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Abstract 
 
Analytical solution to the problem of scattering of a plane 
electromagnetic wave by two lossy dielectric loaded semi-
elliptic channels in a conducting plane is investigated using 
an iterative procedure to account for the interaction fields 
between the channels. The incident, scattered and 
transmitted fields in every region are expressed in terms of 
complex Mathieu functions. The translation addition 
theorem is used to compute the higher order scattered fields.  
Numerical results are presented for the far scattered field for 
different axial ratios, electrical separation distances, angles 
of incidence and loss of dielectric materials. 

 
1. Introduction 
 
The electromagnetic scattering from grooves, channels and 
cracks has many practical applications. The solution may be 
used to study the scattering by rough surfaces, 
nondestructive testing of materials, and to check the 
numerical accuracy of approximate and numerical methods 
of similar geometries.   

Lately, there have been many analytical studies available in 
the literature on the scattering by hollow and dielectric 
loaded semi-circular channels [1-5].  Most of these studies 
are based on the exact dual-series eigenfunction solution.  
On the other hand, some numerical solutions based on the 
coupled integral equations for the induced currents were 
obtained by Senior et. al. [6-7]. 

Up to date, the analytical solutions available in the literature 
are for the case of scattering by single semi-elliptic channels 
loaded by a lossy or lossless dielectric material in a 
conducting ground plane [8-10].  In this paper, we extend 
the solution of scattering by a single lossy dielectric loaded 
semi-elliptic channel in a ground plane to the case of 
scattering by two adjacent lossy dielectric loaded semi-
elliptic channels in a conducting ground plane.   

 

 

2. Formulation of the scattering problem 

Consider the case of a linearly polarized electromagnetic 
TM plane wave incident on a two lossy dielectric loaded 
semi-elliptic channels in a conducting ground plane at an 
angle iφ with respect to the x axis, as shown in Figure 1. 
The major axes of the channels are denoted by a1 and a2  
while the minor axes are denoted by b1 and b2. The ground 
plane is assumed to be perfectly conducting. The time 
dependence  is assumed and omitted throughout. The 
electric field component of the TM polarized plane wave of 
amplitude  is given by 
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where  is the wave number in free space. The incident 
electric field may be expressed in terms of Mathieu 
functions around the origins o
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where 1η  and 2η  are the intrinsic impedance of ellipse 1 
and 2, respectively, and 

1
1

8 ( ,cos )
( )

m
em o em i

om omem
om

A E j S c
N c

π
1 φ=                        (4)  

cos( )
2 2

2

8 ( , cos )
( )

ijkdm
em o em i

om omem
om

A E j S c e
N c

φπ φ −=         (5) 

 

170

1054-4887 © 2004 ACES

ACES JOURNAL, VOL. 19, NO. 3, NOVEMBER 2004

mailto:akhamid@Sharjah.ac.ae


dvcScN
om
em

om
em

2
11

2

0
1 )],([)( η

π
∫=                                    (6) 

dvcScN
om
em

om
em

2
22

2

0
2 )],([)( η

π
∫=                                 (7) 

and , , F11 Fkc =

) )1(
omR

0

22 Fkc =

N

1 and F2  are the semi-focal 

length of channels one and two,  and are the even 
and odd angular Mathieu functions of order m, respectively, 

 and are the even and odd radial Mathieu 

functions of the first kind, and  are the even and 
odd normalized functions [11], and d is the separation 
distance between the centers of the two  channels. The 
scattered electric fields outside the two semi-elliptic 
channels are decomposed to two parts: reflected and 
diffracted fields. These fields should only be written in 
terms of odd Mathieu functions since the incident and 
scattered fields should vanish at the conducting plane, i.e. at 
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where  and  are the unknown odd scattered field 

expansion coefficients and  is the odd radial Mathieu 
function of the fourth kind.  The transmitted electric fields 
inside the two semi-elliptic channels can also be written in 
terms of Mathieu functions as 
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where 1111 Fkc = , , 2222 Fkc = 111 εµω=k , 
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, , while , 
and , are the even and odd unknown 

transmitted field expansion coefficients. The magnetic fields 
inside and outside the two loaded semi-elliptic channels can 
be obtained using Maxwell’s equations. 
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3. First order scattered fields  

The first order scattered fields result from the separate 
excitation of each semi-channel by the incident plane wave 
alone. The first order field expansion coefficients can be 
determined using the boundary conditions which require the 
total tangential electric field component inside the channels 
to vanish at the conducting parts, i.e. at 1ξξ = , 2ξξ =  and 

πηπ 2<< , while the total tangential electric and magnetic 
field components to be continuous across the imaginary 
apertures at 1ξξ = , 2ξξ =  and πη <<0 . Using the 
partial orthogonality properties of the angular Mathieu 
functions, the first order odd scattered and even transmitted 
field coefficients can be written in matrix form as follows 
[10]  
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and  , , and   ,  are the first order odd 
scattered and even transmitted filed vector matrices. 
Matrices Q

1
1oB 1

2oB 1
1eC 1

2eC

5, Q6, Q7, Q8, V3 and V4 correspond to the second 
semi-elliptic channel can be written similarly. Equations 
(14) and (15) may be solved by matrix inversion to obtain 
the first order scattered field coefficients for given electrical 
size of semi-elliptic channels, electrical separation, angle of 
incidence, and lossy dielectric material.  

4. Higher order scattered fields 

The second order scattered field results from the excitation 
of each semi-elliptic channel by the scattered field from the 
other semi-elliptic channel due to the initial incident field. 
To enforce the boundary conditions, the first order scattered 
field from the second semi-elliptic channel must be 
expressed in terms of the coordinate system of the first 
semi-elliptic channel and vice versa using the addition 
theorem of Mathieu functions [12], i.e., 
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where  is given by [12]. Again, the boundary 
conditions require the tangential electric field component 
inside the channels to vanish at 

12→
olmWO

1ξξ = , 2ξξ =  and 
πηπ 2<< , while the total tangential electric and magnetic 

fields components to be continuous across the imaginary 
apertures at 1ξξ = , 2ξξ =  and πη <<0 . Using the 
partial orthogonality properties of the angular Mathieu 
functions along with equation (26), we obtain the second 
order scattered field coefficients for semi-elliptic channel 
one in matrix form as  
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and  and C  are the second order scattered and 
transmitted field vector matrices for channel one. The vector 
field matrices , that correspond to the second 
channel can be obtained similarly. 
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To obtain a general solution, we solve similarly for the 
higher order scattered fields, which are sensitive to the 
electrical sizes and separation distances, angles of incidence 
and dielectric materials. The general expression for the kth 
order scattered field coefficients of channel one may be 
written as  
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It should be noted that the matrices in equation (35) are 
computed once (i.e., k=2) for the electrical size, dielectric 
material, and electrical separation considered and used for 
the subsequent iterations (i.e., k=3,4,…).  

Once the scattered field coefficients are determined, the 
total far field from the two semi-elliptic channels due to the 
kth order scattered fields can be determined. 
 

 

 

 

172Hamid: RCS of Two Lossy Dielectric Loaded Semi-Elliptic Channels in a Conducting Plane



5. Numerical Results 

The scattered near and far fields can be calculated once the 
scattered field expansion coefficients are computed. The 
scattered far field expression may be written as follows 

)(
5.0

φ
ρ

ρPe
k
jE jks

z
−









=                                                    (36) 

where 

1 1
1,2,.. 1

cos( )
2 2

1

( ) ( , cos )

( ,cos ) .

m k
om om

k m

jkd m k
om om

m

P j B S c

e j B S cφ

φ φ

φ

∞

= =

∞
−

=


= 




+ 


∑ ∑

∑
            (37) 

In order to solve for the unknown scattered field 
coefficients, the infinite series are first truncated to include 
only the first N terms, where N in general is a suitable 
truncation number proportional to the channel electrical 
sizes, separation distances and the dielectric loading 
materials. In the computation, the value of N has been 
chosen to impose a convergence condition that provides 
solution accuracy with at least four significant figures [14]. 
It is found that increasing the electrical sizes of the channel 
will increase the total truncation number of N terms. Also, 
to set a criterion for terminating the iteration process, the 
scattered field after each iteration is calculated and divided 
by the total field scattered from the pervious iterations, and 
the process is terminated when the ratio is smaller than 10-4.  

The accuracy of the numerical results is checked against the 
special case of two semi-circular channels loaded with a 
lossless dielectric material [13].  Fig. 2 shows the 
normalized backscattered field versus the electrical size ka1,2 
for two identical loaded semi-circular channels with an 
incident angle , axial ratio ao

i 90=φ 1,2/b1,2=1.0 and d=8.0 
a1,2. The electrical sizes are taken from 0.5 to 5.0. The solid 
line represents the solution of [13], which is in excellent 
agreement with our calculation represented by circles. Also, 
the dashed line represents the lossy dielectric circular 
channels from which we can see that the resonances start to  
disappear [14]. Figure 3 is similar to Fig. 2 except for semi-
elliptic channels with axial ratio a1,2/b1,2=2.0. It can be seen 
that the location of the resonances has been changed when it 
is compared with the circular channels. It is worth 
mentioning that the numerical results given by [13] were 
only for loaded channels and no hollow cases. Figure 4 is 
similar to Fig. 3 except for the incident angle changed to 45 
degrees. It can be seen that the number of resonances is 
increased significantly when the incident angle is changed 
from 90 to 45 degrees.  

Fig. 5 shows the normalized backscattered field versus the 
electrical separation distance kd for two dielectric loaded 

identical semi-elliptic channels with ka1,2=2.0, a1,2/b1,2=1.5 
and . The electrical separation is taken from 5.0 to 
16.5.  Fig. 6 shows the echo pattern width versus the 
scattering angle  for two dielectric loaded identical 

channels with ka

o
i 60=φ

φ

1,2=1.5, a1,2/b1,2=2.0, kd=5.0 and . 

Fig. 7 is similar to 6 except for .  Figure 8 shows 
the normalized backscattered field versus the incident angle 

o
i 90=φ

o
i 60=φ

iφ  for two dielectric loaded two channels with ka1,2=2.0, 
a1,2/b1,2=1.5  and kd=5.0. 
 
6. Conclusions 

Analytical solution and numerical results of the 
electromagnetic scattering by a two lossy dielectric loaded 
semi-elliptic channels in a ground plane is obtained for the 
case of TM (transverse magnetic) polarization. The validity 
and accuracy of the obtained numerical results were verified 
against the special case of two lossless semicircular 
channels. It is worth mentioning that the number of higher 
order scattered fields used in the computation of numerical 
results was ranged from k=2 to 4. The agreement was 
excellent in all cases. It was shown that the presence of 
lossy and lossless dielectric materials in the channels has 
significantly changed the scattered field patterns when it 
was compared with the hollow case. The present work will 
be extended to the case of  an infinite array of semi-elliptic 
channels in a ground plane since this would be useful for the 
study of  scattering by rough surface. 
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Figure 1. Scattering geometry of two lossy dielectric 
loaded semi-elliptic channels in a ground plane. 
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Figure 2. Backscattered field versus electrical size ka1,2 for 
two dielectric loaded identical semi-circular channels with  
a1,2/b1,2=1.0 and . o

i 90=φ
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Figure 3. Backscattered field versus electrical size ka1,2 for 
two dielectric loaded identical semi-elliptic channels with  
a1,2/b1,2=2.0 and . o

i 90=φ
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Figure 4. Backscattered field versus electrical size ka1,2 for 
two dielectric loaded identical semi-elliptic channels with  
a1,2/b1,2=2.0 and . o

i 45=φ
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Figure 5. Backscattered field versus electrical separation 
distance kd for two dielectric loaded identical semi-elliptic 
channels with ka1,2=2.0, a1,2/b1,2=1.5 and . o

i 60=φ
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Figure 6. Echo pattern width versus the scattering angle  
for two dielectric loaded identical semi-elliptic channels 
with ka
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Figure 7.  Echo pattern width versus the scattering angle  
for two dielectric loaded  identical semi-elliptic channels 
with ka

φ

1,2=1.5, a1,2/b1,2=2.0 , kd=5.0 and . o
i 60=φ
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Figure 8.  Backscattered field versus the incident angle iφ  
for two dielectric loaded identical semi-elliptic channels 
with ka1,2=2.0, a1,2/b1,2=1.5 .   
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