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Abstract: In this paper an optimized high-order 
implicit finite difference time domain (FDTD) 
solver with one-sided total-field/scattered-field 
(TF/SF) excitation is developed for numerical 
simulation of integrated optical components. The 
optimized FDTD algorithm reduces the number of 
operations and the storage requirements to perform 
the matrix inversion using LU decomposition. It is 
shown that the one-sided TF/SF formulation is 
more accurate in launching the exact power into 
the simulation domain as well as decreasing the 
load on the PML-ABCs. The implementation of 
this tool was done in the Prometheus program, a 
software package of Kymata Netherlands. 
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1. Introduction 
 

There are different wave modeling 
techniques that are successfully used in modeling 
integrated optical structures. Finite difference time 
domain (FDTD), Fourier transform-beam 
propagation method (FT-BPM), finite difference-
beam propagation method (FD-BPM), and finite 
element beam propagation method (FE-BPM) are 
the most popular and useful techniques for the 
simulation of integrated optics structures. FT-
BPM, FD-BPM, and FE-BPM were developed for 
the case of weakly guiding structures where the 
use of the paraxial approximation and the 
neglection of any back reflections offer solutions 
in the frequency-domain. These characteristics 
limited the use of these methods when these 
assumptions are no longer valid.  

The FDTD method overcomes the 
disadvantages of the previous methods. In 
simulating guided-wave optics the method became 
increasingly popular due to its attractive features 
such as ease of implementation and full-wave 
simulation including multiple reflections and 
radiation. The first FDTD algorithm proposed by 
Yee [1] provides a simple and a direct solution to 
the Maxwell’s equations. However, the Yee FDTD 

scheme that is second order in both space and 
time, we refer to it as Yee(2,2), is dispersive, less 
accurate, and computational expensive. Higher-
order FDTD schemes [2] overcome these 
problems but come at a higher computational cost. 
In this paper we implemented an implicit fourth 
order scheme in space and second order in time 
[3], we refer to it as Implicit(2,4). The 
Implicit(2,4) scheme introduces substantial 
accuracy and improvement over Yee(2,2) and 
because it is unconditional stable arbitrary time 
steps can be chosen. Detail analysis of the 
dispersion and accuracy of the Yee(2,2) and 
Implicit(2,4) schemes were performed in 1D and 
the results in [4]. The Implicit(2,4) algorithm 
requires the inversion of a tridiagonal matrix, 
which can be replaced by decomposing the matrix 
using the LU decomposition. We derive a simple 
algorithm to perform the LU decomposition. The 
new algorithm reduces the number of operations 
and the storage requirements to perform the LU 
decomposition.  

It is known that implementation of sources 
in FDTD simulations requires more complicated 
procedures. The complications come from the 
requirements to terminate waveguides that are 
extended beyond the grid boundaries. All 
excitation techniques intend to couple the exact 
incident power to the FDTD grid, allow back 
reflected waves to pass through the excitation 
position, to avoid the interaction between 
simulated sources and the absorbing boundary 
conditions (ABCs), and, finally, to decrease the 
load on the ABCs. A popular method is the use of 
the total-field/scattered-field (TF/SF) method [5]. 
By introducing the TF/SF formulation, the 
simulation domain will be divided into three 
domains: the total-field domain, the scattered field 
domain, and the ABCs domain (we use the 
perfectly matching layer PML ABCs in all our 
simulations). The SF domain offers information 
about any scattered field meanwhile decreasing the 
load on ABCs.  
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In most of the structures of interest to our 
work the amount of scattering on the right side of 
the simulation domain is much less compared to 
the left side and therefore no scattered field region 
is added on the right side of the simulation 
domain. We refer to such formulation the one-
sided TF/SF formulation. Implementation as well 
as illustrative example of the one-sided TF/SF 
formulation is described in detail in Section 3.  

Finally the developed simulation tool was 
used to analyze a number of structures that are 
excited by waveguides. The accuracy of the results 
was compared to the accuracy of the Prometheus 
program (a beam propagation based solver). 

This paper is organized into four sections 
as follow. Following this Introduction Section, 
Section 2 introduces the optimized LU 
decomposition of the Implicit(2,4) FDTD scheme. 
Section 3 introduces the one-sided TF/SF 
formulation and some simulation results obtained 
using this formulation together with the 
Implicit(2,4) FDTD scheme and the PML-ABCs. 
Finally, Section 4 presents conclusions about the 
work we presented. 
 

2. Differential Equations and Difference 
Notations in 1D 

 
In a 2D setting, assuming that both the 

fields and the dielectric structure are constant 
along the direction, Maxwell equations 
decouple into two sets (we introduce the 
normalized fields and  as 

y −

E H 0 0/ε µ= ,EE  

, with the speed of light in free space =H H
0 1/c 0 0ε µ

yH

=

xE , zE ,

, and we drop the hat above the 
normalized fields) One set is constituted by 
electromagnetic fields with vanishing components 

    .
 

( )0r t y z x x zE c H Hε ∂ = ∂ − ∂ ,

,

.

              (1) 

0t x z yH c E∂ = ∂                           (2) 

0t z x yH c E∂ = − ∂                          (3) 
 
These fields are called the TE fields. The second 
set has vanishing    components.  yE , xH , zH
 

( )0t y z x x zH c E E∂ = − ∂ −∂ ,               (4) 

0r t x z yE c Hε ∂ = − ∂ ,                     (5) 

0r t z x yE c Hε ∂ = ∂ .                      (6) 

These fields are called TM fields. The two sets are 
completely decoupled; there is no common field 
vector component. Therefore TE and TM fields 
constitute two possible classes of solutions for 
two-dimensional electromagnetic problems. If the 
medium is inhomogeneous along the x -direction, 
then boundary conditions at material interfaces 
imply that , yE

yE
x

∂
∂ , and  are continuous for 

TE fields. For TM fields  and  are 

continuous while 

zH

yH zE
yH
x

∂
∂  is not.  

We introduce and derive some notations 
for the finite differences that will be used for the 
FDTD schemes under consideration. For 
simplicity we consider a one dimensional finite 
difference notation. We apply and analyze 
different FDTD schemes in 1  and then extend 
the implementation of the most appropriate 
scheme to . The TE field equations in 1  are  

D

2D D
 

0r t y z xE c Hε ∂ = ∂ ,                       (7) 

0t x z yH c E .∂ = ∂                         (8) 
 
As shown in Figure 1 and as proposed by Yee [1], 
the discretization points for and  are 
interleaved in space and time. We present 
notations for approximating the first and second 
derivatives in space or time at certain position 
using the neighboring points. We denote by 

yE yH

ζ  
either  or . We assume equidistant 
discretization with the step size ∆  in the -
direction and the time step size  and define 

yE

n t

xH

)

z
t∆

z

(n
i i zζ ζ= ∆ , ∆ .  zδ  and 2

zδ  are the 
approximations to the first and second derivative 
with respect to , respectively. z

 
Fig. 1. Position of discretization points in a 1D 
grid, circles. 
 
We differentiate between two grids. The first grid 
is the staggered grid in which  and  are 
located in space as in Fig. 1, the second grid is the 

yE xH
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non-staggered grid in which  and  are 
located at the same space and time positions.  

yE Hy

(O z+

∆

(O t+

(O t .∆

1
n
i+ ∆

1 2
n
iζ + /= + )z

(O z+

(O+

)+
n
iζ

For the staggered grid we define the following 
finite difference expressions  
 

21
1 2 )

n n
n i i

z i z
ζ ζδ ζ +

+ /

−
=

∆
              (9) ∆

1 1
2 21

2 21 2 1 2 ( )
n n

n i i
z i O z

z
ζ ζδ ζ

+ +
+ + / − /−
= +

∆
          (10) 

1
2

1
2)

n n
n i i

t i t
ζ ζδ ζ

+
+ −
=

∆
∆

1 1
2 2

1 1
2 2

1
2

2)
n n
i in

t i t

ζ ζ
δ ζ

+ −
+ +

+

−
= +

∆
           (12) 

 
For higher order FDTD schemes we use also the 
following non-symmetric stencils, for the second 
order spatial derivatives  
 

2 21
1 2 2

2 ( )
( )

n n
n i i

z i  O z
z

ζ ζ ζδ ζ −
+ /

− +
= +

∆         (13) 
1 1 1
2 2 21

22 3 2  1 2
2

2 (
( )

n n
n i i

z i  O
z

ζ ζδ ζ
+ + +

+ − / − /− +
∆ 

.  (14) 2∆

 
and for non-staggered grid  
 

21 1 )
2

n n
n i i

z i z
ζ ζδ ζ + −−

=
∆

             (15) ∆

1 1
2)

n n
n i i

t i  t
t

ζ ζδ ζ
+ −−

=
∆

             (16) ∆

2 21 1
2

2 (
( )

n n
n i i

z i  O z
z

ζ ζδ ζ − +− +
=

∆      (17) 
∆ .

 
The minor problem or disadvantage when 

using staggered grids is the need to perform post-
processing calculation/interpolation to evaluate 
field values at the same spatial and temporal 
positions. These requirements complicate the 
simplicity of the FDTD scheme and require 
additional computation time and programming 
effort. 
 

2.1 Yee Scheme 
 

Yee formulated the first FDTD scheme [1] 
on a staggered grid using a second order accurate 
approximation to the spatial and time derivatives. 
We will refer to it as Yee(2,2), where (2,2) refers 
to the order of accuracy in time and space, 

respectively. For the 1  TE fields given by 
equations (7) and (8), the Yee(2,2) scheme will 
have the form  

D

 
1 1
2 2

0
ii

n n
r t y z xi
E c Hε δ δ

+ += ,                (18) 
1
2

1 1
2 2

0
i i

nn
t x z yH c Eδ δ

+ +

+
= .                  (19) 

 
Equations (18) and (19) are rewritten to yield 
explicit expressions for  given 1n

yE
+ 1

2n
xH
+  and  

and for 

n
yE

1
2n

xH
+ given  and n

yE
1
2n

xH
− .

xH

 Thus, from 

initial field distribution , the algorithm can 

advance alternatingly  and  in time. The 
Yee(2,2) algorithm is a conditionally stable 
algorithm which means that the time and space 
steps must satisfy certain criteria. In 1  the 

stability criteria is 

0
yE

yE

D

0

z
c

t ∆
∆ ≤  . 

2.2 A Fourth Order Implicit Scheme with 
Optimized LU Decomposition 

In this paper we considered an implicit 
fourth order scheme in space and second order in 
time [3]. We refer to it as Implicit(2,4). The 
derivation of the Implicit(2,4) scheme starts with 
calculating the truncation error to the fourth order 
when approximating the first derivatives. This 
leads to  
 

1 1
2 2

2
2 4

1 2 1 21 2

( )(1 ) ( )
24

n n
z i z z ii

z O zδ ζ ζ+ +
+ / + /+ /

∆
= + ∂ ∂ + ∆  (20) 

 
and by introducing a discrete approximation to the 
operator 2

1 2z i+ /
∂  by 2

1 2i
δ

+ /
, we obtain  

 
1
2

1
2

2
2 4

1 2
1 2

( )(1 ) ( )
24

n
n

z i
i

z O z
z
ζδ ζ δ

+
+
+ /

+ /

∆ ∂
= + +

∂
∆ .  (21) 

 
Demonstrated here for 1D problems, the 

field values at the grind points are calculated in 
two steps. In the first step the values of the first 
order derivatives are calculated directly from the 
difference equation and in the second step these 
derivatives are expressed explicitly in terms of the 
field values of the neighboring grid points. The 
second step involves the inversion of a matrix, 
which is tridiagonal except at the first and last 
rows (this because of the need to use one sided 
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          (13) 

          (17) 

mjinman
.



fourth order accurate implicit approximations to 
the derivatives at the first and last points at the 
boundary).  In 2D and 3D the spatial derivatives 
are approximated in the same way and the 
matrices that relate the fields with their derivatives 
will be the same. 
  The inversion of the tridiagonal matrix can 
be replaced by decomposing the matrix using the 
LU decomposition. Performing the LU 
decomposition requires 5N operations and L and 
U will be bidiagonal matrices, except at a few 
rows, with one of them containing ones on the 
diagonal [3]. Therefore it is possible to store the 
results of the LU decomposition using only 3 
vectors each of size N.  

We derive a simple and optimized 
algorithm that can be used to perform the LU 
decomposition specifically for the discretized 
matrix from the Implicit(2,4) scheme. The 
discretized matrix of the system in (21) will have 
the form, dropping the time dependence notation 
for the moment  
 

1 01 2

2 13 2

3 25 2

1 23 2

11 2

26 5 4 1 0 0
1 22 1 0 0 0
0 1 22 1 0 0 24

0 0 1 22 1
0 1 4 5 26

z

z

z

z N NN

z N NN

z

ζ ζ ζ
ζ ζ ζ
ζ ζ ζ

ζ ζ ζ
ζ ζ ζ

 
 /
 
 
 /
 
 

/  
 
 
 
 
 − −− /  
 
  − − /

 ∂  −− − . 
   ∂ −.   
   ∂ −.

=   . .. . . . . . . ∆  
   ∂ −. .
  
∂ −. . − −      

 . (22) 

 
Performing one time Gauss elimination to the first 
and last rows only results in  
 

11 2

2 13 2

3 25 2

1 23 2

1 2

0 1 0 0 0 0
1 22 1 0 0 0
0 1 22 1 0 0 24

0 0 1 22 1
0 0 0 1 0

z

z

z

z N NN

z NN

b

z

b

ζ
ζ ζ ζ
ζ ζ ζ

ζ ζ ζ
ζ

 
 /
 
 
 /
 
 

/  
 
 
 
 
 − −− /  
 
   − /

 ∂ . 
   ∂ −.   
   ∂ −.

=   . .. . . . . . . ∆  
   ∂ −. .
  
∂. .      

  (23) 

with  

1 2 1 32

1 (27( ) ( ))
(24)

b 0ζ ζ ζ ζ= − − −     (24) 

and  

2 1 32

1 (27( ) ( ))
(24)N N N Nb ζ ζ ζ ζ− − −= − − N− .(25) 

 
When simulating TE fields, the process of 

solving the linear system will be repeated twice for 
 problems, four times for 2  with PML-

ABCs. For a large number of time steps, the 
computation time of the Implicit(2,4) scheme may 
limit the use of the scheme for simulating large 
structures. Hence, any optimization to the LU 
decomposition process will effectively reduce the 

total computation time. Rather than performing the 
LU decomposition on the systems in (22) or (23) 
as proposed in [3], we eliminate 

1D D

3 2zζ /
∂  and 

3 2z N
ζ

− /
∂  from (23) and perform the LU 
decomposition. The resulting system has the form  
 

 
11 2

25 2

37 2

49 2

9 2

7 2

5 2

1 2

1 1 0 0 0 0
0 22 1 0 0 0
0 1 22 1 0 0
0 0 1 22 1 0

24

0 1 22 1 0 0
0 0 1 22 1 0
0 0 0 1 22 0
0 0 0 0 1 1

z

z

z

z

z N

z N

z N

z N

b
b
b

z

ζ
ζ
ζ
ζ ζ

ζ
ζ
ζ
ζ

/

/

/

/

− /

− /

− /

− /

 ∂ . 
   ∂.   
   ∂.
   ∂ −.   
   . =. . . . . . .
  ∆ 
∂.   
   ∂.   
∂.   
   ∂.      

3

4 5

2

1

N N

N

N

N

b
b
b

ζ

ζ ζ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 
 

− 
 
 

− 
 
    

.
−

 

(26) 
 
with  
 

2 2 1( ) 2b b12ζ ζ= − −                   (27) 

3 3 2( )b 1bζ ζ= − −                      (28) 

2 3 2( )N N Nb bNζ ζ− − −= − −              (29) 

1 2 1( )N N Nb b22 Nζ ζ− − −= − −            (30) 
 
The LU decomposition of the matrix in 20 will 
result in two matrices L and U of the following 
form  
 

1

1 2

2 3

1

1 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1

p p

p

a
a a

aL U a

a a
a

−

. .   
   . / .   
 .  / .
   .∗ = / .   
   . . . . . . . . . . . . . .
   

. . . / .   
   . .    

 

(31) 
where p equals to N-2. The values of a  can be 
calculated using the simple expression  

i

 

1
1

1 1 2 3 4 .
22 22i

i

a a i
a −

p= , = , = , , ,...,
−

  (32) 

 
Due to the round off error and the 

precision accuracy, we found that 6ia a≈  for 

 with error less than 10 . This suggests 
storing only the values   This not 
only reduces the number of operations and the 
storage requirements to perform the LU 
decomposition but also reduces the number of 
operations to solve the linear system using the 

6i 15−

1 2i = .ia , 6.,...,
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above LU formulation. The algorithm used to 
solve the linear system  will be carried 
out by solving  with Y U  For the first 
system the algorithm will have the form 

LUX b=
=

2 2Y b=
3 4 5i = , , ,....,

X

1p

LY b=

1 1Y b= ,

2 1iY− −∗

=

2 2p p

X

pY X + =

i i p, = −

1 1 2

Y
,

a
2

+ += ,

1 1( )iX + −∗
X Y X= −

mµ

ω,
D

yE

.

p

 

2i i iY b a p= − +     (33) 
 
and for solving Y U  
 

1X + ∗  

1 2i iX Y a p= − − ,....,  
.                       (34) 

 
 

2.3 Accuracy of Different FDTD Schemes 
 

We confirm the second and fourth order of 
accuracy with respect to the spatial discretization 
of the previously presented FDTD schemes in one 
dimension, similarly the extension in two 
dimensions. The results shown in Figure 2 are 
obtained for a sinusoidal wave with wavelength 
1 0 mµ.
z −

 propagating in free space in the positive 
direction over a distance of 10 , where N is 

the number of discretization points. For 1rε = , 
angular frequency  and wavenumber k,  an 
exact solution of the 1  TE field equations can be 
found. 
 
 

 
Fig. 2.  norm of the difference between the 

numerical and exact values for  field at the last 
time step using the Yee(2,2), Explicit(2,4), and 
Implicit(2,4) scheme at different points per 
wavelength. 

2L

 
 
 

3. One-Sided Total-Field/Scattered-Field 
Formulation 

 
The total-field/scattered-field (TF/SF) 

technique [5] is an efficient way to increase the 
quality of simulations through reducing the load 
on the ABCs and by offering information about 
scattered fields. The TF/SF was originally 
proposed for free space problems and for 
modeling point sources, which are not of great 
practical interest in integrated optics problems.  

The simulation domain is divided into 
three domains: the total-field domain, the scattered 
field domain, and the PML domain, as in Figure 3. 
The formulation is based on the linearity of the 
Maxwell equations and on decomposing the 
electric and magnetic fields as sum of two 
components, one in the total field region and 
another in the scattered field region  
 

t iE E Es= + ,

s

                         (35) 

t iH H H= + ,                         (36) 
 
where iξ  is the incident field value, sξ  is the 
scattered field value, and tξ  is the total field 
value, { }E Hξ = , . 
 

 
             Fig. 3. The FDTD regions for 1D TF/SF grid. 

 
Consider the 1D mesh as shown in Fig. 3 

where two scattered-field regions are defined on 
both ends of the simulation domain. We call this 
formulation two-sided TF/SF formulation. In most 
of the structures of interest to our work the amount 
of scattering on the right side of the simulation 
domain is much less compared to the left side and 
therefore no scattered field region is added on the 
right side of the simulation domain. We refer to 
such formulation the one-sided TF/SF formulation.  

The black dots in Fig. 4 are the positions 
of the electric field yE , and the gray dots are the 

positions of the magnetic field . In the total-
field region, the FDTD algorithm is applied to the 
total field, while in the scattered-field region it is 
applied to scattered field only. On the interface 
between these two regions the incident field is 

xH
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taken into account. Details of these formulation in 
 , and 3  are well documented in [5]. For 

the  TE Yee(2,2) scheme, only two FDTD 
update equations need modification. The first for 
the  field update equation at the TF-SF 

interface and the second for the  field update 
equation at the first point to the left to the TF-SF 
interface [5].  

1 ,D 2D
1D

yE

D

xH

The discretization equations of the FDTD 
scheme with one-sided TF/SF formulation for 2D 
structures are similar to those introduced in [5] 
with one difference that is simply having no 
scattered field region at the right side of the 
simulation domain, see Fig. 4(a).  As described in 
[5] the incident fields at all time steps need to be 
known for regions around the total-field – 
scattered-field interfaces. These fields are obtained 
from a separate simulation and are used as incident 
fields in the same regions. If the same incident 
fields are used to excite different structures then 
these fields can be stored and used in these 
simulations. Otherwise two simulations are run 
simultaneously, one for calculating the incident 
fields and are used as the incident fields in the 
same regions in the second simulation. Running 
two simulations approximately doubles both the 
memory and computational time requirements 
compared to running a single simulation and using 
stored values of the incident fields in the incident 
field regions. For our work the two simulation 
approach was selected and implemented for 
arbitrarily choosing the incident structures, the 
incident propagating mode, the simulation window 
etc. 

Figs. 4(a) and 4(b) show the domains of 
the two FDTD simulations that run 
simultaneously. In the first simulation, the 
waveguide that is used to excite the structure in 
4(a) is extended to the right hand side of the 
FDTD domain, see Fig. 4 (b). The waveguide is 
excited by incident modal field using the hard 
source excitation (the modal profile of the 
propagating mode of interest is obtained from a 
separate mode solver program, the width and 
refractive indices of both the exciting waveguide 
and background are inputs to this mode solver). 
Hard source excitation has the advantage of 
coupling the exact power into the FDTD grid 
compared to other excitations [2], [4].  

In the second simulation with the 
configuration shown in Fig. 4 (a), at each time step 
fields obtained from the first simulation at the 
incident field regions are used to introduce the 
incident field in the same regions. For most of our 

simulations the size, number of cells, of the 
scattered-field region was equal to those of the 
PML region. 

 

 
(a) 

 

 
(b) 

Fig. 4. (a) 2D one sided-TF/SF problem geometry, 
(b) 2D-problem domain for simulation of the 
incident field in the absence of any structures 
inside the TF region. 
 
   The following example demonstrates how 
the developed FDTD scheme with the one-sided 
TF/SF formulation works. Fig. 5 (b) shows the 
intensity plot of the  field for TE polarization 
for the cos-bend waveguide sketched in Fig. 5 (a), 
with width 0 5

yE

.  mµ , length 10  mµ , offset  2
mµ , and dα  0 1.  mµ . At the plane in and plane 

out positions the cos-bend is connected to a 
waveguide with the same width of the cos-bend 
and a length  2 mµ . The refractive index of the 
background is 1 0.  and a refractive index of 3 0.  in 
the guiding regions. No special treatment was 
applied to dielectric interfaces and structures with 
magnetic material were not considered in this 
work. 

The computational window is 5 15×  mµ  
in the x - and -directions, and the wavelength is z
1 5.  mµ , z∆  and x∆  were chosen to be 0 05.  
mµ  and simulation is performed for 300  fs  

with  equal to dt 0 05.  fs . The values for the 
PML parameters are 8, 3, 10 for the number of 
PMLs cells, the polynomial degree of the 
conductivity profile, and the reflectivity, 
respectively, in both the z- and x-directions. Fig. 5 
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(c) shows the intensity of the incident field 
propagating in the extended waveguide. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) cos-bend waveguide, (b) the intensity of 
the  field in the SF region, (c) The intensity 

plot of TE-  field propagating in an extended 

waveguide used in the TF/SF excitation. 

yE

yE

 
The developed simulation tool was 

integrated into the Prometheus program, a 
software package of Kymata Netherlands 
company (currently C2V) [6]. Prometheus is a 
design, simulation and mask layout platform for 
integrated optics devices.  

Two examples are presented here to 
validate the accuracy of the developed simulation 
tool. In the first example a straight waveguide is 
excited by the modal filed of the fundamental 

mode and the overlap coefficient between the 
input field and the output field at the end of the 
waveguide is calculated. All the temporal field 
values of the  component for both the input and 

output field are stored. Then they are Fourier 
transformed and the overlap is calculated. The 
overlap coefficient for a waveguide with 
parameters 

yE

1 55 mµ. ,  3 mµ ,  1 mµ ,  5 mµ ,  5 mµ  
for the wavelength, the refractive index of the 
waveguide, the background refractive index, the 
x -section and -section of the computational 
window, respectively, is found to be 0.996.  Figure 
6 shows the plot of the normalized amplitude of 
the input and output field of the waveguide. 

z

 
Fig. 6. Start and end field of a waveguide 
simulation. 
 

The second example that validates the 
accuracy of the developed simulation tool is a 
directional coupler was modeled using the 
Prometheus program and the developed simulation 
tool. Figure 7 (a) shows the intensity plot of 
the field for a directional coupler of length 75  yE

mµ , this is also the length of the computational 

window, widths of the waveguides are 1 mµ  and 

core separation is 1 mµ .  Figure 7(b) shows the 

intensity plot of  field calculated using 

Prometheus program of Kymata software. 
yE

The wavelength was  5 mµ ,  smaller 
wavelengths require long waveguides which 
means a huge number of grid points, and the width 
of the computational window in the x -direction 
was  10 mµ .  The step size was 0 1  and 0 2. 5.  

mµ  in the x - and -directions, respectively. The 
coupling length calculated using the Prometheus 
program 

z

20 6303. mµ  while the one calculated 
using the developed simulation tool is 
20 62143. mµ . 
 

84 ACES JOURNAL, VOL. 20, NO. 1, MARCH 2005



 
(a) 

 
(b) 

Fig. 7. The intensity plot of the  field 
component for a directional coupler, (a) calculated 
using the FDTD method, (b) calculated using the 
Prometheus software program of Kymata 
Netherlands. 

yE

 
The results presented in the previous two 
examples show that the accuracy of the developed 
simulation tool is in good agreement with the 
accuracy of the Prometheus program, a widely 
accepted software package in the integrated optics 
community. 
 

4. Conclusions 
 

An optimized implicit high-order finite difference 
time domain (FDTD) solver with one-sided total-
field/scattered field formulation for time 
dependent numerical simulation of integrated 
optical components is developed and its accuracy 
was verified versus results calculated by the 
Prometheus program. A reduced LU 
decomposition was developed for inverting 
matrices that arise from the implicit FDTD 
scheme. Although implicit high -order FDTD 
schemes are unconditional stable, implementing 
them seem to be feasible only for 1D or 2D 
problems due to the increasing computational cost 
compared to explicit schemes. 
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