8, it can be observed that 
increasing the substrate thickness past 1 mm does not 
change significantly the current distribution on the spiral 
arms. 

The effective permittivity is then estimated on the basis 
of the simulations with the technique described in the 
previous paragraph (Sect. III B). The results for two 
substrate permittivities are shown in Fig. 9. In both plots, 
as the thickness of the substrate is increased, the effective 
permittivity rapidly increases from the value for a spiral 
in free-space ( effε = 1  for h = 0 ) to the asymptotic value  

( ) r
eff h

ε
ε

+
→ ∞ =

1

2
 .    (6) 

h = 0.254 mmh = 0 mm
Free-space

h = 1.016 mm h
Semi-infinite  
→ ∞

-Jmax

Jmax

0

h = 0.254 mmh = 0.254 mmh = 0 mm
Free-space
h = 0 mm
Free-space

h = 1.016 mmh = 1.016 mm h
Semi-infinite  
→ ∞

-Jmax

Jmax

0

-Jmax

Jmax

0

 
Fig. 8. Instantaneous current distribution at 8 GHz for the 
spiral on a substrate with permittivity ε

r
 = 4.4 for four different 

substrate thicknesses h. 

This asymptotic value is already nearly achieved, as 
anticipated from Fig. 8, for a substrate thickness of 
h = 1  mm. It should be mentioned that a nearly perfect 
match with the analytical value (6) is found for the effε -
values retrieved from the FVTD simulations. The same 
can be said about the value found for a spiral in free 
space. The consistency of these extremes provides an 
additional verification of the validity of the method used 
to estimate effε  from the results of the numerical analysis. 

Also represented in the plots of Fig. 9 are the 
corresponding ( )eff hε  curves for the two CPS lines of 
Fig. 7. As in Fig. 6, the best match to the numerical 
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analysis is not obtained from the CPS 1, which has strip 
widths corresponding to the arm width Sd  of the spiral 
( SW d=1 ), but from the CPS 2, with has broader strips 
( SW d=2 2 ). An explanation for this phenomenon is 
given in the following paragraph. 

 

 
Fig. 9. Estimated effective permittivity of the propagation of 
the waves in the active region of the spiral antenna as a function 
of the substrate permittivity. Also shown for comparison are the 
εeff  of the two coplanar strip lines depicted in Fig. 7 and the 
asymptotic value for semi-infinite substrate. 

D. Transverse Field Distribution 
The propagation properties of a wave on a transmission 

line are determined by the properties of the modes 
involved. For a CPS line, the fundamental mode is well-
known: It is a quasi-TEM balanced mode, with the 
electric field in a transverse cross-section going from one 
strip to the other. Its propagation is best described 
through an effective permittivity effε . Dependences of 
effε on rε  and h  have been shown for two geometries 

with different strip widths (CPS 1 and CPS 2) in Fig. 7 
and Fig. 9.  

Despite a certain similarity between the transverse 
geometry of two adjacent spiral arms and that of a CPS, 
the propagation of currents along the spiral arms is 
different for the following reasons 
• The spiral represents a system with a large number of 

adjacent coplanar strips. 

• Although the feeding of the spiral is balanced, two 
adjacent arms of the spiral do not constitute a 
balanced system: the relative phase between adjacent 
arms depends on their location on the spiral. 

Therefore, the transverse field distribution is expected 
to change significantly along the spiral arms, according to 
the phase difference between successive turns. To better 
visualize the sign (as defined in Sect. III A) of the 
instantaneous currents, the contrast of the grayscale 
current distribution representation in the spiral plane has 
been exaggerated in Fig. 10. Positive current density 
distribution is then represented as white and negative as 
black. The transverse field distributions are then 
considered in a plane perpendicular to the spiral plane, 
along a radial line, in the two ranges {1} and {2} 
indicated in Fig. 10. 

 

{ }1 { }2{ }1{ }1 { }2{ }2

 
Fig. 10. Instantaneous current distribution on the spiral 
antenna at 8 GHz (ε

r
 = 2.2, h = 0.254 mm). The contrast is 

increased, so that the alternating black and white color basically 
indicates regions of opposite current directions on the spiral 
arms. The region {1} and {2} indicate the locations of the 
transversal cuts represented in Fig. 11, and Fig. 12, 
respectively. The dashed circle indicates the location of the 
active radius. 

{1} The transverse field distribution in the inner turns of 
the spiral at a particular time is shown in Fig. 11. From 
this image, it is apparent that because the adjacent arms 
are at different potentials, the field lines are primarily 
confined in the direct vicinity of the strips. Starting from 
the left of the image, the E and H field distributions on 
the three first strips in Fig. 11 ( . .r = −0 5 1 75  mm) 
resemble the field distribution of the dominant coplanar 
waveguide (CPW) mode. Continuing along the radial 
direction ( . .r = −2 0 2 75  mm), the field lines between 
the last two represented strips resemble those of a CPS. 
Other instantaneous representations might show different 
patterns, but all share the characteristics that the fields are 
closely  confined near the strips and that interaction is 
basically limited between adjacent arms. 
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Fig. 11. Vectorial representation of the transverse field distribution 
at 8 GHz in the center region {1} of the spiral antenna (r is the 
radius from the center of the spiral). The substrate is indicated by the 
shaded region and the spiral arms by line segments that represent 
cross-sections of the metallic strips. The arrows are normalized for 
good representation. 
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Fig. 12. Vectorial representation of the transverse field distribution 
at 8 GHz in the active region {2} of the spiral antenna. The substrate 
is indicated by the shaded region and the spiral arms by line 
segments that represent cross-sections of the metallic strips. The 
arrows are normalized for good representation. 

{2} Considering the transverse field distribution in the 
active region (Fig. 12), one observes a behavior different than 
in the inner turns. In the spiral active radiating region, 
adjacent arms are in phase, and therefore at nearly the same 
potential for all times. Therefore, the field lines show that 
interaction between strips extends farther than just to the 

adjacent arm, and the fields are much less closely confined 
than in the inner turns. This explains why the effective 
permittivity effε  in the active region of the spiral is lower than 
that of the CPS 1 that has corresponding transverse 
dimensions. Instead, effε  shows the same dependence as 
CPS 2, which has less confined fields because of its larger 
strips. The non-confined field distribution in the vicinity of the 
spiral arms in the active region is the cause for increased 
“radiation loss” of the considered coplanar structure. 

The comparison of Fig. 11 and Fig. 12 illustrates why the 
propagation velocity on the spiral arms is not constant. In the 
more confined transverse field distribution of the inner turns, 
the effective permittivity is larger than in the outer turns, since 
most of the field lines under the spiral are located in the 
substrate. This effect is of course dependent on the frequency 
and this dispersive effect contributes to the chirp observed in 
broadband pulse excitation. 

E. Effect on the Radiation Characteristics 
The analysis presented in this section is concerned with the 

near-field of the spiral antenna. However, the substrate 
configuration correspondingly influences the radiation 
characteristics. This paragraph shows how the lower 
frequency limit of the circular polarization bandwidth varies 
with the substrate permittivity of the spiral. 

The low-frequency transition from linear polarization to 
circular polarization happens on a spiral antenna when the 
active radius approaches the outer radius of the spiral. 
Currents reflected at the outer end of the spiral are degrading 
the circular polarization purity. The low-frequency transition 
from linear to circular polarization is apparent through the 
following far-field characteristics (for increasing frequency): 

• The axial ratio of the polarization ellipse decreases from 
a large value (indicating nearly linear polarization) and 
becomes smaller than the specified value for circular 
polarization (typically 3 dB). 

• The phase between the orthogonal E-field components 
has a transition from 0 degree to 90 degree. 

 
Fig. 13 and Fig. 14 show distinctly this low-frequency 

transition in axial ratio and phase, with a clear dependence on 
substrate permittivity. In Fig. 13 the approximated frequency 
of the 3 dB transition is displaced from higher than 5 GHz for 
the free-space spiral to about 2.6 GHz for .rε = 11 0 . This 
reduction factor of nearly 2 corresponds to effε , which 
confirms the data of Fig. 6.  

Furthermore, the following general remarks can be made 
based on the numerical analysis of the spiral: 

• For both the axial ratio and the phase, oscillations are 
observed in the transition region. These oscillations are 
caused by currents reflected from the spiral outer end. As 
the frequency increases, the reflected currents are 
reduced since the active region shrinks towards the spiral 
center. 

• The polarization purity in the band of operation is 
slightly degraded by the presence of the denser substrate. 
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• The presence of the substrate causes an asymmetry that 
introduces a slightly higher radiation towards the back- 
side (substrate side). This effect becomes slightly more 
pronounced as the permittivity of the substrate increases 
resulting in a front-to-back asymmetry smaller than 
0.5 dB. 

• The input resistance in the operation range of the spiral is 
lower for substrates with higher permittivity rε . The 
results of the simulation give a value of ~120 Ω for the 
spiral in free-space. The value for .rε = 11 0  is 
decreased to ~60 Ω. These values are obtained with a 
simple feed in the center of the spiral. A wideband balun 
is necessary in practice to provide balanced excitation 
over the operational bandwidth of the spiral and for 
matching purpose. 

• The high-frequency limit of the spiral operation band is 
determined by the physical extension of the feed in the 
center of the spiral. The transition to linear polarization 
for broadside direction is -in this case- not the limiting 
factor and is therefore not apparent in Fig. 13 and 
Fig. 14. The higher operation frequency limit is 
determined by the degradation of the radial symmetry of 
the main beam. 

 

 
Fig. 13. Axial ratio of the polarization ellipse in broadside direction 
as a function of the frequency for three different substrate 
permittivities. 

 
Fig. 14. Phase between the two orthogonal E-field components in 
broadside direction (far-field) as a function of the frequency for three 
different substrate permittivities. 

IV. CONFORMAL SPIRAL ANTENNAS 
In this section the radiation characteristics of spirals 

mounted conformally on non-planar substrates are 
investigated. Several examples are tested numerically: Spirals 
in (a) conical, (b) spherical and (c) cylindrical shape. The 
advantage of using the tetrahedral mesh is particularly evident 
in this case, since the FVTD simulation of such conformal 
structures imposes no additional computational cost over that 
of the corresponding planar geometry. In all conformal 
configurations presented below, the spirals have the same 
characteristic dimensions as in the planar configuration shown 
above, i.e. 11 spiral turns, arm width Sd =  0.25 mm, outer 
radius R =  11.25 mm, and inner radius r =  0.25 mm. All 
substrates have the standard thickness of h = 0.254 mm. The 
next section presents all studied configurations followed by a 
discussion of their radiation characteristics. 
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Fig. 15. Spiral antenna mounted on a conical substrate. The 
supporting cone has a height of 5 mm and a thickness of 0.254 mm. 
The spiral has the same geometry as the planar configuration (outer 
radius R = 11.25 mm). The front side of the antenna is defined in the 
direction showing towards the tip of the cone. 

A. Conical Configuration 
A conical arrangement (Fig. 15) with a base radius of 

12.5 mm and a height of 5 mm is considered first. This 
conformal configuration is a well-known variation of spiral 
antenna design, the conical spiral antenna, characterized by an 
increased gain towards the front side. However in the present 
design, a very flat cone is considered, mainly with the aim of 
providing comparison with the spherical and cylindrical 
configurations. 

B. Spherical Configuration 
In the second conformal configuration, the spiral is 

mounted on a spherical surface. The curvature radius of the 
surface is 18 mm. This results in a total height (extent in z-
direction) close to 5 mm for the configuration shown in 
Fig. 16.  
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Fig. 16. Spiral antenna mounted on a spherical substrate. The 
substrate has a curvature radius of 18 mm and a thickness of 
0.254 mm. The spiral has the same geometry as the planar 
configuration (outer radius R = 11.25 mm). 

C. Cylindrical Configurations 
Two different variations of the spiral mounted on a section 

of a cylinder have been analyzed. The two arrangements are 
distinguished by their different axis orientations with respect 
to the feed, as shown in Fig. 17. The curvature of the cylinder 
section exhibits the same radius as in the spherical case, i.e. 
18 mm, and therefore has the same 5 mm total height for both 
cylindrical configurations. 

D. Radiation Properties of the Conformal Geometries 
The radiation performance of all three configurations is 

investigated in terms of:  
(i) Circular polarization purity (for broadside direction) 
(ii) Front-to-back ratio (F/B). 

Both these characteristics are considered as a function of 
frequency. 
 
(i) Circular Polarization 
The circular polarization of the spiral is best described by the 
axial ratio of the polarization ellipse. Additional information is 
provided by the phase between the two orthogonal E-field 
components. For both the conical and the spherical 
configuration, the phase and the axial ratio are plotted in 
Fig. 18. From a comparison with the curves for the planar 
configuration (which is also shown in the figure), it can be 
concluded that for both cases, the integration on a non-planar 
substrate has no noticeable adverse effect on the polarization 
quality or on the low-frequency limit of the operational range. 
The reason for this result is the symmetry of the substrate 
geometries with respect to the spiral axis. 

Axial symmetry is not present in both cylindrical 
geometries of Fig. 17 and thus an increased axial ratio (~1 dB) 
can be observed, indicating a degradation of the circular 
polarization purity (Fig. 19). In both orientations of the 
cylinder substrate, a spiral turn exhibits a saddle shape which 
affects the phase between the orthogonal field components in  

 

xy
z

xy
z

 
Fig. 17. Spiral antennas mounted on cylindrical substrates. The 
substrates have a curvature radius of 18 mm and a thickness of 
0.254 mm. Top: Cylinder with axis in x-direction: bottom: Cylinder 
with axis in y-direction. The feed for both cases is oriented in y-
direction. The spirals have the same geometry as the planar 
configuration (outer radius R = 11.25 mm). 

 
Fig. 18. Phase and axial ratio of the polarization ellipse in 
broadside direction (far-field on front side) as a function of the 
frequency for conical, spherical and planar configurations. 

 
Fig. 19. Phase and axial ratio of the polarization ellipse in 
broadside direction (far-field on front side) for the two cylindrical 
configurations (Fig.17) as a function of the frequency, compared to 
the planar case. 
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the far-zone, altering the circular polarization. The deviation 
of the phase from the required 90 degree between the two 
orthogonal components is also visible in Fig. 19. The 
oscillations observed in the axial ratio are due to the 
frequency-dependent angular location of the active radiating 
region on the saddle shaped turns of the spiral. This is 
confirmed by the fact that the oscillatory behaviors of the 
axial ratios for the two orientations of the cylinder are 180 
degree offset. Also, a variation of the effective permittivity 
(not shown here) affects the shape of the oscillations 
consistently, i.e. a smaller rε  stretches the oscillations since 
the effective wavelength is larger. 
 
 

(ii) Front-to-Back Ratio 
The second radiation characteristic altered by the shape of 

the substrate is the F/B ratio (measured as ratio of radiated 
fields in +z vs. –z direction). The frequency dependence of 
this quantity is shown in Fig. 20 for the different geometrical 
configurations investigated. Depending on the shape of the 
substrate, different observations can be made: 
• For the planar spiral, the presence of a substrate breaks the 

symmetry. For a thin substrate, this leads to a slight 
increase of the radiation towards the substrate side 
(F/B� -0.12 dB at 20 GHz). 

• In the conical configuration, as expected, the pattern 
becomes more directive towards the front side. Due to the 
small height of the supporting dielectric cone, the F/B only 
reaches a maximum of 2.7 dB at about 9 GHz. For higher 
frequencies, the F/B ratio decreases because of the effect 
of the conical substrate, which now acts as a “reflector” (or 
“lens”) towards the back side. This effect is demonstrated 
in Fig. 21 which shows the radiation patterns of the spiral 
at 9 GHz, i.e. near the frequency of maximum F/B ratio, 
and at 18 GHz, where the F/B ratio has decreased to 0.6 
dB. The narrowing of the back lobe is clearly visible and 
becomes more pronounced as the frequency increases. 
Although the 3 dB beamwidth of the front lobe is in both 
cases close to 80°, the 3 dB beamwidth of the back lobe is 
reduced from 84° at 9 GHz down to 62° at 18 GHz. 

 
Fig. 20. Front-to-back ratio as a function of the frequency for the 
four conformal spiral configurations compared to the planar case. 

• For the spherical arrangement, similar observations as in 
the conical case can be made, with an overall increase of 
directivity for front radiation. This is expected because of 
the similarity with the conical configuration: Adjacent 
turns in the active spiral region correspond roughly to a 
conical arrangement with an angle α  set by the tangential 
line to the sphere. In the spherical case, this flare angle α 
varies with the frequency-dependent location of the active 
region. For a particular frequency (and the associated 
active radius ar 0 ), the tangential line on the sphere has an 
angle corresponding to the flare angle α0  of the conical 
arrangement (Fig. 22). In the present arrangement, this 
happens for a frequency of 6 GHz. Below this frequency, 
the angle α is sharper than in the conical case, which 
explains the displacement of the maximum F/B toward 
lower frequencies (maximum F/B occurs around 7 GHz) 
compared to the conical configuration. Again, the F/B ratio 
is shaped by two competing mechanisms with opposing 
effects: The increased directivity towards the front due to 
the non-planar shape, and the narrowing of the back lobe 
caused by the substrate acting as a reflector. For the 
spherical case, a negative F/B ratio past 16 GHz can be 
observed. 

• For the two cylindrical configurations, the increase of the 
front-side directivity because of the convex shape is less 
pronounced than in the spherical case. In addition, 
oscillations (with 180 degree offset between both 
orientations) are also visible at the higher frequencies 
because of the saddle shape of the spiral turns. In the 
cylindrical configuration, the substrate exhibits only one 
radius of curvature in a particular direction and therefore, 
both effects observed (increase of front-side radiation and 
narrowing of the beam towards the back) are restricted to 
one angular dimension. 

9 GHz
F/B = 2.7 dB 

18 GHz
F/B = 0.6 dB 

9 GHz
F/B = 2.7 dB 

18 GHz
F/B = 0.6 dB 

 
Fig. 21. Radiation pattern of the conical spiral in the xz plane for 
two frequencies. Left-hand side: 9 GHz; Right-hand side: 18 GHz. 

Considering that for most applications, the back side 
radiation is suppressed through a cavity, the design of a spiral 
can take advantage of a conformal design, even with the 
limited extent of the height (as opposed to classical conical 
spirals that have a sharp flare angle). However, for shapes that 
do not have an axial symmetry with respect to the center of 
the spiral, e.g. for surfaces with varying radii of curvatures in 
different directions, a degradation of the circular polarization 
can be expected. 
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Fig. 22. Side views of the spherical and conical substrates. The 
flare angle α

0
 of the cone is defined in the bottom drawing. The 

tangential line to the sphere that forms the same angle α
0
 with the 

axis of the spiral occurs for an active radius r
a0
 and is shown in the 

top drawing. 

V. CONCLUSION 
The FVTD method has been utilized for the simulation of 

various Archimedean spiral antennas with different substrate 
configurations. Although the presented radiating structures are 
challenging for most computational methods, the analysis with 
the FVTD method has been straightforward and did not 
impose any problems. The FVTD's unstructured mesh 
provides the geometrical flexibility to resolve the fine spiral 
structure on a thin substrate.  

The FVTD method has also been used to investigate 
substrate effects on the radiation characteristics of an 
Archimedean spiral. Several variations in the substrate 
properties (permittivity, thickness) and shape (planar vs. non 
planar) have been studied. Conclusions have been drawn 
based on the simulated effective permittivity relevant for 
currents propagating along the spiral arms and considering the 
spiral active radiating region, i.e. where one spiral turn 
corresponds to one effective wavelength. 

 
The effects caused by variations of the substrate 

permittivity and thickness of the planar configurations have 
been compared to CPS lines with comparable cross-sections 
(same gap width as inter-arm distance on the spiral). The 
comparison of the transverse field distribution on the spiral 
and on the CPS permits to understand the difference found in 
the effective permittivity for both geometries. Considering a 
CPS with broader conducting strips (i.e. same gap, but twice 
the strip width) gives a good approximation of the effε  on the 
spiral. 

Three configurations of spirals on non-planar substrates 
with common geometrical shapes have been investigated. The 
effects on the antenna polarization and F/B ratio have 
demonstrated that the performance of non-planar 
configurations provide no substantial degradation of the 
radiation characteristics. In some configurations radiation 
characteristics are even improved. 

As for the FVTD method it should be emphasized that the 
simulation of conformal structures represents the same 

computational load as that of a corresponding planar 
geometry. Simulations of configurations with multiple radii of 
curvatures in different directions require no algorithm 
modifications and are solely reduced to the problem of mesh 
generation. 
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Abstract - A method for the evaluation of the 
integral of the free-space Green’s function on a 
planar patch, that is exact to machine precision, is 
developed.   The results are used to evaluate two 
other, commonly used, methods - singularity 
extraction and singularity cancellation.   It was 
found that these two methods produced 
unacceptable results.   It is shown what steps need 
to be taken to improve the performance of these 
methods for patches with varying aspect ratios. 
 

I. INTRODUCTION 
 

The matrix entries arising within numerical 
solutions of the electric field integral equation, 
EFIE, for a wide range of applications involve an 
evaluation of integrals of the form 
 

I(x,y) = f ( ′ x , ′ y )
e− jkR

R
d ′ x d ′ y ∫∫  (1) 

 
where f is usually a bounded, well-behaved 
function 2k π

λ=  and R  is given by 

 
R = (x − ′ x )2 + (y − ′ y )2 . (2) 
 

These calculations are most difficult when the 
test point ( ),x y  is within or near the source cell 
over which the integral is performed, due to the 

( )1O R  behavior of the Green’s function, jkRe R− . 
 

One widely-used method of evaluating (1) is 
the singularity extraction (SE) procedure, often 
implemented as 
 

1( , ) ( , ) ( , )

1( , ) .

jkReI x y f x y f x y dx dy
R R

f x y dx dy
R

− 
′ ′ ′ ′= − 

 

′ ′+

∫∫

∫∫

 
 (3) 

 
The first integral in (3) is to be evaluated by 

quadrature, while the second yields an analytical 
result for triangular or rectangular domains [1].  
The first integrand in (3), although bounded, is still 
not analytic in the vicinity of 0R = .   Therefore, 
the accuracy of the result obtained with standard 
quadrature rules for that integral may be limited. 
 

A second approach for evaluating (1) is the 
singularity cancellation (SC) method, often known 
as the Duffy transformation [2].  Suppose that the 
domain of integration is the rectangle 0 'x a< < , 
0 'y b< < , and the test point (singularity) is 

0x y= = .  The SC method requires that the 
domain be divided into two triangles, each of 
which is transformed into a rectangular domain 
according to (4), 

 

0 0

/

0 0

1

0 0
1

0 0

( , ) ( , )

( , )

( , )

( , ) .

a Kx jkR

x y

y Kb jkR

y x

a jkR

x u
b jkR

y v

eI x y f x y dx dy
R

ef x y dx dy
R

ef x y Kx dx du
R

ef x y y dvdy
KR

′ −

′ ′= =

′ −

′ ′= =

−

′= =

−

′= =

′ ′ ′ ′=

′ ′ ′ ′+

′ ′ ′ ′=

′ ′ ′ ′+

∫ ∫

∫ ∫

∫ ∫

∫ ∫

  

  

            (4) 
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K  is the cell aspect ratio 
 

K =
b
a

. (5) 

 
The change of variable 
 

′ y = K ′ x  u,     d ′ y = K ′ x  du  (6) 
 
is used in the first integral and the substitution 
 

′ x =
1
K

′ y  v,     d ′ x =
1
K

′ y  dv  (7) 

 
is used in the second.  In the new first integral, at 
the test point, the integrand is now given by 
 

2 2 2
0

2 2

( , )( , )
( )

( ,  ) .
(1/ )

jkR

x

e f x y Kxf x y Kx
R x Kx u

f x y
K u

−

′→

′ ′ ′
′ ′ ′ ≅

′ ′+
′ ′

=
+

    
( )

 
 (8) 

 
In the second, the integrand is 
 

2 2 2
0

2 2

1 ( , ) /( , )
/ ( )

( , ) .

jkR

y

e f x y y Kf x y y
K R y K v y

f x y
v K

−

′→

′ ′ ′
′ ′ ′ ≅

′ ′+
′ ′

=
+

    
( )

 
 (9) 

 
These results are both nonsingular at the 

original test point, permitting the two integrals in 
(4) to be evaluated using standard numerical 
quadrature routines.  As shown below, the 
cancellation of the singularity depends on the cell 
aspect ratio, K , and  the SC approach can yield 
poor overall accuracy when K  is very small or 
very large. 
 

A third approach is an extension of the SE 
method described above, obtained by extracting a 
second term from the integrand [3].  The extended 
singularity extraction (ESE) approach may be 
implemented as 

 

2 2

2

( , )
( , )

(1 / 2)( , )

1 ( , )( , ) .
2

jkRef x y
RI x y dx dy

k Rf x y
R

f x y kf x y dx dy R dx dy
R

− 
′ ′   ′ ′=  

− −  

′ ′ ′ ′+ −

∫∫

∫∫ ∫∫

 

  

  

(10) 
A closed-form expression for the final integral 

in (10) is described in the following section.  The 
first integral, as in the SE method, is to be 
evaluated by quadrature. 
 

In order to evaluate the effectiveness of the 
above approaches a method capable of providing 
high accuracy is needed.   One such approach is 
based on a MacClurin series expansion of the 
Green’s function [4], followed by the closed-form 
evaluation of the integrals of each term in the 
series.  This series closed-form (SCF) approach is 
described in the following section. 
 

II. FORMULATION OF THE SCF METHOD 
 

For illustration, consider the evaluation of (1) 
for a rectangular cell 0 'x a< < , 0 'y b< < , 
f ( ′ x , ′ y ) =1, and the test point (singularity) at 

0x y= = .  The Green’s function may be expanded 
as 
 
e− jkR

R
= S1 − jS2  (11) 

 
where 
 

S1 =
1
R

−
k 2

2!
R +

k 4

4!
R3 −

k 6

6!
R5 + ...  , (12) 

 

S2 = k −
k 3

3!
R2 +

k 5

5!
R4 −

k 7

7!
R6 + ...  . (13) 

 
Since the expansion in (13) is regular and causes 
no undue difficulty, we focus on (12) and the 
integral 
 

2 4 6
3 51 ...

2! 4! 6!
k k kI R R R dx dy

R
 

′ ′= − + − 
 

∫∫ . (14) 

The SC approach can be applied to (14) to yield 
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I = I0 + I1 + I2 + ... (15) 
 
where  

1

0 2 2 2
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1

2 2 2
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0 0
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+
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+

∫ ∫

∫ ∫

∫ ∫
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       (16) 
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(17) 
and the n-th term can be expressed as 

2
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(18) 
The problem reduces to finding an analytical 
evaluation of 
  

( )
1 2 1

2 2

0

n
I z dzδ

−

= +∫  . (19) 
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∫

∫

∫

∑

(20) 
 

The identity used in the final statement of (20) is 
found in [5; 2.519.2 & 2.526.9].   In practice the 
number of terms required for the evaluation of (15) 
to full quad precision is approximately 15, 
although it was always evaluated to machine 
precision using as many terms as necessary, per 
(23). 
 
The formulation can be expanded to include 
polynomials such as 
 

( ), p qf x y x y=  (21) 
 
or by any function that can be represented by 
combinations of such  polynomials. The associated 
integrals have the form  

( )

2 1

0 0
2 1

212 1
2 2

0

12 1 2 1
2 2

2
0

1
2 1

1 .
2 1

a b
p q n

n
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n p q

n q q

n p q n
p

n p

I x dx y R dy

a K u u du
n p q K

b v v K dv
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−

−
+ + +

+

+ + + −

+

=

   = +  + + +   

+ +
+ + +

∫ ∫

∫

∫

 

(22) 
Evaluation of these integrals proceeds in a manner 
similar to the earlier method. 
 

With the aid of the transformation tanz uδ= , 
2secdz uduδ= , 1

1
1tanu δ

−= , equation (19) can 

be written as  
 

III. METHODOLOGY 
 

The present study investigates the numerical 
accuracy obtained from the preceding methods, and 
the relative computational efficiency (run times) 
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required for each method to produce a specified 
level of accuracy.  The use of single, double, and 
quad precision for some or all of the calculations is 
considered.   The objectives of the testing were: 
 
 To examine the effect of machine precision on 

the accuracy of the SCF method. 
 To investigate the accuracy of the SE and SC 

methods. 
 

The location of the test point is rarely at the 
exact corner of a patch and so, in practice, the 
domain is divided into four rectangular sub-patches 
each with a corner at the test point.   These sub-
patches will frequently have aspect ratios 
significantly different from 1.0K = .   As the 
location of the test point may well be the result of 
using a quadrature rule, it is instructive to examine 
the location of test points required by various 
quadrature formulae.   In particular, one is 
interested in the smallest dimension involved in an 
application.   Examples are shown in Table I.   The 
third rule, “Linlog+Sqrt singularity” possesses the 
capability to integrate a log singularity and a square 
root singularity at the same end point. 
 

 
From Table I, one can see that in some 

instances the location of the test point may result in 
rectangles with aspect ratios of 910K −≈ . Therefore 
the range over which tests were conducted was 

101.0 10 1.0K−× ≤ ≤ . Two tests were designed. In 
the first, the location of the test point is at the corner 
of a patch that has one side dimension of 0.1λ  and 
the other a dimension of 10 n− , where 1 11n≤ ≤ .   
The second test uses a constant patch size 
of 0.1 0.1λ λ× .   The test point is located on the line 
stretching from the center of the patch, at 

( )0.05,0.05  to the corner of the patch, at ( )0.0,0.0 , 
in steps of 10.0 n−  where 0 10n≤ ≤ . The integration 
over the patch is achieved by dividing it into four 
sub-patches each with a corner at the test point.   
The purpose of the second test is to evaluate the 
impact of the high aspect ratio sub-cell on the 
overall integral. 
 

As a baseline for comparison, a reference result 
for the series (15) was evaluated in Multi-Precision, 
MP, arithmetic [8] using an epsilon value of 

40010.0−  and reported out in quad (REAL*16) 
precision.   Such precision may seem extreme.   
However, the comparative accuracy of the other 
results was based on these reference values. 
 

The effect of machine precision was 
investigated not only for the present new 
formulation but also for the SE and SC methods.   
The integrals requiring the use of quadrature rules 
were evaluated with an adaptive Gauss-Kronrod-
Patterson, GKP, procedure using tabulations 
derived in MP from an algorithm published by 
Patterson [9].   These integrals were evaluated so 
that: 
 

1 2n n

n

I I
I

ε−−
≤                                                      (23) 

 
where nI  is the value of the integral after the thn  
evaluation.   Epsilon, ε , is defined as the difference 
between 1.0 and the smallest number which is 
greater than 1.0, that can be represented by the 
compiler.   Two other compiler parameters needed 
to be considered - tiny and huge - which are the 
smallest and largest positive numbers respectively 
that can be represented by the compiler.   These are 
shown in Table II for single, double and quad 
precision, as well as for the level of precision used 
in the MP calculations performed in this study. 
 
Relative error was used to evaluate the different 
schemes using: 
 

10log ref

ref

I I
Error

I
−

=  .                                       (24) 

 
 

Table I.   Locations of the first test point for 
various Gaussian quadrature rules, 0 1x≤ ≤  

Type of quadrature rule # of nodes 
in the 

quadrature 
rule 

Gauss-
Legendre 

Linlog 
[6] 

Linlog + 
Sqrt 

singularity 
[7] 

16 5.30E-3 8.28E-5 4.99E-6 
32 1.37E-3 5.69E-6 9.86E-8 
48 6.14E-4 1.15E-6 9.35E-9 
64 3.47E-4 3.73E-7 1.73E-9 
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Here, I  and refI  are the values of the relevant 
integral, evaluated in the stated machine precision, 
and the reference value respectively. 
 

IV. NUMERICAL RESULTS 
 

The results for the SE method, the SC method 
and the SCF method when evaluated in quad 
precision are shown in Figure 1. 
 

The susceptibility of the SC method to aspect 
ratio has already been mentioned in the literature, 
[4, 10], and investigating this phenomenon was an 
early motivation for this study.   Such suspicions 
appear to be confirmed as that approach essentially 
fails for 410K −< . The criticism of the SE method 
is that although the obvious singularity has been 
removed, the first integral in the right-hand side of 
(3) is still not “smooth” in a mathematical sense due 
to the derivatives of the integral being unbounded at 
one of the integration limits.   Nevertheless, the 
results over the test range are accurate to better than 
double precision.   The results for the SCF method 
show that, even in quad precision, there is 
degradation for the more extreme aspect ratios. 
 

When the same study was carried out in single 
precision, none of the methods provided acceptable 
results.   It is doubtful that one would encounter 
such extreme aspect ratios as 101.0 10K −= ×  when 
using single precision.   Nevertheless the underlying 
causes for these failures were examined as an aspect 
ratio of 61.0 10K −= ×  could arise in single 
precision work. 
 

Two factors were determined to play a role in 
the failures – the value of epsilon and the values of 
tiny/huge in the Fortran complier.   Examination of 
the calculations in the SCF method of (20) indicated 
the need to carry numbers with a wide range of 
values – wider than is available with single 
precision. Routines were written that accepted 
single precision input and returned single precision 

output, but within the routines the working 
precision was either double or quad precision.    
The results for the SCF method are reported in 
Table III. 
 

10-10.0 10-8.0 10-6.0 10-4.0 10-2.0 100.0

Aspect Ratio

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

E
rro

r

SCF method
SE m ethod
SC m ethod

Figure I.   P lots of results for the SCF,
SE and SC m ethods when using quad
precision for all calculations.

 
 

In Table III, the first column reports the aspect 
ratio, AR, for the calculations.   The column headed 
“single” reports the results of simply using single 
precision.   The column headed “tiny” again uses 
single precision throughout but guards against 

2cos ( )n z  being less than the tiny value in Table II.   
When this potential violation is detected, the routine 
exits with the last value calculated prior to the 
detection.   The columns headed “double” and 
“quad” indicate use of the special routines 
mentioned earlier. Use of double precision 
prevented total failure of the SCF method.   
However, quad precision was needed to provide 

Table II.   Compiler specific parameters for various levels of precision. 
precision epsilon Log10(epsilon) tiny huge 
single 1.19E-07 -6.92360 1.18E-38 3.40E+38 
double 2.22E-16 -15.6536 2.22E-308 1.80E+308 
quad 1.93E-34 -33.7154 3.36E-4932 1.19E+4932 
MP 1.00E-400 -400.000 6.19E-14449439 6.19E+14449439 

Fig. 1. Plots of results for the SCF, SE, and SC 
methods when using quad precision for 
all calculations. 
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success over the entire range.   The reason that 
double precision does not provide success over the 
entire range has to do with the calculation of 

2 2R c x= + . Precision is lost whenever the ratio 
of the two numbers, 2c  and 2x , or its reciprocal, is 
less than the  relevant value of ε . This can be seen 
quite clearly in the “double” results, where 
precision is lost when the aspect ratio exceeds 1.0E-
07. 
 

When the SE approach was examined with 
single precision it was found that the integration of 
the “non-singular” part was performing 
satisfactorily, but evaluation of the singular part 
was not good, as seen in the “single” column of   
Table IV.   Once this was performed in double 
precision, the errors were at their lower limit until 
the aspect ratio reached a value of 91.0 10K −= × .   
To cover the entire range, it was necessary to use 
quad precision.   This is an important finding, as the 
SCF method has not yet been developed for more 
general situations and hence one may still need to 
resort to SE and/or SC. 
 

The problems in the SC method can be 
understood when one considers the effect of K  on 
the evaluation of the inner integrals of (4).   When 
K  takes on an extreme value one of the inner 
integrals is essentially independent of the variable 
of integration whereas the other inner integral 
approaches ( )1O R . This latter effect makes the 

Gauss-Legendre integration perform very poorly. 

 
The solution is to use the SE method in conjunction 
with the SC method.   That is, use (3) in each of the 
integrals of (4).   The results are reported in Table 
V. Again the importance of evaluating the extracted 
component in double precision is to be noted.   If 
the extracted component is only evaluated in single 
precision there is a degradation of the accuracy for 
intermediate values of the aspect ratio. 
 

Similar findings were made when using double 
precision as the underlying machine precision.   It 
was necessary to write routines that accepted 
double precision input and returned double 
precision output with the internal calculations 
performed in quad precision.   The relevant results 
are shown in Tables VI.   The heading “Double + 
quad ESE” in this table means that the main 
quadrature routines used double precision while the 

Table IV.   Effect of machine precision on error 
(24) of the SE solution. 

AR Single Double Quad 
1 -6.92369 -6.92369 -6.92369 

0.1 -6.41765 -6.92369 -6.92369 
1.00E-02 -5.94832 -6.92369 -6.92369 
1.00E-03 -5.07121 -6.92369 -6.92369 
1.00E-04 -3.90065 -6.92369 -6.92369 
1.00E-05 -2.42700 -6.92369 -6.92369 
1.00E-06 2.73E-03 -6.92369 -6.92369 
1.00E-07 2.37E-03 -6.92369 -6.92369 
1.00E-08 2.10E-03 -6.92369 -6.92369 
1.00E-09 1.89E-03 -6.92369 -6.92369 
1.00E-10 1.71E-03 -6.10287 -6.92369 

Table III.   Effect of machine precision on error (24) of 
the SCF solution.   (d.b.z. is divide-by-zero fault) 

 Mode 
AR single tiny double quad 

1 -6.92369 -6.92369 -6.92369 -6.92369
0.1 -6.92369 -6.92369 -6.92369 -6.92369

1.00E-02 -5.97828 -5.97828 -6.92369 -6.92369
1.00E-03 -5.64612 -5.64612 -6.92369 -6.92369
1.00E-04 -5.05785 -5.05785 -6.92369 -6.92369
1.00E-05 d.b.z. -4.06992 -6.92369 -6.92369
1.00E-06 d.b.z. 0.00E+00 -6.92369 -6.92369
1.00E-07 d.b.z. 0.00E+00 -6.92369 -6.92369
1.00E-08 d.b.z. 0.00E+00 -6.75083 -6.92369
1.00E-09 d.b.z. 0.00E+00 -6.00224 -6.92369
1.00E-10 d.b.z. 0.00E+00 -5.05588 -6.92369
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evaluation of the extracted components was 
performed in quad precision.   Note that it is 
necessary to extract two terms in the SE method 
that is use ESE, as is also the case in the SC 
method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Returning to the use of quad precision as the 

underlying, and only, precision level, the SE 
method is modified to incorporate the extraction of 
two terms.   The SC method is modified to 
incorporate the incorporation of one term and then 
two terms.   The results appear in Figure 2, which 
has the same scaling as Figure 1 – for direct 
comparison.   It is clear that when two terms are 
extracted in both the SE and SC methods the results  

are close to, if not identical, to the results for the 
SCF method. 
 

So far, the reported results were concerned with 
accuracy.   The timing results for quad precision are 
shown in Table VII.   These show that the SCF 
method is clearly superior to the other two methods.   
It is important to note that all of the calculations are 
performed in the same precision. When one runs 
similar timing tests in double and single precision 
the SE method is superior.   The reason for the shift 
is that the SCF method is still largely performed in 
quad precision, whereas the quadrature routines run 
mainly in double and single precision respectively. 
 

In the second test series the test point was not 
located at a corner of the patch.   Instead it was 
moved on a diagonal extending from the center to 
close to the corner.   The patch was then sub-
divided into four sub-patches each with a corner at 
the test point.   Two of the sub-patches are square 
and two have potentially extreme aspect ratios.   
The test was conducted for each of the three 
methods, incorporating the information learned in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the first test series.  Thus it was unsurprising that 
the integrations all performed well.   An exception 
occurred in the quad precision studies where it was 
found that, in the case of the SE method, better 
results were obtained when the integration area was 
divided into four subsections, each with a corner at 
the location of the (extracted) singularity – just as 
was necessarily done for the SCF and the SC 
methods.   The two results for the SE method are 

Table V. Effect of machine precision on error 
(24) of the SC solution. 

AR Single 
only 

Single + 
single SE 

Single + 
double SE 

1 -6.92369 -6.92369 -6.92369 
0.1 -6.92369 -6.92369 -6.92369 

1.00E-02 -6.92369 -5.97828 -6.92369 
1.00E-03 -6.92369 -5.55185 -6.92369 
1.00E-04 -4.09225 -4.97039 -6.92369 
1.00E-05 -2.08886 -3.98617 -6.92369 
1.00E-06 -1.1023 -2.52202 -6.92369 
1.00E-07 -0.70402 -1.96481 -6.92369 
1.00E-08 -0.53765 -1.30139 -6.92369 
1.00E-09 -0.43983 -1.34868 -6.92369 
1.00E-10 -0.3739 -1.39132 -6.92369 

Table VI.   Error (24) for double precision on the three methods of integration. 
 SCF SE SC 

AR Double Quad 
internal Double Double + 

quad ESE Double Double + 
quad ESE 

1 -13.8785 -15.6536 -15.6536 -15.464 -15.6536 -15.6536 
0.1 -13.2513 -15.6536 -15.6536 -15.6536 -15.6536 -15.6536 

1.00E-02 -7.91709 -15.6536 -14.1219 -15.6536 -15.6536 -15.6536 
1.00E-03 -5.77831 -15.6536 -13.5385 -15.6536 -15.6536 -15.6536 
1.00E-04 -3.82704 -15.6536 -12.2983 -15.6536 -11.2123 -15.6536 
1.00E-05 -3.91093 -15.6536 -11.7914 -15.6536 -5.33437 -15.6536 
1.00E-06 -3.98120 -15.6536 -10.1758 -15.6536 -3.62397 -15.6536 
1.00E-07 -4.04162 -15.6536 -9.18065 -15.6536 -1.50125 -15.6536 
1.00E-08 -4.09416 -15.6536 -8.38368 -15.6536 -0.85638 -15.6536 
1.00E-09 -4.13613 -15.6536 -8.43096 -15.6536 -0.64213 -15.6536 
1.00E-10 -4.12927 -15.6536 -6.14382 -15.6536 -0.52264 -15.6536 
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shown in Table VIII.  In the cases of single 
precision and double precision, integration over the 
entire cell gave results at the limit of precision. 
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Figure II.   Plots of results for the SCF,
SE and SC methods when using quad
precision for all calculations and 
incorporating two term extraction.

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSIONS 
 

The SCF method was developed as a fast, 
accurate method to evaluate the integral of the free-
space Green’s function.   This method was also 
used to investigate the effect of machine precision 
on other approaches to this same evaluation.   It was 
found that in order to span the range of aspect ratios 
investigated here: 
 The SCF method needed to be evaluated in 

quad precision regardless of the default 
precision of the compiler. 

 The analytical term(s) extracted in the SE 
method needed to be evaluated in a level of 
precision higher than the default precision. 

 The SC method was successful only when 
singularity extraction was applied to the inner 
integrals, and only if those extracted terms were 
evaluated in a higher level of precision than the 
default level. 

 When extracted terms were evaluated in quad 
precision it was also important to extract a 
second term and evaluate it in quad precision. 

 
When dealing specifically with planar patches 

and polynomial basis functions, the SCF method is 
the fastest approach of the three considered when 
using quad precision.   Otherwise, the SE approach 
is faster. 
 
 
 
 
 

Table VII.   Results for relative times for the 
three different methods when set up for greatest 
accuracy, using quad precision. 

AR SCF SE SC 
1 4.59E-02 4.48 2.20 

0.1 3.91E-02 2.31 4.15 
1.00E-02 4.00E-02 1.46 6.18 
1.00E-03 4.10E-02 1.12 6.18 
1.00E-04 4.00E-02 1.12 6.15 
1.00E-05 4.00E-02 0.86 6.01 
1.00E-06 4.00E-02 0.69 6.12 
1.00E-07 4.10E-02 0.73 6.13 
1.00E-08 3.91E-02 0.17 2.64 
1.00E-09 4.00E-02 0.15 2.14 
1.00E-10 4.00E-02 0.16 2.76 

Table VIII.  Results for error (24) for the SE 
method, using quad precision. 

AR Entire cell 4 sub-cells 
1 -16.7542 -33.5543 

0.1 -18.3499 -32.6836 
1.00E-02 -21.8931 -32.3831 
1.00E-03 -23.9701 -32.3669 
1.00E-04 -27.0118 -32.4292 
1.00E-05 -30.7153 -32.4119 
1.00E-06 -32.1547 -32.2953 
1.00E-07 -32.4289 -32.4651 
1.00E-08 -32.6807 -32.6807 
1.00E-09 -32.3217 -32.3083 
1.00E-10 -32.3644 -32.3797 

Fig. 2. Plots of results for the SCF, SE, and SC 
methods when using quad precision for 
all calculations and incorporating two 
term extraction.  
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Abstract: The use of numerical methods to solve 
electromagnetic problems with open boundaries 
requires a method to limit the domain in which the 
field is computed. This can be achieved by truncating 
the mesh and setting certain numerical boundary 
conditions on the outer perimeter of the domain to 
simulate its extension to infinity. In this paper, the 
formulation of the perfectly matched layer (PML) is 
applied to the multiresolution time-domain technique 
(MRTD) to effectively simulate free-space. The PML 
region is modelled by means of the two-dimensional 
discrete wavelet transform. In addition, the numerical 
reflectivity of the PML medium is also investigated 
for a variety of thicknesses. 
 
Keywords: Absorbing boundary conditions, PML, 
MRTD, DWT. 
 
 
1. INTRODUCTION 
 
Different wavelet-based discretizations for Maxwell 
equations have been developed in the very recent 
literature. These numerical methods are known as 
multiresolution time-domain (MRTD) techniques and 
its main point of interest is the intrinsic capability of 
wavelets to add higher spatial frecuency contributions 
in the representation of the fields. These methods 
employ numerical analysis based on different wavelet 
functions like Battle-Lemarié [1], Haar [2], and 
Daubechies [3], and have been applied to several 
electromagnetic problems such as scattering, 
radiation, and integrated-circuit component modeling. 
Many of these applications involve modeling 
electromagnetic fields in an unbounded open space. It 
is well known that, since the computational domain is 
limited in space by storage limitations, a certain type 
of boundary condition, which is called absorbing 
boundary condition (ABC) must be implemented to 
effectively simulate open regions and having the 
capability to suppress numerical reflections of the 
outgoing waves. 

Many absorbing boundary conditions have been 
proposed in past years [4]-[6], but since 1994, a new 
improvement has been made in this area by J.P. 
Berenger’s technique designated as the perfectly 
matched layer or PML [7]. This technique is based on 
the introduction of a highly effective absorbing 
material medium to terminate the outer boundary of 
the space lattice. This nonphysical absorbing medium 
has a wave impedance less sensitive to the angle of 
incidence, polarization and frequency of outgoing 
waves, and therefore a perfectly matched interface is 
derived. 

In this paper, the PML principle has been 
implemented into the multiresolution time-domain 
technique.  This technique uses Daubechies 
compactly supported wavelet functions denoted as 
DM [8], and the PML medium has been modelled 
using the discrete wavelet transform (DWT). 
 
 
2. APPLICATION OF THE PML ABSORBER TO 
THE MRTD TECHNIQUE 
 
A. Fundamentals of the PML theory 
 
In the PML theory described in [7] it is assumed that 
the PML region is characterized by a free-space 
permittivity ε0 and permeability µ0, and electric and 
magnetic conductivities σ and σ*, respectively. Then, 
if the following PML relationship is satisfied 
 

 
0

*

0 µ
σ

ε
σ

=  (1) 

 
the impedance of the medium matches that of 
vacuum and no reflection occurs when a plane wave 
propagates normally across a vacuum-medium 
interface. Since sharp variations of conductivity can 
create numerical reflections, for a PML region of 
thickness δ, the conductivities are chosen to vary 

207

1054-4887 © 2005 ACES

ACES JOURNAL, VOL. 20, NO. 3, NOVEMBER 2005



from zero at the vacuum-layer interface to a maximun 
value σMAX at the outer side of the layer 
 

 δρ
δ
ρσρσ ≤≤=





 −= 0for  2 with,1)( MAX n

n

. (2) 

 
Usually the PML area is terminated with a PEC, thus 
the maximun value σMAX is determined by a 
designated apparent reflection coefficient R at normal 
incidence, which is given by the relationship [7] 
 

 








+

−=
)1(

2exp
0 nc

R MAX

ε
δσ . (3) 

 
By choosing the theoretical reflection coefficient 
(typically R = 10-4 or R = 10-5) and the PML thickness 
δ, the maximun value σMAX can be obtained from (3). 
 
B. Implementation of the PML absorber 
 
In this section, we will analyze the implementation of 
the PML absorber into the MRTD scheme. This 
implementation does not involve a special treatment 
if scaling functions are used to expand the field 
components. Otherwise, if two or more resolution 
levels are applied, that is, scaling and wavelet 
functions are used to expand the field components, 
we must model the PML medium before its 
implementation into the algorithm. For simplicity in 
this presentation, let us assume a one dimensional 
problem. That is, the simplest case of a TEM plane 
wave propagating in free-space, with Ex and Hy 
fields, is considered. In order to simulate open 
boundaries, we will locate two PML areas of 
thickness δ at both ends, with  an electric 
conductivity σ and a magnetic conductivity σ* 
satisfying the relation (1) and with a parabolic spatial 
distribution, that is, a spatial profile like (2) with n = 
2 (Fig. 1). Within the PML area, the equations to 

solve are 
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Thus, according to the exponential time stepping [9], 
these equations are discretized in time as 
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According to the notation given in [8], an 
approximate solution at level J can be obtained using 
scaling functions of J-th order to expand each field 
component respect to space. The final set of 
discretized equations are expressed in matrix form as 
follows 
 

[ ] [ ] [ ] [ ] [ ] [ ]JnJJJnJJn Ed
z

HH φφφ  1σσ 2
1

2
1

∆
−=

−+ *
2

*
1

 (6.a) 

[ ] [ ] [ ] [ ] [ ] [ ]JnJJJnJJn Hd
z

EE φφφ 2
1

 1σσ1 ++

∆
−= 21

 (6.b) 

 
where n[Hφ]J and n[Eφ]J are column vectors whose 
elements are the scaling coefficients at level J, 
evaluated at time t = n∆t, of the magnetic and electric 
field expansions, respectively. The matrix [dJ] = DJ is 
the derivative matrix at level J (Fig. 2) [8]. 
 

 
Fig. 1. Parabolic spatial distribution of σ and σ* 

within the PML area. 

 
Fig. 2. Derivative matrix DJ: Only non zero 

elements have been ploted. 
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The matrices [ σ1 ]J, [ σ2 ]J, [ σ1
* ]J, and [ σ2

* ]J are 
diagonal matrices whose elements are function of the 
time discretization interval ∆t, the permitivity ε0, the 
permeability µ0, and the electric and magnetic 
conductivity, σ and σ*, respectively, and are distinct 
from zero only at each point z = k∆zJ = k2-J∆z within 
the PML area of thickness δ = L∆zJ. These matrices 
are given by the set of equations (7.a) to (7.d). 
Now, the spatial resolution can be increased by 
adding wavelet functions to the field expansion. 
Therefore, adding wavelet functions of J-th order to 

the field expansion results in an approximate solution 
at level J+1 with a spatial discretization interval 
∆zJ+1. The formulation of the fields within the PML 
region is written in matrix form as indicated in 
equation (8.a) and equation (8.b), where a derivative 
matrix at level J+1 (DJ+1) [8] has been used, and the 
matrices related to the conductivity of the PML 
medium have been modeled using the two-
dimensional discrete wavelet transform DWT2D [10]. 
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The procedure depicted in Fig. 3 to obtain these 
matrices is as follows: first, we compute the σ-
matrices corresponding to level J+1, that is, double 
sample points with a spatial discretization interval 
∆zJ+1 (see Fig. 4). Then, we apply the one 
dimensional discrete wavelet transform in a 
successive manner to its rows and to its columns. 
This procedure results in a matrix composed of four 
submatrices arranged this way 
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Fig. 3. Modelling of the σ-matrix using the two-

dimensional discrete wavelet transform. 
 
 

 
Fig. 4. Spatial discretization of the PML zone at level 

J and at level J+1. 
 
 

3. NUMERICAL RESULTS 
 
In order to evaluate the numerical effectivity of the 
implemented PML technique, the propagation of a 
TEM pulse, incident on the boundaries of the 
computational domain, has been simulated, and the 
response of the PML layer has been analyzed. A 
benchmark test has been done comparing the 
reflection coefficient S11 computed for three different 
thicknesses of the PML medium and using three 
different Daubechies wavelet functions (D1, D2, and 
D3) in each case. The expansion of the field 
components with respect to space has been done 
using scaling and wavelet, and the time marching 
algorithm is then described by equations given in (8). 
Therefore, a numerical simulation with two levels of 
resolution has been done using scaling plus wavelet 
functions of zero order (J = 0). We have chosen a 
spatial discretization interval ∆z1 = 1 mm (∆z = 2 
mm) and a time discretization interval ∆t = 3.34 ps. 
The thicknesses of PML used in this test have been δ  
= 5∆z, δ  = 10∆z, and δ  = 15∆z. A quadratic 
variation in PML conductivity is assumed for all 
cases, with maximun theoretical reflection coefficient 
of 10-4. From equation (3), the maximum value σMAX 
obtained in each case was 3.67 S/m, 1.83 S/m, and 
1.22 S/m, respectively. The reflection coefficient 
obtained in each case has been depicted in Figs. 5(a) 
through 5(c), corresponding to a PML thickness of 
5∆z, 10∆z, and 15∆z, respectively. As it can be 
appreciated from these figures, the scheme with field 
components expanded in terms of Daubechies 
wavelet functions D1 is more sensitive to variations in 
the PML thickness. A great improvement is obtained 
with the increase of the thickness. Otherwise, the 
schemes with field components expanded in terms of 
Daubechies wavelet functions D2 and D3 are less 
sensitive to variations in the PML thickness and 
present a better behaviour than the other scheme 
when narrow thicknesses are used. 
 
 
4. CONCLUSION 
 
A procedure to implement PML absorbing boundary 
conditions into the MRTD scheme based on the 
discrete wavelet transform has been developed. This 
PML technique can be directly implemented into the 
algorithm when scaling functions are used, and for 
higher resolutions, the multilevel decomposition of 
the conductivity of the PML area needed has been 
done by means of the two-dimensional discrete 
wavelet transform. The numerical effectivity of the 
method has been also investigated for different 
thicknesses of the PML area, and using different 
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Daubechies wavelet functions for the expansion of 
the fields. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
 

Fig. 5. Reflection coefficient S11 versus frequency 
computed using different Daubechies’ 
wavelet functions and different thicknesses 
of PML: a) δ=5∆z, b) δ=10∆z, and c) 
δ=15∆z. 
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Abstract

This work is focused on the study of Multicon-
ductor Transmission Lines (MTL) with uncer-
tain parameters; i.e. the values of r, l, c and g
can vary in an interval. The wavelet expansion
in time domain is used in order to obtain an ac-
curate and low cost representation of the line in
terms of an algebraic system. The wavelet rep-
resentation applied to the study of MTL with
variation of the electrical parameters allow us
to easily calculate a set of equivalent distributed
generators, which represent the effects of the dis-
turbance produced by the parameter variation.
This analysis allows us to directly evaluate the
response bounds related to the parameters un-
certainties without performing repeated simula-
tions (Montecarlo Method).

Keywords— Uncertain Parameters, Trans-
mission Lines, Time Domain Expansion.

1 Introduction

The study of the effect of uncertainties in the
electrical parameters of MTLs is an important
yet complex topic; its importance comes from
the fact that even the most developed indus-
trial technologies cannot guarantee 100% accu-
racy in the construction of electronic devices,
where transmission lines play a key role. Fur-
thermore, the aging process is another cause
of the parameters variation with respect to the
nominal value. The effect of uncertainties can
be studied by statistic Montecarlo techniques,
that suffer of long computational times [1], by
probabilistic approaches under some simplifying
hypotheses [2], or by calculating a time domain
sensitivity function (see for example [3]).

In this paper, the telegrapher equation is ex-
panded in the wavelet domain; more precisely a
time domain wavelet expansion is performed, as
in [4], [5]. This technique is chosen because it

allows to represent the MTL through a sparse
algebraic system, where the unknowns are the
wavelet coefficients of voltages and currents, and
the system matrix is a function of the electri-
cal parameters of the MTL. The time domain
solution is then obtained by simply solving the
algebraic system and inverse transforming the re-
sults. It is noteworthy that the technique for the
bounds definition proposed here, can be applied
to any solution technique characterized by the
expansion of the time variables on a basis func-
tions, for example as performed in [6], resulting
in a linear algebraic system.

This representation and some simple algebraic
calculations performed on the system matrix let
us calculate a set of equivalent time domain dis-
tributed generators, representing the effects of
the uncertainties on the nominal output. The
analysis of the magnitude of these equivalent dis-
tributed generators allows us to understand the
effect of each single variation, and most impor-
tant a simple procedure is defined to determine
the response bounds due to the variation of the
parameters in the given range. Insights of the
physical meaning of the procedure and some re-
sults are shown.

2 Wavelet Based Modeling of Multi-
conductor Transmission Lines

As widely addressed in [4] the use of the Wavelet
Expansion (WE) for the simulation of multicon-
ductor transmission lines is a powerful tool, al-
lowing fast and accurate simulations. The way
the wavelet based model is obtained is the fol-
lowing: starting from the quasi-TEM MTL equa-
tions, the time variation of voltages and currents
(which are variable with space and time coordi-
nates) are expanded on a wavelet basis, yielding
space variable vectors of coefficients. Time deriv-
atives are dealt with by using the differential (or
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integral, in case the MTL equations are first in-
tegrated) operator in the wavelet domain, which
are constant and sparse matrices, calculated only
once prior to the simulation.

In the so obtained equations only the space
variable appears now; for this reason the line
needs to be segmented in a number of cells, each
represented by a sparse matrix, which can be
cascade connected in order to obtain an alge-
braic system, which solved gives the value of the
wavelet coefficients. The general form of the sys-
tem is reported in equation (1)




Id Ch 0 · · · · · ·
0 Id Ch · · · · · ·
0 0 Id · · · · · ·
...

...
...

...
...

0 · · · · · · Id Ch
BcL · · · · · · · · · Bc0







vL

iL
vL−1

iL−1
...
vj

ij
...

v0

i0




= E

(1)
where

E = [0, 0, 0, 0, . . . , 0, 0, . . . ,EL,E0]T (2)

and Id is the identity matrix of the proper di-
mension; vj and ij are the vectors of wavelet
coefficients of voltages and currents at each cell
(in particular vL, iL, v0, i0 are the voltages and
currents, respectively, at the two terminations
of the line); BcL and Bc0 are the matrices of
the boundary conditions (generators and termi-
nations loads). The matrix Ch, which contains
the equation of a single cell, is analytically ob-
tained and has the following expression

Ch =

[
0 (−lD− rId)

(−cD − gId) 0

]
(3)

where D is the wavelet representation of the dif-
ferential operator, as previously discussed, and
r, l, c, g are obviously the line parameters. As it
can be easily observed, system (1) is an algebraic
system characterized by a sparse matrix; hence
it can be easily solved by iterative techniques.
The known term of the system is characterized
by having all zero entries except than the last

part, where the WE of the input signals (gener-
ator) is included (vectors E0 and EL).

Uniform and nonuniform transmission lines
(with linear and nonlinear load) can be in this
way conveniently solved, obtaining accurate so-
lutions in lower CPU times if compared with
standard step by step techniques.

At this stage frequency dependent transmis-
sion lines could not be included in the model.
As a result of the further work performed by the
authors, also frequency dependence of the para-
meters and proximity effect between the conduc-
tors have been included. The inclusion of these
two important phenomena are presented in [5],
in which starting from the original formulation
presented in [7] and expressing the convolution
between two functions in the wavelet domain, a
convenient formulation is obtained. In particu-
lar, the algebraic system representing the MTL
is obtained in the form of (1), in which the only
difference is the presence of a constant matrix
K, function of the skin and proximity effect sen-
sitive quantities (i.e. geometrical and physical
characteristics of the line) simply included in the
matrix Ch as

Ch =

[
0 (−lD − rId −K)

(−cD− gId) 0

]
.

(4)
As a conclusion to this section we underline

that the use of WE for the solution of such prob-
lems, in our formulation allows the fast simula-
tion of uniform, nonuniform, frequency depen-
dent transmission lines; not being a frequency
domain based method also nonlinearities can be
easily included, as widely addressed in [4] and [5].
For this reason the proposed method could be
conveniently used to perform Montecarlo proce-
dures when uncertain parameters are considered,
since the CPU time consumption of each run is
lower if compared to standard techniques.

3 Response Bounds for MTL with
Uncertain Parameters

In this section we define a technique for the eval-
uation of an upper and lower bound of the time
domain response of a MTL when the per unit
length parameters are uncertain. As stated in
the introduction, this problem is of great impor-
tance, and nowadays the possibilities of dealing
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with it are somehow limited, mainly consisting
of Montecarlo procedures and statistical models
based on some simplifying approximations. The
procedure we propose here is based on the model
of the MTL obtained as recalled in the previous
section, and as it will be shown, the computa-
tional cost is reasonably low.

3.1 Definition of the Equivalent Sources
We start this section by considering the trans-
mission line represented by the algebraic system
(1), obtained by performing the WE of the MTL
equations. We underline here that the proposed
technique can be applied to any other numerical
model where the time variation of voltages and
currents is expanded on a basis of functions, as
it is for example done in [6]; for this reason we
refer to the general algebraic system (5)

Ax = b (5)

where x is the vector of unknown coefficients of
voltages and currents at the port of each cell,
in which the line is segmented and b is a vector
containing the input signal of the line.

In case of uncertainty of the line parameters,
equation (5) can be seen as the representation of
the MTL where the per unit length parameters
assume the nominal value.

When a variation is considered, the new sys-
tem can be written as

Ãx̃ = b (6)

where Ã is the new matrix resulting from var-
ied r, l, g, c; x̃ is the new solution and b remains
unchanged since the line is considered energized
by the same signal. Equation (6) can be more
conveniently written as

(A + ∆A)x̃ = (I + ∆AA−1)Ax̃ = b (7)

where the variation of the matrix A is now ev-
idenced. The solution to equation (7) can be
written as

x̃ = A−1(I + ∆AA−1)−1b. (8)

By comparing equations (5) and (8) it is easy
to see that

b̃ = (I + ∆AA−1)−1b (9)

can be seen as a new input vector for the line
with the nominal values of the parameters, and
the varied transmission line response can be cal-
culated by solving the system

Ax = b̃. (10)

This means that the effect of the parameters
variation has been moved from the system ma-
trix to the vector of the input signals, changing
it from b to b̃.

As shown in [4] (and recalled in section II) the
vector b contains the imposed voltages and cur-
rents at the ports of each cell; since the line can
be considered as excited only at the terminals,
its entries are all zeroes except than the bottom
part (representing the Wavelet Expansion of the
feeding generator). On the contrary the new vec-
tor b̃ is in general a full vector, and by inverse
transforming it we obtain the time domain be-
havior of the distributed sources that take into
account the effects of the parameters variation,
which are zero for the nominal line.

It can be easily seen that the way the time do-
main equivalent generators are obtained is easy
and straightforward, and requires low CPU time
(due to the wavelet properties): the total cost is
an inversion of a sparse matrix (the “nominal”
matrix, hence to be performed only once, even if
several evaluations need to be performed) and a
linear system solution. An analysis of the wave-
form and the magnitude of the generators allows
us to obtain an insight in the effect of the para-
meters variation, and how it affects the output
variation with respect to the nominal value.

Let us suppose that the parameters vary in
a range expressed by r = rn ± ∆xr%, l =
ln ± ∆xl%, g = gn ± ∆xg%, and c = cn ± xc%,
where the subscript n is related to the nomi-
nal value. It is possible to evaluate the distrib-
uted sources for the worst case condition, i.e. for
r = rn(1 + ∆xr/100) and rn = rn(1−∆xr/100),
and so on. Performing (for a single conductor
line) this operation for the whole set of parame-
ters we have to perform a matrix inversion and
solve eight linear systems. The result is the set of
vectors b̃r−, b̃r+ b̃l−, b̃l+, b̃g−, b̃g+, b̃c−, b̃c+.
For each of them it is possible to calculate the
vector b′ = b̃ − b, isolating the effects of the
variation from the input generator.
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3.2 Bounds Definition

The most common way to define the bounds
of the response in presence of parameter’s un-
certainty is to perform a Montecarlo procedure,
by repeating several simulations with a random
variation of the parameters. An alternative ap-
proach has been studied by the authors in [8],
where the bounds have been calculated by a first
order approximation of the sensitivity with re-
spect to the variables. Here we propose a differ-
ent approach, based on the previous definition of
the vectors b̃ defined as follows.

Given a parameters’ variation as expressed at
the end of the previous section, we define the
upper bound as related to a set of distributed
sources constructed by adding up together the
absolute values of the previously calculated vec-
tors b′, i.e.

bupper = |b′
r+| + |b′

l+| + |b′
g+| + |b′

c+|+
+|b′

r−| + |b′
l−| + |b′

g−| + |b′
c−| + b.

(11)
In this way it is possible to obtain the upper

bound of the response straightforwardly resolv-
ing system (5) with the known term previously
calculated, i.e.

xupper = A−1bupper (12)

which can also be written as

xupper = ∆x + x. (13)

The lower bound of the response can now be
calculated with no need of a further simulation,
i.e.

xlower = ∆x− x. (14)

The two vectors xupper and xlower must be
inverse transformed giving the time domain
bounds.

At this point it is important once again to un-
derline the computational cost of the whole pro-
cedure: with a line with N conductors, there are
NP = 4 ∗ (N − 1) line parameters which are
supposed to vary. By the use of the proposed
method the computational cost is the following:

• a simulation with the nominal values, at the
cost of an algebraic system solution;

• a matrix inversion;

• 2NP matrix-vector products, as in (9), ob-
taining the the new known vectors;

• absolute value operation and a sum, as in
(11);

• a simulation from which we determine the
response bounds.

It is hence evident the very low computational
cost of the method if compared with a standard
Montecarlo procedure. It can be interesting to
analyze how wide can be the range of variation
of the parameters that still permits a reasonable
evaluation of the bounds. Some qualitative con-
siderations can be made: the proposed procedure
allows us to obtain an estimate of the response
bounds in the presence of uncertainties; the sim-
ple evaluation reported in (11) is of course valid
in a certain range of variation. In particular, we
implicitly infere that the variation of the vectors
b̃ is monotonic in the range of variation of the
parameters. Based on our experience the ranges
of uncertainty in the parameters (due to aging
or industrial tolerances) always satisfy the above
mentioned requirement. It is noteworthy that a
deeper analysis related to the wideness on the
interval of uncertainty could be performed ob-
serving the magnitudes of the entries of matrix
∆A.

4 Numerical Results

In this section the results related to two differ-
ent test cases are reported: first a simple bifilar
line is considered, and a qualitative analysis of
the equivalent sources, together with a compari-
son of the bounds obtained by the technique pre-
sented in [8] and by a Montecarlo procedure is
shown. As a second test case a more complex 4
conductors line is chosen, showing the calculated
bounds compared with a simulation technique.

4.1 Bifilar Line
The 2 conductors line is characterized by the fol-
lowing parameters:

r = 200Ω/m, l = 2.8µH/m,
c = 1.2nF/m, g = 0S/m

(15)

the line is characterized by a length of L = 0.03
m and is terminated at both ends on 50-Ω re-
sistors. The feeding generator is a trapezoidal
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Figure 1: Distributed voltage sources related to
the +10 % variation of r.
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Figure 2: Distributed voltage sources related to
the +10 % variation of l.

pulse characterized by an amplitude of 5 V and
a rise time of 0.5 ns. A variation of ±10% has
been taken into account for all the parameters.

Figures 1 and 2 shows the time behavior of the
distributed sources obtained considering a varia-
tion of resistance and inductance; analyzing the
figure it is easy to verify the consistency of the
obtained results and at the same time some con-
clusions can be drawn. In particular, we can see
that the resistance variation mainly affects the
steady state value of the voltages, while a varia-
tion of the inductance mainly influences the rise
and fall time of the signal.

In a wider extent by performing a simple qual-
itative analysis on all the distributed sources re-
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Figure 3: Calculated bounds and nominal
output.
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Figure 4: Calculated bounds and Montecarlo
cloud.

lated to all the parameters of a MTL it is possible
to identify the most sensitive parameters.

Figure 3 shows the calculated bounds with re-
spect to the result obtained by the nominal val-
ues of the parameters, while Fig. 4 shows a com-
parison between the bounds calculated by the
proposed technique, with the bounds calculated
as in [8] and with the Montecarlo cloud obtained
performing 1000 random simulations.

Figures 3 and 4 show the accuracy of the
method with respect to Montecarlo simulations.

4.2 Multiconductor Transmission Line

This second test case regards a 4 conductor
transmission line, reported in Fig. 5
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Figure 5: Multiconductor transmission line.

with the following parameters:

R =

∣∣∣∣∣∣∣
6 0 0
0 6 0
0 0 6

∣∣∣∣∣∣∣
Ω
m L =

∣∣∣∣∣∣∣
231 95 0
95 231 95
0 95 231

∣∣∣∣∣∣∣
nH
m

G =

∣∣∣∣∣∣∣
15.6 0 0
0 15.6 0
0 0 15.6

∣∣∣∣∣∣∣
µS

m

C =

∣∣∣∣∣∣∣
109 −48 0
−48 157 −48
0 −48 109

∣∣∣∣∣∣∣
pF

m

the line is characterized by a length of L =
0.0156 m while the values of the input and out-
put resistances are: R1 = 30 Ω, R2 = 10 MΩ,
R3 = 30 Ω, R4 = 200 kΩ, R5 = 60 Ω, R6 = 50
kΩ.

Figures 6, 7, and 8 show the calculated bounds
at the far end of the line (i.e. the voltages at the
resistances R4, R5, and R6 and the respective
Montecarlo cloud calculated with 5000 random
variation. The accuracy of the calculated bound
can be easily seen in the figures.

A general comment can be made on the CPU
time cost of the proposed method: as clearly
adressed in section 3 the most relevant time con-
suming the activity is the inversion of the ma-
trix A, clearly depending on its dimension. The
dimension of the above mentioned matrix de-
pends on the frequency content of the input sig-
nal and the number of cells in which the line
must be divided (more details can be found in
[4]); these two parameters are related to the ve-
locity of propagation of the signal along the line
and the line length itself. The examples chosen
contain typical signals and line length charac-
teristics of high speed interconnects. In order

Figure 6: Calculated bounds and Montecarlo
cloud for conductor 1.

Figure 7: Calculated bounds and Montecarlo
cloud for conductor 2.

Figure 8: Calculated bounds and Montecarlo
cloud for conductor 3.
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to compare the proposed method and a Mon-
tecarlo procedure, it is necessary to remind an
important difference: by the use of the proposed
method the number of calculations (henceforth
the CPU time) is determined, and allows us to
find directly the bounds. As a matter of fact
there is no apriori knowledge on the number of
Montecarlo runs necessary to obtain a reason-
able upper and lower limit, therefore the total
number is chosen based on qualitative consider-
ations. The comparison we have performed re-
gard a number of Montecarlo simulations cre-
ating a cloud which is almost unchanged if we
add another set of simulations. Under this as-
sumption the proposed method is characterized
by lowering the necessary CPU time of an order
of magnitude and more.

5 Conclusion

In this paper a method for the analysis and eval-
uation of the response bounds of a Transmission
Line characterized by uncertain parameters is
shown. The bounds so obtained are compared
with a Montecarlo simulation, showing the sig-
nificance of the result.
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ABSTRACT 

We have studied magnetostatic waves excited 
and received by carbon nanotubes in the 
high-frequency band-pass filter on yttrium iron 
garnet (YIG). First, we have analyzed dispersion 
curves of magnetostatic waves in YIG based upon 
the magnetostatic approximation method. We have 
studied the characteristics of the band-pass filter 
where the high-frequency current flowing on 
single-wall CNTs may excite and receive directly 
magnetostatic waves in the ferrite film beneath 
them. Next, we have studied the device where the 
current is flowing on bundle CNTs. It is found that 
band-pass filter characteristics, such as the insertion 
loss (IL), the center frequency (f0), and bandwidth 
(BW) are significantly controlled by both the 
chirality of the CNTs and the numbers of CNTs in 
the bundle CNTs. On these results, we have 
proposed a novel ferrite device which may work to 
discriminate the chirality of CNTs and the numbers 
of CNTs in a bundle CNT. In this device, the 
chirality or the number of CNTs in a bundle CNT 
may be measured by means of the band-pass 
characteristics via the wavelength of the operating 
magnetostatic waves. 
 
I. INTRODUCTION  
Many types of magnetostatic wave devices have 

been reported as small microwave devices such as 
delay lines, filters, and oscillators, where operating 
wavelength is ranging from 10-5 m to 10-8 m [1, 2]. 
Their operating frequency depends on the 
dimension of electrodes to excite magnetostatic 
waves and it is restricted within fabrication 
accuracy. On the other hand, since the discovery of 
carbon nanotubes (CNTs) [3], the properties of 
CNTs have attracted much interest due to their 
unique structures and promising electrical 
properties. Especially the diameters of CNTs can be 

easily controlled as small as several nanometers. In 
addition, the great advantage of CNTs over 
conventional materials is that they have ballistic 
conductivities and diameter control can be achieved 
by means of self-organization. As an application to 
make use of the characteristics, we investigate the 
High-Frequency (HF) filters using CNTs for 
electrodes to excite magnetostatic waves in ferrite 
devices. Compared with the case of the HF filters 
with conventional metal-electrodes [1, 2], the CNT 
electrodes may improve the operating frequency up 
to THz region. As the operating frequency of such 
devices increases, we can realize devices which can 
handle more information than conventional ones. 

In this paper, we study magnetostatic waves 
excited and received by CNTs in yttrium iron 
garnet (YIG). We analyze dispersion curves of 
magnetostatic waves in YIG based upon the 
magnetostatic approximation method. It is found 
that, at the frequency in THz domain, magnetostatic 
waves propagate with wavelength as short as 
several nanometers. We study the band-pass filter 
characteristics of the YIG device where the 
high-frequency current flowing on single-wall 
CNTs, which are treated as cylindrical electrodes 
but reflecting the results of quantum transport 
analysis. The CNT electrodes may excite and 
receive directly magnetostatic waves in the ferrite 
film beneath them. 

In the following sections, we study the high 
frequency characteristics of the device based upon 
the magnetostatic approximation. The dispersion 
curves show the operating frequency is ranging 
from GHz region to THz, and the wavelength is 
ranging longer than a few nm. Then we analyze the 
filter characteristics of the device with single wall 
CNTs or with bundle CNTs. In order to excite and 
receive magnetostatic waves efficiently by high 
frequency current in CNTs, we may have to 
construct practical structures of CNTs to overcome 
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Fig.1. The schematic structure of the device:
Straight lines A-A' and B-B' coincide with the
axes of CNTs supplied with RFin and detected
RFout current, respectively. The line A-A' is
parallel to the line B-B' and distance between
them is v. 

attenuation of magnetostatic waves and to avoid 
other electromagnetic couplings between CNTs. 

In this paper, however, we treat the CNT as 
realistic quantum wire. It is found that band-pass 
filter characteristics, such as the insertion loss (IL), 
the band-pass center frequency (f0), and bandwidth 
(BW) are significantly controlled by both the 
chirality of the CNTs and the numbers of CNTs in a 
bundle CNT, which are used as electrodes. On 
these results, we propose a novel ferrite device, 
which will discriminate the chirality of CNTs and 
the numbers of CNTs in a bundle CNT. In this 
device, the chirality or the number of CNTs in a 
bundle CNT may be measured by means of the 
band-pass characteristics via the wavelength of the 
operating magnetostatic waves. In the final section, 
conclusions are summarized. 

 
II. A FERRITE DEVICE WITH 
SINGLE-WALL CARBON NANOTUBES  
A. Theoretical Analysis 

Consider a ferrite based HF filter using CNTs for 
electrodes to excite magnetostatic waves, whose 
schematic structure is shown in Fig. 1. The 
high-frequency current flowing through one 
single-wall CNT excites directly magnetostatic 
waves in a ferrite film and the other single-wall 
CNT receives them. Although the distance between 
the two electrodes v is not a parameter in our 
calculation, we may have to control v in practical 
structures of CNTs to overcome attenuation of 

magnetostatic waves and to avoid other 
electromagnetic couplings between CNTs. Fig. 2 
shows a cross-sectional view of the device model 
with a single-wall CNT, where r is radius of the 
CNT, and t is the thickness of YIG. We can grow 
CNTs in various processes. One of the processes 
provides good selectivity to control the 
single-walled CNT average diameter within 
angstrom accuracy. In the future, we will be able to 
grow CNTs not only with the selectivity but also in 
good accuracy of the growing position [4,5] to 
fabricate this kind of devices. 

When a bias magnetic field H0 is applied 
obliquely from x-axis of the angle φ (Fig. 1), 
magnetic permeability is expressed in the 
following tensor form (see Appendix B): 

      (1) 

where 
          (2) 

   (3) 

        (4) 

      (5) 
   (6) 

β is the propagation constant of magnetostatic 
waves, ω is angular frequency, γ is called the 
gyromagnetic ratio which is 1.759×1011 m2/Wbs, 
H0 is the bias magnetic field, M0 is the saturation 
magnetization, a is the lattice constant of YIG 
which is 1.238nm, and He corresponds to Weiss's 
molecular field [6], respectively. 

In the present simulation, current flow and 
displacement current are negligibly small 

compared to | |H∇× , where H is the magnetic 

field. Therefore we can adopt the magnetostatic 
approximation [2, 7, 8]. In the magnetostatic 
approximation, H is represented as the gradient of 
a magnetostatic potential ψ, namely 

 H ψ= −∇  

The magnetic flux density B is 0 ˆHµ µ . From  

 B 0∇ =i  
we can obtain an equation for ψ:  
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Fig. 2. A cross-sectional view of the schematic
device model with a single-wall CNT centering
around the line A-A' or B-B': The magnetostatic
wave is excited by the CNT (A-A') and received
by B-B' as shown in Fig. 1. In the cross section,
we apply the Boundary Conditions at the infinite
current points, normal (x) component of magnetic
flux density is continuous and tangential (y)
components of magnetic field and current are
continuous. The closed circles are current points
arranged at equal interval on a circle centered at
the origin of x and y coordinates. 

       (7) 

To solve this equation for our device configuration, 
we have sliced the region under consideration into 
2N pieces parallel to the y-axis as shown in Fig. 2. 
Then we can obtain ψ as follows: 

,    (8a) 

, (8b) 

 ,  (8c) 

           (8d) 

,  (8e) 

             (8f) 

, (8g) 

                (8h) 

    (8i) 

where the index of each ψ represents to be each 
region along the x-axis and t is the thickness of the 
YIG film as shown in Fig. 2. The subscript f stands 
for the YIG film and sub is the substrate. Ai and Bi 
(i=0, 1,…,2N) are amplitudes in i th air layer 
decaying toward + and - x directions, respectively. 
C and D are amplitudes in the YIG film 
propagating toward + and - x directions, 
respectively. E is amplitude in the substrate 
decaying toward -x direction. 
 Applying the continuity conditions of the normal 

(x) components of the magnetic flux density ( x

iB , 

i=0, 1, ...,2N, ,x x

f subB B ), tangential y components of 

the magnetic field ( , i=0, 1, ... ,2N, ,y y

f subH H ) and 

current density z

iJ , i=0, 1, ... ,2N as 

(9)  

The continuity conditions (9) are valid for the 
magnetostatic waves [2]. Substituting Eqs.(8) into 
Eqs.(9), we obtain the amplitude D in Eq.(8e) as  

      (10)  

where 

        (11)  

F and p will be shown in Eq. (13). All other 
amplitudes can be expressed in terms of D. For 
example, the amplitude C can be expressed as 

     (12)  

When we take F(ω, β) as a zero, it should be 
calculated for the next two cases. 
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1

(13a)  

(13b) 

where ( )3 2 1

1

2
x x xk k k= − . Although φ can be set any 

value, we set φ is zero throughout the paper for 
simplicity. CNTs with chiralities (n, 0) and (n, n) 
are called zig-zag and armchair types, respectively 
[9]. Since the current density is generally constant 
around the circumference of the single-wall CNT 
[10], it can be written as  

 (14a) 

 (14b) 

where I0 is the amplitude of the total current 
flowing through the CNT, δ(y)is the Dirac delta 
function. Then the amplitude D is expressed as 
follows using Bessel's integration formalism (see 
Appendix): 

       (15) 

From Eqs. (8) and (15), the magnetostatic potential 
ψ can be determined as a residue with the pole of 
F(ω, β).  
The electromagnetic power flowing different 

regions has been obtained using Poynting's 
theorem as 

  (16) 

where ψ* is the complex conjugate of ψ. From this 

power, the radiation resistance R±  is defined as 

          (17) 

where w is the length of the CNT electrodes. The 
insertion loss IL is basically defined as the ratio of 

the input power and the output one of the device. It 
is a figure of merit of the device which is expressed 
as 

 (18) 

In Eq. (18), Rg is the source resistance (50Ω). From 
the analysis of quantum transport in CNT [10], Rc 
is obtained as 1/2G0, where G0 is the quantum 

conductance 2e2/h. ( )R ω± in Eq. (18) includes 

only the 1st order standing wave along the 
thickness of the YIG film, respectively. Note that 
the quantum conductance is included in Eq. (18), 
since we have used CNT as excitation electrodes. 
The propagation loss, and the reactance of the 
CNTs are neglected for simplicity. We evaluate 
insertion loss as one of the characteristic values of 
the device. 
B. Numerical results 

Figure 3 shows the simulated dispersion curves 
of magnetostatic waves propagating in y-direction 
of the device. In Fig. 3, the angle φ is set to 0, the 
thickness of YIG is 10nm, µ0M0 is 0.17T, and µ0H0 
is 0.1T, respectively. The upper limit of the 
dispersion curves can be determined by the 
condition where the phase shift among each 
magnetization must be less than π. Then the 
operating frequency is limited less than 5THz. As 
the wavelength becomes 2.5nm, the operating 
frequency is 103 times as high as that in the present 
magnetostatic wave devices [1,2]. This high 
frequency operation can be achieved because 
Weiss's molecular field He strongly enhances the 
bias magnetic field. The solid line in Fig. 3 is a 
dispersion curve when µ0He is 46T [6]. The dotted 
dashed line and the broken line in Fig. 3 are the 
dispersion curves when µ0He is +/-10% larger than 
46T, respectively. 

Figure 4 shows the evidence in support of the 
validity of our calculation. We have applied our 
simulation model to a ferromagnetic material 
(nickel) and obtained the dispersion curves shown 
in Fig. 4. The solid line is obtained for the Weiss's 
molecular field of 317T [11], and the other two 
curves are for +/-10% larger field, respectively. The 
closed circles are reported experimental dispersion 
relation of the magnetostatic waves propagating in 
Ni [12]. Our results agree with the experimental 
results, although both the theoretical and 
experimental data are for Ni. Since our simulation 
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Fig. 3. Dispersion curves of the magnetostatic 
waves in THz domain excited in the YIG: Three 
dispersion curves are plotted. The solid line is 
obtained for Weiss's molecular field µ0He of 46T, 
and the other two curves are for +/-10 % larger 
field, respectively. 

Fig. 5. The frequency dependence of the insertion
loss IL for various n: When n=120, it is found that
f0=0.60THz and BW=0.19THz, respectively. When n=90,
45, and 30, we can find f0 and BW in the same way. 

Fig. 6. The chirality (n)-dependence of the center
frequency f0 and bandwidth BW of the device:
The f0 monotonously decreases as n increases,
whereas the BW becomes the maximum value as
n is near 50.

Fig. 4. Comparison of experimental dispersion
curves with those obtained from the present
simulation in Ni. 

is based on the same theory ([11] and Appendix B) 
for spin magnetization that can be equally applied 
to ferromagnetic materials, the magnetostatic 
waves can be also excited in YIG in the frequency 
range obeying the dispersion curves predicted in 
Fig. 3. In order to excite magnetostatic waves 
effectively in the device configuration shown in 
Fig. 1, the width or diameter of the excitation 
electrode must be precisely designed and fabricated 
shorter than the wavelength of the magnetostatic 
waves [7]. In our case, since the wavelengths are 
ranging from several to a hundred nm, CNT 
electrodes are suitable for the excitation of the 
magnetostatic waves in the similar way as realized 
in the conventional devices [2,7]. 

Figure 5 is the simulated frequency dependence 
of the insertion loss (IL). In this figure, we have 
assumed zig-zag type CNTs for the electrodes with 
the metallic chirality (n,0), where n=30, 45, 90, and 
120, respectively, and  w is 1µm. As seen, this 
device works as a high-frequency band-pass filter 

(BPF) in THz domain. Three characteristic values 
can be defined to specify the characteristics of this 
device: the minimum insertion loss ILmin, the center 
frequency f0, and the bandwidth BW where IL is 
less than ILmin +3dB. When n is 30, we obtain 
ILmin=24.1dB, f0=5.14THz, and BW=0.02THz 
(solid line), respectively. On the other hand, when 
n is 120, these values become ILmin =24.1dB, 
f0=0.61THz, and BW =0.19THz (broken line), 
respectively. 

Figure 6 shows the dependence of f0 and BW on 
the chirality n of the CNTs. From this figure, it is 
found that when n, in other words, the diameter of 
the CNT increases, operating wavelength becomes 
longer and f0 decreases. Taking the relationship 
between n and f0 into account, we can design the 
characteristics of the BPF by means of the diameter 
of the CNT. However, since the IL is too large for 
practical application, we will analyze the 
characteristics of the BPF with bundle CNTs in the 
next section to improve the IL characteristics. 
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Fig. 8. A cross-sectional view of the schematic 
device model with a bundle multi-wall CNT: 
The m2 CNTs, each of which is same as 
shown in Fig. 2, are aligned along x and y
directions, respectively. 

Fig. 7. The schematic structure of the device: The 
high-frequency current flowing through one 
bundle CNT excites directly magnetostatic waves 
in a ferrite film and the other bundle CNT 
receives them. Each bundle CNT consists of the 
m2 parts of the single-wall CNTs arranged along 
x and y directions, respectively. 

III. A FERRITE DEVICE WITH BUNDLE 
CARBON NANOTUBES 

A. Theoretical analysis of bundle carbon 
nanotubes 

We consider the schematic structure of the 
device with the bundle CNTs instead of single-wall 
CNTs for electrodes of the HF filter as shown in 
Fig. 7 in order to improve the performance. Figure 
8 shows a cross-sectional view of the device model 
with a bundle CNT, where r is the radius of each 
single-wall CNT, m is the numbers of CNTs along 
x and y-axes, respectively.  

Same as the previous section, to solve Eq. (7) for 
the device configuration, we have sliced the region 
into 2mN pieces parallel to the y-axis as shown in 
Fig. 8. Then we can obtain ψ in each slice as 
follows: 

 (19a) 

 (19b) 

 (19c) 

 (19d) 

 (19e) 

 (19f) 

             (19g) 

  (19h) 

where the index of each ψ represents each region 
along the x-axis in Fig. 8. 

Applying the same continuity conditions as in 
Eq. (9), we determine the amplitude D in Eq. (19e) 
as 

      (20) 

where Ji
z is given by the following equation instead 

of Eq. (14a).  

 (21) 

where 

 (22) 

The amplitude D is expressed as follows using 
Bessel's integration formalism same as the 
derivation of Eq. (15):  
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Fig. 10: The m-dependence of the minimum 
insertion loss ILmin: The ILmin monotonously 
increases as m increases. 

Fig. 11. The m-dependence of the f0 and BW: The 
f0 monotonously decreases as m increases, 
whereas the BW is almost independent of m. 

Fig. 12. The nm-dependence of the f0: The f0

monotonously decreases as the product nm
increases.

Fig. 9. The frequency dependence of the insertion
loss IL for various m: When m=50, it is found
that ILmin=9.0dB, f0=1.2THz and BW=0.4THz,
respectively. When m=20, 10, 5, 2, and 1, we can
find ILmin, f0, and BW in the same way. 

  (23) 

All other amplitudes can be expressed in terms 
of D. From Eqs. (19), and (23), the magnetostatic 
potential ψ can be obtained as a residue with the 
pole of F(ω, β). The electromagnetic power 
flowing in different regions, the radiation 
resistance , and the insertion loss IL are given 
by Eqs. (16), (17), and (18), respectively. In Eq. 
(18), Rc is given by 1/2m2G0 for the bundle CNT. 
Rg and other conditions are same as the case of 
single-wall CNT electrodes as shown in previous 
section. 
B. Numerical results 

Figure 9 shows the frequency dependence of the 
IL. In Fig. 9, the product of the chirality n and the 
numbers of the CNTs m is kept to be constant, that 
is nm=300. We assume the bundle zig-zag type 
CNTs have the metallic chirality (300/m, 0) with 
the parameter m=1, 10, 20, 50, respectively. When 
m=1, we have found ILmin=27.5dB and f0=4.4THz 

(solid line in Fig. 9). On the other hand, when 

m=50, it is found that ILmin =9.0dB and f0＝1.2THz 

(broken line in Fig. 9). Note that the insertion loss 
IL is significantly improved with the use of the 
bundle CNTs compared with the case of the 
single-wall CNT electrodes. 

Figure 10 shows the m-dependence of the ILmin. 
From this figure, it is found that when m and the 
dimension of the bundle CNT increase, ILmin 
becomes smaller. Because there is a relation 
between ILmin and impedance matching and the 
matching condition is improved by Rc in Eq. (18), 
we can improve both the IL and the impedance 
matching condition by using the bundle CNTs 
instead of single-wall CNTs. Figure 11 shows the 
m-dependence of f0. When m or the dimension of 
the bundle CNT increases, operation wavelength 
becomes longer and f0 decreases. But f0 is almost 
independent of m when m becomes larger than 20. 

Since we have kept the product nm to be constant 
(nm =300), the main reason of this m-dependence 
is that only CNTs on the surface of the YIG 
substrate efficiently excite the magnetostatic 
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waves, but on the other hand, CNTs far from the 
surface are less effective for the excitation. When 
the numbers m is less than 20, f0 strongly depends 
on m since each CNT has a large diameter and the 
excitation mainly occurs at the point of contact 
between each CNT and the YIG surface. On the 
other hand, as the number m becomes larger, the 
diameter of each CNT becomes smaller and the 
distance between each contact point becomes 
smaller. When m exceeds 20, the excitation occurs 
almost everywhere on the YIG surface because the 
distance between each contact point is less than 
1.2nm. Therefore, even when m becomes larger 
than 20, the characteristics do not change 
drastically. 

On the contrary, the product nm significantly 
affects the performance of the device. Figure 12 
shows the nm dependence of the f0. The product nm 
has the obvious relations with the f0 and we can 
design the characteristics of the BPF by means of 
dimension of the bundle CNT. Reversely, these 
characteristics enable us to discriminate nm by 
measuring the ILmin, f0, and BW of the BPF. The 
BPF with the bundle CNTs has the relationship 
between n and f0 due to the same reason as the 
single-wall CNTs, the characteristics of the BPF 
can be determined by means of the dimension of 
the bundle CNT. That is, this device may work as a 
discriminator of the number of CNTs and diameter 
of the each CNT in the bundle, respectively. 

From Figs. 10 and 11, operating frequency f0 
reaches nearly 1 THz but the minimum insertion 
loss ILmin is about 9dB when m is 50. We may then 
realize an oscillator with operating frequency up to 
one THz if we could use a circuit made of an 
amplifier and a feedback loop whose total gain is 
more than 9dB. 

IV. CONCLUSION 

We have analyzed dispersion curves of 
magnetostatic waves in YIG excited by CNT 
electrodes based upon the magnetostatic 
approximation method. It is found that such 
magnetostatic waves have the wavelength as small 
as several nanometers and operate at the frequency 
in THz domain. We have verified our calculation 
by comparing with experimental data in Ni. We 
have studied the band-pass filter characteristics of 
the YIG device where the high-frequency current 
flowing on single-wall CNTs. The characteristics 

of IL-frequency, ILmin, f0 and BW have been 
evaluated varying the diameter or the chirality of 
the CNT. As a result, it is found that we can design 
the BPF by means of diameter of the CNT and 
improve the operation frequency into THz region.  

To reduce the IL for practical application, we 
have proposed a BPF with bundle CNTs as 
electrodes. ILmin is found to be improved from 
27.5dB to 9.0dB by using bundle CNTs with m=50 
instead of single-wall CNTs.  

On these results, we have proposed a novel 
ferrite device which will operate as a discriminator 
of the chirality of CNTs and the number of CNTs in 
a bundle CNT. In this device, the chirality and the 
number of CNTs in a bundle CNT may be 
measured by means of the band-pass characteristics 
via operating wavelength. 

From the m-dependence of the ILmin, f0, and BW, 
we have proposed feasibility to realize an oscillator 
up to one THz, where we need a circuit consisting 
of an amplifier and a feedback loop whose total 
gain is more than 9dB.  
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APPENDIX A: DERIVATION  
OF AMPLITUDE D 

The right hand side of Eq.(10) can be expressed 
as the integrated form when N goes to infinity:  

   (A1) 

Applying the Bessel's integration formalism to 
the R.H.S. of Eq. (A1), we obtain  

   (A2) 

where J0(0) is the 0-th Bessel function.  Noting 
J0(0) = 1, Eq.(A2) can be expressed as  
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Fig. 13: Schematic model of the spin-exchange's
addition to the resonance frequency of the ferrite
in bias magnetic field with z-direction. 

w  (A3) 

Finally the amplitude D can be expressed as  

     (A4) 

 
APPENDIX B: DERIVATION  
OF THE ADDITIONAL FREQUENCY  
DUE TO THE SPIN INTERACTION 

Consider a schematic model with an array of 
1-dimensional electronic spins as shown in Figure 
13. The motion of equation for the magnetization 

 of the spin can be described as follows similar 
to Eq. (16) in [11]:   

       (B1) 

where i implies the site of the spin. The exchange 
magnetic field which acts on the i-th spin is 

       (B2) 
where  corresponds to the Weiss's molecular 
field. In general, the magnetization  can be 
represented in the polar coordinate as 

  (B3) 
Assuming that the motion of electronic spins is in 
the equilibrium, θi is nearly equal 0 when the 
high-frequency magnetization is quite smaller than 
the bias magnetization, and the phase-difference 
between neighboring electrons  is constant, 
we can obtain the followings, respectively: 

              (B4a) 

          (B4b) 
 (B4c) 

 
where  is the wave number of magnetostatic 
wave, a is the distance between neighboring 
electronic spins in Figure 13. These assumptions 
are similar to those adopted in the derivation of 
spin waves in the literature [11]. Substituting Eqs. 
(B2), (B3) and (B4) into Eq. (B1), we can obtain 

     (B5) 

When He ≡ λMs and ωhe (β)≡ dψ /dt, Eq. (B5) 
becomes 

   (B6) 
which is added to the magnetic resonance 
frequency  of conventional permeability and 
the permeability becomes as shown in Eqns. (3) 
and (4). 
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Abstract - In this study, the standard methods of monopole 
antenna calibration are interrogated and the use of 
alternative methods is investigated. For this purpose, the 
GTEM cell has been used for two standard identical 
monopole antenna calibrations. The dummy antenna 
(≈10pF by ANSI, ≈12pF by CISPR), which is suggested as 
standard methods in ANSI C.63.5 and CISPR 16.1.4 are 
not appropriate to simulate the actual monopole. So 
Manufacture Antenna Simulator (MAS) has been used as 
an alternative equivalent circuit substitution method 
(ECISM) of the rod. Good agreement between GTEM 
measurement and ECISM is observed. Calibrations with 
standard and alternative methods are performed and the 
reliability of these methods is discussed in the frame of the 
measurement results.  
 
Keywords -  Antenna calibration, GTEM cell, monopole 
antenna, equivalent circuit substitution method. 
 

I. INTRODUCTION 
Monopole antennas are commonly used for radiated emission 
measurements in the frequency range 10 kHz to 30 MHz. In 
EMC compliance testing, the accuracy of calibration plays an 
important role in the rod antenna range. Determining the 
antenna factor (AF) is a major step in making accurate field 
strength measurements for EMC compliance. There are well-
established antenna calibration methods [1] (ANSI 
C.63.5/1998) to calculate these antenna factors at open area 
test sites (OATS). However, alternative methods utilizing 
different test setup and sites, like GTEM Cell (Gigahertz 
Transverse ElectroMagnetic) [2, 3] and Full Anechoic 
Chamber (FAC), (SAE ARP 958,1999) are also brought forth 
in recent years [4].  
 
The most common method of calibrating rod antennas is the 
Equivalent Capacitance Substitution Method (ECSM). In this 
method, a dummy antenna consisting of a capacitor equal to 
the self-capacitance of the rod or monopole is used instead of 
the actual rod. The value of the capacitor should be calculated 
according to the CISPR 16-1-4 [5]. It is not possible to 
simulate the right interaction of the rod antenna (including 
monopole, ground plane, coupling/amplifier unit) with the site 
ground using the dummy antenna. The insertion loss of 
capacitor decreases as the value of capacitor decreases. That 
is the point that the correct value of capacitor plays important 
key role on the antenna factor. In practice, calibration 
procedure of the radiated emission test (RE102) according to 
MIL-STD-461E [6] requires the substitution of the rod 
element of the monopole antenna with 10 pF capacitor and 

application of a signal at a level 6 dB below the limit. The 
measured signal level in the receiver should, in this method, 
be between ± 3 dB amplitude range of the applied signal 
level. However, this is not the case in many calibration 
measurements performed. That is, calibration with 10 pF 
capacitor does not fit the manufacture data. In most cases the 
capacitor method is accurate to within ± 2dB, but breaks 
down above about 10 MHz [7].  
 
Other method of monopole calibrations given by at the 
National Institute of Standards and Technology (NIST) at 
open area test site is based on using a transmitting monopole 
to generate a known electromagnetic field at the site of the 
antenna under test (AUT). If the separation distance is not 
large enough, the incident field is not constant along the 
length of the AUT; this introduces the non-planarity error in 
the determination of the antenna factor. There is also another 
effect known as mutual impedance coupling of the antenna 
[8].  
 
Once upon a time, TEM cells have been used for determining 
antenna factors for low frequency antennas, monopoles, loops 
and higher frequency probes. This calibration method has 
some limitations because of the upper cut-off frequency of the 
Cell indeed. 
 

II. ALTERNATE CALIBRATION PROCEDURES AND 
MEASUREMENTS 

 
With deficiencies of these methods in mind one has to take 
other methods should in to account. These methods are 
GTEM cell and Equivalent CIrcuit Substitution Method 
(ECISM) The aim of this work is to investigate the possibility 
of alternative calibration methods for monopole. This paper 
shows an alternate method determining antenna factor of a 
monopole in GTEM cell, and gives consistent comparative 
data. 
 
As an alternative test site, GTEM cells have been proposed 
for small antenna measurements [9]. Since the field strength 
inside the GTEM cell is well correlated to the input power, 
the antenna factor can be measured accurately provided that 
the antenna size is not bigger than the test volume, at a point 
where the field strength is uniform and can be precisely 
determined. The procedures of antenna calibration for 
monopole in GTEM 1750 cell (MEB GTEM 1750, the height 
of maximum test volume is 1.75 m, DC to 1 GHZ, nominal 
impedance is 50 ohm, VSWR is 1:1.5, field uniformity; <±4 
dB) is to place the monopole antenna at the center of the test 
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volume, aligned in such a way that the linearly polarized 
antenna is oriented vertically (perpendicular to the septum) in 
the linearly polarized test volume between the septum and the 
floor of the GTEM cell (Fig. 1).   
 

 
 
Fig. 1. Test setup for determining the antenna factor in GTEM 

cell. 
 
The field strength inside GTEM Cell is given by 

h
V

E i=                                               (1) 

where 
E : Electric Field Strength (Volts/meter), 
Vi : Input RF Voltage (Volts), 
h : Septum Height  (meter), 
and  the definition of antenna factor is 

)log(20
0V

EAF =                                        (2) 

where 
AF: Antenna Factor (m-1), 
V0: Antenna output voltage (Volts). 
 
Combining (1) and (2) yields 

)/1log(20)log(20)log(20 0 hVVAF i +−=  .          (3) 
 

Whereby equation (3) gives the antenna factor of the rod. An 
EMC Analyzer (Agilent 7405), a signal generator (R&S 
SMY01), a power meter (R&S NRVD), a power amplifier 
(AR), a directional coupler and MEB GTEM 1750 were used 
in calibration process. Two identical 41 inch R&S antennas 
(Rod#1, Rod#2) have been calibrated in the frequency range 
10 kHz to 30 MHz. For the verification of the antenna factor 
obtained using GTEM cell and ECISM Measurements, the 
same antennas were also calibrated using standard methods 
(Fig. 2).  
 
We also checked the dummy antenna consisting of a capacitor 
equal to the self-capacitance of the rod or monopole used in 
place of the actual rod by using SNEC (Super Numerical 
Electromagnetic Code Ver. 2.55) for the reliability of ECSM 
Method (Fig. 3). We observe good agreement between SNEC 
data and CISPR data. ANSI data is approximately 2 dB lower 
than other data in this frequency range. 
 

 
 
Fig. 2. Test setup of ECSM calibration method. 
 

 
 

Fig. 3. Capacitance of dummy antenna (calculated -
simulated). 

  
It is observed that the capacitor value increases with the 
frequency. The results yield 2 dB uncertainty above 15 MHz. 
Another uncertainty comes from the variation of the effective 
length of the rod with the frequency.  
 
ECISM is based on the insertion loss measurement of antenna 
matching network (AMN) with antenna simulator used 
instead of the actual rod. Using Manufacture Antenna 
Simulator (MAS) (Fig. 4) instead of dummy capacitor in 
order to make another effective check on the GTEM cell data. 
In addition, s-parameters of MAS circuit have been calculated 
using Microwave Office V. 2.66. A Network Analyzer was 
used to measure the related parameters. Measurement and 
calculation results were found to be very close (0.1 dB) (Fig. 
5.) It has been understood that this circuit is very well 
matched at 50 ohm.  
 
We measured insertion loss of the Antenna Matching 
Network (AMN) with MAS The resulting data gives the rod 
antenna factor.  
In all measurements, traceable devices have been used and all 
cable attenuations have been taken into account.   
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Fig. 4. Manufacture antenna simulator (MAS). 
 

 
Fig. 5. S12 of  MAS. 

 
In order to make better comparison of the results, and also to 
check the general curve of AMN response we have obtained 
the insertion loss (IL) curve of the AMN and then calculated 
antenna factor by adding contribution of effective length of 
the rod . 
 
Antenna factors of Rod#1 and Rod#2 are obtained by using 
AF-ECSM, AF-ECISM (Equivalent CIrcuit Substitution 
Method), AF-IL (Insertion Loss of AMN) and AF-GTEM  
(measured and calculated). 
It has been observed that antenna factor values obtained using 
GTEM and ECISM methods were very close in the frequency 
range 10 kHz − 25 MHz (Fig. 6 and Fig. 7). However, it has 
been also observed that results obtained using these methods 
are approximately 2 dB different from the ECSM and IL 
results (2.6 dB above 25 MHz). The difference between 
GTEM calculated and GTEM measured data may come from 
the raised location of feed point on the floor of GTEM and the 
tilt angle. In high frequency range (above 25 MHz), IL curve 
of antenna matching circuit is similar in GTEM and ECISM 
methods. The difference between GTEM and ECSM may 
come from the instability of the 10-pF capacitance (it should 
be 12.5 pF as given in Fig. 3) values through the frequency 
range, the high production tolerance of the capacitor and 
effective length of the antenna. Small changes on the effective 
length of the antenna may result large error to the antenna 
factor. For example the 5cm change is gives approximately 1 
dB error.  

 
 

Fig. 6. Antenna factor (Rod#1). 
 
 

 
 

Fig. 7. Antenna factor (Rod#2). 
 
 

 
III. FEASIBILITY CONSIDERATIONS AND 

UNCERTAINTIES 
 
The obvious error sources in GTEM cell are reflections from 
the termination section. Since the antenna is placed in the 
testing volume it will receive signal directly from the port of 
the cell and another signal from termination section where 
there is reflection with a power reflection coefficient of 
typically –25 dB for the TEM mode. Another source of error 
is higher order GTEM wave-guide modes, which cause 
unwanted field fluctuations in the test volume inside GTEM 
cell [10]. This error can be cancelled at the low frequency 
measurements. 
We present the uncertainty of antenna calibrations in the 
frame of the conventional uncertainty estimation where partial 
derivates of the fundamental formula constitute the basis of 
uncertainty budget [11]. Parameters acting in this budget are 
impedance discontinuity (antenna-cable, GTEM cable), signal 
generator/EMC analyzer specifications, cable attenuation, 
direction coupler and repeatability. The overall expanded 
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uncertainty is calculated to be ± 1.01 dB in the frame of these 
parameters. The uncertainty of GTEM 1750 field uniformity 
has not been added in the uncertainty budget. 
  

IV. CONCLUSIONS 
 
• Two identical monopole antennas covering the 

frequency range 10 kHz-30 MHz were calibrated by 
using GTEM cell and ECISM. 

• Good agreement between the GTEM and ECISM was 
observed. 

• Capacitance and effective length of the dummy antenna 
varies with frequency. This variation brings an 
additional 2 dB uncertainty above 10 MHz. This 
uncertainty does not include the tolerance of 10-pF 
capacitor. 

• Antenna is an element that converts electric field to 
voltage and AF identifies the rate of this conversion. In 
GTEM calibration AF is determined by making 
measurements, hence precluding uncertainties arising 
from dummy antenna. Note that capacitor used instead 
of the antenna in ECSM method cannot fully simulate 
the antenna.  

• If the separation distance is not large enough in NIST 
method, the incident field is not constant along the 
length of the AUT, this introduces the non-planarity 
error in the determination of the antenna factor. And 
NIST calibration method gives free space antenna factor 
of monopole antenna. Practically monopole antennas are 
used in EMC compliance measurements, in which there 
is a 1-meter distance (especially for Military Standards) 
from EUT (Equipment Under Test). It is well-known 
free space antenna factor and 1m-antenna factor are 
different at each other so we suggest the GTEM results 
to be used reliably for 1m EMC measurements.  

• In the previous works, GTEM cell has been used for 
antenna calibration in the frequency range 300 MHz to 
higher frequency [2,3] This works shows to assure the 
suitability of the GTEM for antenna calibration in the 
lower frequency range. 

• Additional work is performed to determine transmit 
antenna factor of the passive rod antenna, using the 
reciprocity property of the GTEM. 
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Abstract: In this paper, we construct a new scheme 
for approximating the solution to infinite dimensional 
non-separable Hamiltonian systems of Maxwell’s 
equations using the symplectic partitioned Runge-Kutta 
(PRK) method. The scheme is obtained by discretizing 
the Maxwell’s equations in the time direction based on 
symplectic PRK method, and then evaluating the 
equation in the spatial direction with a suitable finite 
difference approximation. The scheme preserves the 
symplectic structure in the time direction and shows 
substantial benefits in numerical computation for 
Hamiltonian system, especially in long-term 
simulations. Also several numerical examples are 
presented to verify the efficiency of the scheme. 

 
I. INTRODUCTION 

 
Symplectic schemes include a variety of different 

time discretization schemes designed to preserve the 
global symplectic structure of the phase space for a 
Hamiltonian system. They show substantial benefits in 
numerical computation for Hamiltonian system, 
especially in long-term simulations. Since the 
Maxwell’s equations can be written as a system of 
infinite-dimensional Hamiltonian equations, the proper 
solution should be obtained using the symplectic 
schemes, which preserve the symplectic structure in the 
time direction. The conservation of symplecticness 
must be considered for solving Maxwell’s equations. 
Recently, the symplectic schemes have been adapted in 
computational electromagnetic (CEM). The advantages 
of the symplectic schemes have been verified in [1]-[6]. 
These schemes are almost constructed under the 
assumption that the Hamiltonian system of Maxwell’s 
equations is separable [1,4,6]. In fact, when the 
scattering objects are presented the corresponding 
Hamiltonian system is non-separable [7]. Thus the 
assumption limits the application of the symplectic in 
the area of CEM.  

In this paper, we will explore the application of the 
symplectic scheme for non-separable Hamiltonian 
system of Maxwell’s equations, i.e. the scattering object 
is presented, using a symplectic PRK scheme [7−8] for 
the first time. For convenience we will discuss details 
of the scheme only for second-order explicit method, 

however, the high order explicit scheme could be 
obtained using similar symplectic PRK scheme for 
infinite dimensional non-separable Hamiltonian system 
of Maxwell’s Equations. We will also present several 
numerical examples to confirm the accuracy of our 
scheme. 

 
II. HAMILTONION SYSTEM AND 

SYMPLECTICSCHEMES 
 
Maxwell’s Equations as Hamiltonian System 

Within linear isotropic material, the basic equations 
can be written as 

t
∂

= −∇×
∂
B E                              (1) 

1 1
t µε ε

∂
= ∇× −

∂
E B J                       (2)               

Where B, E, J andµ , ε  are magnetic flux density, 
electric flux density, current density and permeability, 
permittivity, respectively. In this paper, µ and ε  are 
assumed to be constant. 

Under the Hamiltonian framework, (1) and (2) can be 
rewritten in a form of an infinite dimensional 
Hamiltonian system. By introducing two temporary 
variables Y and A such that 
= −Y E                                (3) 
= ∇×B A                                 (4) 

We now can write Maxwell’s Equations with (3) and (4) 
into the following infinite dimensional Hamiltonian 
system 

t
∂ ∂

=
∂ ∂
A

Y
H

                                (5) 

t
∂ ∂

= −
∂ ∂
Y

A
H

                               (6) 

where H  is a Hamiltonian energy function  
given by 

2 2

( , )

1 1 1
2 2

H

dV
µε ε

=

 
+ ∇× − ⋅ 

 
∫

A Y

Y A J A
    (7)   
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For simplicity we will focus our discussion on the 
Maxwell’s equations in two- dimensional (2-D) TM 
case, where A and - Y denote the z -component of the 
vector potential and the electric displacement, 
respectively [9]. Thus combined with eqn. (7), eqn. (5) 
and eqn. (6) can be rewritten as follows 

z
z

A Y
t

∂
=

∂
                                  (8)                                                            

2
z z zY A J

t µε ε
∂ ∇

= +
∂

                         (9) 

field components are derived from zA  and zY  as 
follows: 

z zE Y= −                                 (10)                                                

1 z
x

AH
yµ

∂
=

∂
                             (11) 

1 z
y

AH
xµ

∂
= −

∂
.                           (12)  

                           
Symplectic Schemes for Hamiltonian System 

Here we assume that all Hamiltonian systems 
considered are autonomous, i.e. they are 
time-independent. As for time-dependent the schemes 
are similar [6]. 

Often the case that zJ  acts as independent sources 

of E-field, i.e. z sourceJ J= , the corresponding 
Hamiltonian system (7) is called separable [1,7]. There 
exists little difficulty in solving eqn. (8) and eqn. (9) 
using explicit symplectic schemes [10−11]. 
When allowing for general cases where materials with 
electric losses that attenuate E-field, this yields: 

z source zJ J Eσ= +                         (13)                                               
where σ  is the electric conductivity. The 
Hamiltonian system (7) is non-separable, how to handle 
this situation, to the authors knowledge, has not given 
rise to a thoroughly answer up to now. Fortunately, in 
this case we can also obtain high order explicit 
symplectic schemes for eqn. (8) and eqn. (9) with 
composite symplectic partitioned Runge-Kutta (PRK) 
method [7−8]. 

In this paper particular, we only consider the 2-stag 
symplectic PRK Lobatto Ⅲ A- Ⅲ B method of 

second-order with the temporal error of 3( )O dt (see 
[7]). When applied in eqn. (8) and eqn. (9) 
with z zJ Eσ= , the scheme has the following forms, 

1( , ) ( , ) ( , )
2

n n
z z z

dtA i j A i j Y i j= +             (14) 

1

1

2( , ) ( , )
2

2 [ ( , )]
(2 )

n n
z z

z

dtY i j Y i j
dt
dt L A i j

dt

ε σ
ε σ
ε

µε ε σ

+ −
= +

+

⋅ +

        (15) 

1 1 1( , ) ( , ) ( , )
2

n n
z z z

dtA i j A i j Y i j+ += +          (16)               

where ( , )n
zA i j and ( , )n

zY i j  are respectively for the 

discrete value of zA and zY  at mesh point ( , )i j  

and the n -th time step, 1( , )zA i j  are the intermediate 

value, dt  is the time increment, L  is a difference 
operator approximating the 2∇  operator and it allows 
flexibility during the selection of the spatial 
discretizations. Here we select the most commonly used 
central discretizations to approximate 2∇  operator in 
our examples. Given appropriate absorbing boundary 
conditions (ABC) in computation domain, we can solve 
Maxwell’s equations using the symplectic PRK 
scheme. 
 

III. NUMERICAL RESULTS 
 
A TEM wave propagation in one dimension 

We first consider a one-dimensional TEM wave 
propagation problem within a finite domain [0, 2π] 
along the x -axis. We discretize the problem using a 
uniform grid with N = 200 subintervals and choose the 
time step 0.1dt dx= . We set both µ  and ε  be one 
and take EY (x,0) =cosx, Hz (x,0) =cosx as the initial 
conditions. In addition, the boundary conditions are the 
periodic boundary conditions. Compared with exact 
solution and the second-order symplectic PRK scheme 
(S-PRK2o), the x -axis variation of the electric flux 
density Ey at 10,000 and 15,000 time steps is displayed 
in figure 1. The electric flux density profile propagates 
without any changes in the profile. The results clearly 
show that the present scheme is pretty good for 
long-term simulations. 

 
Wave propagation in two dimensions 

Next we consider a two-dimensional TM case 
involving a sinusoidal source of frequency 30GHz. The 
source is generated in the middle of the problem 
domain. We use Mur's ABC [12] to truncate the 
computational domain [0,1] × [0,1]. We also discretized 
the problem on the domain with Nx = Ny = 100 grid 

points in each direction and with 
2

dxdt
µε

= . Figure 

2 demonstrates a simulation for the electric flux density 
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Ez after the 5,000 time steps. As comparison, we 
simulate the problem using standard FDTD under the 
same conditions. The results show the efficiency of the 
present scheme. 

 

 
 
Fig. 1. Comparison of Ey calculated by S-PRK2o and 
exact solution after 10,000 and 15,000 time steps. 
 

 
 

(a) Symplectic PRK scheme (S-PRK2o) 
 

 
 

(b) Standard FDTD  

 
                                  

(c) The electric flux density Ez at grid j = 50 
 

Fig. 2. The drawings of electric flux density zE  after 
5,000 time steps. The source is sinusoidal source and 
generated in the middle of the problem domain. The 
absorbing boundary conditions are the Mur's ABC. (a), 
(b) The phase of Ez in the x-y plane. (c) The amplitude 
of Ez at y-grid j = 50. 
 
Plane wave impinging on a infinite square 
cylinder 

In this example, we consider the scattering of a plane 
wave impinging on a infinite square cylinder with side 
length a = 2λ (λ = 1×10-2 m), where λ is wavelength. 
The incident plane wave is a TM case and propagates 
from the left. We discretize the problem on the domain 
with Nx = Ny = 100 grid points in each direction and 
with dx = dy = λ/40, dt = dx/2(µε)1/2 independently. 
Here we also use Mur's ABC to truncate the 
computational domain. The numerical solution after 
1,000 time steps using present scheme and the standard 
FDTD method under the same conditions are presented 
in Fig. 3. Figure 3 (a) and (b) demonstrate the 
distributions of the electric flux density Ez after the  

 

 
(a) Symplectic PRK scheme (S-PRK2o) 
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(b) Standard FDTD (FDTD) 
 

 
 

(c)  The electric flux density Ez at grid j = 100 
 
Fig. 3. The distributions of the electric flux density Ez 
after the 1,000 time steps. The incident plane wave is a 
TM case and propagates from the left. The absorbing 
boundary conditions are the Mur's ABC. (a), (b) The 
amplitude of the Ez in the x - y plane. (c) The amplitude 
of Ez at y- grid j = 100. 
 
1,000 time steps. Figure 3 (c) shows the electric flux 
density Ez at point j = 100 grid. The results indicate 
that the performance of symplectic PRK scheme 
(S-PRK2o) are as at least efficient as the standard 
FDTD. 
 
 

IV.  CONCLUSION 
 

We construct and present a symplectic PRK scheme 
(S-PRK2o) for the non-separable Hamiltonian system 
of Maxwell’s Equations. The scheme is second-order 
explicit and has the temporal error of 3( )O dt . Our 
numerical examples demonstrate that the scheme is 
very effective in computing different types of wave 

propagations and scattering for the Maxwell’s 
Equations. 

Although the scheme is second-order explicit 
method, the high order explicit scheme could be 
obtained using similar symplectic PRK scheme for 
non-separable Hamiltonian system of Maxwell’s 
Equations. Our numerical tests are running on the 
regular domain using square mesh, but the scheme 
could be adopted to compute the problem on any 
irregular domain. 
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2. Code performance analysis.  This usually involves 

identification of numerical accuracy or other limitations, 
solution convergence, numerical and physical modeling 
error, and parameter tradeoffs.  However, it is also 
permissible to address issues such as ease-of-use, set-up 
time, run time, special outputs, or other special features. 

 
3. Computational studies of basic physics.  This involves 

using a code, algorithm, or computational technique to 
simulate reality in such a way that better, or new 
physical insight or understanding, is achieved. 

 
4. New computational techniques, or new applications for 

existing computational techniques or codes. 
 
5. “Tricks of the trade” in selecting and applying codes 

and techniques. 
 
6. New codes, algorithms, code enhancement, and code 

fixes.  This category is self-explanatory, but includes 
significant changes to existing codes, such as 
applicability extensions, algorithm optimization, problem 
correction, limitation removal, or other performance 
improvement.  Note: Code (or algorithm) capability 
descriptions are not acceptable, unless they contain 
sufficient technical material to justify consideration. 

 
7. Code input/output issues.  This normally involves 

innovations in input (such as input geometry 
standardization, automatic mesh generation, or 
computer-aided design) or in output (whether it be 
tabular, graphical, statistical, Fourier-transformed, or 
otherwise signal-processed).  Material dealing with 
input/output database management, output interpretation, 
or other input/output issues will also be considered for 
publication. 

 
8. Computer hardware issues.  This is the category for 

analysis of hardware capabilities and limitations of 
various types of electromagnetics computational 
requirements. Vector and parallel computational 
techniques and implementation are of particular interest.  

Applications of interest include, but are not limited to, 
antennas (and their electromagnetic environments), networks, 
static fields, radar cross section, shielding, radiation hazards, 
biological effects, electromagnetic pulse (EMP), 
electromagnetic interference (EMI), electromagnetic 
compatibility (EMC), power transmission, charge transport, 
dielectric, magnetic and nonlinear materials, microwave 
components, MEMS technology, MMIC technology, remote 
sensing and geometrical and physical optics, radar and 
communications systems, fiber optics, plasmas, particle 
accelerators, generators and motors, electromagnetic wave 
propagation, non-destructive evaluation, eddy currents, and 
inverse scattering. 
 
Techniques of interest include frequency-domain and time-
domain techniques, integral equation and differential equation 
techniques, diffraction theories, physical optics, moment 
methods, finite differences and finite element techniques, 
modal expansions, perturbation methods, and hybrid methods.  
This list is not exhaustive. 
 
A unique feature of the Journal is the publication of 
unsuccessful efforts in applied computational 
electromagnetics.  Publication of such material provides a 
means to discuss problem areas in electromagnetic modeling.  
Material representing an unsuccessful application or negative 
results in computational electromgnetics will be considered 
for publication only if a reasonable expectation of success 
(and a reasonable effort) are reflected.  Moreover, such 
material must represent a problem area of potential interest to 
the ACES membership. 
 
Where possible and appropriate, authors are required to 
provide statements of quantitative accuracy for measured 
and/or computed data.  This issue is discussed in “Accuracy 
& Publication: Requiring, quantitative accuracy statements to 
accompany data,” by E. K. Miller, ACES Newsletter, Vol. 9, 
No. 3, pp. 23-29, 1994, ISBN 1056-9170. 
 
EDITORIAL REVIEW 
 
In order to ensure an appropriate level of quality control, 
papers are peer reviewed.  They are reviewed both for 
technical correctness and for adherence to the listed 
guidelines regarding information content.   
 
JOURNAL CAMERA-READY SUBMISSION DATES  
 
March issue   deadline 8 January 
July issue   deadline 20 May 
November issue  deadline 20 September 
 
Uploading an acceptable camera-ready article after the 
deadlines will result in a delay in publishing this article. 



STYLE FOR CAMERA-READY COPY 
 
The ACES Journal is flexible, within reason, in regard to 
style.  However, certain requirements are in effect: 
 
1. The paper title should NOT be placed on a separate page.  

The title, author(s), abstract, and (space permitting) 
beginning of the paper itself should all be on the first 
page.  The title, author(s), and author affiliations should 
be centered (center-justified) on the first page. 

 
2. An abstract is REQUIRED.  The abstract should  be a 

brief summary of the work described in the paper. It 
should state the computer codes, computational 
techniques, and applications discussed in the paper (as 
applicable) and should otherwise be usable by technical 
abstracting and indexing services. 

 
3. Either British English or American English spellings 

may be used, provided that each word is spelled 
consistently throughout the paper. 

 
4. Any commonly-accepted format for referencing is 

permitted, provided that internal consistency of format is 
maintained.  As a guideline for authors who have no 
other preference, we recommend that references be given 
by author(s) name and year in the body of the paper 
(with alphabetical listing of all references at the end of 
the paper).  Titles of Journals, monographs, and similar 
publications should be in italic font or should be 
underlined.  Titles of papers or articles should be in 
quotation marks. 

 
5. Internal consistency shall also be maintained for other 

elements of style, such as equation numbering.  As a 
guideline for authors who have no other preference, we 
suggest that equation numbers be placed in parentheses 
at the right column margin. 

 
6. The intent and meaning of all text must be clear.  For 

authors who are NOT masters of the English language, 
the ACES Editorial Staff will provide assistance with 
grammar (subject to clarity of intent and meaning). 

 
7. Unused space should be minimized.  Sections and 

subsections should not normally begin on a new page. 
 
PAPER FORMAT  
 
The preferred format for initial submission and camera-ready 
manuscripts is 12 point Times Roman font, single line spacing 
and double column format, similar to that used here, with top, 
bottom, left, and right 1 inch margins.  Manuscripts should be 
prepared on standard 8.5x11 inch paper. 
 
Only camera-ready electronic files are accepted for 
publication.  The term “camera-ready” means that the 
material is neat, legible, and reproducible.  Full details can 
be found on ACES site, Journal section. 
 
ACES reserves the right to edit any uploaded material, 
however, this is not generally done. It is the author(s) 

responsibility to provide acceptable camera-ready pdf files.  
Incompatible or incomplete pdf files will not be processed,  
and authors will be requested to re-upload a revised 
acceptable version.  
 
SUBMITTAL PROCEDURE 
 
All submissions should be uploaded to ACES server through 
ACES web site (http://aces.ee.olemiss.edu) by using the 
upload button, journal section. Only pdf files are accepted for 
submission. The file size should not be larger than 5MB, 
otherwise permission from the Editor-in-Chief should be 
obtained first. The Editor-in-Chief will acknowledge the 
electronic submission after the upload process is successfully 
completed.  
 
COPYRIGHTS AND RELEASES 
 
Each primary author must sign a copyright form and obtain a 
release from his/her organization vesting the copyright with 
ACES. Copyright forms are available at ACES, web site 
(http://aces.ee.olemiss.edu). To shorten the review process 
time, the executed copyright form should be forwarded to the 
Editor-in-Chief immediately after the completion of the 
upload (electronic submission) process.  Both the author and 
his/her organization are allowed to use the copyrighted 
material freely for their own private purposes. 
 
Permission is granted to quote short passages and reproduce 
figures and tables from and ACES Journal issue provided the 
source is cited.  Copies of ACES Journal articles may be 
made in accordance with usage permitted by Sections 107 or 
108 of the U.S. Copyright Law.  This consent does not extend 
to other kinds of copying, such as for general distribution, for 
advertising or promotional purposes, for creating new 
collective works, or for resale.  The reproduction of multiple 
copies and the use of articles or extracts for commercial 
purposes require the consent of the author and specific 
permission from ACES.  Institutional members are allowed to 
copy any ACES Journal issue for their internal distribution 
only.  
 
PUBLICATION CHARGES 
 
ACES members are allowed 12 printed pages per paper 
without charge; non-members are allowed 8 printed pages per 
paper without charge.  Mandatory page charges of $75 a page 
apply to all pages in excess of 12 for members or 8 for non-
members.  Voluntary page charges are requested for the free 
(12 or 8) pages, but are NOT mandatory or required for 
publication.  A priority courtesy guideline, which favors 
members, applies to paper backlogs.  Authors are entitled to 
15 free reprints of their articles and must request these from 
the Managing Editor.  Additional reprints are available to 
authors, and reprints available to non-authors, for a nominal 
fee. 
 
ACES Journal is abstracted in INSPEC, in Engineering 
Index, and in DTIC. 
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