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Abstract: This paper presents a detailed analysis of
second-order asymptotic expansions for the
description of the geometrical optics field in the
vicinity of a caustic. It is shown that the stationary
phase solution commeonly found in textbooks and
papers is valid only at the caustic, but not away from
the caustic, as is usually claimed. The exact
stationary phase expansion is derived and is
compared to steepest descent solutions presented
elsewhere in the literature.

1. INTRODUCTION

It is well known that the geometrical optics (GO) field
reflected from a surface is equivalent to the first-order
stationary phase (SP) asymptotic expansion of the
corresponding radiation integral. When the reflector is
concave, the reflected field forms a caustic surface as
depicted in Figure 1. Near the caustic, where the first-
order expansion begins to fail, two dominant stationary
(saddle) points contribute to the asymptotic solution of
the integral. These stationary points are each associated
with a geometrical optics type ray, the rays merging into
one another at the caustic. At the caustic the first-order
expansions have a singularity and tend to infinity.
Several second-order SP and steepest descent (SD)
expansions describing the fields due to these stationary
points are available in the literature ([1-19], listed in
order of publication, including some related topics).
The SP expansion originally introduced by Kay and
Keller [1] involves only a single stationary point and
does not decompose into two distinct GO expressions
away from the caustic.Others employing the SP method
derived similar expressions [2, 6 eq. (37), 9], all of
which are not valid in the vicinity of or further away
from the caustic, but only at the caustic itself. The
incorrect application of this second-order SP solution
away from the caustic has led to the introduction of
heuristic caustic correction factors by Albertsen et. al.
[8], which would not have been necessary if the exact
expansion had been used. The limitations of these
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Figure 1. Reflected field of a concave reflector
. illuminated by a plane wave.

caustic correction factors have been pointed out by
Meloling and Marhefka [19].

A Steepest Descent solution was introduced by Chester
et. al. [3], which incorporated both stationary points
and was valid at and away from the caustic. Their
solution formed the basis of much of the work later
published on the topic [4, 5, 7, 11, 14, 16, 19]. The
new SP solution derived in this paper will be shown to
yield results identical to these SD results. It is also
possible to derive integral expressions for the fields in
the vicinity of the caustic, as proposed by Ziolkowski
and Deschamps [10], Hongo et. al. [12] and Hongo and
Ji [13], but as a topic it falls beyond the scope of this
paper. General reviews of high frequency techniques
were presented by Arnold [11] and Bouche et. al. [17].
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It will first be shown that the existing second-order SP
solution is invalid away from the caustic. The exact
second-order SP solution will then be derived and will
be shown to be equivalent to the existing SD solutions.
A detailed analysis of the scattering problem shown in
Figure 1 will then be presented. This example will show
clearly how the isolated rays contribute to the total
solution. The paper is intended to present the new
second-order SP solution, as well as to s how those who
are not well familiar with asymptotic theory how to
interpret the various asymptotic solutions found in the
literature.

II. EXISTING SP EXPANSIONS IN THE
VICINITY OF A CAUSTIC

Returning to two-dimensional scattering problem
depicted in Figure 1 of which the paramater definitions
are shown in Figure 2, the scattered electric field for
the Tm, polarization can be expressed in integral form
as [20]

z

E = _fl fJ(:) HP (kr(t))dt
N

. “kn ﬂ]‘ J(1) e—jkr(r)dt (1)
4 Tk s‘/;(T)

= k7 [2/ p f I0) - (®) 40
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where J is the induced current on the circular reflector
of radius R, r the distance from the integration point
t=R0 on the equivalent reflector surface to the field
evaluation point, and H 0(2) is a Hankel function of the
second type. In the second line of (1) the large
argument form of the Hankel function [21] was
employed. The incident field in Figure 1 is assumed to
be a plane wave. For this particular problem and similar
problems in general, the scattered field integral can be
expressed as

I = fF(t)ej'"’(')dt , 2)

s

where in this case

and q(t) = - r(t).

ACES JOURNAL, VOL. 20, NO. 1, MARCH 2005

\\
) 0=62.0

Ray 2 \\

Ray 1

Ray 3

Figure 2. Problem geometry and parameter definition.

If the reflector is large enough in terms of wavel ength,
scattering from the reflector can be analysed by means
of high frequency Geometrical Theory of Diffraction
(GTD) [22] techniques, namely geometrical optics type
reflected rays and diffraction from the edges of the
reflector surface. This paper is not concerned with the
diffracted fields, but only with the geometrical optics
fields. For cases where the reflector is electrically
large, also referred to as problems where £ is large,
the integral in (2) will have a stationary (or saddle)
point for each geometrical optics ray. Such solutions
are also referred to as the asymptotic solutions of the
integral in (2). For any such stationary point, denoted
by ' and defined by ¢ { t)=0, the first-order
stationary phase solution can be expressed as [7, p.
387]

N
2 Jke(r) J7
e e

, 3
kq'(t) ®

I~ F(t)

where q”(ts) is the second derivative of ¢ with
respect to £, evaluated at the stationary point, and it
was assumed that ¢ "(f)>0. When ¢’(s,)<0,a
phase jump of -90° occurs, since from (3) we have
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( -1 )’”2 =¢ 7™ . The asymptotic solution of the
integral in (2) can then be expressed as

27 jker) It
7 €
kg '(t)
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With some effort it can be shown that (3) is in fact
identical to the associated geometrical optics ray
reflected at point 7, [23].

For the problem shown in Figure 1, reflected rays will
traverse the caustic surface as indicated. Figure 2
depicts isolated rays traversing the caustic. At every
point near the caustic, but not near the cusp of the
caustic (0=0°), the total field will be given by the sum
of two distinct rays. In Figure 2 we keep Ray 1 fixed a s
the ray reflected at ©=45°. Progressing from the
reflector towards the caustic along the path of Ray 1,
Ray 1 will be crossed by a Ray 2, which has already
traversed the caustic surface (evaluation point A). At
the caustic, Ray 2 will have merged into Ray 1(point
B). As we continue to progress past the caustic along
the path of Ray 1, Ray 1 will now be crossed by a Ray
3, which is yet to traverse the caustic (evaluation point
C). At the indicated cross-over points, which are close
to the caustic surface, both rays contribute to the total
solution. At evaluation points far from the caustic, in
both directions, the stationary points become well
separated and the total field (excluding diffracted f ields)
is given by the sum of two GO rays, namely

-27 ke, i
7 e e
\ ke ()
I~ &)
2 Jka(t,y) eif

\ kg (2,,)

F(t,)

* F(tsz)
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where it was assumed that g¢q " t,)<0 and
q //( t 2) > 0. Equation (5) is valid for those evaluation
points in the region between the reflector and the caustic
where the two stationary points are well separated. For
evaluation points well beyond the caustic, such as the
point (x,y) in Figure 2, the signs of the second
derivatives will have changed and {,and ¢, in (5)
must be interchanged.

As the caustic is approached, ¢ - where the

derivatives ¢ "(t,,),q"(t,) = 0 and equations (3) to
(5) become invalid. To overcome this problem, a
second-order SP solution must be derived. The general
procedure as adopted by [1, 9] is as follows. It is
assumed that ¢ =r =t , which allows a Taylor
expansion of g to be made about the stationary point
¢, yielding

q(e)+q'(e)(e-t) +
q(t) = q”(t) e (6)

C(t-t) = (t-1) .

Only the first three derivatives were retained in (6) and
by definition of a stationary point, ¢’ (¢,)=0. When
(6) is substituted into (2), followed by the
transformation of integration variable ¢ to variable u

(see [8] for details)
2 1 q ”(l‘s)

r- ts = ’ "
kq''(t) q"(t)

the asymptotic solution

I = 21rF(ts)[ )%”e"‘“"’Ai(—o) ®)

kq ///(ts)

is obtained, where Ai denotes the Airy function of the
first kind [24],

k)2 [a" ()1
9= 5 " 4/3 2 0 (9)
2) 19"
and
2 3/2
¢ = 37 . 10)

At the caustic ¢’ t) =0, yielding

I= 2nF(:J)[ ];eM(")Ai(O) . ay

kq ///(ts)

If (8) is supposed to represent the total field in the
vicinity of the caustic, the contributions from the two
distinct stationary points should become evident as one
moves away from the caustic. This is clearly not the
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case for (8), as it incorporates only one stationary point .
If (8) is supposed to represent the contribution of a
single stationary point only, and that a similar
expression should be added for the contribution from
the other stationary point, two problems arise. Firstly,
at the caustic where t,=t, =t , the value of the field
will be twice that given by (11), which is not correct.
Secondly, when one moves away from the caustic, the
two stationary points begin to separate and ¢>0. For
widely separated stationary points, o» 0 and one can
employ the large argument form of the Airy function in
(8). This is given by [8, 24]

di(~x) ~ i&‘sin(;xﬂl‘-) , (12)

ﬁ 4

an oscillatory function which does not decrease
monotonically away from the caustic as is char acteristic
of the GO field given by (3). Equation (8) thus
represents neither the total field nor the contribution of
a single stationary point away from the caustic. Keller
and Kay however expressly state that (8) above,
presented in a different form in their paper, is the
transition function between the field at the caustic and
the first-order solution given by (3) above [1, paragraph
following eq. (50)].

In an attempt to overcome this problem, (12) was
written as

Ai(-0)~ LI Pt S R L)

2/

by [8], which was then substituted back into (8). This
substitution supposedly takes both rays into account,
since (8) now "tends towards a sum of two terms, each
of which is similar to" (3) above [8]. Since only one
stationary point appears in (13), it was then suggested
that each geometrical optics ray in (5) above be
multiplied by a "caustic correction factor"

4i(-0)/na*

in(2 ;+£
sm(30 4)

(14

The very use of the term "correction factor” suggests
that there is something wrong with the asymptotic
expansion given in (8), which is not the case as long as
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(8) is evaluated at the caustic only. As will become
clear, this confusion stems purely from the fact that (8)
is not an exact asymptotic expansion for the field at
and away from a caustic.

III. DERIVATION OF EXACT SP EXPANSION
IN THE VICINITY OF A CAUSTIC

In order to derive an exact second-order SP solution
for the field at a caustic, the general approach adopted
by Felsen and Marcuvitz [7] will be followed. The
general form of exponential integrals is

I= fF(z)e"Q(')dz , 15)
P

where the integral is evaluated over a path P in the
complex z-plane. As before, a Taylor expansion about
the stationary point z, and a substitution for z-z; similar
to (7) yields

3

! 2 b
I~ Fz)| — 7™ e au ,(16)
S e R
where
2 e%:)r
o = [f] 83_ = an
2 [o ///(z‘)]4/3
and
= ;6”’ : (18)

For the sake of further analysis the sense of integration
in (16) is reversed by performing the substitution u=-z.
Furthermore, for the special case where Q(z) =j q(z),
(16) can be written as
I =1 ~ F(z )(—] %e fejkq(z‘)e 5
P s kq ///( Z“_)

19

where the relevant parameters in the integral can now
be expressed in terms of (9) and (10) as
2 1 2

S L) I &

°" [ k)s “me e

2 P
lq7(z)]
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and

3
2

2 2
5: ;63/2 :jga :j( X (21)

As we have assumed q”(zs) > 0, the integral is
designated I = Ip. Defining the integral in (19) as

3

Sz-2
C(d) =fe Ydr (22)

P

and considering the possible integration paths for this
integral as shown in Figure 3, the asymptotic solution
of (22) is [7]

2 j Ai( S) it P=L, (23a)
C(0) = ~=[Bi(S) -j4i(6)] if P=L, (23b)
T[Bi(8) +j4i(6)] if P =L, (23¢c)

y Z=X+Jjy

Figure 3. Integration paths for an Airy type integral of
complex argument,

Since we need the integral to be in the form of 2)
before we can derive a stationary phase path, following
[7] we use the transformation ; = 7.’ below to

obtain
13 3
6’/"2- 1 E(z~-—)
fe 3dz/=.5"fe ‘dr (24)
P, P//
where
3 3
E=6"=;0, Q=07 . @5

The transformationhas now allowed us to express (22 )
as

3

o:-L 1.9
fe Ydz = B [ e (26)

P/ P//

where the function in the exponential term is

3

£(2) =,~(Z_£3_) . @7

Equation (27) has stationary points where g’ (z) =0,
which yields

z =1 . (28)

A stationary phase integration path requires that
Re{g(z)} = Re{g(z)}, and with z=x+jy we
obtain the integration paths defined by

3

Re(g(z)} = ~y+x7y- 2L
3 (29)

Re{g(z)} =0 .

These integration paths are shown in Figure 4 and it is
clear that an integration path corresponding to Lj, in
Figure 3 can be selected. For this choice the
stationary phase solution of the integral in (22) is given
by (23a) and the stationary phase solution of (19) for
an isolated stationary point z, becomes

"

1 N T
I~ 27F(z) 2|5 e ke 5
kq"(z)

(30)

x

J
x di(0e )
When O becomes large, we can use the large

argument form of the Airy function of complex
argument [24]

Ai(z) ~ ———e * , |arg(2)| < ® (31)
V3

to show that (30) reduces (3).

When ¢ ”(z)<0, we have from (25) and (20)
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- Figure 4. Stationary phase paths for an Airy type
integral of complex argument.

AR
——
2 [q ///(z;)]z
kU "@)IT 4z i (32)
3——'7}7"_25 e
g7 (z)]

le"(z)1° (33)

The negative sign in (32) will not result in different
integration paths as defined by (29), but the
transformation , = 57,/ = F¢ ? ,/ impliesthatthe
integration path must be rotated by 60° with respect to
the case where g /( z,)> 0. If we rotate the path through
z_=+1 in Figure 4 by 60° anti-clockwise, we can select
an integration path corresponding to L,;, resulting in

(22) becoming
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C(8) = m[Bi(ge’ ) - jdi(oe )]
(34)
= 2me ““di(oe ¥y
where we have used the relationship
24i(ze” 7y = ¢ D 4iz) 7jBiz)] . B

When (34) is substituted into (19) and recognising
from (21) and (32) that ¢ will also change in sign, we
obtain

I~ 271'F(zs)[ -

%e ‘j(ejkq(zt) e _j?ﬂ
kq7(z)

(36)
« di(oe )

For o becomes large, we can use (31) to show that
(36) reduces to (4).

The asymptotic solution for the isolated stationary point
z,=z, is thus given by (30) when ¢"(z_,)> 0 and by
(36) when g’(z_,)<0. For the second ray, defined by
2,=2,,, we also apply either (30) or (36), depending on
the sign of ¢’(z ,). For evaluation points along the
path of Ray 1, ¢’(z,)<0 and q’/(z,,)>0 before
the caustic is traversed. Beyond the caustic ¢/(z_,)>0
and ¢’(z,)<0. The total field is thus given by
lml(ql”<0,q2”>0) = 1,(z,,) +1(z,,) for the case
where the caustic is yet to be traversed, and by
I,(a/>0,9,'<0) = I (z,)) +1,(z,,) beyond the
caustic. At the caustic, having been approached from
either side, -0 and the total field is given by
I=1,+1I , namely

2

1 X
-k +j=
— 1) .75 4i00)
kq"(z)

I ~27mF(z)

1 .
2 )1 jkatz)
e e

. 7 4i(0)
ke"(z,) n

+27 F(z,)

2 T Jjka(z)
e

=2mF(z)| ——
kq~(z)

4i(0) .

This is the same value as given by (11).
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IV. SD ASYMPTOTIC EXPANSIONS FOR TWO
NEARBY STATIONARY POINTS

A steepest descent asymptotic solution for the total field

of (2) in the case of two nearby stationary (saddle)
points is expressed by Felsen and Marcuvitz [7] as

1
1 -
I~k *[h F(t,)+h,F(1,)]e""

x di(-0k?)
(38)
+jmo Tk LA F(t )~k F(t )]’
< di'(-0k?)
where
h = . h, = (39
1
a, = E[q(t,,)’fq(t,,)] ) (40)
and
2 2 1
39~ E[‘I(’,,)”‘I(t,z)] . 41)

In (39) it is assumed that ¢ (s )< 0 and q(¢,)>0.
The total field given by (38) is the sum of two rays,
described respectively by

1
T, 3 jaak
Ip ~ ?k 3 (A F(t,) +h2F(tu)]e

x [Ai(-0k?®) + jBi(-0k?)]

o 42)
"f;‘? k(A F(s) - F(t )]
x [4i'(-0k®) + jBi'(-0k*)] ,
and
I~ 2k [hF() +h F(t,)]e"
x [Ai(-0k’) - jBi(-0k?)]
43)

1 By _ jank
+j20 Tk C[RF(t,) ~hF(t)]e

x [di'(-0k>) - jBi'(-0k*)]

It is easily verified that the sum of (42) and (43) yields
(38).

At the caustic ¢ =t , g=0, and h and h,
assume the limiting value [7]

I, | =1h,| =
‘ e

2 |35
1" : 44)

Since the second term in (38) becomes zero, it is
rudimentary to show that (38) reduces to (11).
Equations (42) and (43) can likewise be shown to
reduce to

2 L +i X
1 - 27| —— |7 e T ai0) a5
kg (1)
and
I~ 27 F(t) + T T i) 4
kq(t)

respectively. To derive (45) and (46) the relationship

Ai(-0)% jBi(-0) = 2¢ >di(oe Ty @D

was used. When the two stationary points are widely
separated, (38) reduces to (5), as is shown in Appendix
A. It is also shown that (42) and (43) reduce to (3) and
(4), respectively.

It should now be clear that at the caustic and far away
from the caustic, the SD expressions for the total field
and the two separate rays are identical to the
corresponding SP expressions derived in the previous
section. A numerical example presented later will show
that the SD and SP expansions yield identical results in
the intermediate region as well.

V. NUMERICAL EXAMPLE OF THE
SCATTERED FIELD NEAR A CAUSTIC

In order to demonstrate how the field behaves in the
vicinity of the caustic and how the isolated ray
contributions should be interpreted, we return to the
problem depicted in Figures 1 and 2. The scattered
field will be calculated by means of geometrical optics,
integration of the physical optics current induced on
the reflector surface, the newly derived SP expansions
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and the SD expansions discussed in the previous
section.

The two-dimensional circular scatterer is assumed to
have a radius R=200A and is illuminated by a plane
wave, which is TM, polarised. The incident electric and
magnetic fields at the reflector surface are given by

Ei - E'ZA - e-ijcose ZA (48)

and
Hi - H')”‘ - _l,}ev'chosef , (49)
where m is the free space wave impedance. With

E'=1, the GO scattered electric field is given by

-j ~jkl
Er=E'g=-e 0 | LTy o)
pPrh

where /, is the distance from the reflection point along
the ray path and the radius of curvature £ is given by

1 2 2

1
—~ = == . = - Gl
Y I R cosO’ R cosB’ G

In (51) it was furthermore assumed that /= since
the incident field is a plane wave. For a circular
reflector, 6'=0.

The physical optics current J is given by

2

J=JF=20xH' = Ze7*o®, g s
z TI x ¥y
(52)
- ze*ijcosecose s,
n

where we have utilised the normal vector relationship
A=nt+ny=-cosBt-sin0y. In subsequent
integral calculations (1) was evaluated by means of
Gaussian integration, with 5 integration points/
wavelength used for the 0°-90° circular integration

sector (about 1570 integration points).

With (52) substituted into (1), we have from (2)

F(0) = _E‘ %ejtcose , (53)

where for an observation point (x,y) shown in Figure 2,
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I, = J(x-Rcos®)” + (y - RsinB)’ (54)

and
q(0) = —(12+Rc058) . (55)

The derivatives of g(0) are given in Appendix B. The
first- and second-order expansions discussed above
give a phase jump of +45° across the caustic. Since
the GO field encounters a phase jump of +90° across
the caustic, all SP and SD solutions were multiplied by
a factor ¢’ * to ensure that the GO and SP/SD phase
terms are identical.

With the appropriate functions as defined above, the
various field expressions were evaluated along the path
of Ray 1 in Figure 2, which is vertically downward
(6,=45°) . The evaluation points on this path
progressed from the reflector surface to beyond the
caustic surface. Ray 2 crosses Ray 1 at a distance of £,/2
before the caustic, while Ray 3 crosses Ray 1 at a

- distance of £,/2 past the caustic point of Ray 1, where

p, = 0.5 Rcos(m/4)

1.0

\
N

0.0 0 45 62.0 380
Integration angle (')

Normalised Magnitude
o
o

180 K I

30 \/ r

. L
i

-180° § 5 62.0 90
Integration angle ()

Phase

Figure 5. Integrand for Ray 2 crossing Ray 1.
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1.0 N

Normalised Magnitude
o
o

Phase

0.0 0 23.9 45 90
Integration angle (')
180" h ,
g0’ \l‘ \
0’ 1 !
- \ /I
-80 \/ ,
-180 & 23.8 45 90

Integration angle (")

Figure 6. Integrand for Ray 3 crossing Ray 1.

Figures 5 to 7 show the magnitude (normalised) and
phase (not normalised) of the integrand of (2) for the
cases where the two stationary points are separated from
each other and when the two rays have merged into each
other at the caustic. In Figure 5, Ray 2 has a stationary
point 6,=62.0° and has already traversed the caustic
surface (point A). The first derivative of g is clearly
zero at the two stationary points (the definition of a
stationary point), and it is also evident that ¢”/(8,,)<0
and ¢’(0,,)>0. Figure 6 represents the case where
Ray 1 is crossed by Ray 3 (point C). Ray 1 has already
traversed the caustic, but Ray 3 (6,=23.9°) is yet to do
so. As expected, the signs of the second derivatives have
reversed and we now have ¢”(9,)>0 and
q""(8,,)<0. Figure 7 shows the integrand magnitude
and phase for the case where the two rays have merged
into one, with the evaluation point at the caustic of Ray
1 in Figure 2 (point B). The phase of the integrand
displays an inflection point at the caustic and one can by
inspection see that ¢”/(6,,) =g"(8,,) =0.

o 1.0

ho]

o]

o+~

c

@]

2

T 0.5 AN

n

-t

rr';

E

[

[=)

z
0.0 3 v A

Integration angle (")

180°

|

} )

@

10}

£ li
1R

-180° 3 25 30

Integration angle {')

Figure 7. Integrand for Rays 1 and 2 having merged
at the caustic.

The scattered electric field along the path of Ray 1 was
next calculated by means of the techniques mentioned
above. The ray path progressed from the surface of the
reflector (,,=0) to /,=1.50,. Figure 8 shows the
scattered field component of Ray 1 only, as calculated
by means of geometrical optics (GO), the new
stationary phase expansions deriv ed above (SP) and the
steepest descent expansions given by [7] (SD).

The phase of the scattered field (¢) was normalised with
respect to the GO linear phase (excluding the phase
jump which occurs when the caustic is traversed),and
the normalised phase is thus given by the expression
¢, = ¢ + k(Rcos(w/4) + L) - T the phase term
T accounting for the negative reflection coefficient in

(50) above. The magnitude was normalised with respect
to the value of the electric field at the caustic,

designated by Ec.

Returning to Figure 8, Ray 1 seems to be discontin uous
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2.0Ec - G0

—_— SP

--= 3D
1.5Ec / \\
.OEc TS

0.0 @ 0.5 1.0 1.5

Distance from reflector in rho,
along path of Ray 1

Linear Magnitude
-

180°
3
© 380"
oy
o
D .
o 0" —]
Nl
[
C -30°
[}
pd
-180 g 0.5 1.0 1.5

Distance from reflector in rho,
along path of Ray 1

Figure 8. Partial field given by Ray 1.

across the caustic, as the phase jumps by more than
90°. It should be kept in mind that ¢”'(8_,)<0 as long
as Ray 1 has not traversed the caustic, and ¢ "'( 0,)>0
when it has already done so. One must then use (36) in
the former case and (30) in the latter. At every
evaluation point along the path of Ray 1, one should
simply choose the appropriate asymptotic solution,
which in turn depends on the sign of ¢"(8,). The SP
solution is not accurate right against the surface of the
reflector, since we have used the large argument form
of the Hankel function to derive (2), which is not
correct when £, -0,

Calculation by means of the SD expansions is
considerably more involved. It should be clear that (42)
and (43) represent the case where Ray 1 is yet to
traverse the caustic, with ¢ ”(8,)=¢/<0 and
q"(8,)=¢>0. When Ray 1 has traversed the
caustic, the signs of these derivatives change and (42)
and (43) are no longer valid. We can rewrite (42) and
(43) in shorthand notation for the case where
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1 /!
q,<0,9,>0,1,<p; as

I, = C.[hF +hF,][4i+]Bi]

./ .7y
+C,[hF, ~hF][4i"+jBi]

(56)
~ 2 ejkq2 e ke for o» 0
2 1"
qu
and
1= C,[hF, +hF][Ai-jBi]
+C,[hF, -h,F ][4i'-jBi]
(57

-2 jkq ‘jz
~ F ‘e ' for o»0
Yl ke
9,

The corresponding expressions for the case where
" "
g/>0,4/<0, 1,>p, are

I = C‘ [thl +h2F2] [4i - jBi]
./ ./
- C2 [th1 _thz] [4i"-jBi'] 8
-2 Jkq, ']'g
e e

i
qu

~ F for o» 0

2

and

C, [k F, +h,F,][4i+]Bi]

~C.[hF, -hF.1[4i' +jBi']
2 11 2 2 (59)

27 ke iz
—— ¢ 'e ! foron»0
1 17
kql

It should be noted that the SD expansions do not quite
give the correct values as the caustic is approached.
This is because of various terms ( 4> #,, 0) in the SD
expansions tend to either zero or infinity as the caustic
is approached. These infinite/zero numbers are added
and subtracted to give the total contribution of Ray 1,
with an obvious numerical round-off error giving rise t o
the discrepancy. The field value jumps from just more
than to just less than the actual value as the caustic is
traversed. We know from (45) and (46) that the SD
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solutions for Ray 1 and Ray 2 give the correct value at
the caustic. The phase curves are identical.

Figure 9 shows the GO, SP and SD results for the
contribution of Ray 2 as the evaluation point p rogresses
along the path of Ray 1. An algorithm was developed to
find the appropriate stationary point of Ray 2 for each
of these evaluation points. The phase of the Ray 2
results was normalised by the same factor as used in
Figure 8. Near the caustic Ray 2 tends to Ray 1 and
experiences a similar phase variation, except that the
phase jump is now -90°. When the results of Figures 8
and 9 are overlaid, one can see that the total field will
be continuous in magnitude and phase.
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@ ---SD
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Figure 9. Partial field given by Ray 2.

It should be stressed that the expansions for isolated
stationary points given by (30), (36) and (56) to (58)
can yield an absolute phase variation of maximum 15°,
as is evident from Figures 8 and 9.

The total field as calculated by geometrical optics, the
SP and SD expansions and integration of the physical
optics (PO) current is shown in Figure 10. There is no

discernable difference between the results of any of the
latter three methods. The physical optics integral
solution should actually be regarded as the bench -mark,
as it is based on the least number of approximations.

Of particular interest is the phase of the total field in the
vicinity of the caustic. The phase of the total field was
normalised by the same factor used in Figures 8 and 9.
Had there been no caustic effect present, the normalised
phase at 1.0 p, would have been zero (the field would
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; T |
b
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Figure 10. Total field taking both stationary points into
account,

have been purely GO in nature). However, with the
caustic present, the phase at the caustic is +45° with
respect to the linear phase of Ray 1. In fact, if one
considers the normalised phase in the region where the
GO and SP magnitude curves begin to separate (the
caustic region), it is clear that there is a gradual phase
jump from 0° to +90° across the caustic region. This is
in perfect agreement with the phase jump predicted by
the first-order SP (and thus the GO) solutions of the
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scattered field integral.
VI. CONCLUSION

Of the various published forms of asymptotic
expansions for the field in the vicinity of a causti c, only
the steepest descent expansions were found to be
correct. The corresponding second-order stationary
phase expansion which is commonly found in the
literature and textbooks was found to be valid only at
the caustic itself, but incorrect away from the caustic.
In this paper the exact second-order stationary phase
expansions were derived. These expansions yield
identical results to the steepest descent expansions, but
are considerably less complex to evaluate than the
latter. This is due mainly because the new stationary
phase expansions were derived in terms of the
contribution of a single stationary point only, whilst the
steepest descent expansions were derived in terms of
two nearby saddle points. It is instructive to see that two
seemingly different sets of expansions yield the same
results. This is of course to be expected if both are
correct.

The purpose of the paper was not only to present the
exact stationary phase expansions, but also to serve as
a tutorial for those who are not experienced in the fie 1d.
The importance of the numerical example presented
here lies in the clear exposition of how the various
expansions should be used, and in that it shows how the
phase of the total field experiences a gradual phase
jump of 90° as the caustic is traversed. The expansions
for the isolated stationary points do not yield a
continuous phase jump across the caustic by themselves ,
only when they are added to obtain the total field. The
second-order solutions discussed in this paper are not
valid in the region of a caustic cusp, where higher order
derivatives for the various functions are required [1 ].

It is hoped that this paper will contribute to a better
understanding of asymptotic solutions at a caustic.
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APPENDIX A

Equation (38) can be shown to reduce to (5) as follows.
For widely separated stationary points, g becomes
large and we can use the large argument form of the
Airy functions in (38). With (12) and [24]

4i'(~x) ~ - ‘/—lﬁ-o:cos(éx;+;) (60)

substituted into (38), we obtain

1~ 2 (F |2 +F, | 21" sina
k ! L I\
. [1: -2 | 2 ja k
- ; [Fl q—l F2 _q:])e cosa ,

where the shorthand notation F,=F(¢,) and
q,=¢ //(‘, ,) was introduced for the sake of simplicity
and

(61)

o = 302 + I . (62)

Rearranging (61), we obtain

a
o

- . . J
ﬁ(sma -jcos) e

l\ kq,

. . J
2n (sina +jcost) e

2’\ qu

Equation (63) can be written as

I~ F
(63)

a
o

+F

x
-2 I3 ja k
I~F ,|-2Fe e

1‘\ kq,

LT
s2n I3 —ja Ja k
e?e’e

' Fz\ kq,

64

which with the aid of (40) and (41) reduces to

LT 9
-2m Uy kg 2 J7 kg
I~F ,|-~lfe *e "+ F ,|—e‘'e *. (69
R\ 2\ kq,

Equation (65) is identical to (5).

The isolated rays given by (42) and (43) can in similar
fashion be shown to reduce to the first and second terms
in (5), respectively. Only (42) will be discussed. The
large argument forms of the Airy functions of the
second type are [24]
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1 -1 2 I
Bi(-x) ~ ﬁx ‘ cos(éx’+~4—) (66)

LD B 67)

With (12), (60), (66) and (67) substituted into (42), we
obtain

x [ +sin0 +jcosa]

FifETE, \J?-Fz E])e"‘“"

x[ -cosd +jsine] ,

(68)

which upon further simplification yields (3).
APPENDIX B

Differentiation of

q(0) = —‘/(Rcosﬁ -x)?+(Rsin®-y)* - RcosO (69)
- with respect to 0 yields

q'(8) = - [(Rcos® -x)* + (Rsind -y)*] * 0

x (xRsin® - yRcos@) + Rsin0.

Further differentiation yields

q"(0) = [(RcosB -x)? + (Rsind -y)?]

x (xRsin® - yRcosO )
(71)

- [(RcosB -x)* + (Rsin® -y)*] *
x (xRcos® +yRsinO) + RcosO

and differentiation once more

34 9B

megy = - 94 _ 9B _ 4.
q"(9) 5 35 Rsin0 (72)

where
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g—g= 3 [(RcosB -x)* + (Rsind —y)’]%
x (xRsin® - yRcos0)’ 73)
- 2[(RcosB -x)* + (Rsin —y)z]_%
x (xRsin® - yRcos® ) (xRcosO +yRsin0)
and
‘;—B = - [(RcosB -x)? + (RsinB —y)z]_%

x (xRsin@ -yRcos0)

x (xRcosO +yRsin0) (74)

-1
2

+ [(RcosO -x)* + (Rsin8 -y )]

x (-xRsin® +yRcosO)
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