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Effective Preconditioners for the Solution of Hybrid FEM/MoM 
Matrix Equations using Combined Formulations 

 
Chunlei Guo and Todd H. Hubing 

Department of Electrical and Computer Engineering 
University of Missouri-Rolla 

Rolla, MO 65409 
 

ABSTRACT 

Hybrid FEM/MoM modeling codes generate 
large systems of equations that are generally solved 
using inward-looking, outward-looking or 
combined formulations. For many types of 
problems, the combined formulation is preferred 
because it does not require a direct inversion of the 
coefficient matrices and can be solved using 
iterative solution techniques. An effective 
preconditioner is a crucial part of the solution 
process in order to guarantee convergence. 
However, it can be difficult to generate effective, 
memory-efficient preconditioners for large 
problems. This paper investigates preconditioners 
that use the FEM solution and an absorbing 
boundary condition (ABC). Various techniques are 
explored to reduce the memory required by the 
preconditioner while maintaining effectiveness. 
Practical problems are presented to evaluate the 
effectiveness of these preconditioners in various 
situations.  

I. INTRODUCTION 

The hybrid finite-element-method/method-of-
moments (FEM/MoM) combines the finite element 
method (FEM) and the method of moments (MoM) 
and has been used to analyze signal integrity (SI) 
[1], electromagnetic scattering, and radiation 
problems [2–6]. FEM is used to model structures 
with geometrical complexity and inhomogeneous 
materials. MoM is used to model larger metallic 
structures and to provide an exact radiation 
boundary condition (RBC) to terminate the FEM 
mesh. These two methods are coupled by enforcing 
field continuity on the boundary separating the 
FEM and MoM regions.  

There are three ways of formulating hybrid 
FEM/MoM methods [7–9]. The outward-looking 
formulation constructs an RBC from MoM and 
incorporates it into the FEM equations. This 
formulation has been used by Ji et al. [9], Jin and 
Volakis [10], and Ramahi and Mittra [11]. The 

inward-looking formulation incorporates an RBC 
constructed from FEM into the MoM equations. 
This formulation has been utilized by Jin and Liepa 
[12], Yuan et al. [13], and Sheng et al. [14]. These 
two formulations usually involve direct or indirect 
inversion of the FEM or MoM matrices, so they can 
be computationally expensive. The combined 
formulation, on the other hand, combines the FEM 
and MoM equations and solves for all unknowns at 
the same time using an iterative solver without 
requiring a direct matrix inversion. This 
formulation has been employed by Sheng et al. 
[18]. Techniques to reduce the complexity of the 
matrix-vector multiplication associated with the 
MoM part, such as the fast multipole method 
(FMM) [15, 28], multilevel fast multipole 
algorithm (MLFMA) [16], and adaptive integral 
method (AIM) [17], can be readily incorporated 
into a combined formulation.  

The matrix equation generated using the 
combined formulation is partly full and partly 
sparse. This matrix is usually ill-conditioned, and 
the iterative solver may converge very slowly or 
not at all without an effective preconditioner. An 
effective preconditioner can reduce the necessary 
iterations dramatically, resulting in a significant 
reduction in the overall simulation time. Thus, a 
preconditioner is a crucial part of the iterative 
solution. Generally a more accurate approximation 
of the system results in a more effective 
preconditioner.  

A major feature of a preconditioner is its 
memory efficiency. In most cases, a preconditioner 
which utilizes less memory can be developed using 
a less accurate approximation of the original 
system. However, this may cause the iterative 
solver to require more steps to converge; so there is 
usually a tradeoff between the speed and the 
memory-efficiency of a preconditioner.  

For a system with a small number of unknowns 
(e.g. 103), it is relatively easy to use the complete or 
incomplete LU (ILU) decomposition of the hybrid 
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matrix to make an effective preconditioner without 
exceeding the memory available on typical personal 
computers. For a system with a large number of 
unknowns (e.g. 106), FMM or similar techniques 
can be used to reduce the memory requirement. 
Diagonal, block-diagonal, or near-neighbor 
matrices are often used to build preconditioners 
[17], but such preconditioners do not usually yield 
the most efficient solution. In [19], Liu and Jin 
proposed a preconditioner using a sparse matrix 
generated by FEM and an absorbing boundary 
condition (ABC). This preconditioner was shown to 
improve the convergence of iterative solvers 
greatly. This paper further investigates the 
FEM/ABC preconditioner and proposes a modified 
preconditioner for geometries with large metallic 
surfaces.  

Section II of this paper presents the necessary 
formulations. Representative examples are 
introduced in Section III. Reordering techniques to 
reduce the number of fill-in elements in ILU 
decompositions are discussed in Section IV and a 
modified preconditioner that further reduces the 
memory requirement is proposed. Finally, 
conclusions from the work presented here are 
drawn in Section V. 

II. FORMULATIONS 

The Hybrid FEM/MoM Using the Combined 
Formulation 

In the hybrid FEM/MoM, an electromagnetic 
problem is divided into an interior equivalent part 
and an exterior equivalent part. The interior part is 
modeled using the FEM and the exterior part is 
modeled using a surface integral equation method. 
The two parts are coupled by enforcing the 
continuity of tangential fields on the FEM and 
MoM boundary. FEM can be used to analyze the 
interior equivalent part and generates a sparse 
matrix equation of the form, 

 
ii is i i

si ss s ss s s

g0 0 0A A E
  =   + 

g0 JA A E B

        
                 

.  (1) 

A detailed explanation of Equation (1) can be found 
in [9].   

The exterior equivalent problem can be 
analyzed by using an electric field integral equation 
(EFIE), magnetic field integral equation (MFIE), or 
a combined field integral equation (CFIE), which is 
a linear combination of the EFIE and MFIE. 
Regardless of the choice of testing functions or 
integral equations, the MoM matrix equation has 
the following form [9], 

 [ ] [ ] [ ] [ ] [ ]  s sC J D E F= −  (2) 

where Js is a set of unknown complex scalar 
coefficients, C and D are dense coefficient 
matrices, and F  is the combined source term 
specifically given by [20], 

 [ ]inc inc
m= ( )  (  

m

m 0

S

ˆ )F ( ) n dSη• + ×∫ r r rf E H   (3) 

where is the set of basis functions on the 
surface and  is a unit normal vector pointing 
outward from the surface S.  

m ( )f r
n̂

Neither Equation (1) nor Equation (2) can be 
solved independently. These two equations form a 
coupled and determined system. The combined 
formulation is obtained from Equations (1) and (2) 
as, 

 
ii is i i

si ss ss s s

s

A A 0 E g

A A B E g

0 D C J F

− =

−

     
     
     
          

. (4) 

Unlike the inward-looking formulation or the 
outward-looking formulation, the combined 
formulation doesn’t require an explicit inversion of 
any matrix and solves for all the unknowns 
simultaneously. For many configurations, with 
proper preconditioning, the combined formulation 
is the most computationally efficient of the three 
formulations.   

Equation (4) can be written in the form, 

 Mx b=  (5) 

where  

 
ii is

si ss ss

A A 0

M A A B

0 D C

=

−

−

 
 
 
  

 (6) 

[ ]T

i s sx E E J= , and b g . 
Notice that the matrix M is a hybrid matrix, which 
is partly full and partly sparse. The convergence 
rate of an iterative solver for Equation (5) is highly 
dependent on the condition number of M.  

[ ]T

i sg F=

The matrix M usually has a very large condition 
number (e.g. on the order of 106 or higher), which 
results in poor convergence or non-convergence of 
the iterative solution. However, Equation (5) can be 
transformed into another linear equation with the 
same solution, 
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  (7) PMx Pb= A A 0
where  is a preconditioner matrix. With 
the proper choice of P, the matrix PM has better 
spectral properties than M and the number of 
iterations required to converge is greatly reduced. 
Ideally, the construction and application of a good 
preconditioner should be fast without requiring a lot 
of memory.  

1P M −≈

Application of FEM and ABC as a Preconditioner 
Liu and Jin proposed a preconditioner that 

applies an absorbing boundary condition on the 
truncation surface to approximate the MoM 
boundary condition [19]. A sparse preconditioning 
matrix can be formed by replacing the EFIE or 
MFIE equations with first-order ABCs [8] on the 
truncation surface S, 

 ( ) ( )s s

0n̂ jk×∇ × =E r E r S∈r,  (8) 

where s inc= −E E E is the scattered electric field. 
From Equation (8) we can derive, 

  (9) 
0

inc inc

0

ˆ( ) n ( )

ˆ( ) n ( ), r S

η

η

+ × =

+ × ∈

E r H r

E r H r .

The same basis functions on the surface S used 
in the hybrid FEM/MoM method can be applied to 
approximate the E and H fields in Equation (9), and 
the basis functions  can be used to test 
Equation (9), resulting in a matrix equation of the 
form,  

m ( )f r

 [ ] [ ][ ] [ ]T

ss s ss sB E H J L+ =    (10) 

where  is the transpose of the matrix T

ssB   ssB  in 
Equation (1), Hss is given by 

 [ ]
m

ss 0 m nmn

S

H ( ) ( )dSη= •∫ f r f r  (11) 

and L is the source term given by, 

  (12) m

m

inc

m m

S

inc

0 m

S

L ( ) ( )dS

ˆ( ) n ( )dS .η

= •

+ • ×

∫

∫

f r E r

f r H r

The ABC approximates the MoM boundary 
condition described using the TENH form of the 
CFIE.     

Combining Equation (10) with Equation (1), we 
have, 

 
ii is i i

si ss ss s s

T

ss ss s

E g

A A B E g

0 B H J K

− =

    
     
     
          

 (13) 

and we define  

 
ii is

si ss ss

T

ss ss

A A 0

Q A A B

0 B H

= −

 
 
 
  

. (14) 

Notice that the matrix Q is very sparse. Now we 
have two systems: the hybrid FEM/MoM system 
described by Equation (4) and the FEM/ABC 
system described by Equation (13).  

Since Equation (8) describes the behavior of the 
electric field in free space far from the sources, the 
ABC truncation surface should not be too close to 
the scatterer. When the ABC truncation surface is 
far enough from the scatterer’s surface (e.g. 10λ ), 
the FEM/ABC system described by Equation (13) 
can be a good physical approximation of the hybrid 
system described by Equation (4).  

If the same computational domain is analyzed 
using both Equations (4) and (13), the matrix M is 
of the same order as the matrix Q. The matrix Q is a 
physical approximation of M, and Q-1 can be used 
as a preconditioner to improve the iterative solution 
of Equation (6). Q is highly sparse, and doesn’t 
require much additional memory. Q-1 can be 
generated much faster and more efficiently than 
M-1, particularly for problems with a lot of MoM 
boundary elements.  

Since the preconditioning technique requires the 
FEM/MoM boundary to be located far from the 
surface of the scatterer, more elements may be 
required increasing the order of the system of 
equations. However, in many situations the amount 
of additional computational resources required by 
these extra elements is small compared to the 
resources saved by using this preconditioning 
technique. 

 III. SAMPLE PROBLEMS 

Four sample problems were used to evaluate the 
preconditioning techniques discussed in later 
sections. The first problem is a perfectly conducting 
(PEC) sphere, which does not require any FEM 
elements to model. The second problem is a 
dielectric-coated sphere, where the coating is thin 
relative to the radius of the sphere. This structure 
requires both FEM and MOM elements to model. 
The third problem is a solid dielectric sphere 
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requiring many more FEM elements. These 
spherical structures are convenient because they can 
be modeled analytically. The FEM part of the 
hybrid system becomes more dominant from the 
first problem to the third problem. The remaining 
problem is a printed circuit board (PCB) power bus 
structure, which is a structure of particular interest 
to EMC and signal integrity engineers. Each sample 
configuration is modeled at 3 GHz. 

  Problem 1: Perfectly Conducting Sphere 
The first sample configuration is a perfectly 

conducting sphere. The radius of the sphere is 8 cm, 
as shown in Fig. 1. The incident wave travels along 
the z-axis, and the polarization of the E field is 
along x-axis. The goal is to model the scattered far 
fields. The most convenient way to model this 
structure is to use MoM on the surface of the 
sphere, so FEM is not required.   

 

 

 

 

 
 

Figure1. Scattering from a PEC sphere. 

Problem 2: Dielectric-Coated PEC Sphere 
The second configuration is a dielectric-coated 

PEC sphere. The radius of this sphere is also 8 cm. 
The coated dielectric material has a thickness of 5 
mm (0.05λ at 3 GHz) and relative dielectric 
constant of 4.0-j1.0, as shown in Fig. 2. The same 
incident wave as Problem 1 is applied. The field in 
the interior of the dielectric material is analyzed 
using FEM, and the equivalent current on the 
truncation surface is modeled using MoM.  

 

 

 

 
 
 

Figure 2. Scattering from a dielectric-coated PEC 
sphere. 

Problem 3: Dielectric Sphere 
The third sample configuration is a dielectric 

sphere. The radius of this sphere is again 8 cm and 
the relative dielectric constant of the sphere 

material is 4.0, as indicated in Fig. 3. The same 
incident wave as Problem 1 is applied. The field in 
the interior of the dielectric sphere is analyzed 
using FEM, and the equivalent current on the 
truncation surface is modeled using MoM.  

 

 

 

 

 
 

Figure 3. Scattering from a dielectric sphere. 

Problem 4: Power Bus Structure  
The fourth problem is to model the input 

impedance of a PCB power bus structure. As shown 
in Fig. 4, the board dimensions are 30 mm ×  20 
mm ×  2 mm. The top and bottom planes are PECs. 
The relative dielectric constant of the material 
between the planes is 4.2. An ideal current source is 
located at ( ix 10=  mm,  mm) to excite the 
structure. Such a structure usually requires a large 
number of FEM elements between the planes in 
order to control the aspect ratio of the tetrahedra. 
This results in a lot of triangular MoM boundary 
elements if the FEM/MoM boundary is located on 
the surface of the metal planes.  

iy = 5

 

Figure 4. A PCB power bus structure. 

Discretization of Sample Structures  
Since the MoM provides an exact RBC on the 

truncation surface, it doesn’t matter how far the 
truncation surface is from the scatterer. However, it 
is usually convenient to choose the truncation 
surface to coincide with the physical boundary of 
the scatterer to minimize the computational domain. 
Defining the distance between the truncation 
surface and physical boundary of the scatterer as d, 
Table 1(a) summarizes the discretization of the 
sample problems when d = 0 (i.e., the truncation 
surface coincides with the physical boundary of the 
spheres or PCB). The mesh density on this 
truncation surface is about 10 elements/wavelength. 
The total number of unknowns is given by the sum 
of the number of Ei, Es, and Js elements.  

r = 8 cm 

εr = 4.0 

Eincx

z

PEC  
x 

Einc 
r = 8 cm 

z 

Einc 
x PEC 

5 mm r = 8 cm 

εr z 
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Table 1. Summary of discretization of the sample problems  
(a) when d = 0 
 # of tetrahedra # of Ei # of Es # of Js Total # of unknowns 

Problem 1 0 0 0 2589 2589 

Problem 2 5491 3660 2910 2910 9480 

Problem 3 6541 6379 2589 2589 11557 

Problem 4 456 274 68 552 832 

(b) when d = 5 mm 
 # of tetrahedra # of Ei # of Es # of Js Total # of unknowns 

Problem 1 5491 3660 2910 2910 9480 

Problem 2 11923 10851 3549 3549 17949 

Problem 3 12032 12628 2910 2910 18448 

Problem 4 3353 2724 1464 1464 5652 

 
In order for the FEM-ABC preconditioner to be 

effective, the truncation surface has to be moved 
away from the physical boundary of the scatterer. 
In this study, a truncation surface with 
d 20λ= = 5

1

 mm in each direction was used 
when the FEM/ABC preconditioner was employed. 
This choice of d should be sufficient to provide a 
good preconditioner [19]. Table 1(b) summarizes 
the discretization when d = 5 mm. The mesh 
density on this truncation surface is also about 10 
elements/wavelength. 

As we can see from Table 1, applying the FEM-
ABC preconditioner increases the total number of 
unknowns roughly by a factor of 2 to 7 for the 
structures studied in this paper. For the PEC sphere, 
no FEM elements are necessary when d = 0. Only 
the coefficient matrix C needs to be saved and only 
MoM is applied in this case. When the truncation 
boundary is moved away from the surface of the 
sphere, tetrahedral finite elements are added and the 
memory requirement at least doubles since the 
matrix D (which is as dense as the C matrix) also 
needs to be saved. 

For the dielectric-coated sphere, the number of 
tetrahedral elements roughly doubles when d is 
increased from 0 to 5 mm. The number of Ei 
elements roughly triples, and the number of Es and 
Js elements also increases due to the larger surface 
area. 

For the dielectric sphere, there are a large 
number of tetrahedral elements even when the 
truncation boundary coincides with the physical 

boundary of the sphere.  However, the number of 
unknowns still increases significantly when the 
truncation surface is extended beyond the physical 
boundary of the sphere.   

For the power bus structure, the thickness of the 
board requires a fine tetrahedral mesh in the 
dielectric in order to ensure that the tetrahedra have 
a reasonable aspect ratio. When d is increased from 
0 to 5 mm, many more tetrahedral elements must be 
used to discretize the computational domain 
between the physical boundary of the board and the 
truncation boundary, resulting in a large increase in 
the total number of unknowns. At lower 
frequencies (longer wavelengths), the boundary 
would need to be located even further from the 
scattering surfaces. 

IV. PRECONDITIONING TECHNIQUES 

The inverse of the matrix Q in Equation (14) 
can be used as a preconditioner for iterative 
solutions of Equation (4). However, it is usually 
very expensive to derive an explicit inverse of this 
matrix. An incomplete LU factorization of the 
matrix Q will result in , where L is a 
sparse, lower-triangular matrix, and U is a sparse, 
upper-triangular matrix. The preconditioner, P, is 
then given by 

Q LU≈

1 ( LUP Q )− −= ≈ , where the 
inversion is actually replaced by forward and back 
substitution at each iteration.  

There are two popular ILU schemes, one based 
on the structure of the matrix being factored, and 
the other based on the numerical values of the 
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elements in L or U generated during factorization 
[21]. In the first scheme, an element in L or U is 
dropped if the element in the corresponding 
position of the original matrix is zero, no matter 
how large this element is. In the second scheme, an 
element in L or U is discarded only if its magnitude 
is smaller than a specified drop tolerance. The 
second scheme often yields more accurate 
factorizations than the first scheme. Variations of 
each scheme and hybridizations of these schemes 
are also described in the literature [21]. 

In this study, the LU factorization based on drop 
tolerance in MATLAB was used [25]. The drop 
tolerance was set to 1.0 10× -6 for the results 
presented here. A smaller drop tolerance yields a 
more accurate factorization, but produces more fill-
in elements. Fill-in elements refer to matrix entries 
that are zero in the original matrix Q and are 
nonzero in the L and U matrices. In order to reduce 
the number of fill-in elements (and the memory 
required to store these elements), the matrix Q was 
reordered before the factorization.  

Reducing the Number of Fill-ins During ILU by 
Reordering  

There are various reordering algorithms, 
including variable band, nested dissection and 
minimum degree [22, 23]. A good variable band 
algorithm is the reverse Cuthill-McKee algorithm 
to minimize the bandwidth of a matrix [24]. The 
minimum degree algorithm is based on graph 
theory and reduces fill-in elements during Gaussian 
elimination [25, 26]. In [9], it is shown that the 
symmetric reverse Cuthill-McKee algorithm 
(SYMRCM) and symmetric minimum degree 
algorithm (SYMMMD) effectively reduce the fill-
ins during a complete LU on a sparse matrix 
generated using FEM. In this work, besides the 
SYMRCM and SYMMMD algorithms, another 
minimum degree algorithm, the symmetric 
approximate minimum degree reordering technique 
(SYMAMD) was also investigated [25]. This 
algorithm is usually faster than the symmetric 
minimum degree algorithm and yields a better 
ordering.  

The sparsity pattern of the matrix Q generated 
using FEM and ABC for Problem 1 (d = 5 mm) is 
shown in Fig. 4(a). The average number of nonzero 
elements is about 12 elements per row in this case, 
which indicates that Q is highly sparse. The sparsity 

pattern using various reordering algorithms is also 
shown in Fig. 5. 

Table 2 lists the number of nonzero elements in 
the L and U matrices after an ILU factorization of 
matrix Q using a drop tolerance of 1.0× 10-6. 
Problems 2 and 3 could not be factored within the 
available memory without reordering. For L and U 
using sparse complex values with double precision, 
the required memory (in bytes) is roughly given by 
the number of nonzero elements times 20. The 
memory required to store the L and U matrices is 
also listed in Table 2. As we can see, the number of 
fill-in elements during ILU is greatly reduced by 
reordering the matrix. It is also much faster to 
perform ILU factorizations when the reordering 
schemes are applied. On average, the SYMRCM 
algorithm performed a little better than the other 
algorithms. This is probably due to the asymmetric 
nature of the matrix Q. 

Iterative Solver Behavior 
After L and U are generated, they can be applied 

to the iterative solver at each iteration and do not 
have to be explicitly inverted. In this study, a bi-
conjugate gradient stabilized (BICGSTAB) solver 
was utilized [21, 27]. Table 3 summarizes the 
number of iterations required to achieve a solution 
with a convergence factor of 1.0 310−× . The 
convergence factor is the maximum value for the 
normalized residual norm, Mx b b− . In other 
words, the BICGSTAB solver has converged once 

3Mx b b 1.0 10−− ≤ ×  is achieved. The 
maximum number of iterations investigated in this 
study was 500.  

The general behavior of the BICGSTAB solver 
is described as being divergent, convergent, or 
stagnant in Table 3. For divergent behavior, the 
normalized residual norm bounces between certain 
values above the required tolerance as the number 
of iterations increases. For convergent behavior, the 
normalized residual goes below the tolerance in less 
than 500 iterations. For stagnant behavior, the 
normalized residual norm remains the same for two 
consecutive iterations. The BICGSTAB solver 
stops the solution process before reaching the 
maximum number of iterations if stagnant behavior 
occurs. 
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 (a) Sparsity pattern of the original matrix Q. (b) Sparsity pattern of the matrix Q after 
   SYMRCM ordering. 

 

 
 (c) Sparsity pattern of the matrix Q  (d) Sparsity pattern of the matrix  
 after SYMMMD ordering. after SYMAMD ordering. 

Figure 5. Sparsity pattern for Problem 1 matrix generated using FEM and ABC. 

Table 2. The number of nonzero elements in L and U after ILU 

 No ordering 
(Mbytes) 

SYMRCM 
(Mbytes) 

SYMMMD (Mbytes) SYMAMD 
(Mbytes) 

Problem 1 21151493 (423) 2507653 (50) 2701435 (54) 2710165 (54) 

Problem 2 Out of memory 9534816 (190) 10000965 (200) 10415806 (208) 

Problem 3 Out of memory 27943414 (559) 33754661 (675) Out of memory 

Problem 4 8875433 (176) 2319723 (46) 2504835 (50) 2437372 (49) 
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 Table 3. Iterations required using un-preconditioned and preconditioned BICGSTAB  

Un-preconditioned BICGSTAB Preconditioned BICGSTAB  

# of 
Iterations 

Converged 
(Yes/No) 

General 
behavior 

# of 
Iterations 

Converged 
(Yes/No) 

General 
behavior 

Problem 1 500 No Divergent 14 Yes Convergent 

Problem 2 500 No Divergent 14 Yes Convergent 

Problem 3 500 No Divergent 35 Yes Convergent 

Problem 4 47 No Stagnant 27 Yes Convergent 

 

Table 4. Number of nonzero elements in L and U and iterations required to converge when the coupling 
between FEM and ABC was discarded, and SYMMMD was used 

Problem 4  Problem 1  Problem 2 Problem 3 

Radiation  Scattering 

# of nonzero element in L 
and U (MBytes) 

377965 
(8) 

2515255 
(50) 

17715266 
(354) 

597535  
(12) 

# of iterations for 
convergence  

24 26 500 
(Did not converge) 
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Figure 6. Convergence/divergence curve for 

Problem 1. 

Figure 6 plots the normalized residual norm as a 
function of the number of iterations for Problem 1 
using the un-preconditioned and preconditioned 
BICGSTAB solver. As we can see, the FEM-ABC 
preconditioner greatly reduces the number of 
iterations required for convergence.  

Reducing the Number of Fill-ins by Decoupling 
FEM and ABC  

In this study, a modified FEM/ABC 
preconditioner requiring less memory was also 
evaluated. In Equation (13), the coupling between 

FEM and ABC is achieved through the Bss and Bss
T 

coefficient matrices. Although the elements in these 
matrices are bigger than those on the same row in 
the diagonal entries of the matrix Q, we discarded 
the Bss and Bss

T matrices and used the resulting 
sparse matrix, Q', to construct preconditioners. For 
scattering problems like Problems 1, 2 and 3, 
discarding the coupling between the FEM and ABC 
is effectively the same as imposing a PEC boundary 
condition on the truncation surface. For radiation 
problems like Problem 4, discarding the coupling 
between the FEM and ABC effectively imposes a 
perfectly magnetically conducting (PMC) boundary 
condition on the truncation surface. 

Discarding the elements corresponding to the 
coupling between FEM and ABC dramatically 
reduces the number of fill-ins during ILU 
factorization. Table 4 lists the number of nonzero 
elements and the number of iterations required for 
convergence. The memory required to store the L 
and U matrices is given in parentheses. 

Comparing the results in Table 4 to the results 
in Tables 2 and 3, we observe that this 
preconditioner works reasonably well for PEC and 
dielectric-coated PEC spheres. The number of 
iterations required to converge is higher, but the 
memory required is significantly reduced. Since the 
ABC truncation surface is close to the PEC sphere 
in both cases, discarding the coupling between the 
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FEM and ABC (implicitly applying a PEC 
boundary condition) is a reasonable approximation 
of the FEM and ABC. Figures 7 and 8 show the 
calculated radar cross section (RCS) for the PEC 
sphere in Problem 1 and the dielectric-coated 
sphere in Problem 2 using the decoupled FEM-
ABC as preconditioner, respectively. Analytical 
results for the RCS of this geometry obtained using 
the Mie series [29] are also provided. The results 
obtained using the two methods agree with each 
other very well.  
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Figure 7. Calculated RCS for Problem 1. 
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Figure 8. Calculated RCS for Problem 2. 

 

For the PCB power bus structure, the memory 
was reduced by a factor of 4, however, the number 
of iterations increased by a factor of 4, as shown in 
the first sub-column in Table 4 for Problem 4. In 
this case, the excitation is located inside the FEM 
region. The preconditioner implicitly applies a 
PMC boundary condition. To demonstrate the 
different behavior of the proposed preconditioner 

for scattering problems vs. radiation problems, the 
same configuration was modeled with the incident 
wave from Problem 1 instead of the internal current 
source. This change only affects the terms on the 
right hand side of Equation (4). The memory 
required by the preconditioners in the scattering 
case is the same as that in the radiation case. Using 
the original preconditioner with FEM and ABC 
coupled together, 17 iterations are required to reach 
a 31.0 10−×  convergence factor. Applying the new 
preconditioner with FEM and ABC decoupled (i.e. 
implicitly applying a PEC boundary condition), the 
memory is still reduced by a factor of 4 and 40 
iterations are required to converge. 

For the dielectric sphere, the iterative solver did 
not converge for Problem 3. The normalized 
residual norm oscillated around 33.0 10−× . 
Therefore, in this case, discarding the coupling 
between the FEM and ABC elements resulted in a 
poorer preconditioner.  

Eliminating the coupling terms between the 
FEM and ABC portions of the preconditioning 
matrix appears to work pretty well for scattering 
problems from structures with large metallic 
surfaces. However, it does not work as well for 
radiation problems or for modeling structures 
without large metal surfaces. 

V. CONCLUSIONS 

In this paper, four sample problems were used 
to investigate the application of preconditioning 
techniques to the iterative solution of matrix 
equations resulting from the hybrid FEM/MoM 
method employing a combined formulation. These 
techniques were based on the FEM/ABC, which 
yields a physical approximation of the geometry 
being evaluated. An ILU factorization employing a 
drop tolerance was used to construct the 
preconditioner. Reordering algorithms reduced the 
number of nonzero elements in the L and U 
matrices by a factor of 4 to 8, depending on the 
geometry and reordering scheme applied.  

When FEM/ABC preconditioners were applied 
to the solution of the hybrid FEM/MoM system of 
equations, the convergence rate of the iterative 
solution improved significantly. These 
preconditioners work very well for calculating the 
scattering from PEC spheres (with few FEM 
elements), dielectric coated spheres, and dielectric 
spheres (with many FEM elements). They also 
worked well for modeling radiation and scattering 
from a PCB power bus structure (with many FEM 
elements). 

  

104GUO, HUBING: EFFECTIVE PRECONDITIONERS FOR HYBRID FEM/MOM MATRIX EQUATIONS



 

The memory required by the preconditioner can 
limit the size of the problems that can be modeled. 
This memory requirement can be reduced 
significantly by discarding the coupling between 
the FEM and ABC elements in the preconditioner 
matrix. In our examples, memory was reduced by a 
factor of 2 to 7. This modified FEM/ABC 
preconditioning technique worked very well for 
analyzing the scattering from PEC and dielectric-
coated metal spheres. It also worked well for 
analyzing the scattering from a PCB. However, it 
did not work well for modeling the radiation from 
the PCB or for modeling a dielectric sphere. Since 
this approach implicitly simulates a PEC boundary 
for scattering problems (or a PMC boundary for 
radiation problems), it is generally expected to 
work well for the analysis of scattering from 
geometries that have a PEC surface near the 
FEM/MoM boundary. 
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Abstract— We consider an L1 � periodic dielectric slab
which is characterized by the dielectric function ε � x �
L1 � z � 
 ε � x � z � as a 2D model for photonic crystals. We as-
sume that there is no variation in y � direction, with fields
varying time-harmonically according to exp � � jωt � . In
order to solve electromagnetic wave propagation in such
structures, we diagonalize the Maxwell’s equations with
respect to the z � coordinate. As demonstrated in this pa-
per, diagonalized forms greatly facilitate the implementa-
tion of the finite difference method. The L1 � periodicity
of the fields suggests expansions in terms of spatially har-
monic functions. However, contrary to the commonly-
used Bloch inhomogeneous plane waves, we utilize ex-
pansions of the form ψ � x � z � 
 ∑N � 1

n 
 0 ψn � z � exp � j � kn � K � x � .
For the determination of the coefficient functions ψn � z �
we employ a sophisticated, yet, easy-to-apply imple-
mentation of a finite difference discretization scheme
in the z � direction which permits virtually arbitrary
L1 � periodic ε � x � z � profile functions. It will be demon-
strated that the proposed hybridization of the plane-wave
decomposition and the finite difference method leads to a
robust and flexible method of analysis with a wide range
of applications. As an example, we consider TE-polarized
electromagnetic waves which propagate in the assumed
dielectric slab along the x � axis.

I. INTRODUCTION

We consider an L1 � periodic dielectric slab char-
acterized by the permittivity function ε � x � L1 � z � �
ε � x � z � as a 2D model for photonic crystals. We assume
that there is no variation in y � direction, with fields
varying time-harmonically according to exp � � jωt � .
We present a general scheme for the diagonalization
of Maxwell’s equations with respect to the z � coordi-
nate and consider TE-polarized electromagnetic waves
propagating in the assumed dielectric slab along the
x � axis. The L1 � periodicity of the fields suggests
expansions in terms of spatially harmonic functions.
However, contrary to the commonly-used Bloch in-
homogeneous plane waves, we utilize expansions of
the form ψ � x � z � � ∑N � 1

n � 0 ψn � z � exp � j � kn � K � x � . For
the determination of the coefficient functions ψn � z � we
employ a sophisticated, yet, easy-to-apply implemen-
tation of a finite difference discretization scheme in
z � direction which permits virtually arbitrary permit-

tivity profile functions ε � x � z � . It will be demonstrated
that the proposed hybridization of the plane-wave de-
composition and the finite difference method leads to
a robust and flexible method of analysis with a wide
range of applications.

Contrary to the standard finite difference implemen-
tations which include the entirety of the E � and H �
components, in our technique, we use an FD discretiza-
tion, which only involves an ‘‘optimized subset’’ of
the field components [1,2]. Stated more precisely, only
those field components are involved in our formalism,
which enter the interface- or boundary conditions on
z � const planes: It turns out that these ‘‘transver-
sal’’ field components are the only unknowns in our
problems; the remaining ‘‘normal’’ components can
be uniquely determined once the transversal fields have
been calculated.

This paper is organized as follows: In Section II. we
briefly comment on the diagonalization procedure. The
electromagnetic wave propagating in a photonic crys-
tal, as specified above, decouples into a TE- and a TM-
polarized mode. In this paper we focus on TE-modes.
In Section III. we discuss the discretization and approx-
imation of the fields. Section IV. is devoted to formulat-
ing appropriate boundary conditions for our problem.
Thereby, assuming free space below and above our
structure, we formulate discrete boundary conditions in
a matrix form. Section V. is devoted to the specifics of
our numerical calculations. We discuss tools and mea-
sures which we have developed to enhance the speed,
and at the same time, the accuracy of our computations.
In Section VI. we discuss a glimpse of the numerical re-
sults which we have obtained. We compare our results
with available data. Section VII. concludes our discus-
sion.

Notation: In the following we exploit the
L1 � periodicity property and assume that the real-
valued variable K (to be specified soon) varies in the
interval � � π � L1 � π � L1 � . Furthermore, we have defined

kn �
� !  " 2π

L1
n 0 # n # N

2

2π
L1 $ n � N % N

2 & n # N � 1 ' (1)
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II. DIAGONALIZATION

Consider the Maxwell’s curl equations under the fol-
lowing two assumptions: (i) no variation in y � direction
(∂y � 0), and (ii) isotropic materials specified by a
constant permeability µ , and an L1 � periodic inho-
mogeneous permittivity function ε � x � z � : ε � x � L1 � z � �
ε � x � z � . Assumptions (i) and (ii) imply the constitutive
equations in the forms B � µH and D � ε � x � z � E. Con-
sequently, Maxwell’s equations are:

� ∂x

�
1
0 � H3 � ∂z � H1

H2 � � � jωε � x � z � � E2

� E1 �
(2a)

� ∂x

�
1
0 � E3 � ∂z � E1

E2 � � jωµ � H2

� H1 � (2b)

∂xH2 � � jωε � x � z � E3 (2c)

∂xE2 � jωµH3 �
(2d)

Our goal is the diagonalization of (2) with respect to
the z � axis. In other words, we are aiming at an equa-
tion of the form: � � x � z � �ψ � ∂z �ψ . Equations (2a) and
(2b) can be written in the form:�		
 0 0 0 jωµ

0 0 � jωµ 0
0 � jωε � x � z � 0 0

jωε � x � z � 0 0 0

� 

� �		
 E1
E2
H1
H2

� 

�
�

�		
 ∂x 0
0 0
0 ∂x

0 0

� 

� � E3
H3 � � ∂z

�		
 E1
E2
H1
H2

� 

� � (3)

while (2c) and (2d) give:

� E3
H3 � �

�			
 0 0
0 ∂x

jωµ
0 0

� ∂x
jωε

�
x � z � 0

� 


�
T �		
 E1

E2
H1
H2

� 

� �
(4)

Substituting (4) into (3) we obtain the desired di-
agonalized form, which can be written in the form� � x � z � �ψ � ∂z �ψ . Note that the z � dependence in� � x � z � is due to the z � dependence in the ε � x � z � func-
tion. The differential � � x � z � � operator is devoid of
z � derivatives. The z � diagonalized form can be inter-
preted as follows: Evaluate � � x � z � at a certain point z,
say, z0, to obtain � � x � z0 � . Determine the expressions
for � � x � z0 � �ψ . This gives the rate of change of �ψ in the
z � direction at z � z0, i.e. ∂z �ψ at z � z0. In the present
case the system of equations � � x � z � �ψ � ∂z �ψ decouples
into the following subsets:

1) z � diagonalized transversal electric fields: It
is straightforward to show that the z � diagonalized
transversal electric fields satisfy equation (5),

� 0 � jωµ
� jωε � x � z � � 1

jωµ ∂ 2
x 0 � � E2

H1 �
� ∂z � E2

H1 � (5a)

H3 � 1
jωµ

∂xE2 �
(5b)

2) z � diagonalized transversal magnetic fields: The
z � diagonalized equation for the transversal magnetic
fields is

� 0 jωµ � ∂x
1

jωε
�
x � z � ∂x

jωε � x � z � 0 � � E1
H2 �

� ∂z � E1
H2 � (6a)

E3 � � 1
jωε � x � z � ∂xH2 �

(6b)

III. ANALYSIS OF TE-POLARIZED WAVES IN

PERIODIC DIELECTRICS

In this paper we will focus on the TE-polarized
waves, i.e. we consider (5), which we write in the form:

� � jωε � x � z � � 1
jωµ

∂ 2
x � E2 � ∂zH1 (7a)

� jωµH1 � ∂zE2 �
(7b)

A. Discretization of the Fields

As will be clear in the sequel we discretize the fields
in x � and z � directions differently. We exploit the
periodicity conditions in x � direction and decompose
the fields in spatial harmonics in this direction. How-
ever, we choose a finite difference discretization in
z � direction. The following sections are devoted to the
procedural details.

1) Treatment of the x � dependence: L1 � periodicity
suggests the following approximation for the fields:

E2 � x � z � �
N 	 1

∑
n 
 0

en � z � e j
�
kn � K � x (8a)

H1 � x � z � �
N 	 1

∑
n 
 0

hn � z � e j
�
kn � K � x

�
(8b)
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For z � z0 � const the finite sums at the RHS of (8) are
infinitely differentiable with respect to x. Substitute (8)
into (7). Define the linear functional Dm

Dm � f � � 1
L1

L1�
0

dx f � x � � � e � j
�
km � K � x (9)

for m � � 0 � N � 1 	 . Apply Dm to both sides of (7). Use
the fact that

δ � m � n 	 � 1
L1

� L1

0
dxe � j

�
km � kn � x � (10)

with δ � n 	 being the Kronecker symbol, and

εm � n � z � � 1
L1

� L1

0
dxε � x � z � e � j

�
km � kn � x � (11)

to obtain

j
ωµ

� km � K � 2 em � z � � jω
N � 1

∑
n � 0

en � z � εm � n � z � � ∂zhm � z �
(12a)

� jωµhm � z � � ∂zem � z �



(12b)

Consider the integral representation for εm � n � z � , Eq.
(11), with m � n � � 0 � N � 1 	 . Using km � kn � 2π

L1
� m � n �

we obtain,

εm � n � z � � 1
L1

L1�
0

dxε � x � z � e
� j 2π

L1

�
m � n � x



(13)

Observe that min � m � n � � 0 � � N � 1 � � � N � 1 and
max � m � n � � � N � 1 � � 0 � N � 1. Therefore, for ev-
ery fixed value of z we need to evaluate Fourier inte-
grals of the form

εl � z � � 1
L1

L1�
0

dxε � x � z � e
� j 2π

L1
lx

(14)

at 2N � 1 discrete ‘‘frequency’’ values in the range l� � � N � 1 � N � 1 	 . In our simulations we have evalu-
ated integrals (14) by utilizing Fast Fourier Transform
(FFT), and requiring 2N � 1 sampling points ε � xi � z0 � ;
i � � 1 � 2N � 1 	 of the function ε � x � z0 � for every fix value
z0 of z.

B. Discretization in z � direction

As pointed out earlier we use a finite difference dis-
cretization in z � direction. However, in contrast to
the standard techniques, our implementation of the fi-
nite difference technique involves Fourier coefficients
rather than the fields in real space. In what follows we

demonstrate the way how we discretize the z � depen-
dent part of the coefficients. To this end it is advanta-
geous to adopt the abbreviation f i

m � fm � i∆z � . Thereby,
f i
m means the mth Fourier coefficient of the function

f � x � z � sampled at z � i∆z. Using this notation we ob-
tain:

j∆z

ωµ
� km � K � 2 ei � 1

2
m � jω∆z

N � 1

∑
n � 0

ei � 1
2

n ε i � 1
2

m � n
� hi � 1

m

� hi
m (15a)

� jωµ∆zh
i
m � ei � 1

2
m � ei �

1
2

m 

(15b)

These equations in the matrix form read:

Ai � 1
2 ei � 1

2 � hi � 1 � hi (16a)

Bihi � ei � 1
2 � ei �

1
2



(16b)

The coefficient matrices A and B in (16) have the
following structure:

A � � j∆z � ωP � 1
ωµ

� Q � KI � 2 � (17)

with

P �

������������
ε0 ε � 1 ε � 2 
 
 


ε � N � 1
ε1 ε0 ε � 1 
 
 


ε � N � 2
ε2 ε1 ε0 
 
 
 



 
 
 
 
 
 


 
 
 
 
 
 


 
 
 
 
 
 
εN � 2 
 
 
 
 
 
εN � 1 εN � 2 
 
 
 


ε0

	 ����������� (18)

and

Q �

����������
k0 0 0


 
 

0

0 k1 0

 
 


0


 
 
 
 
 
 


 
 
 
 
 
 


 
 
 
 
 
 
0


 
 
 
 
 
0 0

 
 
 


kN � 1

	 ��������� (19)

and

B � � jωµ∆zI



(20)

C. Boundedness property of P∞

For analyzing the stability of the system of equa-
tions, which we will construct in the next section, it is
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imperative to investigate the properties of the involved
matrices. The finite dimensional matrix P � � PN � in
(18) is the truncated version (projection) of an infinite
dimensional matrix that we denote by P∞. It is rec-
ognized that we are concerned with Toeplitz matrices,
which considered as kernels, have rich analytical prop-
erties. It is easily seen that P∞ is uniquely determined
by a two-sided infinite sequence � εl �� l � 0 � � 1 � � 2 � � � � �
with P∞ � m � n � � εm � n � m � n � 0 � 1 � 2 � � � � � .

Furthermore, we understand that for any physically
realizable dielectric medium the function ε � x � zi � is in
L∞ � � π � 2 � π � 2 � , the space of all essentially bounded
functions f � x � defined on � � π � 2 � π � 2 � , which are finite
in the norm � � f � � ∞. Here � � f � � ∞ denotes the essential
supremum of � f � x � � , with x � � � π � 2 � π � 2 � .

In addition, we remember that we obtained εl as
Fourier coefficients of ε � x � z � (evaluated at a fixed point
z0) with respect to the functions el � x � � exp � j2π lx � ,

� l � 0 � � 1 � � 2 � � � � � . Using standard theorems in the
theory of Toeplitz matrices, we can show that based
on these properties P∞ � m � n � � εm � n, and thus PN are
bounded.

1) Creating the global system of equations: The
fields along the z � direction can be determined recur-
sively by using (16) which we write in the form:

Ai � 1
2 ei � 1

2 	 hi � 1 � hi � 0 (21a)

Bihi 	 ei � 1
2 � ei �

1
2 � 0



(21b)

We terminate our computational grid at two bound-
ing z � const levels: The lower bound being z � � ∆z � 2
and the upper bound being z � � nz 	 1 � 2 � ∆z. There-
fore, the simulation domain occupies the region z �

� 0 � nz � ∆z. As is evident from (21) the magnetic fields
are evaluated at even multiples of ∆z � 2 while the elec-
tric fields are evaluated at odd multiples of ∆z � 2. Con-
sequently, we need to calculate the electric fields at
z � � ∆z � 2 and z � � nz 	 1 � 2 � ∆z, i.e., exp � � ∆z � 2 � and
exp � � nz 	 1 � 2 � ∆z � . As will be shown in the next sec-
tion these electric field values will be calculated from
the field distributions in the adjacent media immedi-
ately below and above the corrugated slab. In view of
(21), and with i running through the interval � 0 � nz � , we
can assemble the desired global system. The interlaced
algorithm, which we have utilized for constructing the
global system, is sketched in Fig. 1.

IV. BOUNDARY CONDITIONS

A. Open Boundary Problems

Assume free space for z � 0 and z � nz∆z. In free
space our diagonalized equations take a particularly
simple form: For the field expansion coefficients en � z �

H
0
 = Φ

l
E

−0.5
(∂

z
E)

0
 = A

0
H

0

E
−0.5

E
0.5

 = E
−0.5

 + ∆(∂
z
E)

0
(∂

z
H)

0.5
 = B

0.5
E

0.5

H
1
 = H

0
 + ∆(∂

z
H)

0.5
(∂

z
E)

1
 = A

1
H

1

H
N−1

 = H
N−2

 + ∆ (∂
z
H)

N−1.5
(∂

z
E)

N−1
 = A

N−1
H

N−1

E
N−0.5

 = E
N−1.5

 + ∆(∂
z
E)

N−1
(∂

z
H)

N−0.5
 = B

N−0.5
E

N−0.5

(∂
z
E)

N
 = A

N
H

N
H

N
 = H

N−1
 + ∆(∂

z
H)

N−0.5

H
N

 = Φ
u
E

N+0.5
E

N+0.5
 = E

N−0.5
 + ∆(∂

z
E)

N

Fig. 1. A representation of how electric and magnetic fi elds are de-
fin ed on interlaced layers . T he text at the L H S s hould d es cribe w here
and how the h � fi eld has been computed, while the text on the RHS
s hould provide the s am e inform ation f or the e � field. T he s lab is
confined to the layers 0 and N . The e � fi elds outs ide the s lab on the
outermost layers are used to formulate the boundary conditions in
terms of matrices Φu and Φl .

and hn � z � appearing in (8), we can use enexp � λnz � and
hnexp � λnz � , respectively. Thus we have:

E2 � x � z � �
N � 1

∑
n � 0

ene j


kn � K � xeλnz (22a)

H1 � x � z � �
N � 1

∑
n � 0

hne j


kn � K � xeλnz



(22b)

We next substitute (22) into (7), and apply the func-
tional Dm to the terms involved. Noting that ε is a
constant, we have εm � n � z � � δ � m � n � . Therefore, we
obtain:

j
ωµ

� kn 	 K � 2 en � jωεen � λnhn (23a)

� jωµhn � λnen



(23b)

Solving for hn from (23b), and substituting the result
into (23a) we arrive at

j
ωµ

� kn 	 K � 2 en � jωεen � � λ 2
n

jωµ
en



(24)

For nontrivial solutions we obtain � kn 	 K � 2 � ω2µε �
λ 2

n . Or, equivalently,

λn � �



� kn 	 K � 2 � ω2µε � � wn



(25)

As the next step we establish a relationship between
e � 1 � 2 and h0 to formulate the boundary condition we
are looking for. We use the fact that e0

n � e � 1 � 2
n eλn∆z � 2.

In free space Sommerfeld’s radiation condition permits
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only those fields which decay at infinity. This condition
is met by taking the branch λn � wn, as defined in (25).
Then, we obtain e0

n � e � 1 � 2
n ewn∆z � 2. From (23b) we ob-

tain: h0
n � � � wn � jωµ � e0

n. Using the last two equations
we arrive at

h0
n � wn

jωµ
e � 1

2
n ewn

1
2 ∆z � 0

�
(26)

This equation defines the desired ‘‘boundary’’ matrix
C � 1 � 2 which relates e � 1 � 2 to h0. Analogously we ob-
tain the ‘‘boundary’’ matrix Cnz � 1 � 2 which relates hnz

n

to enz � 1 � 2
n . Proceeding similarly we obtain

hnz
n � wn

jωµ
enz �

1
2

n e
1
2 ∆zwn � 0 � (27)

which yields the desired boundary condition. Note that
the resulting equality C � 1 � 2 � Cnz � 1 � 2 is an implica-
tion of ε � 1 � 2 � εnz � 1 � 2.

B. Inhomogeneous boundary problems

The scheme presented above is not restricted to ho-
mogeneous boundaries. Assume that the dielectric
function outside the slab satisfies the following two
conditions: for z 	 0 or z � hz (i) ∂zε � x � z � � 0, and
(ii) ε � x � L1 � � ε � x � , where L1 is the periodicity length
in the slab. For the fields we have the expansions:

E2 � x � z � � N � 1

∑
m 
 0

fm
N � 1

∑
n 
 0

em � ne j
�
kn � K � xeλmz (28a)

H1 � x � z � � N � 1

∑
m 
 0

fm
N � 1

∑
n 
 0

hm � ne j
�
kn � K � xeλmz

�
(28b)

The constituent terms in these equations are built
from the eigenvectors and the corresponding eigenval-
ues λm (the propagation constants in z � direction). In
order to compute the desired eigenpairs, we substitute

E2 � x � z � � N � 1

∑
n 
 0

ene j
�
kn � K � xeλ z (29a)

H1 � x � z � � N � 1

∑
n 
 0

hne j
�
kn � K � xeλ z (29b)

into (7) and process the LHS of the equation as de-
scribed in section III.A. This leads to an algebraic
eigenvalue equation of dimension 2N from which the
desired eigenvalues and vectors can be solved numeri-
cally. Only eigenvalues which lead to decaying fields
should be considered as explained above. This proce-
dure is a generalization of the homogeneous boundary.
In homogeneous case, the ‘‘boundary’’ matrices are
diagonal because each eigenvector has only one non-
zero element. In inhomogeneous case, the eigenvectors
have in general N non-zero elements and the resulting
boundary matrices are full.

V. SOLVING LINEAR SYSTEMS OF THE EQUATIONS

In the preceding sections we explained the theoret-
ical basis o f our method. In the following we will de-
scribe how this theory can be applied to eigenmode and
excitation problems. In addition we will explain how to
solve the involved equation systems efficiently using it-
erative solvers.

A. Excitation problems

In this section we consider an elementary excitation
problem, which can be formulated in terms of the fol-
lowing interface condition for the magnetic field:

lim
δ � 0

h1 � z0 � δ
2 � � h1 � z0 � δ

2 � � ρ2 � z0 �
�

(30)

Here h1 � z � denotes the x � directional magnetic field
component and ρ2 represents a y � directional elemen-
tary current element.

In order to discretize (30), consider a three-point
central difference scheme:

h1 � k∆ � � ∆ � ∂h1

∂ z
� ���� z 
 � k � 1

2 � ∆
� h1 � � k � 1 � ∆ �

�
(31)

Next add one point to the system, at position
� � k � 1 � ∆ � δ � where δ is an infinitesimally small but
finite number, and insert the dipole source ρ2 at loca-

tion
�

� k � 1 � ∆ � δ
2 � . In view of (30) we can write (31)

as

h1 � k∆ � � ∆ � ∂h1

∂ z
� ���� z 
 � k � 1

2 � ∆
� ρ2 � h1 � � k � 1 � ∆ �

�
(32)

As a generalization, we can substitute the x-
directional Fourier expansion in place of the scalar vari-
ables above. Evaluating the derivative as in (12a) and
writing the terms using the notation of (21) we obtain

hk � hk � 1 � B �
k � 1

2
e

k � 1
2

� � ρ
k � 1

2 �
(33)

Obviously the mere difference between this equation
and (21b) is the excitation term at the RHS. In (33) the
excitation has been indexed by 
 k � 1

2 � due to the finite
resolution in our discretized system: We cannot specify
the position of the dipole source more precisely than
stating that it is located somewhere between the layers
k and � k � 1 � .

From the above discussion it can be concluded that
for solving excitation problems we merely need to re-
place the zero vector at the RHS of (21b) by the Fourier
transform of the current distribution. A similar proce-
dure can be conducted mutatis mutandis for the deter-
mination of electric fields due to magnetic currents.
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The discretized inhomogeneous system of equations
describing the present excitation problem has the form

A � ω � K � x � b � ω � K � (34)

where x represents the unknown coefficient vector and
b is the excitation vector. The solution to this problem
can be obtained by using standard techniques, e.g. LU-
decomposition or Gauss elimination, unless matrix A is
singular, in which case we recommend to resort to one
of the techniques described below.

Once the solution to (34) has been obtained, we use
(8) to construct the fields in real domain. As pointed out
earlier, the expansions of the fields are simply Fourier
transforms with respect to x on various layers z � i∆.
Therefore, we can synthesis the fields from the coef-
ficients merely by applying the inverse Fourier trans-
form.

B. Eigenstate problems

1) Theorem: A homogeneous linear system

Ax � 0 (35)

always has the trivial solution x � 0. Nontrivial solu-
tion exist if and only if rank � A � � n. If rank � A � � r �
n, these solutions, together with x � 0, form a vector
space of dimension n � r.

One way to determine the rank of a matrix is to count
all its eigenvalues which are equal to zero. The cor-
responding eigenvectors expand the null space of A
among which we can construct all the solutions.

This information can also be obtained through singu-
lar value decomposition. If n singular values are zero,
then the null space of A has dimension n and the equa-
tion system has a solution of degeneracy n.

A more efficient way to investigate the singularity of
a matrix is to perform an LU-decomposition and cal-
culate its determinant by multiplying the diagonal el-
ements of the upper diagonal matrix. The determinant
itself is generally inappropriate for determining the sin-
gularity of a matrix due to the lack of a uniform scale:
The determinant can be very large even if the matrix is
nearly singular or vice versa. In our case it does not
really matter much since we are aiming at ratios. We
construct the system matrix for consecutive ω values
and compare the associated determinants. For ω’s near
a singularity, the value of the determinant drops sharply
and we can iterate towards the resonant frequency. In
the next session we address the details of the iterative
scheme used.

C. Iterative solver

For large problems, iterative rather than direct
solvers should be considered since they often signifi-
cantly speed up the computations. Our choice for it-

erative solver has been the Transpose Free Quasi Min-
imal Residual method (TFQMR), which is a Krylov-
subspace method for non-Hermitian matrices [3]. It is
efficient, tolerant against breakdowns, and handles sin-
gular matrices well.

TFQMR (as many other iterative solvers) only re-
quires products by the matrix to be solved and, thus,
the matrix never actually has to be constructed. All is
needed is a routine that returns the product of the ma-
trix by a given trial vector.

1) Generating matrix products: The operator in (7a)
has two parts: the spatial derivatives and a multipli-
cation by a function ε in the spatial domain. Deriva-
tives are trivially simple to compute in the Fourier
domain as they reduce to algebraic multiplication by
the respective Fourier expansion term. On the other
hand, multiplication by ε leads to a convolution - or
- in discretized version, to a multiplication by a con-
volution matrix (18). It is known from the theory
of Fourier transforms that convolution in Fourier do-
main corresponds to a multiplication in real domain
and vice versa. Therefore, the convolution can be eval-
uated by inverse Fourier transforming the coefficient
matrix, multiplying by ε in the real domain, and finally
Fourier transforming back. This approach is justifiable
because multiplication by the (full) convolution matrix
is an O � N3 � operation for N coefficients, but in real do-
main, we multiply spatial fields with the corresponding
ε , requiring only O � N � operations. Dominating factor,
O � N ln � N � � , comes from the FFT.

This approach can not be used in constructing the
system matrix A, it is only amenable to evaluating ma-
trix vector products.

2) Preconditioning: The convergence rate of itera-
tive methods decisively depends on the matrix they are
applied to. Occasionally, they may completely fail to
converge. However, instead of solving Ax � b we can
solve the equivalent form

M � 1
1 AM � 1

2 � M2x � � M � 1
1 b (36)

for the new unknown vector y � M2x and the RHS
c � M � 1

1 b. Our expectation is that the solver may con-
verge faster for the new matrix M � 1

1 AM � 1
2 . The pri-

mary objective is then to find suitable preconditioner
matrices M1 and M2 such that their inverse can be
computed with a reasonable effort, and that they would
transform the matrix into a nearly diagonal one. To
this end various standard techniques have been devel-
oped, e.g. partial LU-decomposition, but we decided
to use a problem-specific strategy in which relevant in-
formation from A is used. In our case we use only
one sided preconditioning and set M1 � I. The right
preconditioner matrix M2 is constructed from three di-
agonals of A. In effect, M2 corresponds to a system
matrix of a modified problem in which ∂xε � x � z � � 0.
The discretized dielectric function for the ‘‘reduced’’
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problem can be obtained by averaging the original di-
electric function on each z � layer, εk � ave � εk � , over
one period.

We do not invert M2 explicitly. Instead, we solve
M2z � ŷ � z � M � 1

2 ŷ, where ŷ is a trial vector given
by TFQMR. After this, z is multiplied by A as ex-
plained above and the result is returned TFQMR. The
linear system concerning M2 can be solved efficiently
using Gauss elimination because there are non-zero el-
ements only on three diagonals. The elements of M2
are computed once for each different A and then reused
in the subsequent iterations.

3) Iterative solution of Solving eigenstates: Eigen-
states can also be solved iteratively as will be demon-
strated in section VI. This technique does not involve
matrix factorization directly nor the computation of its
determinant. Consider the following system

A � ω � K � x � y (37)

where y is some non-zero vector, while the remain-
ing terms are defined as before. This is an inhomo-
geneous system and can be solved using the iterative
technique described above. If A � ω � K � approaches a
singular point, then x approaches an eigenvector of
A � ω � K � corresponding to an eigenvalue 0, nearly inde-
pendently of y. Furthermore, the norm of the solution
x approaches infinity. The proof of this statement and
limitations on the choice of y are provided in [4]. This
property can be used as a measure for matrix singular-
ity in place of, e.g. the determinant.

In many instances iterative solutions are preferred
since they require less computer resources than the di-
rect factorization of the matrix, and, at the same time,
give the field solution.

VI. NUMERICAL RESULTS

We solve dispersion diagrams for two problems and
compare results with those obtained by a planewave
method (PWM) [5]. In addition, we present field solu-
tions for a third problem, which consists of a slab with
Gaussian dielectric profile function. We use TFQMR to
find the field solution due to a single dipole excitation.
Our objective is to find the singular points of the system
matrix where the solution norm approaches infinity.
Because it is easier to search zeros rather than infini-
ties we use an ‘‘inverted’’ form instead. Then our ob-
jective function becomes F � ω � � �

�
� A � 1 � ω � b ��

2 � � 1 � 2

where A � ω � is the system matrix and b is the excitation
vector. The minimization takes place in two steps: first
we bracket the minimum between two points and then
we decrease the interval to the desired accuracy. When
bracketing the minimum, we fit a second order poly-
nomial to three points of F � ω � in order to estimate the
location of a fourth point. This allows us to adapt the
step size according to the derivative and absolute value

ε=10.5P

ε=1P

z

x

ε=1P ε=13

Fig. 2. One unit cell of the test structure 1. The structure is periodic
in x � direction w ith period P . A bove and b elow the s lab, as w ell as the
space between the corrugation is free space.

of F � ω � and therefore take great leaps away from the
minimum and small steps in its vicinity. When the min-
imum has been bracketed, we switch to golden section
search in order to decrease the bracketed interval.

In the planewave method, the problem is assumed
to be periodic in all directions. Therefore, in order to
apply this technique, we need to periodize the struc-
ture artificially by adding sufficiently large free space
in the z � direction. The resulting enlarged unit cell,
i.e. a supercell, is then periodized. This approach is
justifiable if the modes are confined around the slab
in z � direction, such that immediate neighboring su-
percells have negligible interaction. This can be veri-
fied by repetitively solving the problem with larger and
larger supercell until the results converge.

A. A slab with rectangular corrugation

Our first test case is a slab with a periodic and rect-
angular corrugation. The period is L1 � P, the height
of the slab h � P and the pitch-to-mark ratio is 0

�
5

(l � 0
�
5P). The relative dielectric constant of the slab is

ε � 13. Above and below the slab, as well as, the space
between the corrugation is free space. A schematic pic-
ture of the structure is presented in Fig. 2.

In order to apply the planewave method we have
used a supercell with dimensions L1 � P and Lz � 12P.
The computed dispersion diagram is shown in Fig. 3.
Red curves with circular markers are obtained u sing
our method, while blue lines with cross markers have
been computed using the planewave method. The thick
black line indicates the lightline, above which modes
are radiating. Note that due to the artificial periodiza-
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Fig. 3. Dispersion diagram for a slab with rectangular corrugation.
Red lines with circular m arkers are com puted us ing our m ethod, while
blue lines w ith cr os s m ar kers h ave b een com puted us ing p lanewave
method. In our method we used 64 planewaves in x � direction and 64
fin ite diff er ences in z � direction. For the planewave m ethod we us ed
64 planewaves in a unitcell; i. e. 64x(12x64) planewaves all together.

tion in the planewave method, even unbounded modes
appear guided.

This is an artifact, which is avoided in our method:
For weakly or nonguided modes the interaction be-
tween consecutive supercells is no longer negligible
and, therefore, they appear guided.

B. A slab with cylindrical corrugation

Our second test case is a similar slab but this time
with a cylindrical corrugation. The slab dimensions,
material, period length and discretization scheme are
as above. However, the corrugation is formed of
y � directional air cylinders (voids) with r � 0

�
4P. The

structure is shown in Fig. 4.
Because the discretization is rectangular in both

methods, we have averaged ε in the boundary cells in
order to bring the average closer to its true value. The
computed dispersion diagram is shown in Fig. 5.

C. Field solution in a slab with Gaussian dielectric
profile

Our third test case is a slab with thickness hz � 1 and
x � directional periodicity L1 � P � 1. The dielectric
function in the fundamental unit cell of the slab is

ε � x � z � � 1 � 9e � � 0 � 5 � x
0 � 2 � 2

e � � 0 � 5 � z
0 � 2 � 2

�
(38)

Above and below the slab is free space. The dispersion
diagram, which shows that this slab supports two TE-
polarized modes, is presented in Fig. 6.

We solved the fields resulting from one y-directional
dipole located at � x � z � � � 0

�
30 � 0

�
27 � for � K � ω � �

� 0
�
4 � 0

�
2816 � . As can be seen from the dispersion di-

agram, this point corresponds to an eigenfrequency of
the system and, therefore, the system matrix is (nearly)

z

x
P ε=1

P

ε=1

ε=1

ε=13

0.8P

ε=1

Fig. 4. One unit cell of the test structure 2. The structure is periodic
in x � direction with period L1

� P. Above and below the slab in
z � direction, we assume free space.
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Fig. 5. Dispersion diagram for a slab with circular corrugation.
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Fig. 6. Dispersion diagram for a slab with a Gaussian dielectric func-
tion as computed by our method.
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Fig. 7. Real part of eigenmode fi elds for a slab with Gaussian dielec-
tric function, computed for

�
K � ω � �

�
0 � 4 � 0 � 2816 � .
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Fig. 8. Fields in a slab with Gaussian dielectric function, computed
for
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K � ω � �
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0 � 5 � 0 � 2816 � .
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singular. Field distributions e2 and h1 presented in Fig.
7 are the transversal field components obtained directly
by solving (34). Whereas the orthogonal field com-
ponent h3 is computed a posteriori using (5b). In the
field patterns there is no trace of the dipole excitation.
This can be understood as follows: A dipole excitation
pumps energy into a resonating system and, therefore,
the energy grows without bounds, until the excitation is
negligible compared with the field strength. Mathemat-
ically speaking, the system matrix A has an eigenvalue
0 and, therefore, the solution of (34) is in the space
which is spanned by eigenvectors corresponding to an
eigenvalue 0. A more formal proof is given in [4].

Fields in response to an excitation in the same loca-
tion but obtained for � K � ω � � � 0

�
5 � 0

�
2816 � are shown

in Fig. 8. Now the dipole excitation is clearly visible in
the field patterns. Moreover, the ratio of field peak val-
ues at eigen frequency and this frequency, as returned
by the iterative solver, is of order 108.

VII. DISCUSSION OF THE NUMERICAL RESULTS

AND CONCLUSIONS

A. Searching for the minimum

The computational effort needed to solve the eigen-
modes depends on how efficiently the system equation
can be solved and how many times it has to be done.
We have already addressed how accelerate the solver,
here we discuss how minimize F � ω � efficiently for a
given K. Currently we fit a second order polynomial
to three previously computed points in order to esti-
mate the location of the fourth one. When the curve
approaches a minimum we decrease the step size try-
ing to avoid overshooting the minimum. Practice has
shown that it is good to aim at a point that changes the
norm by 10% compared to the previous value. It is
tempting to use bigger steps but then we risk jumping
over a minimum without noticing its occurrence. This
is especially crucial for closely spaced modes. Smaller
steps on the other hand are more secure but then we end
up solving the fields in unnecessarily many ω points. A
typical search pattern is shown in Fig. 9.

When the minimum is bracketed, we switch to
golden section search to iterate the minimum to the de-
sired accuracy. The advantage of this procedure is that
golden section search converges at a predetermided rate
and it does not suffer from lock ups. The disadvan-
tage is that the convergence rate is predetermined even
though we could perform better since we have a good
idea of the curve behavior. Most of the standard min-
imization techniques are not applicable because they
assume parabolic behavior near the minimum. Instead,
we could fit polynomials to both sides of the minimum
and increase the degree as more points are solved. The
crossing of the two polynomials would then be the next
search point. However, this method is prone to lock ups
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Fig. 9. Field energy function F
�
ω � for the test case with cylindrical

corrugation. The phasing factor is chosen to be K � 0 � 5 (in Brillouin
zone units). The behavior is very regular allowing effi cient optimiza-
tion techniques in the quest for minima.
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Fig. 10. Search pattern in the vicinity of the minimum for the third
order mode with K � 0 � 5 (in Brillouin zone units) of the slab with
cylindrical corrucation.

and has not been experimented so far. A typical search
pattern in the vicinity of a minimum is shown in Fig.
10.

B. Convergence

1) Convergence of the iterative solver: It is difficult
to make precise statements for the convergence behav-
ior of the iterative solver because it strongly depends
on a variety of parameters. With our preconditioner,
the number of iterations needed usually varies between
2 and 20. Key factors are the dielectric function and the
condition number of the matrix. In addition, the initial
guess has an influence, even though a minor one.

Typically problems with ∂ε � x � z � � ∂x being small
converge fairly quickly. This is because large variations
of ε in x � direction create large off-diagonal terms in
the system equation. The three-diagonal preconditioner
is capable of directly solving a matrix with only three
diagonals but all off-diagonal terms are left for the it-
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erative solver. Therefore, the bigger the off-diagonal
terms are, the worse is the condition number of the pre-
conditioned matrix and the more iterations are needed
by the iterative solver. It is worth mentioning that if
∂ε � x � z � � ∂x � 0, there are no elements outside the three
diagonals in the system matrix and only one applica-
tion of the preconditioner solves the problem. No iter-
ations are needed. It should also be pointed out that be-
cause of the finite difference approach in z � direction,
∂ε � x � z � � ∂ z has no effect on convergence. All varia-
tions with respect to z are eliminated by the precondi-
tioner.

It appears that the condition number of the matrix is
also a factor in the iterative solver convergence. This
is unfortunate since the eigenmodes of the system are
found exactly in the singular points of the system ma-
trix. The effect is not dramatic; the number of the iter-
ations required for convergence is maybe four fold as
compared to a well behaved point, all other factors be-
ing held equal. Again, it is rather difficult to make pre-
cise statements because other factors often have a more
significant effect. As an example, in the cylindrical-
void slab problem with nx � nz � 64, convergence at
K � 0

�
5, ω � 0

�
1 requires three iterations (TFQMR re-

quires two matrix products for each iteration) and at the
lowest order eigenmode - K � 0

�
5, ω � 0

�
195719 - 12

iterations are needed.

The number of discretizations, on the other hand,
does not have a direct effect on convergence. Solving
the above mentioned problem with nx � nz � 384, re-
quires three and eleven iterations, respectively.

2) Convergence of eigenfrequencies: Our method
gives precise results with a small number of discretiza-
tion steps. As an example, we analyze the slab prob-
lem with cylindrical corrugation. We have solved the
lowest order eigenfrequency for K � 0

�
5 with both,

our method, and the planewave method, increasing dis-
cretization until the results converged. The conver-
gence behavior is shown in Fig. 11.

In conclusion we summarize the distinct properties
of our method: The difference between converged fre-
quencies for n � 16 and n � 384 is only 0

�
024%. The

relative difference between converged frequencies as
solved with our method and the planewave method for
n � 384 is 0

�
00204%.
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Abstract

We consider a bounded obstacle characterized by
a boundary electromagnetic impedance contained
in the three dimensional real Euclidean space filled
with a homogeneous isotropic medium. When an
incoming electromagnetic field illuminates the ob-
stacle a scattered field is generated. A smart ob-
stacle is an obstacle that in the scattering pro-
cess, circulating a surface electric current density
on its boundary, tries to achieve a given goal. We
consider four possible goals: making the obstacle
undetectable (i.e.: furtivity problem), making the
obstacle to appear with a shape and impedance
different from its actual ones (i.e.: masking prob-
lem), making the obstacle to appear in a loca-
tion different from its actual one eventually with
a shape and impedance different from its actual
ones (i.e.: ghost obstacle problem) and finally one
of the previous goals limited to a given subset of
the frequency space (i.e.: definite band problems).
We consider the problem of determining the op-
timal electric current density to achieve the given
goal. The relevance in many application fields (i.e.
stealth technology, electromagnetic noise control,

etc.) of these problems is well known. The pre-
vious problems are modelled as optimal control
problems for the Maxwell equations. Some nu-
merical results on test problems obtained solving
the optimal control problems proposed are shown.

1. Introduction

In recent years the development of new technolo-
gies has made possible to build a vast class of
“smart” objects. This wave of innovation has
moved from cutting edge military applications to
everyday life objects such as, for example, wash-
ing machines. In this paper we consider the prob-
lem of formulating adequate mathematical mod-
els of smart obstacles in the context of electro-
magnetic scattering. The general mathematical
model that we have in mind to describe the be-
havior of a “smart” object is an optimal control
problem. The problems considered in electromag-
netic obstacle scattering are described by partial
differential equations so that we deal with optimal
control problems for partial differential equations.
Optimal control problems are widely used in engi-
neering as mathematical models. However their
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use is mainly limited to the control of systems
governed by ordinary differential equations and
their use in electromagnetic scattering is rather
uncommon. The development of computer tech-
nology and numerical methods occurred in the last
decades makes possible now to consider optimal
control problems for systems of partial differen-
tial equations such as the Maxwell equations, that
is makes possible the use of optimal control to
model electromagnetic scattering problems. We
consider four examples: furtivity problem (i.e.:
the obstacle wants to be undetectable), masking
problem (i.e.: the obstacle wants to appear with
a shape different from its actual shape eventu-
ally with a boundary impedance different from
its actual one), ghost obstacle problem (i.e.: the
obstacle wants to appear in a location different
from its actual location eventually with a shape
and impedance different from its actual ones) and
finally definite band problems (i.e.: the obsta-
cle pursues one of the previous goals on a given
subset of the frequency space). Recently similar
problems in the context of time dependent acous-
tic and electromagnetic obstacle scattering have
been studied from the point of view of formulating
adequate mathematical models and of developing
highly parallelizable numerical methods to solve
them (see [1], [2], [3], [4], [5] and the websites:
http://www.econ.univpm.it/recchioni/w6,
http://www.econ.univpm.it/recchioni/w8,
http://www.econ.univpm.it/recchioni/w9,
http://www.econ.univpm.it/recchioni/w10,
http://www.econ.univpm.it/recchioni/w11). Note
that in these papers “smart” and “active” obsta-
cles are synonyms. More in detail in [1] the furtiv-
ity problem in acoustic time dependent obstacle
scattering has been modelled as an optimal con-
trol problem and the first order optimality condi-
tions to solve it have been obtained as a system
of coupled partial differential equations, finally a
highly parallelizable numerical solver for this sys-
tem of partial differential equations has been de-
veloped. Later in [2], in [4] and in [5] the mask-
ing problem in acoustics and the furtivity and the

masking problems in electromagnetics have been
studied and finally in [3] the definite band ghost
obstacle problem in acoustics has been solved.

The practical interest of the mathematical mod-
els of smart obstacles proposed consists in the fact
that these models can be used to design smart
obstacles of practical value. Hence, for example,
in the realization of radar absorbers the approach
proposed can be a way of approaching the design
of phase-switched screens (see for example [6], [7],
[8]). In fact the phase-switched screen is an ob-
ject that does not absorb the incident energy but
shifts it in frequency using phase modulation so
that the reflected energy falls outside the receiver
bandwidth. That is, a phase-switched screen in
our language can be seen as a smart obstacle that
pursues the goal of being furtive in a given subset
of the frequency space.

In Section 2 we formulate the mathematical
models of the electromagnetic smart obstacles
considered. In Section 3 we show some numer-
ical results obtained solving the model proposed
in Section 2 concerning the definite band furtivity
problem.

2. Mathematical models of electromag-
netic smart obstacles

Let us begin introducing some notations. Let
R be the set of real numbers, R3 be the
three dimensional real Euclidean space and x =
(x1, x2, x3)T ∈ R3 be a generic vector, where the
superscript T means transposed. We denote with
(·, ·) the Euclidean scalar product in R3, with ‖ · ‖
the corresponding Euclidean vector norm and with
[·, ·] the usual vector product. Let R3 be filled
with a homogeneous isotropic medium of constant
electric permittivity ε > 0, constant magnetic per-
meability υ > 0 and zero electric conductivity.
Moreover we assume that there are no free electric
charges or currents. Let us suppose that R3 con-
tains an obstacle Ω given by a bounded set with-
out holes and internal cavities, more technically,
a bounded simply connected open set Ω, with lo-
cally Lipschitz boundary ∂Ω. Let Ω denote the set
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Ω ∪ ∂Ω and n(x) = (n1(x), n2(x), n3(x))T ∈ R3,
x ∈ ∂Ω be the outward unit normal vector to ∂Ω
in x ∈ ∂Ω. In the following Ω will be the scatterer,
that is the obstacle responsible for the scattering
of the incoming electromagnetic field. We assume
that Ω has a known constant real boundary elec-
tromagnetic impedance χ ≥ 0. The limit case of
perfectly insulating obstacles (i.e. χ = +∞) can
be treated with straightforward modifications of
the material presented here.

We begin modelling the standard direct obstacle
scattering problem that is, the scattering problem
relative to an obstacle that does not pursue any
goal. We refer to this obstacle as a “passive” ob-
stacle.

We consider an incoming electromagnetic field
(Ei(x, t),Bi(x, t)), (x, t) ∈ R3 ×R. The electric
vector field Ei(x, t) ∈ R3, (x, t) ∈ R3 × R and
the magnetic induction vector field Bi(x, t) ∈ R3,
(x, t) ∈ R3×R associated to the incoming electro-
magnetic field satisfy the Maxwell equations, that
is equations (1), (2), for (x, t) ∈ R3 ×R. We use
the M.K.S. unit system to write equations (1), (2)
(see [9], p. 16). When the incoming electromag-
netic field (Ei(x, t),Bi(x, t)), (x, t) ∈ R3×R, hits
the scatterer Ω generates a scattered electromag-
netic field (Es(x, t),Bs(x, t)), (x, t) ∈ (R3 \ Ω)×
R, solution of an exterior problem for the Maxwell
equations. That is the scattered electric vec-
tor field Es(x, t) ∈ R3, (x, t) ∈ (R3 \ Ω) × R
and the scattered magnetic induction vector field
Bs(x, t) ∈ R3, (x, t) ∈ (R3 \ Ω) × R satisfy the
following equations,(

curlEs +
∂Bs

∂t

)
(x, t) = 0,(

curlBs − 1
c2

∂Es

∂t

)
(x, t) = 0,

(x, t) ∈ (R3 \ Ω)×R, (1)

divBs(x, t) = 0,divEs(x, t) = 0,

(x, t) ∈ (R3 \ Ω)×R, (2)

with the boundary condition,

[n(x),Es(x, t)]− cχ [n(x), [n(x),Bs(x, t)]] =

[n(x), b(x, t)] , (x, t) ∈ ∂Ω×R, (3)

where,

b(x, t) = −Ei(x, t) + cχ
[
n(x),Bi(x, t)

]
,

(x, t) ∈ ∂Ω×R, (4)

the condition at infinity and the radiation condi-
tion given respectively by,

[Bs(x, t), x̂]− 1
c
Es(x, t) = o

(
1
r

)
,

Es(x, t) = O

(
1
r

)
, r → +∞, t ∈ R, (5)

where 0 = (0, 0, 0)T , c = 1/
√

ε υ, x̂ = x/‖x‖,
x 6= 0, r = ‖x‖, curl · and div· denote respectively
the curl and the divergence of · with respect to
the x variable, ∂ · /∂t denotes the time deriva-
tive of ·, and o(·), O(·) are the Landau symbols.
When we consider the case χ = +∞ the bound-
ary condition (3) must be “rewritten”. The two
conditions contained in (5) imply the vanishing
of the magnetic induction vector field at infinity,
that is Bs(x, t) = O(1/r), r → +∞, t ∈ R. More-
over we assume that the incoming electromagnetic
field vanishes when t → −∞, that is Ei(x, t),
Bi(x, t) → 0, x ∈ R3, t → −∞, that implies that
the scattered electromagnetic field vanishes when
t → −∞ as well, that is Es(x, t), Bs(x, t) → 0,
x ∈ (R3 \ Ω), t → −∞.

The scattering problem for a “passive” obstacle
Ω can be stated as follows:
Scattering Problem (passive obstacle).
Given the incident electromagnetic field (Ei,Bi),
the obstacle Ω and its boundary electromagnetic
impedance χ, solve the time dependent Maxwell
equations (1)-(3), (5) in the unknowns (Es,Bs).

Let us study the possibility of transforming the
“passive” obstacle into a “smart” obstacle.
Problem 1. Furtivity Problem. Given the in-
cident electromagnetic field (Ei,Bi), the obstacle
Ω and its boundary electromagnetic impedance χ

choose a control vector field (i.e. a surface electric
current density) defined for (x, t) ∈ ∂Ω ×R in a
suitable class of admissible controls, in order to
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minimize a cost functional that roughly speaking
measures the “magnitude” of the electromagnetic
field (Es,Bs) scattered by Ω, χ (when the control
vector field is active) when hit by the incoming
field (Ei,Bi) and the “magnitude” of the control
vector field employed.

To obtain a satisfactory formulation of the
furtivity problem we modify the boundary con-
dition (3) as follows,

[n(x),Es(x, t)]− cχ [n(x), [n(x),Bs(x, t)]] =

[n(x), b(x, t)] + (1 + χ)[n(x),Φ(x, t)],

(x, t) ∈ ∂Ω×R. (6)

The quantity Φ(x, t), (x, t) ∈ ∂Ω×R has the di-
mension of an electric field and is related to the
control variable that transforms the obstacle Ω
from being passive to being smart. We assume
that limt→±∞Φ(x, t) = 0, x ∈ ∂Ω.

Let us define ψ(x, t) = ∂Φ
∂t (x, t), (x, t) ∈ ∂Ω×R

and let V be the space of the admissible controls,
that we leave undetermined in this paper (see [5])
for a definition of V). Note that ψ = ∂Φ

∂t has the
dimensions of an electric (surface) current density.
The furtivity problem can be formulated as the
following optimal control problem,

min
ψ∈V

Fλ,µ(ψ) , (7)

subject to the constraints (1), (2), (5), (6) and
Fλ,µ is the following functional,

Fλ,µ(ψ) = (1 + χ)
{
λ‖| [n,Es] |‖2+

λc2‖| [n,Bs] |‖2 + µς‖| [n,ψ] |‖2
}

. (8)

The quantity ς is a positive dimensional constant
and λ ≥ 0, µ ≥ 0 are adimensional constants such
that λ + µ = 1. Moreover the norms ‖| · ‖| ap-
pearing in (8) are norms on a suitable space of
functions defined on ∂Ω×R (see [5]). For exam-
ple the square root of the integral over ∂Ω×R of
the square of the vector norm of · is such a norm.
Note that the solution of problem (7), (1), (2),
(5), (6) when λ = 0, µ = 1 is [n(x),ψ(x, t)] = 0,
(x, t) ∈ ∂Ω × R, that is in this case (Es,Bs) is

the electromagnetic field scattered by the passive
obstacle. On the other hand when λ = 1, µ = 0
the solution of the same problem gives an obsta-
cle completely undetectable since the minimiza-
tion of (8) in this case gives [n(x),Es(x, t)] = 0,
[n(x),Bs(x, t)] = 0, (x, t) ∈ ∂Ω × R that im-
plies Es(x, t) = 0, and Bs(x, t) = 0, (x, t) ∈
(R \ Ω) × R. However when λ = 1, µ = 0 the
cost functional (8) does not contain a term that
depends on the control employedψ. Note thatEs,
Bs depends implicitly on ψ through the bound-
ary condition (6). The remaining cases, that is
0 < λ < 1, correspond to nontrivial formulations
of the furtivity problem.
Problem 2. Masking Problem. In the cir-
cumstances of Problem 1 given an obstacle D ⊆
Ω, and its electromagnetic boundary impedance
χD, choose a control vector field ψ(x, t), (x, t) ∈
∂Ω×R in a suitable class of admissible controls, in
order to minimize a cost functional that roughly
speaking measures the “magnitude of the differ-
ence” between the electromagnetic field (Es,Bs)
scattered by Ω, χ (when the control vector field
is active) and the electromagnetic field (Es

D,Bs
D)

scattered by D, χD when hit by the incoming field
(Ei,Bi) and the “magnitude” of the control vec-
tor field employed. The couple D, χD will be
called the “mask”. For simplicity we assume the
mask to be a passive obstacle.

The Masking Problem can be modelled as the
optimal control problem (7), (1), (2), (5), (6) if
the functional Fλ,µ that appears in (7) is defined
as follows,

Fλ,µ(ψ) = (1 + χ)
{
λ‖| [n,Es −Es

D] |‖2+

λc2‖| [n,Bs −Bs
D] |‖2 + µς‖| [n,ψ] |‖2

}
.(9)

Problem 3. Ghost Obstacle Problem. In the
circumstances of Problem 1 given an obstacle G

such that G 6= ∅, G ∩ Ω = ∅, its electromagnetic
boundary impedance χG, and a bounded set with-
out holes and internal cavities Ω1 such that Ω, G

are contained in Ω1 and ∂Ω1 is a sufficiently reg-
ular surface, choose a control vector field ψ(x, t),
(x, t) ∈ ∂Ω × R in a suitable class of admissible
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controls, in order to minimize a cost functional
that roughly speaking measures in (R3 \Ω1)×R
the “magnitude of the difference” between the
electromagnetic field (Es,Bs) scattered by Ω, χ

(when the control vector field is active) and the
electromagnetic field (Es

G,Bs
G) scattered by G,

χG when hit by the incoming field (Ei,Bi) and
the “magnitude” of the control vector field em-
ployed. The couple G, χG will be called “ghost
obstacle”. For simplicity we assume the “ghost
obstacle” to be a passive obstacle. The Ghost
Obstacle Problem can be modelled as the opti-
mal control problem (7), (1), (2), (5), (6) if the
functional Fλ,µ that appears in (7) is defined as
follows,

Fλ,µ(ψ) = (1 + χ)
{
λ‖| [n,Es −Es

G] |‖21+

λc2‖| [n,Bs −Bs
G] |‖21 + µς|‖ [n,ψ] |‖2

}
, (10)

where |‖ · |‖1 is a norm on a suitable space of func-
tions defined on ∂Ω1 ×R.

Finally we formulate the so called Definite Band
Problems.

Let K ⊆ R be an assigned set of the frequency
space that we assume to be an open interval sym-
metric with respect to the origin, let ǏK(t), t ∈ R
be the inverse Fourier transform of the character-
istic function of the set K and let us denote with
f ∗ g the convolution product with respect to the
time variable of the functions f and g. The set K

is the definite band in the frequency space where
the smart obstacle pursues its goal.
Problem 4. Definite Band Furtivity Prob-
lem. In the circumstances of Problem 1 given
K choose a control vector field ψ(x, t), (x, t) ∈
∂Ω ×R in a suitable class of admissible controls,
in order to minimize a cost functional that roughly
speaking measures the “magnitude” in the fre-
quency band K (K ⊂ R) of the electromagnetic
field (Es,Bs) scattered by Ω, χ (when the control
vector field is active) when hit by the incoming
field (Ei,Bi) and the “magnitude” of the control
vector field employed.

The Definite Band Furtivity Problem can be
modelled as the optimal control problem (7), (1),

(2), (5), (6) if the functional Fλ,µ that appears in
(7) is defined as follows,

Fλ,µ(ψ)=(1 + χ)
{
λ‖| ǏK ∗ [n,Es] |‖2+

λc2‖| ǏK ∗ [n,Bs] |‖2 + µς‖| [n,ψ] |‖2
}

.(11)

Similarly we can consider the remaining goals on
a definite band:
Problem 5. Definite Band Masking Prob-
lem. In the circumstances of Problem 1 given
K, an obstacle D ⊆ Ω, and its electromagnetic
boundary impedance χD, choose a control vec-
tor field ψ(x, t), (x, t) ∈ ∂Ω × R in a suitable
class of admissible controls, in order to mini-
mize a cost functional that roughly speaking mea-
sures the “magnitude of the difference” in the fre-
quency band K between the electromagnetic field
(Es,Bs) scattered by Ω, χ (when the control vec-
tor field is active) and the electromagnetic field
(Es

D,Bs
D) scattered by D, χD when hit by the in-

coming field (Ei,Bi) and the “magnitude” of the
control vector field employed.

The Definite Band Masking Problem can be
modelled as the optimal control problem (7), (1),
(2), (5), (6) if the functional Fλ,µ that appears in
(7) is defined as follows,

Fλ,µ(ψ) =(1 + χ)
{
λ‖|ǏK ∗ [n,Es −Es

D]|‖2+

λc2‖|ǏK ∗ [n,Bs −Bs
D]|‖2 + µς‖|[n,ψ]|‖2

}
. (12)

Problem 6. Definite Band Ghost Obsta-
cle Problem. In the circumstances of Problem 1
given K, an obstacle G such that G 6= ∅, G∩Ω =
∅, its electromagnetic boundary impedance χG,
and a bounded set without holes and internal
cavities Ω1 such that Ω, G ⊂ Ω1, and ∂Ω1 is
sufficiently regular choose a control vector field
ψ(x, t), (x, t) ∈ ∂Ω ×R in a suitable class of ad-
missible controls, in order to minimize a cost func-
tional that roughly speaking measures the “mag-
nitude of the difference” in the frequency band K

between the electromagnetic field (Es,Bs) scat-
tered by Ω, χ (when the control vector field is ac-
tive) and the electromagnetic field (Es

G,Bs
G) scat-

tered by G, χG when hit by the incoming field
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(Ei,Bi) and the “magnitude” of the control vec-
tor field employed.

The Definite Band Ghost Obstacle Problem can
be modelled as the optimal control problem (7),
(1), (2), (5), (6) if the functional Fλ,µ that appears
in (7) is defined as follows,

Fλ,µ(ψ)=(1 + χ)
{
λ‖| ǏK ∗ [n,Es −Es

G] |‖21+

λc2‖| ǏK ∗ [n,Bs −Bs
G] |‖21+µς|‖ [n,ψ] |‖2

}
.(13)

Note that the Definite Band Problems formu-
lated, that is Problems 4, 5, 6, are generaliza-
tions of Problems 1, 2, 3. In fact when we choose
K = R the Definite Band Furtivity, Masking and
Ghost Obstacle Problems reduce respectively to
the Furtivity, Masking and Ghost Obstacle Prob-
lems. The advantage of solving the Definite Band
Problems rather than the corresponding problems
on the entire frequency space is that the “price” to
be paid in term of the control variable employed
is smaller when the Definite Band Problems are
considered. In fact as shown in [10] in the acous-
tic case in the Definite Band Furtivity and Ghost
Obstacle Problems the “quantity” of the control
variable, measured by the norm used in the cost
functional, required to get a given furtivity effect
(or to get a given “ghost” effect) in the frequency
band K is smaller than the “quantity” of the con-
trol variable needed to get the same effect on the
entire frequency space (i.e. when K = R).

A straightforward mode to solve the six control
problems formulated here is the use of an opti-
mization routine and a numerical solver for the
Maxwell equations. This approach is computa-
tionally very expansive since it implies the solu-
tion of the Maxwell equations (several times due
to the necessity of estimating gradient and eventu-
ally “Hessian” of the cost functionals involved in
the control problems) at each iteration of the op-
timization procedure. A computationally cheaper
approach can be obtained using the Pontryagin
maximum principle. In fact under some hypothe-
ses using the Pontryagin maximum principle it is
possible to write the first order optimality condi-
tions corresponding to these control problems as

a system of partial differential equations with the
necessary boundary, initial and final conditions.
Highly parallelizable numerical methods can be
developed to solve these systems of partial differ-
ential equation. For brevity we refer the inter-
ested reader to [4], and [5], [3], [10]. The numer-
ical results obtained in Section 3 have been ob-
tained using the Pontryagin maximum principle.
In fact, we have derived the first order optimality
conditions, i.e. a system of partial of differential
equations for Problem 1 and a similar system for
Problem 6 and then we have solved these systems
developing suitable solvers based on the operator
expansion method presented in [5] and [11].

3. Some numerical results
We present some numerical results relative to two
experiments involving smart obstacles. In both
experiments we choose c = 1, ς = 1 and the fol-
lowing electromagnetic incoming field,

Ei(x, t) = (1, 0, 0)T e−[x3−t]2 ,

Bi(x, t) = (0, 1, 0)T e−[x3−t]2 ,

(x, t) ∈ R3 ×R. (14)

The smart obstacle of the first experiment is a
sphere of center the origin and radius 2 (Figure
1a)) with boundary impedance χ = 2 that pur-
sues the goal of being undetectable (i.e. Furtivity
Problem, Problem 1).

Figure 1. Obstacles.

The smart obstacle of the second experiment is
a perfectly conducting (i.e. χ = 0) double cone
(see Figure 1b)) that pursues the goal of being
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undetectable in the subset K = (−1, 1) of the fre-
quency space (Definite Band Furtivity Problem,
Problem 4). The double cone consists of two cones
of the same height 1.2 and base (a circle having
center the origin and radius 1.2) one upon the
other through their bases.

The numerical results relative to the first exper-
iment are shown in Table I. Let us describe these
results. Let BRi

, i = 1, 2, 3 be spheres having cen-
ter the origin and radii Ri = 2.0 + (i − 1) ∗ 0.5,
i = 1, 2, 3 and let tν = −2 + ν, ν = 1, 2, 3 be three
time values such that the incident field is begin-
ning to hit the scatterer (t = t1 = −1), is going
through the body of the scatterer (t = t2 = 0)
and is leaving the scatterer (t = t3 = 1) respec-
tively. Note that the spheres BRi

, i = 1, 2, 3 con-
tain or coincide with the smart obstacle, Ω ⊆ BRi ,
i = 1, 2, 3. Let Es

a and Es
p denote the electric field

generated by the smart obstacle when the optimal
surface electric current density is used, and by the
same obstacle considered as a passive obstacle re-
spectively. For i = 1, 2, 3, ν = 1, 2, 3 we define the
following quantities,

εa,λ
E,Ri,ν

=

[∫
∂BRi

‖Es
a(x, tν)‖2ds∂BRi

(x)

]1/2

,

(15)

εp
E,Ri,ν

=

[∫
∂BRi

‖Es
p(x, tν)‖2ds∂BRi

(x)

]1/2

,

(16)
and

ελ
E,Ri

= min
ν=1,2,3

|εp
E,Ri,ν

− εa,λ
E,Ri,ν

|
|εp

E,Ri,ν
|

, i = 1, 2, 3,

(17)
where ds∂BRi

is the surface measure on ∂BRi
,

i = 1, 2, 3. Note that the quantity εa,λ
E,Ri,ν

, εp
E,Ri,ν

i = 1, 2, 3, ν = 1, 2, 3 are a sample of the “magni-
tude” of the electric fields generated by the smart
obstacle and by the passive obstacle respectively.
The quantity ελ

E,Ri
, i = 1, 2, 3 is a measure of how

the electric field generated by the smart obstacles
is small when compared with the electric field gen-
erated by a passive obstacle that is, is a measure of
the furtivity effect achieved. The results obtained

Table I . Furtivity Effect

λ = 0.1, µ = 0.9

Ri ν εa,λ
E,Ri

εp
E,Ri

ελ
E,Ri

2.0 1 1.651 2.323 0.287

2.5 1 1.082 1.421 0.238

3.0 1 0.753 0.911 0.173

λ = 0.5, µ = 0.5

Ri ν εa,λ
E,Ri

εp
E,Ri

ελ
E,Ri

2.0 1 0.808 2.323 0.652

2.5 1 0.525 1.421 0.630

3.0 1 0.367 0.911 0.597

λ = 0.9, µ = 0.1

Ri ν εa,λ
E,Ri

εp
E,Ri

ελ
E,Ri

2.0 1 0.191 2.323 0.918

2.5 1 0.123 1.421 0.913

3.0 1 0.085 0.911 0.906

are satisfactory when ελ
E,Ri

is close to one, in fact
when εa,λ

E,Ri,ν
= 0 we have ελ

E,Ri
= 1.

Note that the column denoted with ν in Table I
contains the minimizer of formula (17). Results
similar to those shown in Table I have been ob-
tained for the magnetic induction vector field (see
[5] for further details).

Note that the furtivity effect increases when λ

increases and that it ranges from 17% when λ =
0.1 to 90% when λ = 0.9 (see Table I).

Finally Figures 2, 3 show the numerical results
relative to the second experiment. In this experi-
ment we choose λ = 0.9, µ = 0.1, K = (−1, 1). As
above, let Es

a, Bs
a and Es

p, B
s
p be the electric vec-

tor field and the magnetic induction vector field
scattered by the smart double cone when the op-
timal surface electric current density is employed
and by the passive double cone respectively. Fig-
ure 2 shows from left to right in the colour scale
shown the Euclidean norms of the convolution
products ǏK ∗ Es

a, ǏK ∗ Es
p, ǏK ∗ Bs

a, ǏK ∗ Bs
p

on the sphere BR2 as a function of the polar an-
gles (θ, φ), for three different values of the time
variables that is, t = 0, t = 2, t = 3. Note that
Ω ⊂ BR2 and that the norms of the vector fields
ǏK ∗ Es

a, ǏK ∗Bs
a are negligible compared to the
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corresponding norms ǏK ∗Es
p, ǏK ∗Bs

p.

Figure 2. Furtivity effect in the frequency band
K.

Figure 3. Furtivity effect outside the frequency
band K.

Similarly Figure 3 shows from left to right in the
colour scale shown the norms of the convolution
products ǏR\K ∗Es

a, ǏR\K ∗Es
p, ǏR\K ∗Bs

a, ǏR\K ∗
Bs

p on the sphere BR2 as a function of the polar
angles (θ, φ) for t = 0, t = 2, t = 3. Note that the
norms of the vector fields ǏR\K∗Es

a, ǏR\K∗Bs
a are

similar to the corresponding norms of ǏR\K ∗Es
p,

ǏR\K ∗Bs
p. That is, outside of the frequency band

K no furtivity effect is present. Note that the
colour scales used in Figures 2 and 3 to represent
the data are the same.

4. Conclusions

In this paper we have shown how mathematical
models, such as optimal control problems, can be
used profitably to design smart objects able to
pursue non trivial goals. The main advantage of
the mathematical formulation of the electromag-
netic scattering problem involving smart obstacles
proposed in this paper is that it allows to reduce
the solution of the scattering problem to the so-
lution of an optimal control problem whose op-
timal solution can be determined as the solution
of a suitable system of coupled partial differen-
tial equations. This fact guarantees a great com-
putational efficiency. In fact the most standard
approaches solve the optimal control problem it-
eratively. That is at each step of the iterative pro-
cedure a system of partial differential equations
must to be solved.
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Abstract  FDTD simulations generally require 
significant computational resources and time.  This 
paper systematically reduces the number of time steps 
and the grid size to determine the shortest simulation 
time that returns results with tolerable error for 
microstrip antenna simulations and their optimization of 
insertion loss with the genetic algorithm.  Although the 
error would generally be unacceptable for traditional 
antenna simulations, it is sufficiently small to optimize 
their design.  Simulations in less than 3 seconds on a P4 
2.8 GHz processor were shown to be usable, with error 
approximately equal to manufacturing tolerances.  A 
dual band ‘waffle’ antenna is designed that has better 
performance than the traditional dual band “F” antenna.   
 

I. Introduction 
 

 The finite difference time domain (FDTD) 
method [1], has become a mainstay of electromagnetic 
computation.   It has been applied to a seemingly 
endless array of applications, with little limitation of 
geometry, frequency band, materials, etc.  FDTD has an 
advantage over the method of moments which is also 
commonly used to model antennas [2], because it can 
simulate a fully heterogeneous antenna or antenna 
environment, however this does come at a significant 
cost. Computer simulation time and memory 
requirements are inherently large in heterogeneous 
simulations of this type, and FDTD is no exception.  
This computational cost has a serious impact on the 
numerical optimization of antennas, such as is often 
done using the genetic algorithm (GA) [3].  The GA 
will create a “population” of many (in our case 16) 
antennas, run their simulations (an individual FDTD 
simulation for each antenna), reject the poor 
performers, mutate/cross-over the good performers, and 
repeat this for many (50-100) generations resulting in 
800-1600 FDTD simulations.  A simple pioneering 
FDTD simulation with a grid size of 20x20x40 took 
over 38 minutes to run 600 time steps [4].  Since that 
time, much larger simulations have been run requiring 
days and even weeks [5]. 
  This paper focuses on ways to reduce the 
overall time required by reducing the time for each 
FDTD simulation.  Many efforts have been made to 
reduce the time required to run FDTD simulations.  

Methods to make FDTD run faster include: subdividing 
the problem and running on multiple computers or 
processors in parallel [5-10], using an initially smaller 
grid that expands with time [11], efficient processing of 
fields to extract useful information [12], using variable 
cell sizes [13], and exploiting symmetry to reduce the 
model size [14, 15 and others] to name a few.  
Dedicated hardware has also been developed 
specifically for FDTD to circumvent the limitation of 
general purpose processors [16].  A single FDTD 
simulation can now readily be done for most if not all 
field analysis applications of interest.  When multiple 
simulations are required, however, the computational 
requirements can become prohibitive. 
  Researchers have used the GA to optimize 
antennas, but have generally relied on methods other 
than FDTD [2, 17].  Some researchers have used GA-
FDTD schemes, but found computational constraints to 
be a limiting factor [18, 19].  They have limited the GA 
search to a small set of parameters, thereby limiting its 
usefulness as an optimization method.  This paper 
shows that with the proper selection parameters, FDTD 
simulations can be run quickly enough on a personal 
computer to be used to design a dual band antenna 
using the GA in a very short period of time.  Unlike 
typical numerical solutions where we need excellent 
accuracy and precision, it was found that relatively 
“sloppy” FDTD simulations, while not perfectly 
accurate, can yield results that are sufficient to 
determine the relative performance of similar antennas, 
and hence the design of optimal antennas.   
  Section II describes a traditional dual band 
monopole antenna that is used for comparison and 
simulation purposes.  Section II also introduces 
QFDTD, an FDTD program well suited to use with 
genetic algorithms.  Section III analyzes the how 
reducing the run time of the FDTD algorithm affects 
accuracy.  The number of time steps is reduced, and the 
FDTD grid is reduced in a systematic manner while 
error is measured.  Section IV applies the results from 
Section III to the design of a dual band antenna using 
the genetic algorithm.  Section V gives instructions on 
how to apply these methods generally, and Section VI 
draws conclusions from the results.    
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(ABCs), and poor modeling because of a discrete 
rectangular grid. Numerical dispersion can be 
minimized by reducing the cell size. When the grid 
sampling density is 10 points per free-space 
wavelength, the numerical dispersion is approximately 

Fig. 2.  Insertion loss of “F” antenna with 50 ohm feed.
Note that the “F” antenna is frequency shifted at 5.2
GHz due to the course grid requirements of FDTD.   
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Fig. 1.  Model of dual band 2.4/5.2 GHz “F” antenna as
created by the authors.  ∆X = 0.762 mm, ∆Y=∆Z=
1.423 mm.  A ground plane on the back of the substrate
extends from Z=1 to the end of the 50 ohm feed at
Z=19.   
II.  Antenna Model and FDTD 
 
 In [20], a dual band monopole “F” antenna is 

esigned on a microwave substrate at 2.4/5.2 GHz.  In 
his paper, we optimize the design of a similar antenna 
tructure shown in Fig. 1.  The antenna is designed to 
ave low insertion loss at 2.4 and 5.2 GHz as shown in 
ig. 2.  The FDTD model cell size is 0.762 x 1.423 x 
.423 mm3.  The microwave substrate is 0.060 inches 
1.524 mm) thick and has a relative dielectric constant 
f 2.6.  The cell dimension X is chosen to be half the 
ubstrate thickness, and the Y-Z dimension is chosen to 
imulate a 50 Ω microstrip feed.  This antenna model is 
sed in section IV to determine key FDTD simulation 
arameters.   

 FDTD models Maxwell’s equations in a 
patial grid consisting of electric and magnetic field 
omponents, which are alternately computed as the 
lgorithm steps through time.   Each cell in the grid 
ontains six orthogonal electric and magnetic field 
omponents.  Because the cells in the grid must be a 
inimum of 10/λ  for numeric accuracy and are 

ypically 20/λ  to 60/λ , the grid can be very large 
or many structures, including antennas.   As an 
xample, a 100x100x100 grid that can model roughly a 

antenna has six million field components that need 
o be updated with each of about 2000 time steps.   

3λ

 The major sources of error in FDTD 
alculations are due to numerical dispersion, reflections 
ue to imperfect absorbing boundary conditions 

1%, which is considered the minimum special sampling 
rate for accurate simulations [21]. By increasing the 
grid sampling density to 20 points per wavelength, the 
dispersion is reduced to 0.2% (and the grid size 
increases by a factor of 8). This paper uses a spatial 
sampling frequency of about 35 points per wavelength 
to accurately model the feed, reducing dispersion errors 
to negligible levels.  
  An in depth review of analytical boundary 
operators are covered by [22]. This review explains that 
the approximations used to create ABCs cause them to 
be imperfect. Waves traveling normal to the 2nd order 
Mur boundary are absorbed well. As the angle of 
incidence increases, the reflection coefficient increases. 
By increasing the grid size (and the computation time), 
the maximum angle of incidence is reduced, reducing 
reflections. Also, fewer waves will reflect back onto the 
antenna, because the antenna is located further from the 
boundary. 
  For fast FDTD simulations, care needs to be 
taken to ensure accurate simulations, while keeping the 
grid to a minimal size.  In addition, the boundary 
conditions need to be computationally efficient.  The 
commercial software package QFDTD uses simple 
update equations that assume a non-dispersive media.  
It also uses the computationally efficient Mur 2nd order 
boundary condition.   It is written in FORTRAN90, 
allowing the user to modify it and port it to any desired 
platform.   Additionally, it uses text files for all input-
output operations, allowing the GA to easily create new 
models and access output data [23].  QFDTD runs two 
simulations to analyze a structure.  The first simulation 



Fig. 3. Voltage on microstrip feed versus time.   
 Fig. 4. Difference in insertion loss power over 1-6 GHz

frequency band when number of time steps is reduced,
compared to a simulation running 5000 time steps.   
 

measures the incident signal at the microstrip feed.  The 
second simulation measures the total signal.  By 
subtracting the incident signal from the total signal, the 
scattering parameters are calculated over a wide 
frequency range.  This two-simulation setup can be 
exploited with GA optimization.  If the feed doesn’t 
change, the first simulation results can be used for all 
subsequent simulations, and its contribution to overall 
computation time is negligible.   
 

III. Simulations Speed and Accuracy 
   
  Well known ways to reduce FDTD simulation 
time include reducing the number of operations by 
reducing the model size and/or running fewer time 
steps.  However, there are fundamental limits on how 
much reduction in size and time can be done before 
inaccuracies are introduced.  This section of the paper 
assesses the impact of each time reduction method on 
the accuracy and speed of the program.     
 
A.  Run for fewer time steps 
  Perhaps the most obvious method to speed up 
the FDTD simulation is to reduce the total number of 
time steps in the simulation.  The “F” antenna model 
was simulated for a long time, to determine the 
minimum number of time steps needed for transients to 
die down to a sufficient level as shown in Fig. 3.  Then 
S11 is calculated from 1-6 GHz in 0.1 GHz increments.  
The simulation is then repeated many times stopping at 
300 to 1500 time steps.  S11 is calculated for each 
simulation, and the change in reflected power is 
computed at each frequency increment.  The maximum 
and average change in reflected power is given in Fig. 
4.  Simulations show that S11 changes very little after 
1500 time steps.  Fig. 4 shows that if the number of 
time steps is reduced to 900, the error is relatively 
small, but the computation time is almost cut in half.  
Reducing the number of time steps below 600 creates 
significant errors, especially in the higher frequencies.   

  The number of time steps required is also 
dependent on the size of the discrete time step.  
Generally, ∆t should be the maximum value that meets 
the Courant stability criterion unless lossy or active 
components are embedded into the FDTD grid [23].  
Using the highest stable value of ∆t will avoid 
unnecessary time steps.  QFDTD and other commercial 
FDTD programs used by the authors automatically 
calculate the correct value for ∆t. 
 
B.  Reduce grid size  
  Reducing the grid size can have an even 
greater effect on simulation time than the number of 
time steps.  If the dimensions of a 3-D grid are halved 
in each direction, the number of cells is reduced by a 
factor of eight, but the grid size reduction effectively 
brings the outer boundary closer and causes reflections 
at the boundary to increase.   To determine how much 
grid size affects S11, the “F” antenna model was 
simulated on a grid with 37x48 cells in the YxZ 
direction and a variable number of cells in the X 
direction.  It is first simulated on a 100x37x48 grid for 
comparison.  After the comparison simulation is run, 
the X grid is reduced to 10 and expanded in the X 
direction with each simulation, while the antenna is 
held at the center of the grid.  Fig. 5a shows that as the 
grid expands in the X dimension, the change in 
reflected S11 power is reduced.    
  The next test enlarged the grid in all three 
dimensions and compared the results to a 100x100x100 
cell grid.  As can be seen from Fig. 5b the difference in 
S11 continued to decrease as the grid is enlarged, but the 
results have not fully converged, even when the grid is 
a 100x100x100 cell. Expanding the grid beyond 
100x100x100 cells to reduce reflections proved 
unreasonable. Rather a smaller grid would be 
implemented with a more effective, but 
computationally costlier, boundary condition.  Thus a 
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Fig. 5. Change in S11 power when grid size is changed.
(a) YZ dimensions are 37 and 48.  X dimension vary
from 10-100 cells.  (b)  XYZ dimensions vary from 40-
100 cells.  
 

 
 
 

100x100x100 grid for these simulations could be 
considered large enough when using the Mur 2nd order 
boundary condition.  Getting the fastest execution time 
precludes the use of high cost boundary conditions even 
for small simulations.   
  It is significant to note that reducing the grid 
size caused more error in the lower frequency part of 
the 1 to 6 GHz range. Reducing the grid size moves the 
outer boundary closer to the antenna model. Because 
distance to the outer boundary is relative to the 
wavelength, lower frequencies will be closer to the 
boundary than higher frequencies. It was also observed 
that reducing the number of time steps produced more 
error in the higher frequency part of the 1 to 6 GHz 
simulations (although we can't explain why and it may 
be model-dependent).  From these observations we can 
conclude that a relatively narrow band design can be 
run faster.  A low frequency design can run for fewer 
time steps, and a high frequency design can simulate on 
a smaller grid, while maintaining simulation accuracy. 
 
C. Other execution speed factors 
  The FDTD executable needs to be optimized 
for speed.  The authors found that different compilers 
and compiler settings can affect execution speed by 
more than 300%.  Also, storing more information than 
necessary increase the simulation time and memory 
usage.   
  Each speed increase factor is multiplied by the 
next factor.  Implementing all speedup factors results in 
a dramatic decrease in FDTD run time. This speedup 
makes FDTD a viable simulator for running hundreds 
or even thousands of simulations needed by the GA 
optimizer.   
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Fig. 6. Cost (or fitness) of antennas at each generation
of the GA.  The cost is the percentage of reflection loss
over the frequency range of 2.2 – 2.6 GHz, and 5.0-5.5
GHz.   
IV.  Application Example-Design of GA 
Antenna 

 
 To show that high speed FDTD simulations 

an produce useful results, the authors remove the 
ranches from the “F” antenna model to produce a 
imple monopole.  This simple monopole is then placed 
n a 25x30x42 cell grid to be simulated for 900 time 
teps.  A rectangle with either non-metal or metal 
overed cells is placed over the top of the monopole 
odel.  The cells with and without metal correspond 

irectly to the “1s” and “0s” in a binary chromosome 
hat is controlled by the GA. 

 The GA creates a population of 16 antennas, 
nd simulates them for 100 generations.  Each antenna 
s given a cost which is based on how much insertion 
oss it generates over the frequency bands 2.2-2.6 GHz 
nd 5.0-5.5 GHz.  Single point crossover is used, and 
opulation decimation is used as the selection criteria. 
he mutation method randomly picks bits in each 
hromosome and replaces the previous value with a 
andom bit.  This mutation method is different than 
tandard mutation schemes, but is necessary because it 
ay be desirable to have a higher percentage of "1" 

its.  Fig. 6 shows that the GA is able to evolve an 
ntenna with low return loss after 60 generations.  Fig. 
 shows the optimized antenna model.  After the GA 
ompletes optimization, the final model is simulated for 
500 time steps on a larger 100x100x100 grid for 
omparison. 

 Fig. 8 shows that the smaller model didn’t 
roduce the most accurate results, but the optimized 
ntenna performance is still very good.  In addition, the 
hange in S11 from the small to the large model is 
omparable to manufacturing tolerances found by 
revious GA antenna designers [16, 17].  The larger 
omparison simulation shows that the GA antenna has a 



Fig. 8.  Optimized S11 results as calculated on small
grid (25x30x42 cells) for GA optimization, and large
grid (100x100x100 cells) for comparison with “F”
antenna.   Even though the small grid introduces
simulation error, the -10 dB bandwidth is very close on
both simulations, justifying the use of the small grid for
fast optimization.  
 

Fig. 7. Antenna design created by GA using structure
similar to “F” antenna design in Fig. 1.  The GA
created a population of 16 structures and evolved them
for 100 generations to create this final design found in
the 91st generation.  The substrate dimensions are
17x34 cells or 24.19mm x 48.38mm.  The substrate is
1.524 mm thick. 
 
-10 dB insertion loss bandwidth from 2 to 2.6 GHz and 
5.1 to 5.7 GHz.  This is better than the results obtained 
by the authors and [20] for the “F” antenna.  It is true 
that the GA design shown isn't much better than the 
"standard" design. The point of this paper is that it can 
quickly be designed using the GA if a small FDTD 
model is used. We purposely used a simple dual band 
design because we are emphasizing FDTD. Once the 
simulation time is reduced, very wide or multiband 
designs can be quickly produced that would be nearly 
impossible to produce using conventional design 
techniques. We have obtained better results using 
smaller cells, but we wanted to step to the limits in this 
paper.  
  Our first optimization simulations took over 17 
minutes. To run 1600 simulations would take 19 days, 
and we often had to make changes in our model starting 
the process over again. Using the techniques described 
in this paper (along with faster processors) has reduced 
simulation time to less than 3 seconds for the models 
presented here. With faster simulation times, several 
designs can be produced in a single day. 
  The entire optimization presented took only 82 
minutes and ran 1600 FDTD simulations.  That 
corresponds to 3.06 seconds for the GA to create each 
model, run the FDTD simulation, and evaluate its cost.  
The simulation was run on a Pentium 4 running at 2.8 
GHz.  The FDTD executable was created using the Intel 
FORTRAN Compiler Version 8.0 for Linux.   

 
V. General Application of Speed Increase 

Methods 
 

  Carefully choosing the cell and grid size is 
essential to fast and accurate FDTD simulations.  
Minimizing the grid size and number of time steps can 
reduce simulation time 1-2 orders of magnitude 
compared to poorly chosen parameters.   
  As explained in the introduction, the cell size 
should be chosen to accurately model the structures 
dimensions, and meet the minimum of 10 cells per 
wavelength at the lowest frequency.  A general 
guideline for choosing the grid size is to have at least 
1/4 wavelength between the structure and the outer 
boundary at the lowest frequency of interest. For the 
example given, the wavelength at 2.2 GHz is 136 mm 
and 1/4 wavelength is 34 mm. The cell size in the X 
direction is 0.762 mm or about 45 cells. These are 
similar to the dimensions used for the 100x100x100 cell 
grid (about 45 cells above and below the model). The 
problem with this approach is that each simulation takes 
approximately 94 seconds or almost 42 hours for a 
1600 simulation GA optimization. By reducing the grid 
size, additional error will be introduced into the 
simulation. The plots in Fig. 5 give the reader a general 
guide to how much error is introduced, and the grid size 
should be chosen based on how much error can be 
tolerated. Again, more error will be introduced at the 
lower frequencies as shown in Fig. 8.  
  Correctly choosing the number of time steps is 
also critical to a fast, accurate simulation.  In the 
example shown, a modulated Gaussian pulse is used.  
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After 900 time steps the reflected signal at the feed is 
reduced to 0.5% of the pulses maximum amplitude.  
For fast simulations, the reflected signal should decay 
to between 0.5% and 1.0%.  After 1500 time steps, 
negligible error was introduced, and the reflected signal 
was 0.1% of the maximum incident pulse.  Note that 
highly resonant structures may require much longer 
simulation times.        
  Advanced absorbing boundaries such as PML 
have lower reflections, but a much higher 
computational cost.  It should therefore be possible to 
reduce the grid size without inducing as much error as 
when reducing the grid size using the Mur boundary.  
Optimizing using the GA on a larger grid after it has 
been optimized on a small grid is an excellent way to 
apply the results of the small grid optimization. When 
only a few variables are present, a hybrid GA that 
consists of a GA and local optimizer works extremely 
well and will outperform the GA alone [24]. However, 
a local optimizer wouldn't be appropriate in this 
situation because each cell is considered a variable, and 
local optimizers are not efficient for a large number of 
variables. 
  Several antenna prototypes have been 
successfully built using photo-etching techniques, and 
measured data has matched well with simulations [25].  
Using these techniques, broad and multiband designs 
have been created that minimize size requirements 
while achieving extremely low return loss.   
 

VI. Conclusions 
 

  FDTD is a viable solution for the GA 
simulator on a PC if FDTD parameters are chosen for 
quick simulation.  Even though individual simulation 
results may not be extremely accurate, their relative 
values are sufficient for the GA to find a good solution.  
When the FDTD simulation is optimized for speed by 
running for a minimum number of time steps, using a 
minimal FDTD grid, and storing only necessary 
information, it can be fast enough to compete with other 
simulation techniques such as method of moments.  
Simulation time is no longer the limiting factor with the 
GA-FDTD combination, allowing for more complex 
designs to be generated than previously possible, 
including the 2.4 GHz and 5.2 GHz dual band antenna 
described in this paper. 
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Abstract  — In this paper we address an inverse 

scattering problem whose aim is to determine the 
geometrical as well as the physical properties of a 
perfectly conducting cylindrical body buried in a half-
space. We use cubic-spline method instead of 
trigonometric series to describe our shape and 
reformulated into an optimization problem and solved 
by the genetic algorithm. The genetic algorithm is 
employed to find out the global extreme solution of the 
object function. As a result, the shape of the scatterer, 
which is described by using cubic-spline, can be 
reconstructed. In such a case, fourier series expansion 
will fail. Even when the initial guess is far away from 
the exact one, the cubic-spline description and genetic 
algorithm can avoid the local extreme and converge to 
a global extreme solution. Numerical results are given 
to show that the shape description using cubic-spline 
method is much better than the Fourier series. 

Index Terms  — Inverse Problem, Cubic-spline, 
Fourier series. 

I.   INTRODUCTION 

Due to large domain of applications such as 
non-destructive problem, geophysical prospecting and 
determination of underground tunnels and pipelines, 
etc., the inverse scattering problems related to the 
buried bodies has a particular importance in the 
scattering theory. In the past 20 years, many rigorous 
methods have been developed to solve the exact 
equations [1]-[9]. However, inverse problems of this 
type are difficult to solve because they are ill-posed 
and nonlinear [10]. As a result, many inverse problems 
are reformulated into optimization ones and then 
numerically solved by different iterative methods such 
as the Newton-Kantorovitch method [1]-[5], the 
Levenberg-Marquardt algorithm [6]-[8], and the 
successive-overrelaxation method [9]. Most of these 
approaches employ the gradient-based searching 
scheme to find the extreme of the cost function, which 
are highly dependent on the initial guess and usually 
get trapped in the local extreme. The genetic algorithm  
(GA) [11] is an evolutionary algorithm that uses the 
stochastic mechanism to search through the parameter 

space. As compared to the gradient-based searching 
techniques, the genetic algorithm is less prone to 
converge to a local extreme. This renders it an ideal 
candidate for global optimization. Recently, 
researchers have applied GA together with 
electromagnetic solver to attack the inverse scattering 
problem mainly in two ways. One is surface 
reconstruction approach; the other is volume 
reconstruction approach. Chiu [12] first applied the 
GA for the inversion of a perfectly conducing cylinder 
with the geometry described by a Fourier series 
(surface reconstruction approach), while Takenaka 
[13], Meng [14] and Zhou [15] used the concept of 
local shape function to describe the conducting objects 
(volume reconstruction approach). Alternatively, 
Chien [16], Zhou [17] and Qing [18] used b-splines to 
describe the geometry of a perfect conducting cylinder. 
The 2-d perfectly conducting cylinders are denoted by 
local shape functions )(θρ F=  with respect to their 
local origins, which can be continuous or discrete. 
However, to the best of our knowledge, there are still 
no numerical results, which compared the cubic-spline 
and Fourier series, shape description with the genetic 
algorithm for the buried conducting scatterers. In this 
paper, we present a computational method based on the 
genetic algorithm to recover the shape of a buried 
cylinder. In Section II, a theoretical formulation for the 
inverse scattering is presented. The general principles 
of genetic algorithms and the way we applied them to 
the inverse problem are described. Numerical results 
for reconstructing objects of different shapes are given 
in Section III. Finally, some conclusions are drawn in 
Section IV. 

II. THEORETICAL FORMULATION 

Let us consider a perfectly conducting cylinder 
buried in a lossy homogeneous half-space, as shown in 
Fig 1. The media in regions 1 and 2 are characterized 
by the permittivity and conductivity ( ,1 1)ε σ  and ( ,2 2)ε σ , 

respectively, while the permeability 0µ  is used for each 
region, i.e., only non-magnetic media are concerned 
here. The cross-section of the cylinder is described by 
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polar coordinates in the xy  plane through the shape 
function ρ = F(θ). The cylinder is illuminated by a 
plane wave with time dependence exp )( tjω , of which 
the electric field is assumed parallel to the -axis (i.e., 
transverse magnetic or TM polarization). Let 

z
incE  

denote the incident E -field from region 1 to region 2 
with incident angle

1φ . Owing to the interface between 
region 1 and region 2, the incident plane wave would 
generate two waves in the absence of the conducting 
object: the reflected wave (for ) and the 
transmitted wave (for ). Thus the unperturbed 
field is given by 
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Note that each point can be expressed by ( yx,  in 
Cartesian coordinates or ( )  in polar coordinates. 
As the buried object is present, the scattered field can 
be expressed by 
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Here, )(θsJ  is the induced surface current density, 
which is proportional to the normal derivative of the 
electric field on the conductor surface. ,'; xyG  
is the Green’s function which can be obtained by 
Fourier transform [3]. Note that we might face some 

difficulties in calculating the Green’s function, since 
the Green’s function given by (3) takes the form of an 
improper integral that must be evaluated numerically. 
However, the integral converges very slowly when (x, 
y) and (x’, y’) approach the interface, for which the 
acceleration of converging speed is possible by 
rewriting the Green’s function as a closed-form term 
plus a rapidly converging integral (see Appendix). In 
(3b), )  is the Hankel function of the second kind of 
order zero. The boundary condition for a perfectly 
conducting object is 
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where is the outward unit vector normal to the 
surface of the scatterer. The boundary condition at the 
surface of the scatterer given by (4) leads to an integral 
equation for )(θJ : 
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The total field outE  in region 1 is given by 
2
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The direct problem is to compute the total field in 
region 1 when the shape function θF  is given. This 
can be achieved by first solving for J from equation 
(5) and then calculating outE  by equation (6). 
      For numerical calculation of the direct problem, 
the contour is first divided into sufficient small 
segments so that the induced surface current can be 
considered constant over each segment. Then the 
moment method is used to solve equations (5) and (6) 
with a pulse basis function for current expansion and 
the Dirac delta function for testing [19]. 
 Let us consider the following inverse problem, 
given the scattered electric field E  measured outside 
the scatterer, and determine the shape 

s

)(θF  of the 
object. 
(A) Using Fourier-series to describe the shape: 

Assume the approximate center of the scatterer, 
which in fact can be any point inside the scatterer, is 
known. Then the shape function )(θF  can be 
expanded as: 
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where , and C , are real coefficients to be 
determined, and 

n

1+N  is the number of expanded 
terms.  
(B) Using Cubic-spline to describe the shape: 

The geometry of the cubic-spline is shown in 
Fig. 2. First, we separate the boundary of the shape 
with  pieces and we have N  separated points. 
We denote the separated points by polarized-coordinate 
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Fig. 1. Geometry of the problem in (x,y) plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Fig. 2.  Geometry of the cubic-spline. 
 

Note that the discretization number of J  for 
the inverse problem must be different from that for the 
direct problem. Since it is crucial that the synthetic data 
generated by a direct solver are not like those obtained 
by the inverse solver, the discretization number for the 
direct problem is twice of that for the inverse problem 
in this study. For the inversion procedure, the genetic 

algorithm is employed to maximize the following 
objective function: 
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where TX  is the total number of measured points. 

exp (s )E rK  and ( )cal
sE rK  are the measured scattered field and 

the calculated scattered field, respectively. The 
minimization of ( ) 2

'Fβ θ  can, to a certain extent, be 

interpreted as the smoothness requirement for the 
boundary of ( )F θ . Therefore, the maximization of 

 can be interpreted as the minimization of the least-
square error between the measured and the calculated 
fields with the constraint of smooth boundary. Typical 
values of 

SF

β  range from 0.00001 to 10. The optimal 
value of β  depends mostly on the dimensions of the 
geometry. One can always choose a large enough value 
to ensure the convergence, although overestimation 
would result in a very smooth reconstructed image. 
Technically, we can let the value of β  decrease 
gradually during the course of convergence [4]. 
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Genetic algorithms are the global optimization 
methods based on the genetic recombination and 
evolution in nature [11]. They use the iterative 
optimization procedures that start with a randomly 
generated population of potential solutions, and then 
gradually evolve toward a better solution through the 
application of the genetic operators. Genetic algorithms 
typically operate on a discretized and coded 
representation of the parameters rather than on the 
parameters themselves. These representations are 
considered as the “chromosomes”, while the elements 
that constitute the chromosome are called “genes”. 
Simple but often very effective chromosome 
representations for optimization problem involving 
several continuous parameters can be obtained through 
the juxtaposition of discretized binary representations 
of the individual parameters. In our problem, 
parameters Bn , Cn, and ρi  are given by the following 
equation. As an example  is shown 
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where Bb , b , …and nB
1 1

nB
Lb −

 (gene) are the L-bit string 
of the binary representation of Bn , and Pmin and Pmax 
are the minimum and the maximum values admissible 
for Bn. Similar expressions exist for the parameters Cn 
and ρi  and are omitted here for brevity. Here, Pmin and 
Pmax can be determined by prior knowledge of the 
object. Also, the finite resolution with Bn (Cn or ρi ) can 
be tuned in practice by changing the number of bits 
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assigned to it. The basic GA for which a flowchart is 
shown in Fig. 3 starts with a large population 
containing a total of X candidates. Each candidate is 
described by a chromosome. Then, the initial 
population can simply be created by taking X random 
chromosomes. Then, the GA iteratively generates a 
new population that offspring from the previous 
population through the application of the reproduction, 
crossover, and mutation operators. 
The new population contains increasingly better 
chromosomes and will eventually converge to a 
population that consists of the optimal chromosomes. 
As soon as the cost function (CF ) changes by <1% in 
two successive generations or exceeds 1000 
generations, the genetic algorithm will be terminated 
and the final solution is then obtained.  

 
Fig. 3. The flowchart of GA. 

III.   NUMERICAL RESULT 

Let us consider a perfectly conducting cylinder 
buried in a lossless half-space ( 021 ==σσ ). The 
permittivities in region 1 and region 2 are characterized 
by 

01 εε =  and 02 56.2 εε = , respectively. A TM 
polarized plane wave of unit amplitude is incident from 
region 1 upon the object in region 2 as shown in Fig. 1. 

The frequency of the incident wave is chosen to be 
3GHz, of which the wavelength 0λ  in free space is 
0.1m. The object is buried at a depth a ≅

0λ  and the 
scattered fields are measured on a probing line along 
the interface between region 1 and region 2. Our 
purpose is using the Fourier-series and cubic-spline 
shape expressions to reconstruct the shape and 
comparing which is better in the inverse problem. The 
object is illuminated by three incident waves from 
different directions, while 20 measurement points at 
equal spacing are used along the interface y a−=  for 
each incident angle. There are 60 measurement points 
in each simulation. The measurement is taken from 
x =0 to 0.2m for incident angle 

1φ =− , from °60 x =-
0.1 to 0.1m for incident angle 1φ =0 , and from ° x =-0.2 
to 0m for incident angle 1φ =60 . To save computing 
time, the number of unknowns is set to be 7, and the 
population size is chosen as 300 (i.e. X =300). The 
binary string length of the unknown coefficient, B

°

n (Cn 
and ρI ), is set to 20 bit (i.e., L=20). The search range 
for the unknown coefficient of the shape function is 
chosen to be from 0 to 0.1. The extreme values of the 
coefficients of the shape function can be determined by 
some priori knowledge of the objects. Here, the prior 
knowledge means that we can get the approximate 
position and the size of the buried cylinder by first 
using tomography technique, and then get the exact 
solution by the genetic algorithm. The crossover 
probability pc and mutation probability pm are set to be 
0.8 and 0.1, respectively. The value of β  in equation 
(6) is chosen to be 0.001.   
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In the first example, the shape function is given by 
) ( )θ cos015.003.0 += m and we use Fourier-

series and cubic-spline expressions to recover it. The 
reconstructed shape function for the best population 
member (chromosome) is plotted in Fig. 4(a), 
respectively, with the error shown in Fig. 4(b). Here, 
DR, which is called shape function discrepancies, is 
defined as 
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where N  is set to 60. The quantities DR pr
measures of how well )F  approximates F . 
Fig. 4, it is clear that reconstruction of the 
function is quite good for both Fourier-series
cubic-spline expressions. To investigate the sens
of the imaging algorithm against random noise
independent Gaussian noises with zero mean have
added to the real and imaginary parts of the simu
scattered fields. Normalized standard deviatio

510− , 410− , 310− , 210− , and 10  are used i1−

)
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simulations. The normalized standard deviation 
mentioned earlier is defined as the standard deviation 
of the Gaussian noise divided by the rms value of the 
scattered fields. Here, the signal-to-noise ratio (SNR) is 
inversely proportional to the normalized standard 
deviation. The numerical result for this example is 
plotted in Fig. 4(b). 

In the second example, we selected cubic-spline 
to describe the shape m, 1 0.02ρ = 2 0.02 3ρ = m, 

3 0.02 3ρ = m, m, 4ρ 0.02= 5 0.02 3ρ = m, 

6 0.02 3ρ = m. We can see that the 7-terms Fourier-
series expression cannot recover the shape. The 
purpose of this example is to show that cubic-spline 
method is able to reconstruct a scatter while the 
Fourier-series fails. Both the shape results are shown in 
Fig. 5(a) and the relative error of Cubic-spline expand 
is shown in Fig. 5(b). 

 

 

( ) ( θθθθ 3cos005.02cos005.0cos005.003.0 +++=F

Fig. 4(a). Shape function for example 1. The star curve 
represents the exact shape by the Fourier-
series, while the curve of short imaginary line 
is calculated shape by the Fourier-series and 
the curve of long imaginary line represents 
calculated shape by the cubic-spline in final 
result. 

 
In the third example, the shape and conductivity 

function are selected to be 
)

m. Note that the shape function is not symmetrical 
about either x-axis or y-axis. Both Fourier-series and 
cubic-spline expressions can recover it. Refer to Fig. 
6(a) and Fig. 6(b) for details. 

In the fourth example, we selected cubic-spline 
to describe the shape ρ0 = 0.03 m, ρ1 = 0.02 m, ρ2 = 
0.01 m, ρ3 = 0.01 m, ρ4 = 0.01 m, ρ5 = 0.03 m, and 
slope is 5. Again 7-terms Fourier series expression 

cannot recover the shape. Both the shape results are 
shown in Fig. 7(a) and the relative error of Cubic-spline 
expand is shown in Fig. 7(b). 

 
 

 
 

 
 
 
 
 
 
 
 

Fig. 4(b). Shape function error in each represented 
method. The F-F means that the shape 
functions both in direct and inverse 
problems are described by the Fourier-
series. The F-S means that the shape 
function in the direct problem is described 
by the Fourier-series and in the inverse 
problem is described by the cubic-spline. 

 
 
 
 
 
 
 
 

Fig. 5(a)  
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. Shape function for example 2. The star curve

represents the exact shape by the Fourier-
series, while the curve of short imaginary
line is calculated shape by the Fourier-series
and the curve of long imaginary line
represents calculated shape by the cubic-
spline in final result. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5(b). Shape function error in each represented 

method. The S-S means that the 
shapefunctions both in the direct and inverse 
problem are described by the cubic-spline. 

 

 
Fig. 6(a). Shape function for example 3. The star curve 

represents the exact shape by the cubic-
spline, while the curve of short imaginary 
line is calculated shape by the Fourier-series 
and the curve of long imaginary line 
represents calculated shape by the cubic-
spline in final result. 

 

 
Fig. 6(b). Shape function error in each represented 

method.  The F-F means that the shape 
functions both in the direct and inverse 
problems are described by the Fourier-series. 
The F-S means that the shape function in the 
direct problem is described by the Fourier-
series and in the inverse problem is described 
by the cubic-spline. 

 

 
Fig. 7(a). Shape function for example 4. The star curve 

represents the Fourier-series exact shape, 
while the curve of short imaginary line is the 
Fourier-series calculated shape and the 
curve of long imaginary line is represents 
the cubic-spline calculated shape in final 
result. 
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IV. CONCLUSION 

We have presented a study of applying the 
genetic algorithm to reconstruct the shape of a buried 
metallic object through the measurements of scattered 

 fields. Based on the boundary condition and the 
measured scattered fields, we have derived a set of 
nonlinear integral equations and reformulated the 
imaging problem into an optimization one. The 
contours of the cylinders are denoted by cubic-spline 
local shape functions in local polar coordinate instead 
of trigonometric series local functions to guarantee the 
nonnegative definiteness. Experiment results show that 
the variable searching ability of GA has its limitation, 
and Fourier-series expression cannot recover the 
arbitrary shape in finite terms. In our numerical results, 
it is shown that using cubic-spline expand to describe 
the shape in the half-space inverse problem is more 
suitable than Fourier-series expression. 
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Fig. 7(b). Shape function error in each represented 
method. The S-S means that the shape
functions both in the direct and inverse
problems are described by the cubic-spline.

 
APPENDIX 

 
To calculate the Green’s function, we can use the 
following formula, 
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γ  is Euler’s constant, i.e., γ =0.5772156649. Let us 
consider the following integral  
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In general, we choose α0 >> |ki|, i = 1, 2. From Eq. (A1), 
we get 
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     (A3) 
Now, the integral G1 is written as a rapidly converging 
integral plus a dominant integral, which can be easily 
calculated by means of Simpson’s rule. Similarly, we 
have 
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Abstract— Error estimates for the moment method have been
obtained in terms of Sobolev norms of the current solution.
Motivated by the historical origins of Sobolev spaces as energy
spaces, we show that the Sobolev norm used in these estimates
is related to the forward scattering amplitude, for the case of 2D
scattering from a PEC circular cylinder and for 3D scattering
from a PEC sphere. These results provide a physical meaning
for solution error estimates in terms of the power radiated by
the error in the current solution. We further show that bounds
on the Sobolev norm of the current error imply a bound on the
error in the computed backscattering amplitude.

Index Terms— Sobolev space, error analysis, method of mo-
ments

I. INTRODUCTION

Since the introduction of the method of moments for solv-
ing electromagnetic radiation and scattering problems, error
analysis of numerical methods has received much attention in
the mathematics literature. This effort has led to fundamental
results on the convergence of the method of moments. Typical
of this work are proofs that under various assumptions about
the algorithm and scattering problem, as the mesh is refined or
the number of degrees of freedom of the approximate solution
increases, numerical solutions converge to exact solutions.
Theorems of this kind have been obtained for 2D smooth
closed curves and screens [1], dielectric polygons [2], and have
been verified by numerical studies [3]. For smooth screens
in 3D, similar results are available for scalar fields [2], [4],
[5]. These results are of great importance because they place
the algorithms of computational electromagnetics on solid
theoretical ground.

The approach taken in this work by the numerical analysis
community is to place the integral operators of radiation and
scattering in a Sobolev space setting. This leads to asymptotic
solution error estimates of the form

‖∆u‖Hs ≤ Chr (1)

where the norm is defined on the Sobolev space Hs, with
s = −1/2 for the TM polarization and s = 1/2 for TE [6].
∆u is the difference between the exact current solution and
a numerical solution, and h is the mesh element width or
discretization length. The convergence rate r is typically 1/2

for low order basis functions. All dependence on the physical
problem and implementation details of the numerical method,
including the incident field, frequency, scatterer geometry, and
choice of basis functions, is lumped into the unknown constant
C.

While the estimate (1) shows in an abstract sense that
a numerical solution converges as the discretization length
becomes small, it cannot be used to determine the error in a
specific numerical solution because the Sobolev norm ‖ · ‖Hs

can be difficult to compute [7] and the constant C is unknown.
Furthermore, it is not obvious how the Sobolev norm may
relate to a directly measurable, physical quantity.

Motivated by the historical origin of Sobolev spaces as
energy spaces, we show in this paper that the Sobolev norm in
Eq. (1) is related to a readily computable, physical quantity:
the power supplied by a surface current to its surroundings.
Heuristically, a Sobolev space for fields in a volumetric
region consists of those functions which have finite energy,
where the energy measure is induced by a particular partial
differential equation. Sobolev spaces of surface currents are
defined slightly differently, as they consist of functions on
the surface that radiate finite energy [7]. This definition is
motivated by Poynting’s theorem,∫
S

E∗ · Js dS =
iω

2

∫
V

ε|E|2 − µ|H|2 dV −
∮

∂V

S∗ · n̂ dV

where the terms are defined as is usual in electromagnetic
theory. The Sobolev space of fields E and H is essentially
defined by requiring that the volume integral on the right-hand
side be finite. In order to obtain consistent function spaces for
fields and surface currents, at least nonrigorously, the Sobolev
space of surface currents should include all functions on S
for which the left-hand side is finite. If the surface current
is produced by an incident field illuminating a PEC scatterer,
then the left-hand side of Poynting’s theorem with a suitable
normalization becomes the forward scattering amplitude of
the scatterer. This suggests a connection between the Sobolev
norm in (1) and the forward scattering amplitude.

Based on this connection, we derive a direct relationship
between the forward scattering amplitude and the Sobolev
norm ‖ · ‖Hs . Proofs of the result are given for the specific
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cases of the circular cylinder and sphere, and we conjecture
that similar relationships hold for more general geometries.
This relationship between the Sobolev norm and the forward
scattering amplitude is used to provide a physical interpreta-
tion for error estimates of the form of (1). We further show that
the bound (1) implies a bound on the error in the computed
backscattering amplitude solution. These results provide a
link between abstract results of numerical analysis and the
physical quantities that are the desired results of practical CEM
simulations. Some of the results in this paper for the 2D case
were presented in [8].

II. PEC INFINITE CIRCULAR CYLINDER

For a plane wave incident in the −x direction on a PEC
circular cylinder, the induced current u may be written as
a Fourier series, u = (2π)−1/2

∑
q Uqe

iqφ, where φ is the
azimuthal angle and the Fourier coefficients are given by

Uq =

√
2
π

2
ηka

i−q

H
(1)
q (ka)

(2)

for the TM case, and the TE case is identical by replacing the
Hankel function H

(1)
q (ka) with its derivative. Here, η is the

characteristic impedance of free space, k is the wavenumber,
and a is the cylinder radius.

In general, the currents induced on 2D PEC scatterers lie
in fractional order Sobolev spaces, where the order s is −1/2
for the TM polarization and 1/2 for the TE polarization. For
closed surfaces, the Sobolev norm is computable and is given
by [9], [10] as

‖u‖2Hs =
∑

q

|Uq|2
(
1 + q2

)s
. (3)

When s is an integer, the Sobolev norm (3) reduces to the
more usual definition in terms of the L2 norm of the current
and its derivatives up to order s. For example, for s = 0,
‖u‖2 =

∑
q |Uq|2, which by Parseval’s relation is the L2 norm

of the current. The relationship between Eq. (3) for fractional
s and a physical quantity is not immediately apparent.

Extrapolating the foundational relationship between Sobolev
spaces and physical energy, we will show that the Sobolev
norm (3) is equivalent to the forward scattering amplitude,
which is given by

P (u) = −kη

4

∫
C

Es∗u dl =
kη

4

∫
C

(Lu)∗u dl, (4)

where Es is the tangential component of the scattered field and
L is the EFIE operator so that Lu = Ei. Note that P is the
left-hand side of Poynting’s theorem (2) scaled by −kη/4. If
Ei is a plane wave, P is the power scattered in the direction of
the plane wave. Otherwise, it may be viewed as a generalized
forward scattering amplitude. It will be convenient to express
the forward scattering amplitude in series form. This may be
done for an arbitrary current u by decomposing the Green’s
function in L as a sum over Bessel functions [11]:

Lu =
2

πkaη

∑
q

αq
∗
∫ 2π

0

u(φ′)eiq(φ−φ′)dφ′ (5)

where the coefficients are given by

αq =
π(kaη)2

8
×

{
Jq(ka)H(2)

q (ka) TM
J ′q(ka)H(2)′

q (ka) TE
, (6)

and Jq(ka) is the usual Bessel function. Substituting Eq. (5)
into Eq. (4) yields

P (u) =
∑

q

αq|Uq|2. (7)

To establish a rigorous relationship between the Sobolev
norm and the forward scattering amplitude, we will use the
notion of equivalent norms. If two norms are equivalent, then
if x → 0 in either norm, then it will vanish in both norms.
Formally, two norms ‖·‖ and ‖·‖′, defined for the same space
X , are said to be equivalent if there exists constants c1, c2 > 0
such that

c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖ (8)

for every x ∈ X . We will also need the definition of a
quasinorm. A quasinorm is a functional with the following
properties:

1) ‖x‖ ≥ 0 with equality iff x is everywhere 0.
2) ‖αx‖ = |α|‖x‖ for all α ∈ C.
3) ‖x1 + x2‖ ≤ K(‖x1‖ + ‖x2‖) for all x1, x2 ∈ X and

for some K ≥ 1.
A quasinorm differs from a norm in that for a norm, we have
K = 1. We will prove that the quantity ‖ · ‖P ≡

√
|P (·)| is a

quasinorm and is equivalent to the Sobolev norm (extending
the notion of equivalency to include quasinorms).

To prove that ‖·‖P is a quasinorm, all three properties above
must be shown. Property (1) is satisfied by further stipulating
that there are no internal resonant modes, i.e., αq 6= 0 for all q.
This is equivalent to saying that the interior Dirichlet (TM) or
Neumann (TE) problem does not have a non-trivial solution.
Satisfaction of property (2) is seen by substituting αUq in for
Uq in the scattering amplitude expression (7). Since ‖u‖Hs is
a norm, it satisfies property (3) above with K = 1. Using this
with the equivalency statement (8) yields the inequality

‖u1 + u2‖P ≤ c2

c1
(‖u1‖P + ‖u2‖P ) . (9)

This proves property (3) and ‖ · ‖P is a quasinorm. If L were
self-adjoint, then ‖·‖P would be a norm. This is a minor point,
since this paper relies on the equivalency relationship (8) to
relate the Sobolev norm to a physical quantity, particularly in
the sense as the Sobolev norm of an error current vanishes.
The properties of norms and quasinorms are not used, except
to couch the problem in a more familiar framework.

It remains to find constants c1 and c2 that satisfy Eq. (8)
with ‖ · ‖ = ‖ · ‖P and ‖ · ‖′ = ‖ · ‖Hs . The constant c1 is
found by directly comparing the ‖ · ‖P norm with the Sobolev
norm (3) term by term. This yields

c1 =
[
max

q
|βq|

]−1/2

≈ 2.5
η

(ka)(4s−5)/6, (10)

where βq ≡ αq(1 + q2)−s. The approximation was made
analytically using results of [12] for the TM case (s = 1/2)
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and extended numerically to the TE case (s = −1/2), where
estimating maxq |βq| is more difficult.

A constant c2 satisfying Eq. (8) can be derived by first
classifying as low order modes those terms in (7) for which
|q| < q0, where q0 is a positive integer to be specified. Splitting
the sum in the scattering amplitude (7) into high and low order
modes and also into real and imaginary parts, we define

Rl ≡
∑
|q|<q0

Re(αq)|Uq|2 Il ≡
∑
|q|<q0

Im(αq)|Uq|2

Rh ≡
∑
|q|≥q0

Re(αq)|Uq|2 Ih ≡
∑
|q|≥q0

Im(αq)|Uq|2

. (11)

We then rewrite the forward scattering amplitude (7) as

P (u) = Rl + Rh + i(Il + Ih). (12)

To compare the forward scattering amplitude to the Sobolev
norm term by term, we will compare the low order terms of
the Sobolev norm (3) with Rl since it allows us to guarantee
that c2 is finite except at resonance frequencies. We obtain the
following relationship:

|Rl| ≥ rl

∑
q:|q|<q0

|Uq|2(1 + q2)s, (13)

where rl = minq:|q|<q0 Re(βq). We can compare the high
order terms of the Sobolev norm to Ih, since they both fall off
at the same rate in q. Asymptotic expansions of Im(αq) show
that the integer q0 can be chosen sufficiently large such that
the αq have the same sign for all |q| > q0. This allows us to
bring the absolute value operator inside the summation in the
definition of Ih and derive the relationship

|Ih| =
∑
|q|≥q0

|Im(αq)||Uq|2 ≥ ih
∑
|q|≥q0

|Uq|2(1 + q2)s, (14)

where ih = minq:|q|≥q0 |Im(βq)|. Since Rh and Il are ex-
traneous, we will discard them. By the definition of αq, Rl

and Rh have the same sign and Rh can be immediately
eliminated from P (u) to give the lower bound |P (u)| ≥
|Rl + i(Il + Ih)|. We can remove Il by noting that

|Il| ≤ max
q:|q|<q0

∣∣∣∣ Im(βq)
Re(βq)

∣∣∣∣ |Rl| ≤ M |Rl|, (15)

where M is a constant given by

M ≡ max
(

1, max
q:|q|<q0

∣∣∣∣ Im(βq)
Re(βq)

∣∣∣∣). (16)

We have defined M to guarantee that it satisfies M ≥ 1. This
allows us to apply inequality (43) from the appendix, yielding

|P (u)| ≥ 1
3M

(|Rl|+ |Ih|) . (17)

Substituting in the term by term comparisons (13) and (14)
yields

3M |P (u)| ≥ min (rl, ih)
∑

q

|Uq|2(1 + q2)s. (18)

Simplifying and taking the square root of each side, gives
‖u‖Hs ≤ c2‖u‖P , where

c2 =

√
3M

min (rl, ih)
. (19)

Note that c2 depends only on ka and not on the current
u, as required. It can be proved from the definition of the
αq that c2 is finite, except at resonance frequencies. This is
consistent with Eq. (8) where, as ka approaches a resonance,
‖u‖P vanishes if u is a resonant mode, but ‖u‖Hs does not.
Thus, if ‖u‖Hs ≤ c2‖u‖P is to be maintained, we must have
c2 →∞ at these frequencies. We have thus obtained

c1‖u‖P ≤ ‖u‖Hs ≤ c2‖u‖P (20)

which relates the Sobolev norm of a current to the forward
scattering amplitude, a physically meaningful quantity.

III. PEC SPHERE

We now derive a similar relationship between a 3D Sobolev
norm and the forward scattering amplitude for scattering
from a PEC sphere. In general, any function tangential to a
surface may be expressed in terms of its surface Helmholtz
decomposition

J = Jcf + Jdf (21)

where Jcf is curl-free (irrotational) and Jdf is divergence-free
(solenoidal). In [7], it is shown that Jcf and Jdf on a sphere
can be expanded as

Jcf = ∇t
∞∑

n=1

n∑
m=−n

d1/2
mnucf

nmP |m|
n (cos θ)eimφ (22)

and

Jdf = n̂×∇t
∞∑

n=1

n∑
m=−n

d1/2
mnudf

nmP |m|
n (cos θ)eimφ, (23)

where the normalizing factor is

dmn =
(n− |m|)! (2n + 1)

(n + |m|)! 4πn(n + 1)
. (24)

Here, the P
|m|
n (·) is the associated Legendre function of the

first kind ∇t is the surface gradient. A Sobolev space for
currents on 3D bodies is denoted by H

−1/2
div and for a sphere

the norm is given by

‖J‖2
H
−1/2
div

≡
∞∑

n=1

[
U cf

n (1 + n2)1/2 + Udf
n (1 + n2)−1/2

]
,

(25)
where

U cf
n =

n∑
m=−n

|ucf
nm|2 , Udf

n =
n∑

m=−n

|udf
nm|2. (26)

Using the orthogonality relationships in [7, Sec. VIII], it can
be shown that the forward scattering amplitude decomposes
as

P (J) = P cf (Jcf ) + P df (Jdf ), (27)
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where

P cf =
∞∑

n=1

αcf
n U cf

n , P df =
∞∑

n=1

αdf
n Udf

n . (28)

Here, P cf is the forward scattering amplitude due to the curl-
free component of the current and P df is similarly defined for
the divergence-free component. Note the similarity of Eq. (28)
to the 2D expression (7). In these expressions,

αcf
n = − i(kη)2

4π
[ka jn(ka)]′[ka h(2)

n (ka)]′ (29)

αdf
n = − i(kη)2

4π
[ka jn(ka)][ka h(2)

n (ka)],

where jn(ka) and h
(2)
n (ka) are the usual spherical Bessel and

spherical Hankel functions, respectively. Performing the same
term by term comparison as was done for the circular cylinder,
we obtain

c3D
1

√
|P (J)| ≤ ‖J‖

H
1/2
div

, (30)

where c3D
1 =

[
max (cc

1, c
d
1)

]−1/2
and

cc
1 = max

n:n≥1
|αc

n(1 + n2)−1/2|. (31)

The constant cd
1 is defined similarly, replacing αc

n with αd
n

and −1/2 with 1/2 in the exponent. Numerically, c3D
1 ≈

4.5/(kη) (ka)−2/3. As in the two-dimensional problem, Eq.
(30) implies that if the current J vanishes in the Sobolev norm,
then the forward scattering amplitude must also vanish. For
scattering from a circular cylinder, we proved a stronger equiv-
alency relationship. Because of possible cancellation between
radiation from curl-free and divergence-free modes, a constant
analogous to c2 cannot be obtained for the sphere. Fortunately,
this stronger equivalency is not essential to provide a physical
interpretation of the Sobolev norm in error estimates, as will
be seen.

IV. NUMERICAL EXAMPLES

To illustrate the relationship between current measures in
2D, we consider two example TM currents. The current u(1)

is induced by an incident plane wave and u(2) is a single mode
eiq′φ that is nearest to resonance (|αq′ | ≤ |αq|, |q| ≤ q0) for a
given value of ka. The corresponding Fourier coefficients are
given by Eq. (2) for u(1) and by U

(2)
q =

√
2πδqq′ , where δqq′

is the Kronecker delta. Figure 1 shows the ratio ‖ · ‖Hs/‖ · ‖P

for u(1) and u(2) as a function of electrical size ka. We plot on
the same axes c1 and c2. The ratio of norms is always bounded
below by c1 and above by c2, as proved. Near resonances, the
bound c2 becomes large, but away from resonances it is on
the order of 0.01.

Similarly, define a current J on a sphere that is induced
by a plane wave of unit amplitude, x̂ polarized and traveling
in the negative z direction. In this circumstance, the current
coefficients can be obtained using results of [13] and are given
by

ucf
nm =

√
π

kη
i−n−1

√
2n + 1

ka h
(1)
n (ka)

(δm,−1 − δm,1) (32)
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Fig. 1. Illustration of norm equivalence for two different test currents (TM
polarization). The constants c1 and c2 always bound the ratio ‖ ·‖Hs/‖ ·‖P ,
which ratio is shown for the current induced by a plane wave (u(1)) and a
nearest-to-resonance, single-mode current u(2). Similar results are obtained
for the TE polarization.

and

udf
nm =

√
π

kη
i−n−1

√
2n + 1

[ka h
(1)
n (ka)]′

(δm,−1 + δm,1). (33)

Figure 2 verifies the bound (30) for this surface current. Note
that the ratio ‖J‖

H
1/2
div

|P (J)|−1/2 is always greater than c3D
1 ,

as predicted by Eq. (30). We also see from Figs. (1) and (2)
that away from resonances

‖u‖P ≈ 1
c1
‖u‖Hs ,

√
|P (J)| ≈ 1

c3D
1

‖J‖
H

1/2
div

. (34)

10
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10
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10
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10
−1
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||J||
H
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1/2 |P(J)|−1/2

c
1
3D

Fig. 2. Ratio of the Sobolev norm to the square root of the magnitude of
the forward scattering amplitude for a plane wave induced current on a PEC
sphere. The ratio is always bounded below by c3D

1 , as proved.

V. APPLICATION TO ERROR ANALYSIS
The equivalency statement (8) provides a physical inter-

pretation for the Sobolev norm of the current solution error
in the estimate (1). Suppose a moment method solution û to
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Lu = Ei on a PEC circular cylinder is generated, with current
error defined by ∆u = u− û. The Sobolev norm of the error
is approximately proportional within a range specified by the
constants c1 and c2 to the total power radiated by the error
current ∆u if it were impressed on the scatterer contour C.
This transforms (1) into an error estimate for a physically
meaningful quantity:

|P (∆u)| ≤ c−2
1 ‖∆u‖2Hs ≤ (C/c1)2 h2r, (35)

which implies that the forward scattering amplitude or total
supplied power associated with the current error ∆u must
decay at least as quickly as h2r.

The quantity ‖∆u‖2P = |P (∆u)| in Eq. (35) is the forward
scattering amplitude of the error current, which is not the
error in the forward scattering amplitude as computed from the
numerical current solution û. In terms of the EFIE operator
L, we have for the forward scattering amplitude of the error
current

‖∆u‖2P = |P (∆u)| = kη

4

∣∣∣∣∫
S

(L∆u)∗∆u ds

∣∣∣∣ , (36)

whereas the error in the computed scattering amplitude is

|∆S(φi, φs)| = |S − Ŝ| = kη

4

∣∣∣∣∫
S

Es∗∆u ds

∣∣∣∣ . (37)

To relate the Sobolev norm to a direct error quantity requires
the scattering error to be put in a form containing two ∆u
terms. This may be done by defining an adjoint equation,
Laua = Es, where La is the adjoint of L. Assuming that
the adjoint equation is solved using the same procedure as the
EFIE, but exchanging the roles of testing and basis functions,
the following result is obtained [14]–[18]

|∆S(φi, φs)| = kη

4

∣∣∣∣∫
S

(L∆u) (∆ua)∗ ds

∣∣∣∣ (38)

where ∆ua = ua − ûa. Because L is not self-adjoint, ∆u
is not simply related to ∆ua for an arbitrary scattered field
and Eq. (38) does not behave like an induced norm for ∆u.
However, in the backscatter direction Es = Ei∗, ua = u∗,
and assuming that ûa and û are expanded in the same basis
(Galerkin testing), we also have ûa = û∗. This yields

|∆S(φi, φi)| = kη

4

∣∣∣∣∫
S

(L∆u)∆u ds

∣∣∣∣ . (39)

Note that |∆S(φi, φi)| (39) differs from ‖∆u‖2P (36) only by
a conjugate on the L∆u term. For a circular cylinder, ∆S in
the backscattering direction is therefore similar to Eq. (7) and
is given by

∆S(φi, φi) = −
∑

q

α∗q(∆Uq)2 (40)

where we have used the fact that ∆U−q = ∆Uq. The
derivation of the lower constant c1 applies equally well to the
series (40) as it does to the series (7), therefore the inequality
(35) is valid replacing |P (∆u)| with |∆S(φi, φi)|, giving
finally

|∆S(φi, φi)| ≤ c−2
1 ‖∆u‖2Hs ≤ (C/c1)2 h2r. (41)

This is a new bound on the backscattering error, subject to
the Galerkin testing condition. It shows that the error in the
backscattering amplitude must decay at least as quickly as h2r.

The curves in Fig. 3 were computed by generating a moment
method solution for the EFIE and computing the coefficients
∆Uq numerically. A triangle (piecewise linear) expansion was
chosen to avoid the Gibbs phenomenon associated with the
Fourier coefficients of discontinuous functions. We see that
the inequalities (35) and (41) are evident in the figure because
both |∆S(φi, φi)| and ‖u‖2P are both less than 1/c2

1 ‖∆u‖2Hs .
Further, we see that the error measures ‖∆u‖2Hs , ‖u‖2P , and
|∆S| converge asymptotically at the same rate as the mesh is
refined. While this is required of the first two error measures
by the equivalency statement (8), |∆S(φi, φi)| may actually
converge faster than the Sobolev measure ‖∆u‖2Hs without
violating any inequality derived in this paper. We also note
that all three error measures converge as h5, which rate is
proved for |∆S| analytically in [12]. This is much faster than
the 2r = 1 rate predicted by the Sobolev bound (1), implying
that these bounds are not tight. To achieve this convergence
rate required a quadrature rule that combined lin-log Gaussian
quadrature [19] with a Gauss-Legendre rule.
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Fig. 3. Three different error measures for a moment method, TM polarized
current solution, ka = π/4. The horizontal axis is λ/h. The backscattering
amplitude error |∆S| (circles) is computed from an MoM solution for
Lu = Ei with triangle expansion functions and Galerkin testing. The forward
scattering amplitude of the current error, ‖∆u‖P (dots) is equivalent in
the rigorous sense to the Sobolev measure ‖∆u‖Hs (pluses). These error
measures are related by Eqs. (35) and (41). For this particular value of ka,
we have c1 ≈ 0.006.

We have given numerical examples of moment method error
measures for scattering from a circular cylinder. Since the
variational expression (38) applies also in three dimensions,
we have

|∆S| ≤ (c3D
1 )−2‖∆J‖2

H
1/2
div

. (42)

Here, ∆S is the error in the backscattering amplitude for mo-
ment method solutions to scattering from a sphere. (To the au-
thors’ knowledge, there are no bounds analogous to Eq. (1) for
3D PEC scattering problems, although [2], [4] give Sobolev-
type bounds for 3D scalar problems.) To give a numerical
example similar to Fig. 3, computing the Sobolev measure
‖∆J‖2

H
1/2
div

would require computing the inner products of ∆J
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with Legendre polynomials and complex exponentials. Since
this is tedious, we omit it. The impracticality of computing
the Sobolev norm of error currents is one reason a physically
meaningful alternative to the Sobolev norm is desirable.

VI. CONCLUSIONS

We have related the abstract Sobolev norm of an arbitrary
current on an infinite, PEC circular cylinder to the forward
scattering amplitude associated with that current. A slightly
weaker result was derived for 3D currents on a PEC sphere.
This equivalency was used to show that a small error current
measured in the Sobolev norm implies that the error current
radiates little energy. Therefore, Sobolev error estimates prove
that moment method solutions converge in the sense that the
energy radiated by the current error vanishes as the mesh is
refined.

Further, a direct relationship was derived between the
Sobolev norm of the current error to the error in the com-
puted backscattering amplitude solution. This provides a link
between error estimates in the Sobolev literature to physical
quantities in practical CEM simulations. We conjecture that
these observations hold for more general scatterers.

APPENDIX
INEQUALITY FOR COMPUTING c2

Let a, b, c be real numbers with |b| ≤ M |a| and M ≥ 1.
Then we have the inequality

|a + i(b + c)| ≥ |a|+ |c|
3M

. (43)

Proof: Assume that |b| > |c|. Then we have

|a + i(b + c)| ≥ |a| = |a|
2

+
|a|
2

(44a)

≥ |a|
2

+
|b|
2M

(44b)

≥ |a|
2

+
|c|
2M

(44c)

≥ |a|+ |c|
3M

. (44d)

The second step (44b) follows from the given |b| ≤ M |a|
and (44c) from the case statement |b| > |c|. The fourth line
(44d) follows from the given M ≥ 1. Now assume instead
that |b| ≤ |c|. It can be shown that

√
2|a + i(b + c)| ≥ |a|+ |b + c| ≥ |a|+ |c| − |b|, (45)

where we have used the triangle inequality and |b| ≤ |c|.
Claiming that

|a|+ |c| − |b| ≥ |a|+ |c|
2M

, (46)

inequality (43) immediately follows. We can prove claim (46)
by contradiction. Suppose that

|a|+ |c| − |b| < |a|+ |c|
2M

(47)

is true. Then the following inequalities are implied

(2M − 1)(|a|+ |c|) < 2M |b| (48a)

(2M − 1)(|b|/M + |c|) < 2M |b| (48b)

|c| <
(

2M

2M − 1
− 1

M

)
|b|. (48c)

For M ≥ 1, the expression 2M/(2M − 1)− 1/M is less than
one. This implies that |c| < |b|, a contradiction to the case
statement |b| ≤ |c|. Thus, the assumption (47) must be false
and Eq. (46) must hold, completing the proof.
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Abstract: This paper provides one-dimensional

simulation results of the induced currents on constantly

moving and vibrating perfect conductors under the

normal illumination of plane Gaussian electromagnetic

pulses. The characteristic-based algorithm is employed

for the solutions of time-dependent Maxwell curl

equations. In the numerical model, the size of the

computational cell adjacent to the moving boundary, and

its corresponding numerical time step become time-

dependent since the boundary is not stationary. By

comparing the computational results with the theoretical

Doppler  shift values,  we show that the present method

successfully predicts the induced currents on the perfect

conductor surface. The computed electric and magnetic

field intensities and induced currents are demonstrated as 

well.

Introduction:

The effects on electromagnetic waves caused by

uniformly traveling or oscillating targets are usually

neglected if the velocity of movement or the resultant

instantaneous speed of vibration is relatively small. The

study of these topics becomes important wherever

researchers have to deal with them. Several analytic

studies can be found and the following remarks can be

drawn: perfect conductors undergoing translational

motion result in the well-known Doppler shift in the

reflected fields; an oscillating target changes not only the

phase but also the magnitude of the scattered fields [1–3].

A variety of computational techniques are

developed for the solutions of the electromagnetic

scattering problems for the past half century. The two

most commonly approaches for solving electromagnetic

problems are the method of moments (MoM) and the

finite-difference time-domain (FDTD) technique. A

recently proposed method applied to the solution of 

various electromagnetic problems is the characteristic-

based algorithm that numerically approximates the 

time-dependent Maxwell curl equations. Whitfield and 

Janus applied this characteristic-based algorithm to the

solutions of the Navier-Stokes equations for the fluid

dynamic problems in the early 80s [4]. A decade later,

Shang employed this method to solve the time-domain

Maxwell’s equations [5] through the application of

explicit central-difference scheme. The implicit

formulation was developed for the same purpose and its

results were found to agree with data produced by FDTD 

[6]. Unlike MoM and FDTD, all field quantities are 

placed in the center of grid cell in the characteristic- 

based approach. It directly solves Maxwell’s equations by

balancing the net flux across all cell faces within each

computational cell. The present numerical method is then

considered a better approach over MoM and FDTD for

problems involved with time varying cells, such as cases

where object is moving or vibrating.

Governing Equations: 

The governing equations for electromagnetic

problems in source-free region are the time-dependent

Maxwell curl equations:

0E
t
B (1)

0H
t
D . (2)

Since one-dimensional models are used, we can only

consider a two-dimensional numerical formulation. To

begin with, the characteristic-based algorithm requires

the transformation of the governing equations from the
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Cartesian coordinate system (t, x, y) into the body-fitted

coordinate system ( , , ). We rewrite (1) and (2) as 

0GFQ
(3)

where

Q = J q (4)

F = J ( x f + y g) (5)

G = J ( x f + y g) (6)

and

J = yxyx . (7)

The symbol J in above equations stands for the Jacobian

of the inverse transformation, and the three variable

vectors are respectively given by 

q = [ Bx , By , Dz ]T (8)

f = [ 0 , –Ez , –Hy ]T (9)

g = [ Ez , 0 , Hx ]T. (10)

Shown as in (3) is called the Maxwell’s equations

in form of the Euler equation. The numerical procedure

is formulated by applying the central difference operator 

k( ) = ( )k+½  ( )k ½ (11)

to (3). Then it becomes

0
GFQQ ji

n1n
. (12)

In (11) the half-integer index represents the interface

between two adjacent computational cells where flux is 

evaluated. The superscripts “n” and “n+1” on variable

vector Q in (12) are two consecutive time levels. The

numerical method approximates Maxwell’s curl equation 

in curvilinear coordinate system by solving for the flux

change for each grid cell within each numerical time step. 

The flux vector splitting technique and the Newton

iterative method are also applied followed by the

lower-upper approximate factorization scheme for the

solution of the system of linear equations.

Boundary Conditions:

The boundary conditions (BC’s) used in the present

method are derived from the concepts of characteristic

variable (CV) boundary conditions and the relativistic

boundary conditions. According to the definition, every

CV associates with one particular eigenvalue and is

defined as the product of the instantaneous variable

vector and the eigenvector corresponding to that

particular eigenvalues [4]. Since every eigenvalue

indicates the direction and velocity of the information

propagating across the cell face, the use of CV for the

evaluation of boundary variables should increase the

accuracy of scheme. In order to incorporate the

relativistic effects on the perfectly conducting surface, we

combine the characteristic variable boundary conditions

and the relativistic relation to evaluate the boundary

values of variables. The relativistic boundary conditions

are given by
bb B)vn̂(En̂ (13)

where v  and are the velocity and unit vector normal

of the perfectly conducting surface, respectively. The

superscript “b” stands for the boundary values of the

electric and magnetic field variables evaluated right on 

the perfectly conducting surface. By definition, the CV

arriving on the boundary is given by

n̂

DBn̂CV o
b (14)

with o being the impedance of free space and B  and

D are variables of the cell next to the boundary. Note

that, this CVb is tangential to the perfectly conducting

surface and contains information propagating from the

adjacent cell as indicated by the corresponding

eigenvalue.

The Problem:

The incident electromagnetic pulse used in the

simulation is specified as follows. It is a Gaussian- 

windowed plane electromagnetic pulse with a cutoff level

of 100 dB from the peak value, initially propagates in the

positive x-direction in source-free region, and normally

illuminates upon a perfect plane that is either at rest or in 

motion. This Gaussian electromagnetic pulse with its

electric intensity being normalized to unity has a width of
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about 1.902 ns measured from the center to e -0.5.

For a motionless boundary, the grid system is 

stationary where the cell number and cell dimension are

constant and uniform as shown in Figure 1(a). In the

present simulation, due to the motion of boundary, both

cell number and cell size are changing as time advances.

As shown in Figures 1(b) and 1(c), provided that the cell 

immediate next to the moving boundary is the cell N,

portion of the Nth cell may be truncated by the boundary

at certain instance of time; and a moment later an extra

fractional cell, the (N+1)th, may be introduced into the

grid system. The number of cells eliminated from or 

added into the grid system may be multiple and subjects

to the oscillation amplitude and the grid density. These

variations must be taken into account by updating the

effective cell area and the resultant numerical time step to

maintain decent accuracy of scheme.

(a) (b) (c)

… N-1 N … N-1 N … N-1 N N+1

Perfect
plane

In order to easily observe the effects of the moving

object on the induced currents, we make the following

arrangements. The perfectly conducting surfaces are set

to constantly move at a velocity of 10 percent of the

speed of light (C = 3  108 m/s), and/or vibrate with a

constant frequency and a constant amplitude so that the

extreme instantaneous velocity equal to ± 0.1 C. The

vibration frequency and amplitude are set to be 1 GHz

(an impractical high value) and 4.775 mm to result in an

extreme speed of 0.1 C near the equilibrium position. The

resulting velocities of conductor are illustrated in Figure 

2 where they are superposed if conductor moves and

vibrates simultaneously. The two ratios of the

translational velocity and oscillatory instantaneous

velocity to the light speed are  and , respectively.

Since the latter ranges from –0.1 C to +0.1 C, symbol

is used for the magnitude. The value of||  and  is 

positive if conductor and the incident pulse move in the

same direction and negative if they approach each other.

The numerical setups are as follows: the numerical

electromagnetic pulse is plane and only has the

components Ez and By. The excitation pulse is three 

meters in spatial span from the peak to the cutoff point;

the number of grid cell for a six meters span is 800 points;

the numerical time step is set so that the numerical

electromagnetic pulse takes forty steps for one grid cell.

Note that, for an oscillation amplitude as previously

stated the moving boundary covers 1.273 cells peak-

to-peak.

Instantaneous Velocity

ns

Figure 1. Computational cell indexing: (a) stationary grid

system, (b) the Nth cell is truncated, (c) the

(N+1)th cell is introduced.

Figure 2. Instantaneous velocities of moving and/or
vibrating conductors.

The induced currents are computed by taking the

cross product of the unit vector normal and the magnetic

field intensity where the latter is the resultant boundary

values. Another field quantity sampled at the same

location is the electric field intensity. If conductor is 

stationary the electric field is always zero in magnitude.

Yet, the electric field is no longer vanished if conductor

moves so that the relativistic effects cannot be dismissed.

Under such circumstances, if the resultant velocity of

conductor is v , the boundary values of the field
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components can be solved directly from equations (13)

and (14) and are respectively given

bb CV
1v

1B (15)

bb CV
1v

vE . (16)

To obtain above expressions, we take the convenience

that both unit vector normal of the surface and velocity

are along the x-axis. Note also that v used in (15) and

(16) is the combined velocity of conductor and that the

sign of this velocity is dependent upon the relativistic

motion between the electromagnetic pulse and conductor

as previously mentioned. The induced current flows in

the positive z-direction can be computed as 
b

z Hn̂J (17)

where bH is the magnetic field intensity evaluated on 
the boundary.

Results:

To illustrate the interaction between the

electromagnetic pulse and the moving/vibrating perfect

conductor, two time sequences of the electric field 

intensity are given in Figure 3. It is observed that on the

perfectly conducting surface the electric fields are not 

always zero in strength due to the application of the

relativistic boundary conditions. Plotted in Figures 4 and 

5 are the boundary values of the electric and magnetic

fields computed through (15) and (16). Note that all field

quantities are normalized to unity henceforward and that

the induced currents are similar to those of Figure 4 since

it can be obtained by (17). If we take the difference

between (15) and (16), we expect by the mathematical

expression that the oscillatory behaviors of the fields

would be cancelled out. The computational results are 

calculated and shown in Figure 6. 

The Doppler effects on the induced current can be

investigated on both magnitude and pulse width. The

magnitude of the induced current is predictable by the

relation
)(1

2 and the resulted pulse width by

1
1

where the oscillatory behavior is ignored for

easy estimation. Listed in Tables 1 and 2 are the

calculated maximum shifts in magnitude along with the

theoretical values. For instance, if the boundary moves

and vibrates at the same time, when the maximum

instantaneous velocity is –0.2 C, the corresponding

magnitude is equal to 2.5; the pulse width is 1.2247 times

that of the incident pulse, which is 1.7208. It is noted that

the computational results are in good agreement with the

analytical calculations. 

 = –0.1
|  | = 0.1

(a)

 = 0.1
|  | = 0.1

(b)

Figure 3. Interaction of electromagnetic pulse with
moving perfect planes: (a) Vibrating and
approaching, (b) Vibrating and receding
(only electric fields are shown).

Boundary Values ( Electric Field )

ns

Figure 4. Calculated electric field using equation (3).

154HO: INDUCED CURRENTS ON A MOVING AND VIBRATING PERFECT PLANE



Boundary Values ( Magnetic Field )

ns

| Electric - Magnetic | ( Boundary Values )

ns

Table 1: Doppler shifts in pulse width.
Velocities From center to e–0.5

|  | Calculated Theoretical
0 0.0 1.9028 1.9024

– 0.1 0.0 1.7294 1.7208
+ 0.1 0.0 2.1153 2.1032

Table 2: Doppler shifts in the induced current.
Velocities Maximum | Jz | 

|  | Calculated Theoretical
0 0.0 1.9999 2.0000

– 0.1 0.0 2.2223 2.2222
+ 0.1 0.0 1.8176 1.8182

0 0.1 2.2220 2.2222
– 0.1 0.1 2.5001 2.5000
+ 0.1 0.1 1.9908 2.0000

Conclusion:

This paper has shown that the characteristic-based

algorithm successfully simulates the induced currents on

the surface of moving and/or vibrating perfect conductors

in one dimension. The computational results of the 

induced current magnitudes and pulse widths as

consequences of the moving conductors are compared

with the theoretical values. They are in good agreement.

It is our future work to develop the existing code to 

problems with objects of finite dimension and problems

involved with moving medium.

Figure 5. Calculated magnetic fields using equation (4).
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