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ABSTRACT
An efficient probe compensated near-field–far-field
transformation technique from irregularly spaced bi-
polar samples is developed in this paper. The singular
value decomposition method is applied to recover the
uniformly distributed data, whose position is fixed by a
nonredundant sampling representation of the
electromagnetic field. Then an optimal sampling
interpolation algorithm is used for reconstructing the
plane-rectangular samples required to carry out the
standard near-field–far-field transformation. This last
step is required to benefit by the use of FFT algorithm.
Numerical examples are reported to assess the
effectiveness of the proposed technique.

1 . INTRODUCTION
The method of constructing antenna radiation patterns
from near-field (NF) measurements has been widely
investigated in the last two decades and used for
applications ranging from cellular phone antennas to
large phased arrays and complex multi-beam
communication satellite antennas. It has been proved to
be an efficient and attractive alternative to conventional
far-field (FF) range and compact range measurements.
There are diverse methods for the FF evaluation
depending on the ways data are acquired. Among them,
that employing the bi-polar scanning [1-3] is
particularly attractive for its mechanical characteristics.
The antenna under test (AUT) rotates axially, whereas
the probe is attached to the end of an arm which rotates
around an axis parallel to the AUT one. This allows
one to collect the NF data on a grid of concentric rings
and radial arcs (see Fig. 1). The bi-polar scanning
maintains all the advantages of the plane-polar one [4,
5] while providing a compact, simple and cost-effective
measurement system. In fact, only rotational motions

are required and this is convenient since rotating tables
are more accurate than linear positioners. Moreover,
since the arm is fixed at one point and the probe is
attached at its end, the bending is constant and this
allows one to hold the planarity.
An efficient probe compensated NF–FF transformation
technique with bi-polar scanning has been developed in
[3] by taking advantage of the nonredundant sampling
representations of electromagnetic (EM) fields [6],
properly extended to the probe voltage (the voltage
measured by a nondirective probe has the same effective
bandwidth of the field [7]). An optimal sampling
interpolation (OSI) algorithm has been applied to
recover the plane-rectangular data from the bi-polar
ones, thus enabling the FFT use in the NF–FF
transformation. Such a technique allows one to lower
the number of needed NF data in a significant way with
respect to the approach in [1, 2], without losing the
efficiency.
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Fig. 1 - Geometry of the problem.
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Unfortunately, due to an inaccurate control of the
positioning systems, it may be practically impossible
to get regularly spaced NF measurements. On the other
hand, their position can be accurately read by optical
devices. Moreover, the finite resolution of the
positioning devices prevents the possibility to locate
exactly the receiving probe at the points fixed by the
sampling representation. According to these
considerations, the development of an accurate and
stable reconstruction process from the knowledge of
nonuniformly distributed data becomes relevant. It must
be stressed that, in this context, the formulas available
in literature for the direct reconstruction from
nonuniform samples are not user friendly, unstable and
valid only for particular sampling points arrangements.
A convenient strategy is to recover the uniform
samples from those irregularly spaced and then
determine the value at any point of the scanning surface
by an accurate and stable OSI formula. In this
framework, the approach proposed in [8, 9] is based on
an iterative technique which has been found convergent
only if it is possible to build a biunique correspon-
dence, which associates at each uniform sampling point
the nearest nonuniform one. With reference to the field
reconstruction on a plane, this restriction has been
overcome in [10] by developing an approach based on
the use of the singular value decomposition (SVD)
method [11] for reconstructing the uniform plane-polar
data. This latter approach is preferable to that based on
the iterative technique, since it is more flexible and
allows one to take advantage of data redundancy for
increasing the algorithm stability [10].
The aim of this paper is just the extension of the NF–
FF transformation technique with bi-polar scanning
developed in [3] to the case of irregularly spaced NF
data.

2 . THEORETICAL BACKGROUND
A point on the scanning plane can be specified by the
bi-polar coordinate system using the AUT angle a, the
angle d and the arm length L (see Fig. 1). The polar
coordinates r, j are related to them by the following
relations:

r d= ( )2 2L sin  ; j a d= - 2 . (1)

To cover the circular scanning region with a bi-polar
scanner, the probe passes from one acquisition ring to
another by travelling along the arc described by the end
of the arm. During this movement, the AUT stays
fixed. Once the probe is located on the ring to be

considered, the AUT rotation allows one to perform the
data acquisition at the sampling points. The choice of
the distance from one ring to another and the angular
sampling rate on them can be fixed according to a
nonredundant sampling representation, which uses
radial lines instead of radial arcs, thus remarkably
reducing the number of rings and sampling points on
them as shown in [3]. Moreover, if the AUT is quasi-
planar, an effective source modelling [6] is obtained by
choosing the surface S enclosing it coincident with the
smallest oblate ellipsoid having major and minor semi-
axes equal to a and b (see Fig. 1). Note that, because
of the rotational movement of the scanner arm, the
positions of the samples on the n-th ring are shifted by
j x d0 2( )n n= -  with respect to the corresponding
ones in the plane-polar grid.
According to [6], when considering an observation
curve C described by an analytical parameterization
r r= ( )x , the “reduced electric field”

F E( ) ( ) ( )x x g x=  ej  , (2)

g (x)  being a phase function to be determined, can be
closely approximated by a spatially bandlimited
function. For electrically large antennas, the
bandlimitation error becomes negligible as the
bandwidth exceeds a critical value Wx  and can be
effectively controlled by choosing a bandwidth equal to
c'Wx , c'> 1 being an excess bandwidth factor. When
considering a radial line, by adopting Wx b p= l' /2  (b
being the wavenumber and l'  the length of the ellipse
C ' , intersection curve between S and the meridian
plane), we get:
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where E(. | .)  denotes the elliptic integral of the second
kind [12], e = f a  is the eccentricity of C ' , f  is its
focal distance, u r r f= -( ) /1 2 2 , v r r a= +( ) /1 2 2  are
the elliptic coordinates, r1 2,  being the distances from
the observation point P to the foci of C ' . Moreover,
sin-1u = J • , J •  being the polar angle of the
asymptote to the hyperbola through P.
When the observation curve is a ring, it is convenient
to utilize the azimuthal angle j  as parameter and the
corresponding bandwidth
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Wj (x) = b a sinJ • (x) . (5)

By taking into account that the voltage measured by a
nondirective probe has the same effective bandwidth of
the field, the above theoretical results hold also for the
probe voltage and then the “reduced voltage” Ṽ  at the
point (x,j)  on the radial line fixed by j  can be
evaluated via the OSI expansion:

˜ ,V x j( ) =

˜ ,V Dn N n N n

n n p

n p

x j x x x x( ) -( ) -( )
= - +

+

Â W "

0

0

1

(6)

where n0 = Int( / )x xD , 2p is the number of retained
samples and
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N W' Int '= +( )c x 1 ; N N N= -" ' (8)

c > 1 being an oversampling factor needed to control
the truncation error. Moreover,
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are the Dirichlet and Tschebyscheff Sampling (TS)
functions, respectively, TN ◊( )  is the Tschebyscheff
polynomial of degree N, and x x0 = pD .
The intermediate samples ˜ ( , )V nx j  are given by:

˜ ,V nx j( ) =

˜ , , , ,V Dn m n M m n M m n

m m q

m q

n nx j j j j j( ) -( ) -( )
= - +

+

Â W "

0

0

1

(11)

where ˜ ( , ),V n m nx j  are the uniformly spaced samples
on the ring specified by xn , 2q  is the number of
retained samples along j, m n n0 0= -Int( )( ( ))/j j x jD
and
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1 1
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sin . (14)

The basic theory of the classical probe compensated NF
measurements on a plane as proposed in [13] is based
on the application of the Lorentz reciprocity theorem.
According to such a theory, the AUT far-field
components are related to: i) the two-dimensional
Fourier transforms of the output voltages VV  and VH
of the probe for two independent sets of measurements
(the probe is rotated by 90° in the second set); ii) the
far-field components radiated by the probe and the
rotated probe, when used as transmitting antennas. The
key relations in the reference system used in the present
work are explicitly reported in [3, 10]. However, these
equations are valid whenever the probe maintains its
orientation with respect to the AUT and this requires its
co-rotation with the AUT. Obviously, the scanning
equipment is remarkably simplified when this is
avoided. Probes exhibiting only a first-order azimuthal
dependence in their radiated far-field (f.i., an open-ended
cylindrical waveguide excited by a TE11 mode) can be
used without co-rotation, since VV  and VH  can be
evaluated from the measured voltages Vj and Vr,
through simple trigonometric relations [3].
According to the above considerations, an efficient
probe compensated NF–FF transformation from a
nonredundant number of bi-polar data is achieved by
recovering the values of VV  and VH  in the plane-
rectangular grid needed to perform the described NF–FF
transformation.

3 . NF DATA RECONSTRUCTION FROM
NONUNIFORM SAMPLES

Let us now assume that, apart from the sample at the
origin of the coordinate system on the scan plane, the
irregularly distributed samples lie on K Nus≥
nonuniformly spaced rings (see Fig. 2), where Nus  is
the number of the rings uniformly spaced according to
the nonredundant sampling representation considered in
the previous section. This hypothesis can represent the
spatial distribution of the NF measurements. In fact,
since the scanning procedure fixes each ring by means
of a rotational movement of the arm and collects the
data on it by rotating the AUT, errors can occur on the
ring location and on the position of the samples on it.
As a consequence, the starting two-dimensional
problem is reduced to find the solution of two
independent one-dimensional problems. In this frame-
work, let us assume to know the probe voltage at
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J M k≥ +2 1"  nonuniform sampling points ( , )x jk j  on
the nonuniform ring having radius r x( )k . The
corresponding reduced voltage at each nonuniform
sampling point can be expressed via the OSI expansion
(11), so obtaining the linear system

˜ ,V k jx j( ) =

˜ , , , ,V Dk m k M j m k M j m k

m m q

m q

k k
x j j j j j( ) -( ) -( )

= - +

+

Â W "

0

0

1

j J= 1,..., (15)

It can be rewritten in matrix form as

A x b= , (16)

where b is the sequence of the known nonuniform
samples, x  is the sequence of the unknown uniformly
distributed samples, and A  is the J M k¥ +( " )2 1
matrix, whose elements are given by the weight
functions in the considered OSI expansion:

a Djm M j m k M j m kk k
= -( ) -( )W j j j j, ,"  . (17)

It is useful to note that, for a fixed row j, these
elements are equal to zero if the index m is out of the
range [ ( , ) ,m qk j0 1x j - + m qk j0 ( , ) ]x j + . The best
approximated solution (in the least squares sense) of the
overdetermined linear system (16) is obtained by using
the SVD algorithm.
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Fig. 2 - Distribution of nonuniform samples.

Let us now tackle the problem of evaluating the probe
voltage at a generic point P ( , )x j  on the plane from the
knowledge of the recovered uniform samples on the
irregularly spaced rings. To this end, the OSI expansion
(11) can be employed to determine the intermediate
samples ˜ ,V kx j( )  (crosses in Fig. 2) on the radial line
through P . Since the intermediate samples are
nonuniformly distributed on the considered radial line,
the voltage at P can be found in analogous way by
recovering the regularly spaced intermediate samples
again via SVD and then interpolating them via the OSI
expansion (6). The overdetermined linear system to be
considered is now:

˜ ,V kx j( ) =

˜ ,V Dn N k n N k n

n n p

n p

x j x x x x( ) -( ) -( )
= - +

+

Â W "

0

0

1

k K= 1,..., (18)

which can be expressed in matrix  form as (15).
It must be stressed that, in order to minimize the
computational effort for computing the plane-
rectangular data needed to perform the probe
compensated NF–FF transformation described in the
previous paragraph, it is convenient to determine on
each ring the same number N j  of uniform samples
with plane-polar distribution. This number is fixed
according to the sampling rate on the outer ring. In
such a way, although the so recovered NF data are
redundant in j, the number of SVD on the radial lines
is minimized since these samples are radially aligned. It
is worthy to note that the overall number of SVD
required to recover these samples is K N+ j . Once
these latter have been determined, the plane-rectangular
data can be evaluated by using the corresponding OSI
expansion in [5].

4 . NUMERICAL RESULTS
The validity of the developed technique has been
assessed by many numerical tests. The following
simulations refer to the field radiated by a uniform
planar circular array having diameter equal to 33.6 l, l
being the wavelength. Its elements, symmetrically
placed with respect to the plane y = 0, are elementary
Huygens sources linearly polarized along the y axis and
are radially and azimuthally spaced at 0 7. l.
Accordingly, this antenna can be modelled as enclosed
in an oblate ellipsoid having a = 17 l and b = 2.2 l.
An open-ended cylindrical waveguide with radius equal
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to 0.338 l is considered as measurement probe. The
scanning plane is 20 l away from the AUT center and
the bi-polar measurement system is characterized by L
= 80 l  and dmax ª53°, so that the NF data lie in a
circular zone of radius ª 72 l . The nonuniform
samples have been generated by imposing that the
distances along x and j between the position of each
nonuniform sample and the associate uniform one are
random variables uniformly distributed in
[ / , / ]-D Dx x4 4  and [ / , / ]-D Dj jn n2 2 . It must be
stressed that this is a very pessimistic occurrence in a
real scanning system.
The process for recovering VV  and VH  from the
nonuniformly distributed bi-polar samples of Vj and
Vr has yielded fast and accurate results. Figure 3 shows
a representative reconstruction example of VV  on the
radial line at j = 90°. As can be seen, there is an
excellent agreement between the exact and the
reconstructed probe voltage save for the peripheral
region, where an unavoidable truncation error occurs
due to the lack of needed guard samples. The algorithm
performances have been assessed in a more quantitative
way by evaluating the maximum and mean-square
errors occurring in the reconstruction of the uniform
plane-polar samples of VV . These errors (see Figs. 4
and 5) are normalized to the voltage maximum value on
the plane and have been obtained by comparing the
aforementioned reconstructed uniform samples and the
exact ones. Note that this comparison has been made in
the central zone of the scanning plane, so that the
existence of the required guard samples is assured.
Obviously, even better results are to be expected when
the nonuniform samples are closer to the uniform ones.
The stability of the algorithm has been investigated by
adding random errors to the exact data. Both a
background noise (bounded to Da in amplitude and with
arbitrary phase) and uncertainties on the data of ±Dar in
amplitude and ±Df in phase have been simulated. As
shown in Fig. 6, the algorithm is stable. In any case, it
is possible to take advantage of the data redundancy for
improving the stability (see Fig. 7).
The developed algorithm has been employed to
determine in a fast and accurate way the plane-
rectangular data required for the probe compensated NF–
FF transformation [13]. The E-plane pattern,
reconstructed from the recovered plane-rectangular data
lying in a 100 100l l¥  square grid, is shown (crosses)
in Fig. 8. The pattern reconstructed (via the
uncompensated NF–FF transformation) from the exact
plane-rectangular field samples lying in the same grid is
also reported as reference (solid line). As can be seen

the FF reconstruction is very accurate, thus assessing
the effectiveness of the proposed technique.
A further example of simulated NF–FF transformation
from nonuniformly distributed bi-polar data is shown in
Fig. 9. It refers to an AUT obtained from the
previously considered array by changing the excitations
of its elements in order to obtain a Tschebyscheff-like
behaviour with sidelobe ratio (SLR) = 40 dB in the FF
region. Also in this case the FF reconstruction is
resulted to be very accurate.
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5 . CONCLUSIONS
The problem of an efficient AUT pattern reconstruction
from the knowledge of irregularly spaced bi-polar data
has been tackled and solved in this work. The developed
method takes advantage of a nonredundant sampling
representation of the probe voltage and of the use of the
corresponding OSI expansion for interpolating the
samples. This has allowed the building of linear
systems whose best solution in least squares sense has
been obtained by applying the SVD technique. The
reconstruction process has yielded accurate and stable
results even in presence of very large position errors.
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