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ABSTRACT 
 

This paper presents an implementation of an 
iterative method based on the waves concept for 
analyzing patch antennas fed by coaxial probes. 
This method includes a two-dimensional fast 
Fourier transform (FFT-2D) in a wave guide 
environment. The method has the advantage of 
simplicity in that it does not involve basis functions 
and inversion of matrices, as used in other 
calculation methods. Therefore, it is capable of 
analyzing larger bodies than other classical 
techniques. An implementation of the iterative 
calculation is shown for the extraction of S 
parameters of microwave components and 
antennas. The good agreement between simulation 
results and experimental published data justifies 
the design procedure and validates the present 
analysis approach. 

 
INDEX TERMS :   Iterative method, fast Fourier 
transform in  waveguide environment, probe feed. 

 
I-  INTRODUCTION 

 
Microstrip patch antennas are widely used in wireless 
communication because of their advantages, such as 
being low profile, light weight, and conformal. 
Different numerical electromagnetic analysis 
techniques such as the method of moments [1], the 
finite elements method [2], and the finite difference 
time domain method can be used to accurately 
simulate the microstrip antenna [3]. In most cases 
those numerical techniques are not practical to use 

directly in CAD software for design and optimisation 
purposes, due to the enormous amount of computer 
time required. Circuit simulators on the other hand are 
very fast. However, models of microwave integrated 
circuits used in circuit simulators are often inaccurate 
or even invariable. To overcome these difficulties, the 
use of the iterative method, which is based on the 
concept of waves, has been proposed. It consists of 
generating a recursive relationship between incident 
waves and reflected waves at the interface containing 
the circuit which is divided into cells [4]. A high 
computational speed has been achieved by using 2D 
fast Fourier Transform in wave-guide environment [5]. 
 
In this paper, a general implementation of the iterative 
method is proposed to treat microstrip patch antennas. 
The theory as well as its procedure implementation is 
described. The numerical results are compared to 
measured data [8] to establish the validity and 
usefulness of the iterative method given in this study. 
 
 
II- GENERAL FORMULATION OF ITERATIVE 

METHOD 

We consider the shielded microstrip circuit, assumed 
to be loss-less, presented in Fig. 1. 
The air-dielectric interface π is divided into cells 
denoted by three sub-domains corresponding to metal, 
source and dielectric. 
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The wave concept is introduced by writing the 
transverse (plane π) electric field Ei and current 
density Ji in terms of incident and reflected waves [5]. 
It leads to the following set of equations:  
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Ji is defined as follows: 

nxiHiJ = , n is oriented as the incident waves Ai. 
Z0i is the characteristic impedance of the medium i (i = 
1, 2). It is equal to: 
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In order to generate two waves, Bix and Biy, in the 
space domain, the structure is excited by an electric 
planar source. The model of the source is an electric 
field Eoi equivalent to a magnetic current density.  
 
The Fast Fourier Transform (FFT-2D) in waveguide 
environment is then used to obtain two spectral waves  
Bi

TE and Bi TM in each region. Then, these spectral 
waves are reflected in the spectral domain of the 
Region(1) and Region(2) as described in Fig. 2. 
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The travelling part of these waves is then stored in 
memory, whereas the evanescent part constitutes the 
incident waves for the second iteration. The 
implementation of the iterative process consists of 
establishing a recursive relationship between waves 
(incident and reflected) at the q and q-1 iteration. 
 
Initially, the interface circuit (plane (π)) on which the 
boundary conditions have to be satisfied (spatial 
domain) must be meshed. 
 
Let us note Hd and Hm the indicator functions of 
respectively the dielectric and metal. These are equal 
to one in the considered domain and zero elsewhere. 
Due to the continuity relationship (Et1=Et2 and J1+ J2=0 
on the dielectric, Et1=Et2=0 on the metal) in each point 
of the discontinuity plane, it is easy to deduce from the 
equation (1) and (2) the following system:  
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Then the  scattering matrix corresponding to the metal 
and dielectric domains can be expressed as follows: 
 
 

Figure . Typical planar circuit. 

Figure 2. Definition of incident and diffracted waves. 
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Hm=1 on the source and 0 elsewhere. 

Hd=1 on the source and 0 elsewhere.   

       

• Sub-domain of the source 
There are numerous possibilities for choosing the 
source. The most simple consist in a realistic 
description of the excitation by a microstrip line 
(Fig.1). 
This source generates two waves on both sides of 
the interface. The boundary condition on the    
source can be written as follows: 
 

E1 =E2 = E0 – Z0(J1+J2). 
Then the scattering matrix on the sub-domain source 
is expressed as 

 
The drawback of this source is that we must use a box 
with electric walls to connect the source to the ground 
plane.  
 Another technique of spatial excitation is described in 
Section (III). 

The waves Bi
α are reflected on the upper and 

lower parts of the structure.  Consequently, in spectral 
domain the relation between waves become: 
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where the reflection coefficient in the dielectric 
substrate is: 

 

)(1

)(.1

,,,

,,,

iinmimn

iinmimn

hCothYZ oi

hCothYZ oi
i γα

γα
ρ α

+

−
=

α
α

ρ α
imn

imn
YZ oi

YZ oi
i

,

,
1

.1
+
−

= (i=2)

 

and the reflection coefficient in the free space 

(region 1) is: 
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where  is the space wave number. k 0
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III- MODELISATION OF PROBE FEED 

The coaxial current probe offers a more realistic 
method to excite currents on a patch antenna [9]-[10]. 
The coaxial probe is connected through the ground 
plane with the centre conductor embedded vertically 
and terminated on the patch surface, where the outer 
conductor of the coax is connected to the ground 
plane. Figure 3 shows the attachment of the coaxial 
probe to the patch antenna surface.  
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The purpose is to determine the relationship between 
B1, B2 and A1, A2 on the sub-domain source. 
 

Figure 3. Microstrip patch antenna excited by coaxial 
probe feed. 
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We suppose that there are four metallic cells on the 
discontinuity plane (P1) which are connected to the via 
hole. In this case the current density distribution is 
illustrated in Fig.4. 

 
 
 
 
 
 
Let us note that I is the current excitation that verifies 
the following relationship: 
 

IhJ =× .                                                              
 
According to Fig.4, it is possible to establish the 
following relationship: 
 

JJJJJ =+++ 4321 .                                             
 
The vector J which characterizes the current 
distribution on the pixels of the discontinuity (via 
hole-patch) is given by:  
 

T
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8
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In order to modelize the discontinuity ( via hole –plane 
P1), we assume that only fundamental mode can be 
propagated in the via hole and the other modes are 
evanescent. The passage from four cells characterizing 
the current density J to modes and vice versa can be 
considered as multi-port network depicted in Fig. 5. 
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Figure 5. Coupling of Cells-Modes , Modes-Cells in the 
discontinuities between the via hole and the planes P1,P2.
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Q is a two-port network which characterizes the via 
hole, using the theory of transmission lines. 

XJ2 
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The scattering matrix of this two-port network is given 
by: 
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 Consequently, the relationship between waves a2, a3, 
b2, and b3,   can be deduced: 

Figure 4. Bottom view of the patch antenna:
Distribution of magnetic field on the discontinuity
patch-via hole. 
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The expression of the matrix M characterizing the 
multi-port network is demonstrated in reference [6]. It 
is given by the following equation: 

(5)
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Therefore, the relationship between incident and 
reflected waves is: 
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(7)

The source can be modelized by the equivalent circuit 
illustrated in Fig. 6. 
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As is known from the equivalent circuit given in fig.6, 
it is possible to deduce: 
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Let us assume that the source excites  the mode a3. 
However the magnitude of b3 = 0. Using the equations 
(5) and (6) we deduce: 
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According to equations  (7) and (11) we deduce: 
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In the region (1), if we suppose that we have a metal 

domain, it is possible to establish:    . 11 AB −=

According to the equations  (11) and (12), we can 
deduce the relationship between incident and 
diffracted waves on the sub-domain source:             
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The complete scattering matrix can be expressed as 
follows 
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At  iteration, it is possible to calculate the electric 
field and current density at interface plane: Figure 6. Equivalent circuit of the source. 
 

0iZ
                          (15) 

(16)    )(0
K

i
K

ii
k

i BAZE += .                             
 
IV- RESULTS AND DESIGN EXAMPLES 

As an application, we are interested in characterizing 
two differents shapes of patch antennas. We have 
developed a program to calculate the input impedance 
and the reflection coefficient of each antenna. 
 
1. Rectangular patch antenna: 
The first example is a rectangular patch antenna 
deposited on substrate with relative dielectric constant 
εr = 2.2. The coaxial probe is attached to the patch 
antenna at (xc, yc). 
 
In this case, the circuit plane is meshed with 64x64 
square cells. 
 

(12)  c
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(13) 

xc

a

yc

b d

Figure 7. Rectangular patch antenna structure 
c=100mm, d=76mm, a=25mm, b=19mm, xc=45,5mm, 
yc=34,5mm , 2.2=rε . 
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First,  the convergence of parameters is tested. 
In Fig. 8, The real part of Zin is illustrated as function 
of the iteration number. It is seen that convergence is 
achieved for 160 iterations. 
The iterative process is terminated when the 
convergence is reached. 
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Figure.9. show the comparison between simulation 
and measured data reference [7]. It is seen that the 
error between them is 5 to 7%. The error can be 
minimized by meshing the structure with high 
resolution (128x128 pixels).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 shows that the second resonance frequency 
is eliminated when the position of probe feed 
excitation is at the center of the patch antenna 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ε
 

Figure 10. Input impedance of rectangular patch antenna  
c=100mm, d=76mm, a=25mm, b=19mm, xc=0, yc=0, 

2.2=r . 

Figure 8: Real part of Zin  as function of the iteration 
number. 

2. Patch Inverted-F Antenna (PIFA):   
The antenna was printed on a thin, flexible Mylar 
substrate. The end of the ground plane is wrapped 
around the former, reducing the overall length of the 
antenna by the height without affecting the antenna 
performance.  
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Figure 11 shows the geometries and dimensions of the 
studied structure. 
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Figure 9. Input impedance of a rectanglar patch 
antenna as a function of frequency, (a) real part and (b) 
imaginary part. 
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Lg=124mm, Lp=82.5mm,  Wp=30mm, h=10mm
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Figure 11. (a) Side view of the antenna (b) top view of 
the antenna (c) schematic view on the antenna. 
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Finally the reflection coefficient is extracted and 
compared in Fig. 12 to the measured response given in 
reference [8], an agreement between them is observed. 
 
IV- CONCLUSION 

 
An iterative technique based on the concept of waves 
has been used for the simulation of the input 
impedance of rectangular patch antenna and the 
reflection coefficient of PIFA antenna. Thanks to its 
simplicity, the presented method does not involve 
bases functions and inversion of matrix. The good 
agreement between computed and published results 
justifies the design procedure and validates the present 
analysis approach. Consequently, the present approach 
will be investigated for further new applications such 
as air bridges, diodes, active elements. 
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