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Development and Application of a Fast Multipole Method in a 
Hybrid FEM/MoM Field Solver 

Chunlei Guo and Todd H. Hubing 
Department of Electrical and Computer Engineering 

University of Missouri-Rolla 
Rolla, MO 65409 

ABSTRACT 

Hybrid FEM/MoM methods combine the finite 
element method (FEM) and the method of moments 
(MoM) to model inhomogeneous unbounded 
problems. These two methods are coupled by 
enforcing the continuity of tangential fields on the 
boundary that separates the FEM and MoM 
regions. When modeling complex geometries with 
many elements on the boundary, the MoM part of 
the problem is the bottleneck of the hybrid method 
since it requires O N  memory and O N  
computation time. This paper presents a hybrid 
FEM/MoM formulation applying the fast multipole 
method (FMM) that greatly reduces the memory 
requirement associated with MoM part. Two 
practical electromagnetic problems are presented to 
validate this method. 

2( ) 3( )

INTRODUCTION 

The hybrid finite-element-method/method-of-
moments (FEM/MoM) has been used to analyze a 
variety of electromagnetic scattering and radiation 
problems effectively. FEM is used to model 
detailed structures with complex inhomogeneities 
and MoM is used to model larger metallic 
structures and to provide an exact radiation 
boundary condition to terminate the FEM mesh. 
These two methods are coupled by enforcing 
tangential field continuity on the boundary 
separating the FEM and MoM regions. Both the 
FEM and MoM are powerful methods, but each of 
these methods has its own advantages and 
disadvantages. MoM handles unbounded problems 
very effectively but is less efficient when complex 
inhomogeneities are present. Inhomogeneities are 
easily handled by FEM. However, FEM is most 
suitable for bounded problems. Hence, methods 
that combine MoM and FEM are advantageous for 
treating electromagnetic problems involving 
unbounded, complex structures.  

The FEM part of the hybrid method produces a 
sparse matrix, which requires ( )O N  memory, 
where N is the total number of unknowns in the 
FEM region. On the other hand, the MoM part of 

the hybrid method produces a dense matrix, which 
requires ( )2

SO N  memory and ( )3
SO N  CPU time, 

where NS is the total number of unknowns on the 
MoM boundary. The final system of equations 
produced by the hybrid method consists of a 
partially full, partially sparse matrix. An iterative 
solver is usually preferred to solve this matrix 
equation. However, the computational effort 
primarily associated with the MoM part limits the 
size of the problems that can be solved.  

(O N

( SO N log

Rokhlin introduced a fast multipole method to 
speed up the matrix-vector multiplication that arises 
in the iterative solution of MoM equations [1]. This 
method has been applied to electromagnetic 
scattering computation by Engheta [2], Lu [3], and 
Song [4] et al. The memory required for matrix-
vector multiplications can be reduced from ( )2

SO N  

in MoM to )1.5
S  by using a two-level FMM, 

and to )N  by using a multilevel version 
of the FMM method.  

S

In this paper, a two-level FMM is implemented 
in a hybrid FEM/MoM method. Section II describes 
the formulation of the hybrid FEM/MoM and the 
related formulation using the FMM method. 
Preconditioning techniques to improve the 
condition of the resulting system of equations are 
also discussed. Section III presents numerical 
results using the FMM-enhanced hybrid 
FEM/MoM method. 

 FORMULATION 

The FMM method provides an efficient 
technique for performing matrix-vector 
multiplications for MoM matrices. This section 
describes the hybrid FEM/MoM formulation with 
FMM applied to the evaluation of the MoM 
integrals. 

The Hybrid FEM/MoM Formulation 
In the hybrid FEM/MoM, an electromagnetic 

problem is divided into an interior equivalent part 
and an exterior equivalent part. The interior part is 
modeled using the FEM and the exterior part is 
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modeled using a surface integral equation method. 
The two equivalent parts are coupled by enforcing 
the continuity of tangential fields on the FEM and 
MoM boundaries [5]. 

FEM is used to analyze the interior equivalent 
part by solving the weak form of the vector wave 
equation [6]: 

(

( ) int

0 r
0 rV

S V

     + j     dV
j  

ˆ=  n  dS     dV

ω ε ε
ωµ µ

  ∇×
• ∇× •  

  

× • − •

∫

∫ ∫

E(r) w(r) E(r) w(r)

H(r) w(r) (r) w(r)J

)


   (1) 

where S is the surface enclosing volume V, w(r) is 
the weighting function, and Jint is an impressed 
source inside volume V. A Galerkin procedure is 
usually used to test equation (1). The resulting FEM 
matrix equation has the form, 

ii is i i

si ss s ss s s

g0 0 0A A E  =   + 
g0 JA A E B
        
        

         
  (2) 

where {Ei} is a set of unknowns for the electric 
field within the FEM volume;  {Es} and {Js} are 
sets of unknowns for the electric field and the 
electric current density on the dielectric surface, 
respectively; Aii, Ais, Asi, Ass and Bss are sparse 
coefficient matrices; and gi and gs are source terms.  

The exterior equivalent problem can be 
analyzed by using an electric field integral equation 
(EFIE), magnetic field integral equation (MFIE), or 
both, i.e., combined field integral equation (CFIE). 
Both the EFIE and MFIE equations are prone to 
errors at frequencies corresponding to the resonant 
frequencies of the closed surface. However, proper 
formulation of the CFIE is free of such errors [6]. 
The EFIE is in the form [7], 

[

]

inc

0

0 0 0

0
0

0

1
( ) ( ) ( ) G ( , )

2

( ) G ( , )

( ) G ( , ) ',

S

jk

j dS S
k

η

η

′ ′ ′= + ×∇

′ ′+

′ ′ ′− ∇ • ∇ ∈

∫E r E r M r r r

J r r r

J r r r' r

 (3) 

where k0 and η0 are the wavenumber and the 
intrinsic wave impedance in free-space. The MFIE 
is the dual of the EFIE [7], 

[

]

inc

0

0
0

0

0

0 0

1
( ) ( ) ( ) G ( , )

2

( ) G ( , )

1
( ) G ( , ) ', .

S

k
j

j d
k

η

η

′ ′ ′= + − × ∇

′ ′+

′ ′ ′ S S− ∇ • ∇ ∈

∫H r H r J r r r

M r r r

M r r r' r

  (4) 

The integral term in equations (3) and (4) is a 
principal-value integral, i.e., the singularity at 

′=r r is excluded. 

The equivalent currents on the boundary are 
represented by a series of basis functions. In this 
case, triangular basis functions, , (RWG basis 
functions) were employed [8], 

( )f r

1

( ) ( ) ( )
sN

s n
n

J
=

= ∑J r f r  (5) 

1

( ) ( ) ( )
sN

s n
n

E
=

= ∑M r f r  (6) 

where Ns is the total number of unknowns on the 
surface S. The EFIE and MFIE in equations (3) and 
(4) have four different discrete forms using 
different testing functions [9]. Two of them, TE and 
NE, are described in the following sections. In both 
cases, the resulting MoM matrix equation has the 
following structure, 

[ ] [ ] [ ] [ ] [ ]  s sC J D E F= − . (7) 

The TE form 
One method of discretizing the EFIE is known as 

the TE form (short for t ⋅ E where  denotes a unit 
vector tangential to S). In this form, the EFIE in 
Equation (3) is tested using functions . The 
elements in matrices [C], [D] and [F] are then given 
by [10], 

t

( )f r

( )

0 00

0
0

0

 ( )  ( ) G ( , )

( ) ( ) G ( , )

m n

m n

mn m n

S S

m n

S S

C = j dS  dSk

j dS dS
k

η

η

′ ′ ′− •

′ ′ ′ ′+ ∇ • ∇ •

 
  

 
 
 

∫ ∫

∫ ∫

r r r rf f

f r f r r r

 (8) 

 0

1
= ( )  ( ) G ( , )   ( )  

2
m n

mn nm n

S S

D dS dS′ ′ ′ ′• × ∇ +
 
  

∫ ∫r f r r r w rf  (9) 

inc= ( )  ( ) 
m

mm

S

.F dS•∫ r rf E  (10) 
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In equation (8), the operator has been transferred 
to the testing function f  so that C

∇
( )m r mn has an R-1 

singularity that can be evaluated analytically [8]. 

The NE form 

In this form, the EFIE in Equation (3) is tested 
using functions n × f , where  is a unit normal 
vector pointing outward from the boundary surface. 
The elements in the matrices [C], [D] and [

ˆ (r) n̂

F ] are 
given by [10], 

( )

0 0 0

0
0

0

ˆ ( ) ( ) G ( , )

ˆ( ) ( ) G ( , )  

m n

m n

mn m n

S S

m n

S S

C = jk n dS  dS

j n d
k

η

η

′ ′ ′− • ×

′ ′ ′ ′ ′+ • × ∇ • ∇

 
  

 
 
 

∫ ∫

∫ ∫

r r r rf f

f r f r r r

 (11) 

S dS

( )

( ) ( )

0

0

0

20
02

G ,
4

ˆ ˆˆT ,
16

mn

ml nl

jk r

m n

mn

jk

ll llL

e

r

jk
e k r k r

π

π
′

−

− −
′ ′

=

−
≈ •∫ r r

r r

d k

 (15) 

 0

1
ˆ= ( ) ( ) G ( , ) ( )

2
m n

mn nm n

S S

D n dS′ ′ ′ ′• × × ∇ −
 
  

∫ ∫r f r r r f rf dS  (12) 

[ ]inc= ( )  ( )  ˆ
m

mm

S

.F dSn• ×∫ r rEf  (13) T ( , lκ

The matrix elements in TH and NH forms can be 
derived from those in TE and NE forms.  

Note that neither the FEM matrix equation (2) 
nor the MoM matrix equation (7) can be solved 
independently. They are coupled through the Js and 
Es terms. Three different formulations, the 
combined formulation, the inward-looking 
formulation and the outward-looking formulation, 
can be used to solve the coupled system [6], [13].  

Application of the FMM Method 
To apply the FMM, the Ns basis functions are 

divided into M localized groups, labeled by an 
index l, each supporting Ns /M basis functions. For 
nearby group pairs ( l ,l )′ , the matrix elements are 
calculated using the numerical evaluation of 
equations (8)–(13). For non-nearby groups ( l ,l )′ , 

let  be the observation point,  be the source 

point,  be the center of l group which contains 

, and  is the center of l′ group which contains 

, 

mr nr

lr

rmr

nr
l ′

.

mn m n

m l l l l

ll ml nl

′ ′

′ ′

= −

= − + − + −

= + −

r r r

r r r r r r

r r r
n  (14) 

m

For simplicity, the same subscripts used to label 
basis functions are employed to label the source 

and observation points here. Equation (14) breaks 
the path from the source point  to the observation 

point  into three parts: the path from the source 
point to the center of the l′ group, the path from the 
center of the l′ group to the center of the l group, 
and the path from the center of the l group to the 
observation point. The scalar Green’s function 
between the source point and the observation point 
can be approximated as [3], 

nr

mr

where 2 ˆd k∫  is  a surface integral over a unit 

sphere,  and  

( 2 )

0

cos ) ( ) (2 1) ( ) (cos )
L

l

L l
l

j l h Pθ κ
=

= − +∑ θ  (16) 

where  is a spherical Hankel function of the 
second kind and  is a Legendre polynomial. 

( 2 )
lh ( x )

lP ( x )

Substituting (15) into equations (8), (9), (11), 
and (12), we can get the matrix elements in TE and 
TH form using the approximate Green’s function. 
These elements seem to be more complicated than 
their counterparts obtained using the MoM method, 
but they can be evaluated more efficiently. 

The TE form 

The elements in matrices [C] and [D] are 
approximated by, 

( )

2

, 20
0 0

20
02

ˆ ˆˆT ( , )
4

ˆ ˆˆT ( , )
2

C TE

mn ml L ll ll nl

C

ml L ll ll nl

k
C k r

U k r k r V d k

η
π

η

π

′ ′

′ ′ ′

= − • •

+ •

 
 
  ∫

∫

U k r d kV
 (17) 

2

20 ,
0

ˆ
4

ˆ ˆT ( , )mn nl

D TE
ml L ll ll

k
D dk r k r

π
′′ ′=   • • 

  ∫ VU k  (18) 

where 

0, ( )mljC TE

ml m

S

e− •= ∫ k rU f  (19) dSr

dSr0 ( )nl

n

j

nl n

S

e ′•
′ = ∫ k rV f  (20) 
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0 ml

m

jC

ml

S

U e− •= ∫ k r dS

dS

,

 (21) 

0 nl

n

j

nl

S

V e ′•
′ = ∫ k r  (22) 

, ˆD TE C TE

ml mlk= ×U U . (23) 

Equation (17) requires both a vector dot product of 
 with  and a scalar product of U  with 
.  

C C
mlU

nlV ′

nl ′V ml

The NE form 

Similarly, the elements in matrices [C] and [D] 
in equations (11) and (12) are given by, 

( )

2

, 20
0 0

, 20 0
02

ˆ ˆˆT ( , )
4

2 ˆ ˆˆT ( , )
4

C NH

mn ml L ll ll nl

C NH

ml L ll ll nl

k
C k r

j k
U k r k r V d k

η
π

η

π

′ ′

′ ′ ′

= • •

− •

 
 
  ∫

∫

U Vk r d k
 (24) 

2

20 ,
0

ˆ
4

ˆ ˆT ( , )mn nl

D NH
ml L ll ll

k
D d kk r k r

π
′′ ′=   • • 

  ∫ VU  (25) 

where 
, , ˆC NH C TE

ml ml n= ×U U  (26) 

, ˆC NH C NH

ml mlU k= • U ,

,

 (27) 

, ˆD NH C NH

ml mlk= ×U U  (28) 

Figure 1 illustrates how the computational 
complexity can be reduced by applying FMM, 
which applies approximate Green’s functions to the 
evaluation of MoM integrals. In this figure, a 
hollow circle represents a source point, a solid 
circle represents an observation point, a hollow 
square represents a group center for a few source 
points, a solid square represents a group center for a 
few observation points, and a line that connects a 
circle with a circle or a square represents a matrix 
element resulting from the direct interaction from 
the two connecting objects. Using the MoM 
method, the four points illustrated in Fig. 1(a) 
generate a matrix with 4 4  elements. Using 
the FMM method however, every two points are 
grouped together, and only the group center has a 
one-to-one interaction with the other group centers. 
The matrix illustrated in Fig. 1(b) has only 12 
elements since the number of one-to-one 
interactions is reduced. When there are more 

groups and more points per group, this reduction 
can be much more significant. 

16× =

An iterative solver based on the inward-looking 
formulation or the combined formulation is usually 
preferred for the solution of the hybrid FEM/MoM 
matrix equation when the FMM method is 
employed. The combined formulation was used in 
this study since it doesn’t require a direct inverse of 
the FEM matrix.  

 
       (a)  MoM               (b) FMM  

Figure 1. Computational complexity reduction by 
using FMM.  

The hybrid FEM/MoM matrix equation 
employing the combined formulation is given by, 

ii is i i

si ss ss s s

s

A A 0 E g
A A B E g
0 D C J F

   
 


  − = 


  

 


  −     

. (29) 

In practice when the FMM method is employed, the 
C and D matrix elements resulting from far groups 
in equation (29) are not generated explicitly using 
equations (17), (18), (24), and (25). Instead, these 
equations are used to generate the matrix-vector 
multiplication directly [3]. So the explicit C and D 
matrices are sparse and contain only elements 
resulting from the nearby groups generated using 
the MoM method, denoted as Cnear and Dnear, 
respectively. Thus, the near matrix  is given 
by 

LHS ′

[ ]
ii is

si ss ss

near near

A A 0
LHS A A B

0 D C

 
 ′ = − 
 − 

. (30) 

Preconditioning technique 
The convergence of an iterative solution is 

strongly dependent on the condition of the matrix 
and the iterative solver used. The coefficient 
matrices generated by hybrid FEM/MoM 
techniques often have very large condition 
numbers. Without a preconditioner, the iterative 
solver may converge very slowly, or not at all. A 
good preconditioner should be easy to construct, 
require little memory and improve the convergence 
rate significantly. 
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Diagonal and block diagonal preconditioners 
have been widely used in the past [4]. LU and 
incomplete LU (ILU) factorization are commonly 
used to construct these preconditioners [15]. Matrix 
LHS' in equation (30) and the preconditioner LU 
matrices are usually the major memory consumers 
for an iterative solver. Special techniques must be 
applied to reduce the memory requirements of the 
preconditioner for electrically large problems [16].   

In this study, a biconjugate gradient stabilized 
(BICGSTAB) solver was implemented. 
BICGSTAB is a popular and stable Krylov 
subspace method for the iterative solution of linear 
systems. A preconditioner using the absorbing 
boundary condition (ABC) to provide a physical 
approximation of the MoM boundary was also 
employed [17, 18]. 

 NUMERICAL RESULTS 

EMAP5 (Electromagnetic Analysis Program 
Version 5) is a hybrid FEM/MoM modeling code 
that has been used to model signal integrity, 
scattering and radiation problems [19]. On a 
personal computer with 1 GByte of memory, 
EMAP5 is generally limited to the solution of 
problems with no more than 3600 boundary 
elements. The fast multipole method described in 
the previous section was implemented in EMAP5 in 
order to model larger problems. This section 
describes two practical examples. A commercial 
mesh generator was used to discretize the problems 
presented in this paper. Results obtained from the 
FMM-enhanced EMAP5 (EMAP5-FMM) are 
compared to results obtained using other well-
established codes or analytical results. 

The first sample problem is to model the input 
impedance of a printed circuit board (PCB) power 
bus structure. As shown in Fig. 2, the board 
dimensions are 10 cm × 8 cm × 2 mm. The top and 
bottom planes are perfect electric conductors 
(PECs). The dielectric between the PEC layers has 
a relative dielectric constant of 4.2 and a loss 
tangent of 0.02. An ideal current source is used to 
excite the structure at the point ( ix 3=  cm, iy 2=  
cm). The frequency range of interest is from 30 
MHz to 5 GHz. 

The MoM boundary was chosen to be the 
physical boundary of the board. The mesh density 
used for this problem was 12 elements per 
wavelength at 5 GHz. The discretization of this 
problem is summarized in Table 1. The total 
number of unknowns is given by the sum of the 
number of Ei, Ed, Jh and Jc elements. The TE form 

is sufficient to generate a stable solution for this 
problem.  

r, tan

z 
y 

x 

10 cm 

8 cm 

2 mm 

( x i, y i) 

δ ε  
Figure 2. A PCB power bus structure. 

In order to achieve a good approximation in 
equation (15), the size of a group should be 
proportional to the wavelength, so the number of 
groups varies with frequency. The number of 
groups generated for this structure at different 
frequencies is shown in Figure 3. At lower 
frequencies (e.g. below 1.5 GHz), the structure is 
electrically small, and the size of all groups must be 
much smaller than a wavelength. In this situation, 
the approximation in equation (15) becomes 
numerically unstable due to the divergent behavior 
of the spherical Hankel function when its order is 
much larger than its argument. It is invalid to use 
equation (15) in such cases, and all the elements 
must be in the same group (i.e., the matrix elements 
should be evaluated using MoM integrals). As the 
frequency increases, the wavelength decreases and 
the software assigns more groups to this structure. 
Figure 4 shows the groups of surface triangles at 
5 GHz using different shades of gray to represent 
different groups. There are a total of 30 groups. 

Table 1. Discretization of the problems 

 Problem 1 Problem 2 

Number of nodes 798 7,854 

Number of 
tetrahedral 
elements 

2,189 23,376 

Number of 
triangles 1,580 9,186 

Number of inner 
edges (Ei) 

1,406 15,533 

Number of FEM 
boundary edges 
(Ed) 

144 13,779 

Number of MoM 
boundary edges 
(Jh+Jc) 

2,370 13,779 

Total number of 
unknowns  3,920 43,091 
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Figure 3. Number of groups at different frequecies 

for sample problem 1. 

Groups  are defined as near groups when 
the following criteria are satisfied, 

( l ,l )′

1.5 max( )llD ′= <r d  (39) 

where D is the distance between two groups, 
max(d) is the maximum size of a group.  

 
Figure 4. Mesh and groups for problem 1 at 5 GHz. 

Since there are a total of 3920 unknowns in this 
structure, the near matrix LHS' in equation (30) can 
be used to build the preconditioner without 
exceeding the memory limit on a personal 
computer. Since the C and D matrices are 
dominated by the near group contributions 
evaluated using MoM, an ILU factorization on 
LHS' reduces the condition number of the matrix on 
the left hand side of equation (29) and the number 
of iterations significantly. 

Figure 5 shows a plot of the memory required 
by LHS' and using ILU factorization on LHS' as a 
preconditioner. In this study, ILU factorization 
based on drop tolerance was adopted [15]. The 
memory required to evaluate equations (19), (20), 
(26), and (27) is negligible since no matrix 
elements are generated explicitly. The general 

behavior of the memory requirement versus 
frequency is directly related to the number of 
groups shown in Fig. 3. As frequency goes up, 
there are more groups, and more interactions 
between group pairs may be evaluated using the 
FMM method, thus the memory required to store 
the near matrix is reduced. Below 2.8 GHz, 
although the number of groups varies from 1 to 9, 
the groups are so close to each other that the 
interaction between them has to be evaluated by the 
MoM integrals, so the memory required to store the 
near matrix is about the same. The memory 
required by the near matrix at 5 GHz is less than 
half of that required at 30 MHz. The memory 
required to store the ILU factorization is generally 
lower when the memory required by the near 
matrix is reduced.  

 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

50

60

70

80

90

100

110

120

130

140

Frequency (MHz)

M
em

or
y 

R
eq

ui
re

m
en

t (
M

B
yt

es
)

Near Matrix LHS
ILU Total Size

Figure 5. Memory cost of the near matrix and 
preconditioner. 

To validate the EMAP5-FMM result, a cavity 
model was also used to calculate the input 
impedance of the same rectangular power bus 
structure. The cavity model has been widely used to 
analyze PCB power-return plane structures [20], 
[21]. For a thin power-return plane pair with a 
reasonably good dielectric and PEC conductors, the 
input impedance is approximately determined as,  

( ) ( )2 2 2

2 2 2
0 0

cos cos

( )
mn xm s yn s

in
m n xm yn

k x k y
Z j h

ab k k

χ
ϖµ

γ

∞ ∞

= =

=
+ +

∑∑ . (40) 

A more detailed explanation of equation (40) can 
be found in [21]. Figure 6 compares the EMAP5-
FMM result with the cavity model result. Although 
the cavity model does not account for the radiation 
from printed circuit board structures, there is good 
agreement between the two methods up to 5 GHz. 
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Figure 6. Input impedance comparison using 

EMAP5-FMM and cavity model. 

The second sample problem is to calculate the 
bistatic radar cross section (RCS) of a perfectly 
conducting sphere. The radius of the sphere is 15 
cm. The frequency of interest is 3 GHz. In this case, 
due to the large number of elements required, it is 
not possible to build a preconditioner from the 
matrix LHS' that fits in the physical memory of a 
personal computer. However, it is possible to 
construct an alternative preconditioner based on the 
FEM submatrix and an absorbing boundary 
condition (FEM-ABC) that is very memory 
efficient. In order to apply the ABC, the MoM 
boundary must be moved away from the PEC 
conductor and a specific CFIE form (TENH) is 
used [18]. An air sphere with a radius of 16 cm 
forms the MoM boundary, as shown in Fig. 7. More 
information on how to choose the location of the 
ABC can be found in [17]. 

 

Figure 7. A 

Table 1 summ
problem. The air 
elements and 1
triangular mesh d
elements per wav

calculated directly using the MoM method, the 
memory requirement for the [C] and [D] matrices is 
about 6 GBytes, which greatly exceeds the physical 
memory of the personal computer used for this 
modeling.  

Figure 8 illustrates the triangular surface mesh 
on the air sphere. There are a total of 194 groups on 
the surface. Ideally, groups on the surface of a 
symmetric structure like a sphere would have a 
similar number of elements. However, the grouping 
algorithm that we used produced several groups 
with only a few elements. A better grouping 
algorithm would balance the number of elements in 
each group. Nevertheless, the FMM algorithm 
performed very well for these examples.  

 
Figure 8. The meshes and groups for problem 2. 

The memory required to store the near matrix 
LHS' in this case is about 1.2 GBytes, which is only 
1 5  of that required to store the [C] and [D] 
matrices obtained by the MoM. However, this 

air 

 

 

132Guo and Hubing: Fast Multipole Method in a Hybrid FEM/MoM Field Solver
PEC
R1 = 15 cm   

R2 = 16 cm 

 
perfectly conducting sphere. 

arizes the discretization of this 
layer generates 23,376 tetrahedral 
5,533 FEM inner edges. The 
ensity used for this problem is 10 
elength. If the MoM matrix is 

memory requirement is close to the limit of the 
personal computer used for this modeling. It is not 
possible to generate a precondtioner using ILU 
factorization of the near matrix LHS' on the same 
computer due to its huge memory requirement. 
Using a FEM-ABC preconditioner and techniques 
reported in [18], the memory required for the 
preconditioner is only about 0.02 GBytes and the 
BICGSTAB solution converges to a tolerance of 
10-3 in 26 steps.  

Analytical results for the RCS of this geometry 
can be obtained using the Mie series [22]. Figure 9 
shows that the bistatic RCS results obtained using 
EMAP5-FMM agree with the Mie series results 
very well.  
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Figure 9. The bistatic RCS results of a perfect 

conducting sphere. 

CONCLUSION 

The fast multipole method was combined with a 
hybrid FEM/MoM method in this paper. 
Incorporating FMM allows an efficient evaluation 
of the surface integral and reduces the memory 
required to model structures with a large number of 
boundary elements. Two practical problems were 
investigated to validate the formulation and to 
demonstrate the memory efficiency of FMM. Good 
agreement was achieved between the FMM-
enhanced hybrid FEM/MoM method and other 
analytical results.  

For the first sample problem with 2,370 MoM 
boundary edges, the near matrix in the FMM 
employs about half of the memory required to store 
the fully-populated matrix generated by the MoM at 
5 GHz. For the second sample problem with 13,779 
MoM boundary edges, the near matrix uses about 
1 5  of the memory required to store the dense 
matrix generated by the MoM. If the FMM were 
applied to larger problems with more MoM 
boundary edges, we would expect even greater 
memory efficiency to be achieved.  

Besides the near matrix, the preconditioner also 
usually requires a lot of memory in an iterative 
solver. Since the condition number of the matrices 
generated by the hybrid method is usually very 
large, the preconditioner is crucial for the efficient 
convergence of the iterative solver. A good 
preconditioner will reduce the required iterations 
dramatically and require very little memory and 
little time to construct. Without an effective 
preconditioner, the modeling of the second sample 
problem would have been much more difficult on a 
personal computer. 

The FMM method implemented in this study 
does not work very well for electrically small 
structures due to the divergent nature of the 
spherical Hankel function used in this method. 
Electrically small structures that have many 
elements due to their geometric complexity are best 
modeled by locating the FEM/MoM boundary far 
from the complex part of the geometry. This 
minimizes the number of MoM boundary elements 
required and the total memory required to solve the 
problem.  

The FMM method is designed to model 
electrically large structures with a large number of 
boundary elements. Its multilevel versions have 
been successfully employed to model structures 
such as aircraft with more than 107 boundary 
elements [11]. For electrically large geometries, a 
hybrid FEM/MoM technique incorporating FMM is 
capable of solving much larger problems in less 
memory than a standard FEM/MoM approach.  
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ABSTRACT 
An analytic solution of the problem of electromagnetic 
scattering by a dielectric spherical scatterer resting on, 
or partially buried in, an infinite perfectly conducting 
ground plane is approximated by partially truncated 
sphere and is formulated using the method of images. 
The scattered field coefficients are solved exactly so 
that the scattered field can be evaluated everywhere. In 
particular, the scattering cross section can be calculated 
as a function of the sphere radius and permittivity as 
well as the truncated sphere distance for any specified 
angle of incidence. The solution of this problem is 
relevant to analyze the scattering by complex three-
dimensional bodies, plastic mines, icebergs, rough 
surfaces, etc., in which the flat background can be 
modeled by the ground plane while the complex body 
can be simulated by a sphere or a system of spheres 
partially truncated and resting on the ground plane. In 
order to solve the inverse scattering problem, we 
employ a radial basis function network to take the 
scattered field complex coefficients for the TE and TM 
polarization case as the network inputs to predict the 
three outputs of the electrical radius, burial distance, 
and relative permittivity of the sphere. The trained 
network is able to retrieve the three aforementioned 
parameters from new data which is different from the 
learning data. 
 
1. INTRODUCTION 
The solution to the problem of electromagnetic inverse 
scattering by a partially buried dielectric sphere in an 
infinite plane is relevant to analyze the scattering by 
complex three-dimensional bodies, plastic mines, 
icebergs, rough surfaces, etc., in which the flat 
background can be modeled by the ground plane and 
the complex body can be simulated by a sphere or a 
system of spheres partially buried in the ground plane. 
Generally, in these applications, the detection of the 
dielectric characterization of the target needs to be 
performed directly “on field”. Therefore, the 
development of an accurate and also fast numerical 
algorithm for these inverse scattering problems is 
essential. Analytical and numerical techniques of 
solving the inverse scattering problem are 
computationally intensive as they require matrix 
inversion, recurrence relations or graphical inversion 
methods [2-4]. In the past few years, neural network 

technique has been used for solving inverse scattering 
problems with respect to overcoming the drawback of 
directly solving the inverse problem [5-8]. This 
technique is simple, straightforward and allows a 
sensible reduction in the computational time and, 
consequently, it permits to obtain very fast solutions. 
This is an interesting property for all those problems 
requiring an analysis performed directly “on field”. 

The problem of forward electromagnetic 
scattering by a partially buried dielectric sphere in an 
infinite plane using truncated sphere as an 
approximation has been solved by Hamid and Hamid 
[1] (depicted in Figure 1). They solved the problem but 
did not carry out their solution to the same extent as 
reported here. The rigorous analytic solution of the 
problem is formulated using the method of images. The 
incident wave is assumed a uniform plane 
electromagnetic wave of arbitrary angle of incidence. 
The method of images is applied to replace the partially 
buried sphere in a ground plane by two overlapping 
spheres of equal size, or by two touching spheres of 
equal size, if the sphere is resting on the ground plane. 
And a supplementary incident plane electromagnetic 
wave is added such that the total electric field is 
satisfied at all points where the ground plane is located 
in the original problem. The incident, supplementary 
and scattered fields are expressed in terms of 
appropriate spherical wave functions. To impose the 
boundary conditions on the surfaces of the spheres, the 
translational addition theorem for the spherical wave 
functions is used to express the coordinate system of 
the scattered field from one sphere in terms of the 
coordinate system of the other sphere leading to a 
matrix equation, which can be inverted numerically to 
recover the scattered field coefficients. 

In this paper, we improved the solution to the 
aforementioned scattering problem by employing the 
re-derived vector translational addition coefficients 
functions by Xu, which are quite similar to Cruzan’s 
formula, in order to overcome the problem associate 
with Cruzan’s formula in producing zero value for TE 
case [10]. The scattered field coefficients generated by 
exact methods are obtained, from which the scattered 
field can be evaluated everywhere. In particular, the 
scattering cross section can be calculated as a function 
of the sphere radius and permittivity as well as the 
burial distance for any specified angle of incidence.  
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Numerical results are presented for the normalized 
scattering cross-section, σ, as a function of incident 
angle. 

In order to solve the inverse scattering of a 
partially truncated dielectric sphere resting on an 
infinite conducting plane problem, a technique based on 
neural network analysis is presented where the network 
is trained to model the nonlinear relationship between 
the characterization of the sphere and the complex 
scattering coefficients. We employ a radial basis 
function network that consists of an input layer with 
four sets of inputs, a hidden layer using Gaussian 
nonlinearity functions, and an output layer with three 
outputs. The four sets of inputs in the input layer are the 
real and imaginary values of the computed scattered 
field complex coefficients for the TE and TM 
polarization cases, while the outputs are the electrical 
radius and burial distance of the training sphere, as well 
as its relative permittivity. The simplified version of the 
network diagram is shown in Fig. 2. This network is 
then trained, using the orthogonal least-squares 
algorithm [9] with a specified range of the electrical 
radius (0.01λ to 5λ) and a specified number of learning 
data samples (50 for each output) in order to retrieve 
the radius, burial distance and relative permittivity of 
the test sphere for new data that is different from the 
learning data. The results are verified by applying the 
technique to a different set of coefficients for a wide 
range of dielectric constants. Typical results are 
presented which show excellent prediction by the 
neural network. The formulation to the solution of the 
scattering problem is given in the following section and 
its far field solution is given in Section 3. Details of the 
proposed approach of inverse scattering using neural 
network is explained in Section 4 follows by the 
description of the network training algorithm in Section 
5. The computer simulation results are given in Section 
6 and the conclusion is drawn in Section 7. 

 
2. FORMULATION OF THE PROBLEM 
Consider a dielectric spherical scatterer with radius a 
and relative dielectric constant rε  to be residing on or 
partially truncated at an arbitrary depth d from the 
ground plane lying in the x-y plane. The sphere 
centered at O1 is illuminated by a plane electromagnetic 
wave with a unit electric-field intensity whose 
propagation vector k

r
 lies in the x-z plane and makes an 

angle α with the z-axis counter-clockwise in the x-z 
plane as shown in Fig. 1. Thus, the incident electric and 
magnetic fields have the form 

yeEE rkj
i ˆ0

rrr
•=  (1) 

)ˆsinˆ(cos1
0 zxeEH rkj

i αα
η

−−= •
rrr  (2) 

where, zkxkk ˆcosˆsin αα +=
r

 with k being the wave 
number, η the medium intrinsic impedance of the 
sphere while x̂ , ŷ , and ẑ are the unit vectors along the 
x, y and z axes, respectively. 

Applying the image technique with respect to 
the ground plane will reduce the problem to that of 
scattering by the sphere and its image due to the 
original incident wave as well as its image impinging 
simultaneously upon the two spheres. Using a prime 
superscript to denote the electric field '
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 of unit 
amplitude and the magnetic field '
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 of the latter image 
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The incident plane wave can be expressed with 
reference to the spherical coordinate system of the 
sphere center O1 as: 
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where m

nP  is the associated Legendre function of the 
first kind while jn is the spherical Bessel function of the 
first kind. 

Expressing the incident wave in the form of 
spherical wave expansion (SWE) based on scalar 
spherical wave mode coefficients (SSWMC) and vector 
spherical wave functions (VSWF), the fields due to the 
incident wave on the sphere are: 
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The fields due to the image of the incident wave on the 
sphere are: 
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The fields due to the incident wave on the image sphere 
are: 
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The fields due to the image of incident wave on image 
sphere are: 
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where )1(
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and )1(
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are the spherical vector wave 

functions of the first kind defined in terms of the 
spherical Bessel functions given as: 
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The scattered fields from the dielectric sphere are: 
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The scattered fields from the image sphere are: 
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The transmitted fields in the dielectric sphere are: 

∑ ∑
∞

=

=

−= 











+
=

1 111
)1(

111
)1(

111
),,(),(

),,(),(
),,(

n

nm

nm mn
t
M

mn
t
E

t
rMnmA

rNnmA
rE

φθ

φθ
φθ r

r
r  (28) 

.
),,(),(

),,(),(
),,(

1 111
)1(

111
)1(

111 ∑ ∑
∞

=

=

−= 











+
=

n

nm

nm mn
t
M

mn
t
E

t
rNnmA

rMnmA
jrH

φθ

φθ
φθη r

r
r  (29) 

The transmitted fields in the image sphere are: 
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Note that in the transmitted fields, k is replaced by k2. 
kk rε=2

, if the dielectric sphere is a perfect dielectric 
with no magnetic losses. To impose the boundary 
condition at r1 = a, the outgoing scattered fields from 
the image sphere must be expressed in terms of 
incoming fields to the real sphere and vice versa, hence 
we apply the spherical vector translational addition 
theorem, i. e. 
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where mn

vAµ  and mn
vAµ  are Xu’s translation addition 

theorem coefficients given in the Appendix and 
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In our case, since the image sphere is always positioned 
below the real sphere on the conducting ground, 12θ , 

21θ , 12φ , and 21φ  are equal to zero and ddd 22112 =−= . 
The boundary condition on the surface of the dielectric 
sphere and its image requires continuity of the 
tangential electric and magnetic field. Hence, 
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where 
1̂r  and 

2̂r are the outward unit normal to the 
surface of the dielectric sphere and its image, 
respectively. From the boundary condition above, the 
electric and magnetic fields on the surface of the sphere 
and its image can be expressed as: 
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From the boundary condition 1, we have: 
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From the boundary condition 2, we have: 
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From the boundary condition 3, we have: 
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From the boundary condition 4, we have: 
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Applying the orthogonality properties of the spherical 
wave functions yields the solution for the scattered field 
coefficients 
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where υn(α) and un(α) are the electric and magnetic 
scattering coefficients for a single dielectric sphere, 
which are given by 
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where ka = 2π a / λ and m = k2 / k = εε /2
 is the 

refractive index of the dielectric, which may be real or 
complex depending on whether the dielectric is lossless 
or lossy, while ε2 and ε are the permittivities of the 
sphere and the surrounding medium, respectively. 
Equations (48) to (51) above can be written in matrix 
form as 
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Equations (54) to (57) are a set of complex linear 
algebraic equations, and should be solved 
simultaneously to yield the unknown scattering 
coefficients. The above system may be rewritten in the 
following form 
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where ][ 12A , ][ 21A , ][ 12B  and ][ 21B  are matrices 
associated with the translation addition coefficients. 
And ][ S

EA , ][ S
MA , ][ S

EB  and ][ S
MB  are column matrices 

containing the scattering coefficients. The above 
equation can now be solved directly by either using 
Cramer’s rule or by multiplication of the inverse matrix 
of the diagonal matrix on the left side of equation (58). 
In addition, the infinite series must be truncated to a 
finite number of terms n = v = M and m = µ = 2M + 1. 
Solution of equation (58) yields the scattered 
coefficients in equations (24), (25), (26), and (27). For 
our case of pqθ  and pqφ  equal to zero, the above system 
(µ = m) could be solved for each m independently, since 
there is no coupling between azimuthal modes. Once 
the scattered field coefficients are computed, the total 
scattered field can be determined everywhere from the 
expressions: 
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3. FAR-FIELD APPROXIMATIONS 
As shown in the previous section, both of the individual 
scattered fields from component spheres are solved in 
respective sphere-centered coordinate systems. 
Following the solution of boundary conditions for all 
partial scattering coefficients, the next step is to 
construct a single-field representation for the total 
scattered field from an aggregate of two spheres as a 
whole. This step is important for navigating towards a 
complete two-sphere scattering solution. Of particular 
interest are the far zone scattered fields. In the far field 
approximation (kr1 » 1, and kr2 » 1) we have, 
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Referring to a common coordinate centered at O as 
shown in Fig. 1, the total scattered field can also be 
expanded in VSWF with a very simple transformation 
involving only a simple phase term. This is because the 
translation of VSWF between displaced coordinate 
systems has an obviously correct asymptotic form valid 
in the far zone: 
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Substituting the above equations into equations (24) 
and (26), and summing both equations together yields 
the total scattered electric field in the far zone. 
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Fig. 4. Normalized bistatic cross-sections in the H
plane of a partially buried dielectric sphere vs. the
scattering angle θ  for ka = 1.0, d = a, and rε  = ∞ , 4,
2.3. 

Fig. 3. Normalized bistatic cross-sections in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 1.0, d = a, and rε  = ∞ , 4, 2.3. 

Fig. 5. Normalized bistatic cross-sections in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 1.0, d = 0.5a, and rε  = ∞ , 4, 2.3. 
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Often the scattered radiation is most conveniently 
measured by the bistatic radar cross-section.  The 
bistatic radar cross-section is defined as 
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with the unit vector τ̂  denoting the direction of 
polarization of the receiver at the observation point. 
When τ̂  has the same direction as S

TotalE , the normalized 
bistatic radar cross-section is given by 
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The normalized bistatic radar cross-sections in the E 
and H planes are obtained by substituting 2πφ =  and 

0=φ , respectively, into Eq. (83). For the back-
scattering cross-section, when απθ −=  and πφ = , the 
corresponding normalized back-scattering cross section 
is 
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 (84) 

The normalized bistatic cross-section patterns in the E 
and H planes are plotted for the partially buried 
dielectric sphere versus the scattering angle θ , taken 
between 0º and 90º, and corresponding to end fire 
incidence ( o0=α ), as well as for different burial 

Fig. 6. Normalized bistatic cross-sections in the H
plane of a partially buried dielectric sphere vs. the
scattering angle θ  for ka = 1.0, d = 0.5a, and rε  = ∞ ,
4, 2.3. 
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distances. Figures 3 and 4 show the normalized 
scattering cross-sections for a sphere of electrical radius 
ka = 1.0, burial distance d = a, and relative dielectric 
constant rε  = 4 and rε  = 2.3. Furthermore, Figures 3 
and 4 compare the numerical results of the conducting 
sphere residing on the ground plane that is represented 
by a continuous-line curve with the dielectric spheres 
with relative permittivity 4=rε  and 3.2=rε  represented 
by the broken-line curve and dotted-line curves, 
respectively. The three curves have almost the same 
behavior except for a resonance that occurs at θ  = 79o 
and 84o for the non-conducting spheres in the E plane. 
It can also be seen that the magnitude of the 
backscattering cross section for the dielectric cases are 
lower in average for both planes. Figures 5 and 6 show 
the normalized bistatic cross-sections of the same 
electrical radius and relative dielectric constants but 
with a burial distance of d = 0.5a. It appears that the 
dielectric spheres now show much significant resonance 
behavior at °= 78θ  and 82o. Figures 7 to 10 show the 
normalized bistatic cross-sections for a partially buried 
sphere of electrical radius ka = 2.0 with the same 
relative dielectric constants but with a burial distance of 

d = 0.7a, and d = 0.5a, respectively. It can be seen that 
the behavior of the curves has become wavier as 
electrical radius of the sphere is increased. 
 
4. THE NEURAL NETWORK APPROACH 
Radial basis functions (RBF) emerged as a variant of 
artificial neural network in the late 1980’s. However, 
their roots are entrenched in much older pattern 
recognition techniques as, for example, potential 
functions, clustering, functional approximation, spline 
interpolation and mixture models. Their excellent 
approximation capabilities have been studied by Park 
and Sandbeg [11], and Poggio and Girosi [12]. Due to 
their nonlinear approximation properties, RBF networks 
are able to model complex mappings, which perception 
neural networks can only model by means of multiple 
intermediary layers. 

In order to estimate the relative permittivity rε , 
the electrical radius and the burial distance of the 
sphere, λa  and λd  of the sphere, respectively, we 
employ the radial basis function network shown 
schematically in Fig. 2. The network consists of three 

Fig. 8. Normalized bistatic cross-section in the H plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 2.0, d = 0.75a, and rε  = ∞ , 4, 2.3. 

Fig. 7. Normalized bistatic cross-section in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 2.0, d = 0.75a, and rε  = ∞ , 4, 2.3. 

Fig. 10. Normalized bistatic cross-section in the H
plane of a partially buried dielectric sphere vs. the
scattering angle θ  for ka = 2.0, d = 0.5a, and rε  = ∞ ,
4, 2.3. 

Fig. 9. Normalized bistatic cross-section in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 2.0, d = 0.5a, and rε  = ∞ , 4, 2.3. 
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layers; an input layer that consists of four sets of inputs, 
a hidden layer using Gaussian nonlinearity functions, 
and an output layer with three outputs. Each hidden unit 
represents a single radial basis function, with associated 
center position and width. Such hidden units are 
sometimes referred to as centroids or kernels. Each 
output unit performs a weighted summation of the 
hidden units, using the ωjs as weights. The four sets of 
inputs in the input layer are the real and imaginary 
values of the computed scattered field complex 
coefficients for the TE ( S

EA & S
EB ) and TM ( S

MA & S
MB ) 

polarization cases, while the outputs are the electrical 
radius and burial distance of the sphere as well as its 
relative permittivity. This network is designed to 
perform nonlinear mapping from the input layer to the 
hidden layer, which is then followed by linear mapping 
from the hidden layer to the output layer. For this, we 
choose a function )x(ky  with the following form: 

( )∑
=

−=
M

j
jkjk xy

1
)x( µφω  (85) 

variable x represents the input vector while ( )...φ  are 
nonlinear functions known as the radial basis functions 
that consist of Gaussian function 22 /)( σφ r

c er −=  and 
Euclidean norm ||...||. The known data points, jµ , are 
taken to be the centers of the radial basis functions. The 
design of the network includes the selection of the 
width parameter jσ  and the weighting functions jω  
such that it minimizes the difference between the 
network output and the desired output. The training of 
the network will be discussed in the next section 
followed by the demonstration of the training results in 
Section 6. 
 
5. NETWORK TRAINING 
In order to use a Radial Basis Function Network, we 
need to specify the hidden unit activation function, the 
number of processing units, a criterion for modeling a 
given task and a training algorithm for finding the 
parameters of the network. Finding the three sets of 
RBF network parameters (the centers, the widths, and 
the weights) is called network training. There are two 
categories of training algorithms: supervised and 
unsupervised. RBF networks are used mainly in 
supervised applications. In a supervised application, we 
are provided with an asset of data samples called a 
training set for which the corresponding network 
outputs are known. In this case, the network parameters 
are found such that they minimize a cost function: 

{ }∑
=

−
M

k

n
k

n
k xyt

1

2)(min  (86) 

where M is the total number of vectors from the 
training set, n

kt  is the target value of the output vector 
and )( n

k xy represents the output vector associated with a 

data sample nx  from the training set. If Gaussian basis 
functions are used to minimize this cost function, one 
can perform a stochastic gradient descent and readily 
obtain the update equations: 

)())((1
n

j
n

k
n
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where 321 ,, ηηη  are the learning rates. 
In unsupervised training, the output 

assignment is not available for the given training set. 
One of the approaches is assigning a basis function for 
each of the data samples. This solution proved to be 
expensive in terms of memory requirement and in the 
number of parameters. Other approaches choose 
randomly, or assume known, the hidden unit weights 
and calculate the output weights jkω  by solving a 
system of equations whose solution is given in the 
training set. The matrix inversion required in this 
approach is computationally expensive and could cause 
numerical problems in certain situations (when the 
matrix is singular). 

For RBF networks, finding the right number of 
free parameters is crucial. This involves trying to 
determine the optimal number of hidden units. Hence, 
the analysis of the effect of adding a new hidden unit or 
removing an existing unit is an important one. 
Backward elimination and forward selection are two 
ways of pruning and growing RBF networks. In 
backward elimination, a network is constructed with all 
the basic functions in the candidate pool. At each step, 
the unit that least increases the error is eliminated from 
the network. Again, this procedure is continued until 
some model selection criterion stops decreasing. At this 
point, the complexity of the model is assumed sufficient 
to represent the underlying function complexity. 

In forward selection, one is given an initial 
network configuration and a candidate pool of basis 
functions; typically Gaussians centered at the training 
data points. At each step, the hidden basis function unit, 
which decreases the error most, such as sum-squared-
error, is removed from the candidate pool and added to 
the network. Though forward selection is a nonlinear 
optimization technique, it has the advantages of not 
having to fix the number of hidden units in advance, 
tractable model selection criteria, and computational 
efficiency. The projection matrix for the case where an 
extra hidden unit has been added is given by 

Jm
T

J

m
T

JJm
mm fPf

PffP
PP −=+1

 (90) 

where, 
Jf  is the column of the design matrix,Φ , 

corresponding to the most recently recruited hidden 
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unit. The reduction in the sum-squared-error due to the 
addition of the unit is given by 

.)ˆ(ˆˆ
2

1
Jm

T
J

Jm
mm fPf

fPySS =− +
 (91) 

The unit, which reduces the sum-squared-error most, is 
the chosen candidate. Geometrically, this will be the 
unit whose corresponding basis vector is most closely 
aligned to the perpendicular from ŷ  to the current m-
dimensional space. Though the sum-squared-error 
reduces as more hidden units are added, the model 
selection criterion will reach a minimum before it starts 
increasing again. This is the point where the process is 
stopped. 

Forward selection is a relatively fast algorithm 
but it can be speeded up even further using a technique 
called orthogonal least squares [9]. This is a Gram-
Schmidt orthogonalization process [15], which ensures 
that each new column added to the design matrix of the 
growing subset is orthogonal to all previous columns. 
This simplifies the equation for the change in sum-
squared-error and results in a more efficient algorithm. 

Any matrix can be factored into the product of 
a matrix with orthogonal columns and a matrix which is 
upper triangular. In particular, the design matrix, 

mp
mH ×ℜ∈ , can be factored into 

mmm UHH ~=  (92) 
where [ ] mp

mm hhhH ×ℜ∈=
~~~~

21 L  has orthogonal columns 

( )jihh j
T
i ≠= ,0~~

1
 and mm

mU ×ℜ∈  is upper triangular. 
When considering whether to add the basis function 
corresponding to J-th column, Jf~ of the full design 
matrix, the projection of Jf~ in the space already spanned 
by the m columns of the current design matrix is 
irrelevant. Only its projection perpendicular to this 
space, namely 

∑
=

−=
m

j
j

j
T
j

j
T

J
JJ h

hh
hf

ff
1

~
~~
~

~  (93) 

can contribute to a further reduction in the training 
error, and this reduction is 

.~~
)~ˆ(ˆˆ

2

1
J

T
J

J
T

mm ff
fySS =− +

 (94) 

Computation of this change in sum-squared-error is 
lower compared to the unnormalized version given in 
equation (91). This is the basis of the increased 
efficiency of orthogonal least squares. 

A small overhead is necessary to maintain the 
columns of the full design matrix orthogonal to the 
space spanned by the columns of the growing design 
matrix and to update the upper triangular matrix. After 

Jf~  is selected the new orthogonalized full design matrix 
is 

J
T

J

m
T

JJ
mm ff

FffFF ~~
~~~~~

1 −=+
 (95) 

and the upper triangular matrix is updated to 
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111
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m O
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Initially U1 = 1 and FF =0
~  . The orthogonalized optimal 

weight vector 
( ) yHHHw T

mm
T
mm ˆ~~~ 1−

=  (97) 
and the unorthoganalized optimal weight equation are 
then related by 

mmm wUw ~ˆ 1−= . (98) 
 

6. NETWORK SIMULATION RESULTS 
The training and testing of the proposed Radial Basis 
Function Network was carried out using MATLAB 
script. After the Radial Basis Function Network is 
trained with a set of chosen learning data, a new set of 
test data that is different from the learning data is 
generated to evaluate the trained network. The learning 
data set requires 50 distinct sample values for each of 
the three outputs. Therefore, 125,000 samples are 
required as the learning data set. The range of the 
electrical radius a, of the training sphere is from 0.01λ 
to 5λ. The range of the  
burial distance is from 0 to a (half buried in the 
conducting ground to residing on the surface of the 
conducting ground) while the range of the relative 
permittivity rε  is from 1 to 9. Each of the sample sets 
holds 4 set of inputs and 3 target outputs. The 4 set of 
inputs are:  
x1j : Real value of scattered field coefficients for TE 
polarization case:  

)),(( nmAreal S
E

 and )),(( nmBreal S
E

 
x2j : Real value of scattered field coefficients for TM 
polarization case:  

)),(( nmAreal S
M

 
and )),(( nmBreal S

M
 

x3j : Imaginary value of scattered field coefficients for 
TE polarization case:  

)),(( nmAimag S
E

and )),(( nmBimag S
E

 
x4j : Imaginary value of scattered field coefficients for 
TM polarization case:  

)),(( nmAimag S
M

and )),(( nmBimag S
M

 where j = 1,. . ., d       and     d = 4n2 + 2n = 42.  
 
The higher the order of n, the higher the accuracy of the 
outputs and the large data set of the mapping function 
can become very costly to evaluate. Nevertheless, the 
coefficients of order up to the 3rd order (n=3) were 
sufficient for training of a sphere with electric radius 
0.01λ to 5λ. Similarly, the use of only one set of the 
scattered field coefficients ( )),(( nmAreal S

E ) will result in 
poor performance.  

The test results are plotted in Figs. 11 to 18.  
Figures 11 and 12 show the RBF network estimated 
burial distance of the sphere with electric radius ka = 1 
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Average absolute error = 0.0144 
Average relative percentage error = 3.73% 

 

 

 

 

 
 

Average absolute error = 0.0067 
% error relative to sphere radius = 0.67% 

 

 
 

 

 

 

 
Average absolute error = 0.0159 
Average relative percentage error = 4.95% 

 
 
 
 
 
 
 
 
 
 
 

 
Average absolute error = 0.0043 
% error relative to sphere radius = 0.43%

Fig. 12. RBF network estimated burial distance (ka=1.0
and

rε =4.0 ( m =2.0)). 

Fig. 11. RBF network estimated burial distance (ka=1.0
and 3.2=rε  ( m =1.51)). 

Fig. 14. RBF network estimated electric radius (d=0.5a
andε =4.0 ( m =2.0)).

Fig. 13. RBF network estimated electric radius (d=0.5a
and 3.2=rε  ( m =1.51)). 

and relative permittivity, 3.2=rε , and 4=rε , 
respectively. When burial distance d = 0, the sphere is 
half buried in the conducting ground and when burial 
distance d = a, the sphere is touching and residing on 
the conducting ground.  From the results plotted in Fig. 
11 and Fig. 12, the estimated burial distance is found to  
be very accurate as the percentage error of the 
estimated burial distance relative to the sphere radius is 
less than 1%. Figures 13 and 14 show the RBF network 
estimated electric radius of the sphere with burial 
distance d = 0.5a and relative permittivity 3.2=rε , and 

4=rε , respectively. The network gives poor prediction 
results when the electrical radius ka of the sphere is 
below 1 and close to zero, where the sphere is 
disappearing. While Figures 15 to 18 show the RBF 
network estimated refraction index m of the sphere with 
electrical radius ka = 1 and burial distance d = 0, d = 

0.25a, d = 0.5a, and d = a, respectively. As expected, 
the estimated sphere parameters are very close to the 
target values.  
 
7. CONCLUSION 
The first part of this paper describes an exact solution to 
the problem of scattering by a partially truncated 
dielectric sphere resting on a ground plane. The 
different bistatic cross-section results were obtained for 
various electrical radii, burial depths or the truncated 
depths and relative permittivity of the sphere. Since the 
medium intrinsic impedance of the sphere, η, is a 
function of the relative dielectric constant of the 
material of the sphere rε . It is obvious that the present 
solution should tend to that of a conducting sphere 
partially buried in a ground plane as ∞→rε .  
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Fig. 15. RBF network estimated refraction index m (ka=1
and d=0). 

 

 
 

 

 

 
 
 
Average absolute error = 0.0038 
Average relative percentage error = 0.18% 

Fig. 16. RBF network estimated refraction index m (ka=1
and d=0.25a). 

 

 
 

 

 

 

 
Average absolute error = 0.0038 
Average relative percentage error = 0.18%

Fig. 18. RBF network estimated refraction index m (ka=1
and d=a).

 

 
 

 

 

 

 
Average absolute error = 0.0037 
Average relative percentage error = 0.18%

Fig. 17. RBF network estimated refraction index m (ka=1
and d=0.5a).

 
 
 
 
 
 
 
 
 
 

 
Average absolute error = 0.0036 
Average relative percentage error = 0.16% 

 

 
Furthermore, the solution should tend to well known 
solutions for the special cases when 0→d [13,14].  

Comparing to analytical and numerical 
techniques, the proposed method of using neural 
networks in inverse scattering is simple, straightforward 
and timesaving, since it does not require matrix 
inversion, recurrence relations or graphical inversion 
methods to retrieve the desired parameters of the 
sphere. From the computer simulation results, the 
proposed method has proven effective in predicting the 
non-linear relation between the scattered field 
coefficient inputs and the sphere parameter outputs. The 
network has successfully retrieved the burial distance, 
radius, and relative permittivity of the dielectric sphere 
partially buried in a conducting ground given the 
scattering coefficients of the scatterer. Above and 
beyond, the performance of the proposed RBF network 
is proportional to the number of learning samples.  

 

T
herefore, by increasing the number of learning samples, 
a better prediction of the network will be achieved.  
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Xu’s vector translation addition theorem coefficients: 
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Wigner 3-j symbol. The integer p in the summations 
takes the values n+v, n+v-2, …, |n-v|. 
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Abstract — This paper introduces recent developments 
in efficient sensitivity analysis with numerical 
electromagnetic solvers in the frequency domain. We 
start by reviewing our original discrete approaches for 
sensitivity analysis. We then propose and investigate, 
for the first time, two new discrete approaches which 
enhance the accuracy of the estimated derivatives. All 
four introduced approaches are based on the adjoint-
variable method and target solvers on structured 
grids. Discussion and comparison of the accuracy and 
convergence for the different approaches are also 
given. Examples include waveguide and printed 
structures. 

I. INTRODUCTION 

The adjoint-variable sensitivity analysis of 3-D 
distributed systems has been studied in structural 
engineering [1], and its use with the finite-element method 
(FEM) in structural shape design with gradient-based 
optimizers is a known efficient design approach [2]. 
Applications with the FEM in electromagnetic problems 
span problems from eddy currents to high-frequency 
devices, e.g. [3],[4]. 

In the implementation of this methodology with other 
numerical methods, some unsolved problems have been 
identified. First, time-harmonic electromagnetic (EM) 
problems lead to complex analysis with complex response 
functions, while the theory found in [1]-[4], and 
elsewhere, does not discuss the complex case. Adjoint-
network approaches [5] deal with complex problems but 
their relation to full-wave analysis is not so 
straightforward. Second, the classical adjoint-variable 
method assumes that the system matrices are differentiable 
with respect to the design parameters, and their 
derivatives are available. In EM analysis, however, the 
system matrix derivatives—if existing at all—require 
cumbersome analytical pre-processing and major software 
changes in the existing full-wave solvers. Besides, 
methods using structured grids – such as transmission-line 
matrix (TLM) methods, or finite-difference (FD) methods 
– produce system matrices, which are not analytical 
functions of the coordinates of the mesh nodes. Therefore, 
strictly speaking, they are not differentiable with respect 

to the shape design parameters. 
Here we present a framework of methodologies for EM-

based sensitivity analysis where analytical derivatives of 
the system matrices are not needed. The analytical pre-
processing is avoided, and the implementation is made 
simple and versatile. Our approaches—being adjoint in 
nature—are efficient, as they compute the system response 
and all its derivatives with at most two system analyses, 
regardless of the number of the design parameters. 

For the first time, we derive a sensitivity formula in 
which perturbations relate to the adjoint problem instead 
of the original problem. This formula has the potential of 
better accuracy especially when highly nonlinear 
responses are of interest. We also develop a central 
adjoint formula which improves the accuracy of the 
estimated sensitivities even further. 

Discussion and comparisons between the presented 
discrete adjoint techniques are given through a variety of 
examples including waveguides and printed structures. In 
addition, conclusions with regard to the accuracy of the 
presented techniques are made through robust 
convergence analysis. 

We start in Section II by giving a brief review of the 
mathematical concepts used in sensitivity analysis. Still 
there, we present our adjoint-based approaches to 
sensitivity analysis with structured-grid solvers. Practical 
examples and comparisons are given in Section III. 
Finally, conclusions are made in Section IV. 

II. MATHEMATICAL FORMULATION 

A. Definitions and Notation 
The analysis stage of a design assembles and solves 

equations, which describe the system. For linear stationary 
systems, 

 ( ) ( )=A p x b p , (1) 

where M M×∈A ^  is the system matrix, 1M×∈x ^  is the 
state-variable vector, and 1M×∈b ^  is the excitation. In 
the case of time-harmonic processes, (1) is complex. We 
denote with p a vector of N shape and/or material design 
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parameters of the system, which may vary, e.g., to obtain 
better system performance, or due to technological or 
environmental factors. We assume that the elements of the 
design-parameter vector are real-valued. These variations 
in general affect the system matrix A, the excitation vector 
b, and, as a result, the solution as well, i.e., x(p). The 
system output is usually described by a vector of complex-
valued responses ( )( )R x p , e.g., the four S-parameters of 
a two-port microwave network. Its overall performance is 
often formulated in terms of a single scalar function, 
( )( )f R p , the response function. 
The purpose of sensitivity analysis is to describe the 

rate of change of the response function with each design 
parameter: 

  , subject to  f∇ =p Ax b , (2) 

where the gradient is defined as a row operator [1]: 

 
1 2

      
N

f f ff
p p p

⎡ ⎤∂ ∂ ∂
∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

p " . 

This information is valuable in optimization, modeling, 
tolerance and yield analyses. 

B. Second-order Sensitivity Expression I (AVM-I) 

For a perturbation ip∆  in the ith parameter, (1) 
becomes 

 ( )( )i i i∆ + ∆ = + ∆A+ A x x b b . (3) 

Here, i∆  denotes a variation caused by the perturbation 
ip∆ . Simplifying and rearranging (3), we obtain 

 i i i i i∆ + ∆ ⋅ + ∆ ⋅∆ = ∆A x A x A x b . (4) 

A possible expression for the variation of the state 
variables is 

 ( )1
i i i i

−∆ = ∆ −∆ ⋅ + ∆⎡ ⎤⎣ ⎦x A b A x x  (5) 

assuming that 1−A  exists. 
This variation is needed to find the derivative of the 

response function / idf dp , where f can be a complex 
quantity, R If f jf= + . We assume that f is an analytic 
function of the state variables R Ij= +x x x . In expanded 
form 
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1 1
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dx dx dxdf f f f f
dp p x dp x dp x dp

dx dx dxf f f fj j
x dp p x dp x dp

dx dxf f
x dp x dp

⎛∂ ∂ ∂ ∂
= + + + +⎜∂ ∂ ∂ ∂⎝

⎞ ⎛∂ ∂ ∂ ∂
+ + +⎟ ⎜∂ ∂ ∂ ∂⎠ ⎝

⎞∂ ∂
+ + ⎟∂ ∂ ⎠

"

"

 (6) 

Due to the analyticity of f, the Cauchy-Riemann relations 

 ,   ,   1, ,
R I I R

R I R I

m m m m

f f f f m M
x x x x
∂ ∂ ∂ ∂

= = − =
∂ ∂ ∂ ∂

… , (7) 

hold. Using (7), we write (6) as 

 
i i i

df f df
dp p dp

∂
= +∇ ⋅
∂

x
x , (8) 

where 

 R I R RR R R If f j f f j f∇ = ∇ − ∇ = ∇ + ∇x x x x x , etc., (9) 

and 

 R I

i i i

d d dj
dp dp dp

= +
x x x . (10) 

We approximate (8) as 

 i

i i i

df f f
dp p p

∂ ∆
≈ +∇ ⋅
∂ ∆

x
x  (11) 

and substitute (5). The result is the complex sensitivity 
expression 

 ( )
-

ˆ

1, ,

i iH
i

i i i iAVM I

df f
dp p p p

i N

⎛ ⎞ ⎡ ⎤∂ ∆ ∆
≈ + ⋅ − + ∆⎜ ⎟ ⎢ ⎥∂ ∆ ∆⎝ ⎠ ⎣ ⎦

= …

b Ax x x
, (12) 

where x̂  is the solution of the adjoint system, 

 ˆ [ ]H Hf= ∇xA x . (13) 

Here, AH is the Hermitian of the system matrix A in (1), 
obtained by transposition and conjugation of A. AH is also 
called adjoint to A in analogy with adjoint operators in 
functional space analysis. As per (9), the adjoint 
excitation can be defined as 

 
1 1

[ ] .
R I R I

T
R R R RH

M M

f f f ff j j
x x x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
∇ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

"x (14) 

If f is a real function [8], then 
 

 
( )ˆ       Re ,   1, ,

i i

i iH
i

i i

df f
dp p

i N
p p

∂
≈ +
∂

⎧ ⎫⎡ ⎤∆ ∆⎪ ⎪⋅ − + ∆ =⎨ ⎬⎢ ⎥∆ ∆⎪ ⎪⎣ ⎦⎩ ⎭
…b Ax x x

 (15) 

where x̂  is the solution of the adjoint problem (13)-(14) 
with Rf f= . Thus, the computational effort involved in 
the sensitivity calculations of a complex analytic response 
function is equivalent to that of a real-valued response 
function. Note that (12) is a generalization of the 
sensitivity expression developed in [6], [7] to the 
complex-variable case. 

If f is complex but not analytic, then its real and 
imaginary parts, fR and fI, have to be treated as two 
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separate response functions, and two separate adjoint 
systems of the form (13)-(14) must be solved. Consider 
for example, a complex response function of the form 

1in kf Z x= = , where inZ  is the input impedance at a 
point excited with a 1-volt and has a corresponding 
current kx . This response is not differentiable at 0kx = . 
If the solution is at or very close to this point, we treat 

{ }ReR in inf R Z= =  and { }ImI in inf X Z= =  as two 
separate real-valued response functions. As a 
consequence, two adjoint systems must be solved. 

Below we summarize the features of the sensitivity 
formulas (12), (15): 
• The adjoint vector x̂  requires one additional system 

analysis (13) (unless LU decomposition is used to solve 
(1), such that the analysis is reduced to forward-
backward substitutions [8]). The adjoint problem (13) is 
perturbation independent. 

• The perturbed original system solutions, i+ ∆x x , 
1, ...,i N=    are perturbation dependent, and thus require 

N additional system analyses. This drawback is 
overcome with suitable approximations as explained 
later. 

• No assumptions are made for the magnitudes of the 
system matrix variations i∆ A , 1, ,i N= … ; the ratio 

/i ip∆ ∆A  does not need to represent the respective 
system matrix derivative with high fidelity, and, in 
general, it should not be considered its finite-difference 
approximation. 

• If, however, i∆ A , 1, ,i N= … , are sufficiently small, 
the second-order terms i i∆ ⋅∆A x  in (4) can be 
neglected, thus, leading to the familiar first-order exact 
sensitivity expression [8]: 

 ˆ H

i i i i

df f d d
dp p dp dp

⎛ ⎞∂
= + ⋅ −⎜ ⎟∂ ⎝ ⎠

b Ax x , 1, ,i N= … . (16) 

The first-order sensitivity expression (16) is applicable 
with numerical solvers utilizing unstructured grids 
because such grids allow for a continuous spectrum of 
values of the design  shape  parameters. This  makes the 
arising system matrices differentiable with respect to the 
shape parameters. However, (16) is not suitable for 
structured-grid algorithms where allowable shape 
perturbations include only discrete on-grid parameter 
values. In this case, the second-order sensitivity 
expression (12) yields better accuracy. 
 Our technique can be summarized in the following 
steps: 
1. Parameterization: specify the set of links L  whose 

corresponding A-coefficients are affected by the 
perturbations ,  1,  ...,  ip i N∆ = . 

2. Original system analysis: (a) solve the original 
system (1); (b) store the incident voltages for all the 
links in the set L ; (c) store the incident voltages in 
the observation domain to be used in the computation 
of the derivatives for the adjoint excitation (14). 

 W L L− ∆

W W+ ∆ LW
L

 W
L L+ ∆

 W W−∆ L

structured grid cell

(a) (b)

(c)  
Fig. 1. Discrete on-grid perturbations of the boundaries: (a) the 
nominal structure; (b) a forward perturbation in W and L; (c) a 
backward perturbation in W and L. 
 
 
3. Adjoint analysis: solve the adjoint problem (13) and 

store x  in the locations that correspond to the set L  
and the nonzero elements of ,  1,  ..., i i N∆ =b . 

4. Approximation of the N perturbed problems: find 
i+ ∆x x  by performing a mapping between the 

solutions of the original problem and the perturbed 
problems for the elements of x  that correspond to 
L . See [7] for more details. 

5. Sensitivities estimation: evaluate the sensitivities 
using (12) for all N parameters. 

C. Second-order Sensitivity Expression II (AVM-II) 

An alternative to (5) is [9] 

 ( )1( )i i i i
−∆ = ∆ ∆ − ∆ ⋅x A+ A b A x . (17) 

Repeating all other steps as above , another possible 
complex sensitivity expression emerges, 

-

ˆ ,  1, , .i iH
i

i i i iAVM II

df f i N
dp p p p

⎛ ⎞ ⎛ ⎞∂ ∆ ∆
≈ + ⋅ − =⎜ ⎟ ⎜ ⎟∂ ∆ ∆⎝ ⎠ ⎝ ⎠

…b Ax x (18) 

This time, the unperturbed original problem solution x is 
used, but the adjoint solution vector ˆix  is perturbation 
dependent since the complex adjoint problem appears as 

 ˆ( ) [ ]H H
i i f+ ∆ = ∇xA A x , 1, ,i N= … . (19) 

Note that neglecting the second-order term in (4) or (17), 
in this case, too, reduces (18) to the first-order sensitivity 
formula (16). 

This technique can be summarized with the same steps 
as those of the AVM-II technique. The only difference is 
that steps 2 (original system analysis) and 3 (adjoint 
system analysis) are swapped, i.e., perturbations take 
place in the adjoint system and not the original system. 
See [9] for more details. 
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Fig. 2. Insertion loss 21| |S  of the filter. 
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The two second-order sensitivity expressions (12) 
and(18), although theoretically equivalent, exhibit some 
differences when implemented in practical algorithms. 
This is mainly due to the self-dependence of the variations 
in the state variable term in (5), i.e., i∆ x  appears in both 
sides of (5) and is hence computed from its own 
approximation. As a result, we expect the computational 
error in this term to increase especially with highly 
nonlinear responses. Notice that, this is not the case in 
(17) [8]. 

In general, neither (3)-(12) nor (18)-(19) are actually 
solved for a perturbation in each of the N parameters. 
Instead, the values of i∆ x  are approximated using a 
simple mapping [6], [7], [9]. The concept is based on the 
perturbation theory [10], and it can be implemented for 
conducting and dielectric parameters. 
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Fig. 5. Derivative of f with respect to W vs. frequency. 

 
 
 
D. Central Approaches with Sensitivity Expressions 

As mentioned earlier, with structured grid solvers, 
allowable perturbations are limited to multiples of the grid 
size in the respective direction. For example, consider the 
structure in Fig. 1. The dark rectangles may be either 
conducting or dielectric objects. The nominal design of 
this structure is shown in Fig. 1 (a) where [   ]TL W=p  is 
the vector of design parameters. AVM-I (12) can be used 
when perturbations in the forward direction [see Fig. 1(b)] 
take place in the original problem. It can also be used 
when perturbations are in the backward direction [see Fig. 
1(c)].  The sensitivity results obtained from the forward 
and backward perturbations are somewhat different 
especially when the response R is a highly nonlinear 
function of p . The same forward, backward and central 
approaches can be applied with the AVM-II (18). 
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Fig. 6. A Comparison between response level sensitivities and 
adjoint-based sensitivities. 
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Fig. 7. Reflection and transmission coefficients of the printed 
filter. 
 
 

Major improvement in the accuracy can be achieved 
using the central adjoint approach [11]. The central 
formula (CAVM-I) combines the solutions of the forward 
and backward sensitivity expressions. Its complex form is 

-

ˆ
2

,   1,..., .
2

i iH

i i iCAVM I

i i i i

i

df f
dp p p

i N
p

+ −

+ + − −

⎧⎛ ⎞ ∂ ∆ + ∆⎪+ ⋅ −⎨⎜ ⎟ ∂ ∆⎪⎝ ⎠ ⎩
⎫∆ + ∆ ⎪ =⎬∆ ⎪⎭

� b bx

A x A x
 (20) 

In (20), the plus sign (+) refers to a perturbation in the 
forward direction and the minus sign (− ) refers to that in 
the backward direction. 

Since we have observed that the computational error is, 
in fact, reduced with AVM-II (18), we consider here the 
same forward/backward procedure and derive a central 
formula for AVM-II (CAVM-II) as well: 
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Fig. 8. Derivative of f with respect to W for the printed filter. 
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Fig. 9. Derivative of f with respect to L for the printed filter. 
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 (21) 

The improvement in the accuracy due to the central 
formulas (20) and (21) is, in some cases, very significant 
over the sensitivity results produced by formulas (12) and 
(18). Note however, that the computational load is the 
same for all four approaches. 

III. EXAMPLES AND COMPARISONS 

In this section, we show sensitivity results computed 
with our adjoint techniques through a variety of different 
structures. The structures are chosen so that: (i) different 
types   of   perturbations   are   possible,   i.e.,   volumetric 
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Fig. 10. The wave impedance of the waveguide vs. frequency at 

5a =  cm. 
 
 
 
perturbations, as in waveguide structures, as well as 
metallic  surface  perturbations  in printed structures; and 
(ii) the selected response is a highly nonlinear function of 
its design parameters. 

The adjoint results are compared with those computed 
using classical finite differences at the level of the 
response or with sensitivity results calculated analytically 
whenever available. 

The   structures   are   simulated using   an in - house 
simulator based on the frequency-domain transmission 
line method (FDTLM) [12]. A uniform discretization grid 
is used, i.e., x y z∆ = ∆ = ∆ = δ  and ip∆ = δ . 

A. Results with AVM-I 

Using AVM-I, we compute response sensitivities for 
the double-resonator filter shown in the inset of Fig. 2 for 
a range of frequencies. The filter is analyzed for its 
dominant mode and thus the problem reduces to two 
dimensions. The computational size of the problem is 
30 1 120 × × δ . The filter is excited with a uniform half 
sine-wave at its input port. The input and output ports are 
matched to absorb the reflected waves. 

The response function is defined as 21| |f S= , where 
21S  is the transmission coefficient for the filter. The 

response is shown in Fig. 2. The vector of design 
parameters is 1 2[     ]TL L W=p , where 2L  and 1L  are the 
lengths of the middle and side septa, respectively. W  is 
the separation between the septa. 
For comparison, the sensitivities are also computed using 
forward finite differences (FFD) directly at the level of the 
response [Figs. 3, 4, and 5]. 
 
 
 

TABLE 1 
COMPARISON BETWEEN THE DERIVATIVES FROM THE 

CONVERGENCE ANALYSIS. 
 

δ  0→  80λ  20λ  10λ  
• analytical -1.244 
• AVM-I -1.2471 -1.2481 -1.2530 -1.2550 
• CAVM-I -1.2470 -1.2480 -1.2510 -1.2520 
• AVM-II -1.2459 -1.2471 -1.2500 -1.2513 
• CAVM-II -1.2455 -1.2460 -1.2481 -1.2501 
 
 

B. Results with AVM-II and Comparisons with AVM-I 

1) Double-resonator Filter 

For the same double-resonator filter shown in Fig. 2, 
we compute the sensitivity results for 21| |f S=  with 
respect to W using AVM-II. The results are compared 
with those produced with AVM-I from Section III.A as 
shown in Fig. 6. For better comparison of the accuracies 
of AVM I and II, we compute a reference sensitivity using 
the second-order central finite differences (CFD) at the 
level of the response. Notice that this is a highly nonlinear 
response function. Even with a relatively fine grid, the 
FFD and CFD sensitivities disagree. Results computed 
with AVM-II show acceptable accuracy compared to the 
reference CFD  and  a noticeable  improvement over those 
computed using AVM-I. 

2) Microstrip Low-pass Filter 

 With this example, the perturbations are of infinitesimal 
surface type. The relative permittivity of the substrate is 

2.2rε = . The total size of the simulated problem is 
43 37 7 × × δ . We excite the structure with a voltage 
source applied uniformly underneath the strip-line at port 
1 in the y-direction. 

We compute the sensitivities for the printed low-pass 
filter shown in the inset of Fig. 7. The response function is 
the squared modulus of the transmission coefficient of the 
filter, i.e., 221| |f S=  [see Fig. 7]. The vector of design 
parameters is [   ]TL W=p , where L  is the length of the 
resonating element and W  is its width.  

The sensitivities are computed with respect to changes 
in the vector of design parameters [   ]TL W=p  using both 
AVM I and II. The computed results are compared with 
first and second-order finite difference estimates at the 
level of the response as shown in Figs. 8 and 9. 
 As seen from this example, the difference between the 
adjoint-based sensitivities is small. This is also true for the 
results from the previous example when the sensitivities 
are computed with respect to changes in 1L  and 2L  [see 
Fig. 2]. It is thus difficult to conclude with certainty which 
approach provides better accuracy. Therefore, more 
detailed comparison based on convergence analysis is 
needed. 
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C. Convergence Analysis 

In this section, we test the accuracy of our adjoint 
approaches presented in Sections II.B to II.D through a 
convergence test, i.e., we compute the sensitivity of a 
response function using each of the four approaches at a 
given design, and compare their accuracy as the grid size 
δ  becomes smaller. For this test to be accurate, we 
choose a response function that is analytically available, 
and therefore, its derivative can be calculated analytically. 
We consider the wave impedance ( wgf Z= ) of a hollow 
rectangular waveguide [see the inset of Fig. 10]. The 
computed adjoint derivatives are compared to the 
analytical derivative. 
 The response is calculated analytically using the well-
known formula for wgZ  as a function of the waveguide 
cross-section dimensions and the frequency [13]. The 
response function is also computed using our FDTLM 
simulator as shown in Fig. 10. 

The convergence analysis is executed at a given design 
point in the highly nonlinear region of the response 
function [see Fig. 10]. For example, consider the design 
where the waveguide width is 5a =  cm and the frequency 
is 3.05 GHz. For this design, the four adjoint sensitivities 
are computed for different uniform discretization grid of 
the TLM simulator, i.e., at 10δ = λ  to 80δ = λ , where 
λ  is the wavelength. The derivatives for a finer grid at 

0δ →  are estimated using Matlab’s [14] extrapolating 
functions. The results are given in Table 1. 
 The results show that all four approaches tend to 
converge to the analytical value of the derivative as the 
grid size δ  becomes finer. This is due to the dependence 
of the field approximation in the perturbed problems [7] 
on the grid size. It can also be observed that the results 
produced with CAVM-II give the best outcome for any 
grid size compared to the other results. The CAVM-II 
results also show a smoother convergence than the other 
approaches. Our interpretation to this outcome is: (i) the 
numerical error produced by the sensitivity expression II 
(18) is less than that of sensitivity expression I (12); and 
(ii) the CAVM, in general, preserves the advantages of the 
second-order term i i∆ ⋅∆A x  since it takes into account 
both forward and backward perturbations in the design 
parameter. With the CAVM-II, we merge the above 
advantages and obtain the best results. 

It is also observed that the difference between the 
AVM-I and CAVM-I derivatives at finer grid sizes is 
small. However, we would like to point out that larger 
differences are expected with responses that are functions 
of shape design parameters in which the electromagnetic 
field is singular at the locations of the perturbed 
boundaries [11]. There are no field singularities in our 
waveguide example as the field smoothly decays to zero at 
the edge of the electric conducting walls of the 
waveguide. Therefore, the field variations between the 
approximated perturbed solution and that of the original 

unperturbed problem are not very different. Hence, the 
difference in the corresponding derivatives is not so 
pronounced. 

IV. CONCLUSIONS 

We present a framework of approaches for feasible and 
versatile adjoint-based sensitivity analysis with frequency-
domain structured-grid electromagnetic solvers. For the 
first time, we present two new adjoint-based approaches 
that further improve the accuracy of the estimated 
sensitivities. All approaches are easy to implement with 
existing solvers and do not require solver-dependent 
analytical preprocessing. They provide cheap and accurate 
gradient information, which is valuable in a number of 
CAD applications such as optimization, modeling, and 
tolerance analysis. 

We also test and compare the accuracy of our presented 
approaches through the computed sensitivities of a variety 
of structures and through robust convergence analysis. 
Conclusions are made based on comparisons with finite 
difference response-level sensitivities and with analytical 
derivatives. 

REFERENCES 

[1] E. J. Haug, K. K. Choi and V. Komkov, Design Sensitivity 
Analysis of Structural Systems. Orlando: Academic Press 
Inc., 1986. 

[2] A. D. Belegundu and T. R. Chandrupatla, Optimization 
Concepts and Applications in Engineering. Upper Saddle 
River, NJ: Prentice Hall, 1999. 

[3] I.-H. Park, I.-G. Kwak, H.-B. Lee, S.-Y. Hahn and K.-S. 
Lee, “Design sensitivity analysis for transient eddy current 
problems using finite element discretization and adjoint 
variable method,” IEEE Trans. Mag., vol. 32, pp. 1242-
1245, May 1996. 

[4] J.P. Webb, “Design sensitivity of frequency response in 3-
D finite-element analysis of microwave devices,” IEEE 
Trans. Mag., vol. 38, No. 2, pp. 1109-1112, Mar. 2002. 

[5] J. W. Bandler, Q.-J. Zhang and R. M. Biernacki, “A 
unified theory for frequency-domain simulation and 
sensitivity analysis of linear and nonlinear circuits,” IEEE 
Trans. MTT, vol. 36, pp. 1661-1669, Dec. 1988. 

[6] M. H. Bakr and N. K. Nikolova, “An adjoint variable 
method for frequency domain TLM problems with 
conducting boundaries,” IEEE Microwave Wireless 
Components Lett., vol. 13, pp. 408-410, Sep. 2003. 

[7] S. M. Ali, N. K. Nikolova and M. H. Bakr, “Sensitivity 
analysis with full-wave EM solvers based on structured 
grids,” IEEE Trans. Mag., vol. 40, No. 3, pp. 1521-1529, 
May, 2004. 

[8] N. K. Nikolova, J. W. Bandler and M. H. Bakr, “Adjoint 
techniques for sensitivity analysis in high-frequency 
structure CAD,” IEEE Trans. MTT, vol. 52, No. 1, pp. 
403-419, Jan. 2004. 

[9] S. M. Ali, N. K. Nikolova, and M. H. Bakr, “ Sensitivity 
analysis and optimization utilizing an approximate 
auxiliary problem,” IEEE/URSI Int. Symposium on 
Antennas and Propagation, June 2004 (Monterey, CA), 
vol.1, pp. 1118-1121. 

[10] R. F. Harrington, Time-Harmonic Electromagnetic Fields. 
New York: McGraw-Hill book company, Inc., 1961. 

153 ACES JOURNAL, VOL. 19, NO. 3, NOVEMBER 2004



 

[11] S. M. Ali, N. K. Nikolova, and M. H. Bakr, “Central 
adjoint variable method for sensitivity analysis with 
structured grid electromagnetic solvers,” IEEE Trans. 
Mag., pp. 1969-1971, July, 2004. 

[12] D. Johns and C. Christopoulos, “New frequency-domain 
TLM method for the numerical solution of steady-state 
electromagnetic problems,” IEE Proc. Sci Meas. Technol., 
vol. 141, pp. 310-316, 1994. 

[13] D. M. Pozar, Microwave Engineering. New York: 
Addison-Wesley Publishing Company, Inc., 1993. 

[14] MATLAB (2000) Version 6.0, MathWorks, Inc., 3 Apple 
Hill Drive, Natick MA 01760-2098. 

 
 

 

Shirook M. Ali  received the B.Sc. degree 
from University of Baghdad, Iraq, in 1993, and 
the M.Sc. degree from Jordan University of 
Science and Technology, Jordan, in 1999. She 
is currently working toward her Ph.D. at 
McMaster University, Canada. Her research 
interests     include     computational    electro- 

magnetics, optimization, and CAD methods for high-frequency 
structures and antennas. 
 
 

 

Natalia K. Nikolova  received the Dipl. Eng. 
degree from the Technical University of Varna, 
Bulgaria, in 1989, and the Ph.D. degree from the 
University of Electro-Communications, Tokyo, 
Japan, in 1997. From 1998 to 1999, she held a 
Postdoctoral Fellowship of the Natural Sciences and 
Engineering Research Council of Canada 
(NSERC), during which time she  was initially with 

the Microwave and Electromagnetics Laboratory, DalTech, Dalhousie 
University, Halifax, Canada, and, later, for a year, with the Simulation 
Optimization Systems Research Laboratory, McMaster University, 
Hamilton, ON, Canada. In July 1999, she joined the Department of 
Electrical and Computer Engineering, McMaster University, where she 
is currently an Associate Professor. Her research interests include 
theoretical and computational electromagnetism, high-frequency 
analysis techniques, as well as CAD methods for high-frequency 
structures and antennas. 
 
Dr. Nikolova currently holds a University Faculty Award of NSERC, 
which she received in 2000, and which was renewed in 2003. 
 
 

 

Mohamed H. Bakr   received a B.Sc. degree in 
Electronics and Communications Engineering from 
Cairo University, Egypt in 1992 with distinction 
(honors). In June 1996, he received a Master's 
degree in Engineering Mathematics from Cairo 
University. In 1997, he was a student intern with 
Optimization Systems Associates (OSA), inc. From 
1998 to 2000 , he worked as a research assistant 
with  the  Simulation  Optimization  Systems  (SOS) 

research laboratory, McMaster University, Hamilton, Ontario, Canada. 
He earned the Ph.D. degree in September 2000 from the Department of 
Electrical and Computer Engineering, McMaster University. In 
November 2000, he joined the Computational Electromagnetics Research 
Laboratory (CERL), University of Victoria, Victoria, Canada as an 
NSERC Post Doctoral Fellow. Dr. Bakr is a recipient of a 2003 Premier's 
Research Excellence Award (PREA) from the province of Ontario, 
Canada. His research areas of interest include optimization methods, 
computer-aided design and modeling of microwave circuits, neural 
network applications, smart analysis of microwave circuits and efficient 
optimization using time/frequency domain methods. He is currently an 
Assistant Professor with the Department of Electrical and Computer 
Engineering, McMaster University. 
 

154Ali, Nikolova and Bakr: Sensitivity Anlysis with Frequency-Domain Full-Wave EM Solvers



 
 

Advanced FVTD Simulation of Dielectric  
Resonator Antennas and Feed Structures 

Christophe Fumeaux, Dirk Baumann, Rüdiger Vahldieck 
Swiss Federal Institute of Technology, ETHZ, IFH, 8092 Zürich, Switzerland 

E-mail: fumeaux/dbaumann/vahldieck@ifh.ee.ethz.ch 

Abstract—This paper illustrates the application of the Finite-
Volume Time-Domain (FVTD) method to the electromagnetic 
modeling of complex 3D antenna structures. The FVTD 
algorithm solves Maxwell's equations in a conformal polyhedral 
mesh, therefore permitting an accurate approximation of curved 
surfaces and a fine resolution of structural details. The flexibility 
of the unstructured mesh is coupled with a geometry-matched 
local time-stepping scheme to increase the computational 
efficiency. The FVTD algorithm is applied here to simulate 
probe-fed hemispherical dielectric resonator antennas. Emphasis 
of the investigation is placed on the modeling of fabrication 
details and their influence on the input impedance and resonance 
frequency of the device. 

Index Terms—3D FVTD method, conformal meshing, 
dielectric resonator antenna 

I. INTRODUCTION 

The Finite-Volume Time-Domain (FVTD) method has been 
introduced at the end of the 1980's [1], [2] as a powerful 
technique for numerically solving Maxwell's equations in 
unstructured meshes. Typically, the FVTD algorithm is 
applied in a tetrahedral mesh, therefore avoiding stair-casing 
approximations for the discretization of curved or non-
orthogonal surfaces. The FVTD method stands therefore as an 
alternative to the Finite-Difference Time-Domain (FDTD) 
method for complex geometries where conformal meshing is 
advantageous. 

Another important characteristic of unstructured meshes is 
their ability to adapt the cell size to the local geometrical 
requirements. Since the transition between domains with 
different feature sizes can be made very fast, the number of 
cells in the computational domain can be minimized without 
sacrificing the resolution. Modeling small structural details, 
e.g. the feed of an antenna, in close proximity to large 
structures is a frequently encountered practical problem. A 
solution to this problem strongly benefits from different scales 
of cell sizes: In the coarse regions of the problem, the standard 
linear cell dimension will be determined by a fraction of the 
shortest wavelength of interest (typically λ ), whereas 
resolution of details might require much smaller cell 
dimensions (e.g. in the order of  or smaller). Another 
advantage of inhomogeneous meshes consists in the modeling 
of boundaries between materials with a large dielectric 
contrast. The shorter wavelength in the denser material 

requires finer cell sizes than in free-space, which can be 
achieved straightforwardly in an unstructured tetrahedral 
mesh. Since the FVTD method keeps the number of needed 
cells to a minimum in complex problems, it saves memory 
despite a computationally higher expense for a single cell 
(geometrical data are required) compared to FDTD. 

/10

/100λ

Simulations of dielectric resonator antennas (DRA) are very 
challenging problems that can take advantage of the 
geometrical flexibility of the FVTD method: A DRA typically 
includes curved boundary surfaces with a large dielectric 
contrast, and small feeding mechanisms. In this investigation, 
a hemispherical DRA fed by a coaxial probe is modeled. The 
effects of different probe configurations and of fabrication 
imperfections are studied numerically. The results 
demonstrate the versatility of the FVTD technique. 

II. THE FVTD ALGORITHM 
The FVTD method is based on Maxwell's equations written 

in conservative form and integrated over elementary volumes 
[3]. The implementation in a digital computer requires the 
approximation of the equations in each elementary volume of 
a given spatial grid. In a tetrahedral mesh, each volume V  has 
4 faces with areas  and outward-pointing unit normal 
vector 

i

kF
kn . This yields the following vector equations 
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The left-hand side (LHS) of (1) represents a volume 
integral, where the triangular brackets denote the averaging of 
the field components over the considered volume. This 
average is approximated by the value of the fields in the 
barycenter of the tetrahedron. The right-hand side (RHS) of 
(2) represents a sum of surface integrals over the faces of the 
considered finite volume. The integrands are so-called 
(mathematically defined) "fluxes" through the faces of the 
cells. The triangular brackets represent the averaging of the 
fields over each face of the tetrahedron. The approximation 
locates the average field components in the barycenter of the 
considered face. 

The interaction between adjacent cells in the FVTD 
algorithm happens, as inspired by FV techniques in fluid 

155

1054-4887 © 2004 ACES

ACES JOURNAL, VOL. 19, NO. 3, NOVEMBER 2004



 
 

dynamics, through separation of the flux terms in incoming (-) 
and outgoing (+) contributions (split-flux formulation [3]) 
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Explicit update equations for the fields in the finite volumes 
are obtained by discretizing the time variable in (2). Different 
time-marching schemes can be applied for this purpose. In a 
first-order approximation, the  is estimated using a 
finite difference. In the algorithm implemented for this study, 
the second-order Lax-Wendroff predictor-corrector scheme 
[3] is used. A significant increase of the efficiency of the 
FVTD march-in-time iteration is obtained through the 
application of geometry-matched local time steps [4]. 

/ t∂ ∂

A. Local Time Steps 
The local time step technique is based on a special partition 

of the computational domain into sub-domains. This partition 
is performed automatically during preprocessing based on 
local geometric and material conditions of the elements in the 
mesh. To obtain a robust and precise local time step scheme, 
three restrictions are set on the sub-domain partition: 

1) The partition defines only discrete levels of local time 
steps that correspond to power of two times  
(∆ ∆ ), where  is the fundamental 
time step that assures stability in the whole mesh. 

t∆
,  2 ,  4 ,  8 ,...t t t t∆ ∆ t∆

2) The time steps of two adjacent sub-domains must have a 
ratio of two. Thus, multiple scale problems produce nested 
sub-domains. 

3) The local time step for all elements in each sub-domain 
satisfies the stability condition. 

A division of the computational domain satisfying these 
three conditions is performed using an iterative process 
described in [4]. The restrictions imposed on the partition 
allow a treatment of the borders between sub-domains as 
generic two-level boundaries, which are inserted very 
naturally in the FVTD march-in-time iteration. The time 
consistency is preserved by introducing an artificial half-step 
in the larger cells of a time-step boundary. The principle is 
demonstrated in Fig. 1 for first-order march in time. A 
boundary between the first and the second level of time step is 
depicted, but the procedure is similar for all other time step 
levels. The values of the fields in the higher level boundary 
cell are required at time step n+1 to perform the second small 
time step ( 3 , from n+1 to n+2) in the lower level cell. Since 
the fields at this time step are not computed explicitly in the 
large cells, these values are obtained through averaging the 
fields computed at time steps n and n+2 (operation denoted by 

2 ).  It is therefore necessary to perform the update of the 
larger cell ( 1a  from n to n+2) before the second update in the 
smaller cell ( 3 , from n+1 to n+2). The technique is described 
here for a first-order time discretization but can be extended to 
more sophisticated schemes as shown in [4].  

The less frequent update of larger cells in the mesh allows a 
significant speedup of the computations when different 
element scales are present in the simulated structures. 
Although the update of a cell at the boundary between sub-
domains requires around two times more CPU time than a 
standard cell at the same time-step level, this does not slow 
down the computation significantly since boundary cells 
represent only a few percent of the total number of cells. 

The local time step scheme used in this study has proven to 
be very accurate and robust since it requires no space 
interpolation and only simple time interpolations. Therefore, 
the fundamental time step does not require a more severe 
stability condition than the original algorithm. This has been 
confirmed in all examples computed in practice, involving up 
to 8 nested levels of time steps (from ∆  to ). t 256 t∆
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Fig. 1. Principle of application for local time steps at the boundary 
between sub-domains (two-level system). The chronology is indicated by the 
encircled numbers. An artificial half-step 2  is created in the large cell to 
obtain data required to perform the update 3 . 

B. Near-Field to Far-Field Transformation 
The far-field patterns are computed using a Huygens' 

surface enclosing the antenna. This triangulated closed surface 
is embedded in the tetrahedral mesh. A discrete Fourier 
transformation (DFT) is performed on the fly during the 
FVTD iteration to obtain the necessary frequency-domain 
tangential fields in the center of each triangle of the Huygens' 
surface. The sampling frequency of the DFT is determined by 
the local time step of the sub-domain where the sampled fields 
are located. 

C. Ports 
Port planes are introduced as triangulated surfaces in the 

FVTD mesh. The planes force the tetrahedrons to be aligned 
with respect to one face and therefore form a phase reference 
plane for the incident and the reflected waves. 

The flux-splitting formulation in (2) is exploited to compute 
the incident and the reflected fields in a port plane consisting 
of N  triangles. This allows to directly calculate power waves 
without the need to determine voltages and currents in the port 
by [5] 
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where the subscript t  denotes tangential fields and the 
superscripts  and −  indicate incident and reflected fields. 
In a multimode environment the total field in a waveguide can 
be expressed as a sum over all possible modes. Due to the 
orthogonality of the modes, the mode amplitude of each mode 
can be determined. Thus the amplitude A  of the th 
mode at time step n  can be computed with 
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if the normalized mode template vector e  is known a priori. 
The power waves can then be computed as 

m
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−
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with Z  being the wave impedance. w

III. THE HEMISPHERICAL DIELECTRIC RESONATOR ANTENNA 
Dielectric resonators placed in an open environment can be 

used as radiating elements showing such attractive 
characteristics as small size, large bandwidth, high efficiency 
and simplicity of excitation [6]. Numerous shapes of 
resonators have been used including rectangles, cylinders, 
rings and hemispheres. The coupling of power to the dielectric 
structure can be achieved through coaxial probes, apertures, 
microstrip, or coplanar lines. Most of the designs exhibit a 
large dielectric contrast to free-space and at the same time 
small feed dimensions. The FVTD method seems therefore 
perfectly suited to investigate this class of antennas. 

To illustrate the advantages of the FVTD simulations, a 
hemispherical probe-fed dielectric resonator antenna with 
characteristics close to the devices presented in [7] and [8] is 
chosen. The geometry is depicted in Fig. 2 showing all the 
relevant dimensions. The feed configuration excites the TE111 
mode of the DRA with a resonant frequency in the vicinity of 
3.6 GHz. The results of the FVTD simulations have been 
compared previously [9] with those of a finite-element based 
commercial program, showing a good agreement for return 
loss and radiation patterns. The ground plane is chosen as a  
circular plate with a radius of 60 mm. The present paper 
investigates the influence of small details on the 
characteristics of the device. The resolution of fine features in 
the simulation yields useful information on the effects of 
fabrication tolerances that might cause discrepancies from 
predictions of simplified idealized models. In the following, 
the effect of the probe shape and length, as well as the 
influence of air gaps around the probe or between the ground 
plane and the dielectric will be investigated numerically using 
the FVTD method.  

x

z

r

εr
lp

2r2
2r1

b

coaxial port

ground plane

x

z

r

εr
lp

2r2
2r1

b
x

z

r

εr
lp

2r2
2r1

b

coaxial port

ground plane

 

Dielectric 
resonator: 

9.5

12.5 mm
r

r

ε =

=
 

Coaxial feed: 

1

2

6.5 mm

0.63 mm

2.25 mm

2.33coax

b

r

r

ε

=

=

=

=
 2. Schematic cross section of the probe fed hemispherical DRA. 

A. General Characteristics of the FVTD Model 
The broadband simulation is performed in the frequency 

range from 3 GHz to 6 GHz. The computational domain is 
closed by a sphere with radius of 80 mm where a Silver-
Müller absorbing boundary condition is applied. 

The fineness of the mesh is adapted to the different parts of 
the devices as shown in Table I and Fig. 3. The resulting ratio 
of volumes V  in the mesh reaches typically more 
than 100'000. For an efficient simulation, this spatial 
inhomogeneity of the mesh is coupled to an inhomogeneous 
time discretization with up to seven levels of local times steps 
( ). A cut through a meshed model is depicted in Fig. 3 
showing typical linear cell dimensions associated to different 
regions of the considered DRA problem. The mesh around the 
probe is determined by the geometrical resolution desired and 
might be even finer when an air gap needs to be resolved. The 
transitions between the different regions of the mesh are 
smooth in nature in the tetrahedral mesh.  

max min/V

64 t

 

∼λ0 / 10 ∼λε /10 ∼λ0 / 180
Free-space DR Probe
∼λ0 / 10 ∼λε /10 ∼λ0 / 180

Free-space DR Probe

 
Fig. 3. Cut through the 3D model of the DRA showing the mesh with 
different fineness adapted to the local geometry. The maximal ratio of 
volumes in the associated tetrahedral mesh reaches more than 100,000. The 
presence of thin air gaps in other models results in even larger size contrasts. 

157 ACES JOURNAL, VOL. 19, NO. 3, NOVEMBER 2004



 
 

TABLE I  
TYPICAL LINEAR DIMENSIONS OF THE TRIANGLES USED FOR THE SURFACE DISCRETIZATIONS. THE FINENESS OF THE VOLUME MESH IS DETERMINED BY THE 

SURFACE DISCRETIZATION. THE NUMBERS IN TERMS OF WAVELENGTHS ARE GIVEN RELATIVE TO THE SHORTEST WAVELENGTH OF INTEREST (I.E., AT 6 GHZ). 

Linear dimensions 
 

absolute in terms of λ  0 in terms of λ  

Outer boundary 6 mm 0 / 8.3λ  0 / 8.3λ  

DRA surface 1.6 mm 0 / 31.5λ  /10ελ  

Probe feed 0.28 mm 0 /180λ  /117coaxλ  

Thinnest air gap (0.05 mm) 0.05 mm 0 /1000λ  0 /1000λ  

 

B. Detailed Model of the Coaxial Probe 
The simulations of the hemispherical DRA have been 

performed for a set of different probe lengths l  between 
1.0 mm and 9.5 mm. The variation of the probe length is a 
practical way of controlling the input impedance of the DRA. 
In addition to varying the length, detailed configurations of 
the probe have been investigated in the frame of this study. 
Different generic cases are represented in Fig. 4. The probe of 
the first case (Fig. 4 (a)) is a cut wire with an abrupt end, 
whereas the probe of the second case (Fig. 4 (b)) has a 
rounded tip. In the third case, an air gap exists between the 
probe (rounded tip) and the dielectric material (Fig. 4 (c)). 
Different thicknesses of air gaps between 0.05 and 0.30 mm 
have been modeled. All configurations have been considered 
from the perspective of the matching to 50

p

 Ω  and from the 
point of view of the resonant frequency of the DRA. The 
return loss is a practical value for a specific matching 
condition but does not yield full information on the exact 
location of the resonant frequency. 

The presence of a thin air gap around the probe requires a 
finer mesh around the probe than corresponding simulations 
without air gap. Typical ratios of volumes V  are 
given in Table II for different thicknesses of air gap.  

max min/V

C. Effect of Local-Time Stepping 
The local time stepping permits to achieve a significant 

speedup of the simulation since the large cells in the mesh will  
 

TABLE II  
MESH CHARACTERISTICS FOR DIFFERENT MODELS WITH AIR GAP AROUND THE 

PROBE. THE THICKNESS OF THE AIR GAP IS GIVEN IN MILLIMETER. 

Model # of cells max min/V V  Top level 

Air Gap 0.05 379,657 3,675,074 7 (64 ) t∆
Air Gap 0.10 237,213 803,117 7 (64 ) t∆
Air Gap 0.20 212,859 117,411 5 (16 ) t∆
Air Gap 0.30 213,379 * 95,011 5 (16 ) t∆

No air gap 209,443 112,652 5 (16 ) t∆
* The number of elements for air gap 0.20 and 0.30 is very similar since 

the discretization used on the probe (0.28 mm, Table I) is sufficient to resolve 
both gap dimensions. 

(a) (b) (c)
lp lp lp

(a) (b) (c)
lplp lplp lplp

 
Fig. 4. Different models of the probe: (a) probe with cut end, (b) probe 
with a rounded tip, (c) probe with a rounded tip and an air gap. 

be updated much less often than the small ones. For the type 
of problems presented here, computation speedup factors of 4 
to 10 are achieved using this technique compared to the 
corresponding simulations performed without local time 
stepping. The largest speedups are achieved for the most 
inhomogeneous meshes. 

The influence of the local time stepping on the simulation 
result has been demonstrated to be negligible [4]. In the 
practical examples presented here, the same conclusions can 
be applied. As illustration, the field amplitude in one 
particular point is represented in Fig. 5 together with the 
difference of the computed values obtained with and without 
local time stepping. Even when five to seven nested local 
time-step sub-domains are used, the discrepancies are well 
below -50 dB. 
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Fig. 5. Influence of the local time stepping on the amplitude of the 
electric field at a point located outside the DRA. The arbitrarily chosen point 
is updated with a local time step corresponding to 16 times the fundamental 
time step. The upper curve (E) shows the E-field magnitude in this point and 
the lower curve (∆E) the difference between the simulations performed with 
and without local time stepping. 
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IV. DETAILED SIMULATION OF THE DRA 
In this section, several features of the probe-fed DRA are 

investigated. After a general analysis of the effect of the probe 
length, the emphasis is placed on the modeling of details that 
might arise from fabrication imperfections [10]. 

A. Probe Length Dependence 
The variation of the probe length represents a very 

convenient way to control the input impedance of the probe-
fed DRA [7]. The return loss of the DRA fed by a 50 Ω 
coaxial line is represented for probe length l  between 5 and 
9 mm in Fig. 6. The optimum matching of the antenna for the 
first resonance located around 3.6 GHz (TE

p

111 mode) is 
obtained for a probe length between 7 mm and 8 mm. Higher-
order resonances with different optimum probe lengths are 
observed around 5.3 GHz and 5.7 GHz (Fig. 7). 

These results have been obtained using probes with cut 
ends (Fig. 4 (a)). The following paragraphs investigate the 
influence of probe details on the matching condition. 
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Fig. 6. Return loss (related to 50 Ω  coaxial cable feeding) as a function of 
the frequency for different probe lengths. The probes used in the models have 
a cut end. 

0 1 2 3 4 5 6 7 8 9 10
-30

-25

-20

-15

-10

-5

0

 3.6 GHz
 5.3 GHz
 5.7 GHz

Probe length (mm)

R
et

ur
n 

lo
ss

 (-
dB

)

 
Fig. 7. Return loss as a function of the probe length at three different 
frequencies. 

B. Effect of Rounded Probe Tip 
Rounding the tip of the probe makes it appear electrically 

slightly shorter than a cut-end probe with the same length. 
This has an influence on the matching of the device and is best 

observed on the return loss curves. On the upper graph of 
Fig. 8, the return loss for a rounded probe with length 6.5 mm 
remains for all frequencies in between curves for cut-end 
probes with length 6.0 mm and 6.5 mm. This suggests an 
"effective length" for the rounded probe between 6.0 mm and 
6.5 mm. This particular example has been chosen for 
illustration since it also shows a higher resonance close to 
5.3 GHz. Similar observations are made for all probe lengths. 

The lower graph of Fig. 8 considers lengths closer to an 
optimal matching for 50 Ω  and permits to quantify how 
shorter a rounded tip appears: The return loss of a rounded 
probe with 8 mm is nearly identical to the one of a cut-end 
probe with length 7.7 mm. This reduction corresponds roughly 
to half the radius of the rounding. Similar conclusions can be 
drawn for all probe lengths. 
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Fig. 8. Return loss for the probe-fed hemispherical resonator for different 
probe lengths illustrating the reduction of effective length caused by rounding 
the tip of the probe. Upper graph: The curve for rounded probe with 6.5 mm 
length is located in between the probes with lengths 6.0 mm and 6.5 mm. 
Lower graph: Nearly identical curves are obtained when considering a 
rounded tip 0.3 mm longer (here close to optimal length of the probe). 

C. Effect of Air Gap around the Probe 
The presence of an air gap around the probe has a more 

pronounced effect on the matching condition of the device 
than the rounding of the tip, since it basically alters the 
boundary condition over the whole surface of the probe. This 
has been investigated experimentally in [11] showing a 
significant effect of air gaps around the probe which fed a 
cylindrical dielectric resonator. Such an air gap might exist 
because of the mechanical tolerances associated with drilling a 
hole in the dielectric material to insert the probe. 
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In the present numerical study, we have used the FVTD 
method to model air gaps around the probe of the 
hemispherical DRA. Different thicknesses of air gap between 
0.05 mm and 0.3 mm have been modeled and compared to the 
ideal case of a perfect mechanical contact between the probe 
and the dielectric (no air gap). 

The input impedance of the probe-fed hemispherical DRA 
(rounded probe with length 8.0 mm) is plotted in Fig. 9 close 
to the first resonance frequency for different values of the air 
gap. The presence of the air gap shifts the peak of the input 
resistance towards higher frequencies and lowers its maximum 
value. Very thin air gaps can lower significantly the 
magnitude of the peak input resistance. The largest air gap 
modeled here (0.3 mm) roughly reduces the maximum input 
resistance to half (from 59 Ω to 25 Ω) and moves its location 
from 3.56 GHz to 3.67 GHz. A similar behavior is observed 
for the higher-order resonances. 

Results from a simulation neglecting such air gaps would 
not yield accurate design parameters. This can be explicitly 
observed in Fig. 10 where the return loss is represented 
around the first resonance for several thicknesses of the air 
gap. A qualitatively similar behavior has been observed 
experimentally in [11] for a cylindrical DRA.  

From the point of view of the computational cost, the 
resolution of very thin air gaps (e.g. here 0.05 mm) around the  
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Fig. 9. Effect of an air gap surrounding the probe on the input impedance 
Zin of the DRA. The rounded probe has a length of 8.0 mm. The Rin (upper 
graph) and Xin (lower graph) indicate the real and imaginary part of the input 
impedance respectively. 

probe typically increases the number of cells in the mesh 
(Table II) and therefore the overall computational effort. 
Introducing local time-steps dampens this negative effect 
since the necessary reduction of time steps associated with the 
small cells affects only a limited region around the feed. 

3.0 3.5 4.0
-30

-25

-20

-15

-10

-5

0

 No air gap
 Air gap 0.05 mm
 Air gap 0.1 mm
 Air gap 0.2 mm
 Air gap 0.3 mm

Frequency (GHz)

R
et

ur
n 

lo
ss

 (-
dB

)

 
Fig. 10. Return loss of the hemispherical DRA with different thicknesses 
of air gap around the probe. The figure illustrates the degradation of the 
matching condition that can occur because of fabrication tolerances. 

D. Effect of Air Gap between DRA and Ground Plane 
Another fabrication issue likely to affect the radiation 

characteristics of a DRA has been described in [12]: A thin 
gap between the dielectric material and the ground plane can 
affect severely the input impedance of the device. This can be 
explained by a change in boundary condition at the bottom of 
the DRA.  

The effect of the air gap between the hemispherical DRA 
and the ground plane on the input impedance is shown in 
Fig. 11 for different thicknesses of air gap (0.15 mm, 0.30 mm 
and 0.45 mm). The results are compared to the corresponding 
device without air gap. It is obvious that the presence of the 
air gap shifts the resonance frequency and the peak of the 
input resonance upwards in a significant manner. This can be 
interpreted as a lowering of the effective dielectric constant of 
the DRA due to the presence of the air gap. 

The shift in resonance frequency shown in Fig. 11 is 
associated to a decrease of the Q factor of the structure and to 
an increase of the matching bandwidth of the device. As 
illustration of this fact, the return loss of the four DRAs is 
shown in Fig. 12. The relative bandwidth is doubled through 
the presence of the 0.3 mm air gap between the dielectric 
resonator and the ground plane. The exploitation of this effect 
has been suggested in [10] as a practical means to increase 
bandwidth. The downside of the technique is a required 
increase in size of the device for a fixed frequency of 
operation. 

From the point of view of the computational effort, it 
should be mentioned again that resolving very thin gaps 
increases the overall number of cells in the computational 
domain. The type of air gap considered here has a more 
pronounced effect on the computational load since larger 
regions of the computational domain are affected than in the 
case of the air gap around the probe. 
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Fig. 11. Effect of an air gap between DRA and ground plane on the input 
impedance Zin of the DRA. The rounded probe has a length of 8.0 mm. The 
Rin (upper graph) and Xin (lower graph) indicate the real and imaginary part of 
the input impedance respectively. 
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Fig. 12. Return loss of the hemispherical DRA with different air gaps 
between the dielectric and the ground plane.  The figure illustrates the shift of 
the resonance frequency and the increase of the relative bandwidth when the 
air gap becomes thicker. 

E. Effect of the Feeding on the Radiation Pattern 
The radiation pattern is mainly determined by the geometry 

of the dielectric material and by the arrangement of the ground 
plane. However, by changing the location of the probe inside 
the DRA, different modes might be excited in the dielectric, 
leading to different radiation patterns. In the simulations 
presented here, the location of the probe has been kept 

constant at a distance of 6.5 mm from the center of the 
hemisphere. This arrangement is chosen for excitation of the 
TE111 mode inside the dielectric. 

For all the simulations where only the probe has been 
modified (as in paragraphs A, B, and C), no relevant 
variations of the patterns have been observed for any probe 
length or shape. This confirms that the variations of the probe 
represent a practical way of matching the antenna to the feed 
circuit without changing the radiation characteristics. 

On the contrary, small differences can be observed if the 
relative arrangement of the ground plane and the DRA is 
modified. This is the case for example when the air gap is 
introduced between dielectric and ground plane 
(Paragraph D). 

In Fig. 13, the computed patterns of the DRA are shown at 
a frequency of 3.6 GHz (near first resonance) in two principal 
planes. The curves are represented for three different 
configurations. The first two models chosen (curves 1 & 2) 
have different feeds (1 mm cut probe, and 8 mm rounded 
probe with air gap) and their patterns cannot be distinguished, 
even though the input impedances of the devices are very 
different. The third curve shown in the figure represents a 
DRA that has an additional air gap (0.45 mm thick) between 
the dielectric and the ground plane. This affects the patterns of 
the device, although not dramatically. 
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Fig. 13. Radiation patterns of the DRA at 3.6 GHz in two principal planes: 
(a) plane containing the probe (E-plane), (b) orthogonal plane (H-plane). The 
patterns are represented for three configurations: (1) 1 mm cut probe, (2) 
8 mm rounded probe with 0.3 mm air gap around the probe, (3) 8 mm rounded 
probe plus air gap between the ground plane and the dielectric. 
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F. Effect of the Finite Ground Plane 
A more visible effect can be observed when the dimensions 

of the ground plane of the DRA are changed. Different sizes 
of ground planes on the bottom of the dielectric have been 
modeled. Results for planar circular ground planes with radii 
equal to 60 mm and 180 mm have been compared to those 
with infinite ground plane. Modeling the latter, a perfectly 
conducting symmetry plane has been used in conjunction with 
image theory during the near to far field transformation 
necessary to obtain the radiation patterns.  
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Fig. 14. Radiation patterns near the first resonance (3.6 GHz) for the 
hemispherical DRA with rounded probe (length 8 mm). The different curves 
correspond to the given radii r of the circular ground plane. (a) E-plane co-
polarized pattern Eθ , (b) H-plane co-polarized pattern Eφ , (c) H-plane cross-
polarized pattern Eθ . The cross-polarized component in the E-plane is too 
small to be represented in this scale. 

From the point of view of matching the DRA to the feed 
circuit, the use of different ground planes does not have a 
noticeable effect. On the other hand, we observe that the 
radiation patterns are clearly influenced by the extent of the 
ground plane. The angular patterns in two principal planes are 
shown in Fig. 14 and Fig. 15 for the cross- and co-polarized 
components (third Ludwig definition [13]) of the radiated 
fields at the first two resonances. The cross-polarized 
component in the E-plane (plane containing the probe) is not 
shown since it is negligibly small. 
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Fig. 15. Radiation patterns near the second resonance (5.3 GHz) for the 
hemispherical DRA with rounded probe (length 8 mm). The different curves 
correspond to the given radii r of the circular ground plane. (a) E-plane co-
polarized pattern Eθ , (b) H-plane co-polarized pattern Eφ , (c) H-plane cross-
polarized pattern Eθ . The cross-polarized component in the E-plane is too 
small to be represented in this scale. 
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Comparing the radiation patterns at the two frequencies 
(Fig. 14 vs. Fig. 15), it can be observed that the first resonance 
radiates towards broadside whereas the second radiates with 
end-fire characteristics. 

The chosen sizes of the ground planes correspond to 
diameters larger than the free-space wavelength at the first 
resonance (1.45λ  and 2.17λ  respectively at 3.6 GHz). We 
observe small oscillations of the curves (local maxima and 
minima) as a function of the angle for the finite ground planes. 
These oscillations are caused by resonances of the ground 
plane, which is confirmed by the fact that the device with 
three times larger ground plane have three times faster angular 
oscillations (see e.g. the back lobes). It is also observed as 
expected that the back radiation is reduced when the ground 
plane is extended.  

0 0

These simulations show qualitatively the errors that arise 
when using infinite ground-plane computations to model 
devices with relatively small ground planes. 

V. CONCLUSIONS 
The FVTD method has been applied to the simulation of a 

probe-fed hemispherical DRA. Emphasis of the investigation 
has been placed on the effect of manufacturing issues, such as 
influence of feeding details on the matching and on the 
resonance frequency. The probe length provides as expected a 
convenient way to match the device to the circuit with a 
negligible influence on the radiation pattern. The shape of the 
probe tip has been demonstrated to have a sensible effect on 
the input impedance of the device: A rounded probe appears 
shorter than a cut probe. A more pronounced effect is 
introduced by an air gap between the probe and the dielectric 
material: The input impedance is significantly lowered and the 
resonance is shifted toward larger frequencies. 

The simulations presented here demonstrate the versatility 
of the FVTD algorithm. Modeling other complex shapes (e.g. 
[14],[15]) does not change or increase the complexity level of 
the algorithm. The intrinsic geometrical flexibility of the 
method permits, when coupled to a local time-stepping 
scheme, the resolution of small details with excellent 
accuracy. This makes the FVTD method a very powerful tool 
that can be applied to assess the effect of fabrication 
tolerances of complex devices. 
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Abstract:  The separation of variables method along 
with transformation theorem form Mathieu functions 
to Bessel functions are employed here to analyze the 
problem of a suspended strip in a circular 
waveguide. An infinite dimensional determinant is 
obtained which represents the characteristic equation 
of the proposed structure. To obtain the cutoff 
wavenumbers for both TE and TM cases of such a 
structure, the infinite determinant is truncated and 
convergence was observed. Numerical results for 
cases of interest are then presented. 
 
Introduction 

The cut-off frequencies of circular 
cylindrical waveguides loaded with eccentric inner 
conductors were extensively investigated. For 
instance, a general problem of a conducting cylinder 
placed inside a conducting hollow tube of arbitrary 
cross section was formulated and solved by the 
point-matching technique in [1]. Kuttler [2] obtained 
the lower and upper bounds of the cutoff 
wavenumbers using different methods.  Analytical 
formulations were also developed and used to 
calculate exact values of the cutoff wavenumbers in 
[3-5] employing different methodologies.  Recently, 
Das and Vargheese employed a bilinear 
transformation to transform the two-wire and the 
eccentric transmission line into the concentric 
coaxial configuration [6]. 

Elliptical waveguides have been the subject 
of many investigations due to their wide applications 
in radar feed lines, multichannel communication and 
accelerator beam tubes. Another line of research [7] 
investigated elliptical waveguide loaded with ridges 
or a suspended strip.  It was assumed that the ridges 
extended from the walls to the focal points.  
Recently Rozzi et al. [8] reported a complete 
analysis for a suspended strip in an elliptical 
cylindrical waveguide. They considered the case 
where the suspended strip extended between the 
focal points of the elliptical waveguide. He obtained 

the cutoff wavelengths for different TEM, TE and 
TM modes using the separation of variables. An 
extension to Rozzi’s analysis for the more general 
case of a strip of arbitrary width was reported in [9].  
The strip width could be larger or smaller than the 
focal length of the elliptic cylinder.  

 The special case of suspended strip in a 
circular cylindrical waveguide has not been yet 
addressed. Results for such a special case can not be 
directly obtained from the general case reported in 
[9] due to singularity of the Mathieu functions when 
the outer ellipse of the waveguide has zero focal 
length. Meanwhile if the focal length is considered 
very small the resulting cutoff wavenumbers are not 
close to those of the special case because they are 
very sensitive to the geometrical dimensions. 
Accordingly, such a special case has to be treated 
separately.  The problem involves two different 
coordinate systems, i.e. circular cylindrical (to fit the 
circular boundary of the outer waveguide) and 
elliptical coordinates (to fit the elliptical boundary of 
the strip) which reflects the use of both Bessel and 
Mathieu functions. This paper addresses such a 
problem and employs the transformation from 
Mathieu to Bessel functions [10] to facilitate the 
application of the boundary conditions. Some 
special cases are introduced first for comparison 
with published data to ensure that our program is 
correct then other new results are introduced. 
 
Theory 
 Consider the two-dimensional cross-
sectional geometry shown in Fig. 1.  It consists of an 
infinitely long perfectly conducting circular 
waveguide with radius b.  A perfectly conducting 
strip of width 2a and infinite length is placed such 
that its axes coincide with that of the circular 
waveguide.  In order to facilitate our analysis, two 
coordinate systems are considered.  The local 
elliptical coordinates ( ) are at the center 
of the strip while the global circular coordinates 
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( zφρ ,,

oζ

) are considered at the center of the circular 
cylinder. The solution of the scalar Helmholtz wave 
equation in terms of elliptical coordinates can be 
written as 
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for the even modes, and while for the odd modes, 

     (2) 

where , , o c  

( ,   is the transverse component, 
while  is the free space wavenumber, 

is the wavelength and  is the propagation 
constant).   and are even modified radial 
Mathieu functions of the first and second kind, 
respectively, while  and  are their 
corresponding odd functions.  and  are the 
even and odd angular Mathieu functions.  

 and  are coefficients to be 
calculated by imposing the boundary conditions. 

a

 
1. TE Case 

These modes must satisfy the boundary 
condition of vanishing tangential components of the 
electric field ( ) on the perfectly conducting 
surfaces, i. e: 
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Since we have even and odd modes in each case, 
one can consider them individually. 
 
(a) TE Even Modes  

Applying the first boundary condition 
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Now in order to apply the second boundary 
condition ψ ζ η( , )o o must be transferred to the 
circular cylindrical coordinate system .  
This can be done using the addition theorem of 
Mathieu functions [10], which is simplified for this 
case as 
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where  could be  or  while  

is or  and  is the Bessel function of 
the first or second kind, respectively. The constants 

 and  are coefficients of the infinite 
series of angular Mathieu functions in terms of 
trigonometric functions defined in [9].  To apply the 
second boundary condition, (5) is employed in (4) as 
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Applying the second boundary condition and using 
the orthogonal property of the trigonometric 
functions, one obtains 
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0
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Equation (7) can be written in the following matrix 
form, 

[ ], 0.l n nZ Ae  =                        (8) 

A non-trivial solution can be obtained if the 
determinant of the Z matrix vanishes. The solution 

yy

x x 

Fig. 1. Geometry of the problem. 

2a 

 

166Ragheb and Hassan: Suspended Strip in a Circular Cylindrical Waveguide



of the resulting determinant will give the values of 
 corresponding to the 1kc

st , 2nd , … and nth cutoff 
wavenumbers.  Once the value of  is obtained for 
the i

kc
th cutoff wavenumber, the coefficients can be 

obtained and the field distribution inside the 
waveguide is then completely defined. 
 
(b) TE odd Modes 

Following the same procedure described 
for the TE even modes but with ψ ζ η( ,o o )  
represented in terms of odd functions [equation (2)], 
one ends up with a matrix equation similar to that in 
(8), where the elements of the matrix are given by: 
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and the coefficient vector is denoted as . Again 
the determinant of the matrix is equal to zero to 
obtain the cutoff wavenumbers. 

Aon

 
2. TM Case 

These modes must satisfy the boundary 
condition of vanishing tangential components of the 
electric field ( ) on the perfectly conducting 
surfaces, i.e. 

Eu = 0

ψ| ,uo
v= = ≤0 0 0

| 0 , 0 2bρ

πo ≤ 2
.
      and          

ψ φ= = ≤ π≤            (10) 

 

  For the general case, the effect of two 
parameters a and b (strip width and circular cylinder 
radius) on the cutoff wavelength was studied. The 
first cutoff wavenumber versus the strip width for 
different values of circular guide radius is illustrated 
in Fig. 2 for both even and odd TM modes.  As one 
can see from Fig. 2(a), the cutoff wavenumber of the 
even mode increases when the strip width increases.  
On the other hand, one can see that for the odd TM 
case, the cutoff wavenumber is constant for all 
values of the strip width, which shows that the strip 
has no effect on the cutoff wavenumber for such a 
mode. This can be explained if one looks at the field 
distribution of the circular waveguide for the TM11 
mode [12], where the electric field has no tangential 
component along one of the circular cylinder 
diameters at which the strip is going to be placed.  

 Even and odd modes can be considered individually 
as follows: 
 
(a) TM Even Modes 

Applying the first boundary condition 
along with the orthogonal property of Mathieu 
functions yields 
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Employing the addition theorem of the Mathieu 
functions and applying the second boundary 
condition along with the orthogonal property of the 
triangular Mathieu functions, one can get matrix 
equation similar to (8) with the elements of Z matrix 
given by  
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 (12) 

 
(b) TM odd Modes 

Following the same procedure described 
for the TM even modes but with ψ ζ η( , )o o  
represented in terms of odd functions [equation (2)], 
one ends up with a matrix equation similar to that in 
(8), where the elements of the matrix are given by: 

,...2,1)()()(, == − lbkJcDojZ clo
n
l

nl
nl    (13) 

and the coefficient vector is denoted as .  Aon
 
Results and Discussion 

To check the accuracy of our computations 
the cutoff wavelengths of the special case of circular 
waveguide is considered by assuming the strip width 
very small.  The results obtained agreed very well 
with those published in [12]. 
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Fig. 2. The first cutoff wavelength versus strip width 

for even and odd TM modes. 
 
Figure 3 illustrates the effect of the strip width, on 
the cutoff wavenumber for both even and odd TE 
modes for different values of circular guide radius. 
The cutoff wavenumber for the TE case is constant 
for even modes (Fig. 3(a)) and decreases with the 
increase of the strip width for odd modes, as shown 
in Fig. 3(b).  
 

 
Fig. 3. The first cutoff wavelength versus strip width 

for even and odd TE modes. 
 
The constant values of the cutoff wavenumbers for 
the even TE mode can also be realized when one 
considers the field distribution of such a mode for 
unloaded circular waveguide. The second cutoff 
wavenumber was also calculated for both odd and 
even TE and TM modes as illustrated in Fig. 4 and 
Fig. 5, respectively.  Similar behavior for both TE 
and TM modes were found except that the rate of 
increase or decrease of the cutoff wavenumber with 
the strip width is lower than that corresponding to 
the first cutoff wavenumber. 
  

 
Conclusion  
The cutoff wavenumbers for both TE and TM cases 
of an arbitrary strip width suspended in a circular 
cylindrical waveguide have been calculated. It is 
found that the cutoff wavenumber increases with the 
strip width for even TM modes and decreases for 
odd TE modes.  

 

Fig. 4. The second cutoff wavelength versus strip 
width for even and odd TM modes. 

 

 
Fig. 5. The second cutoff wavelength versus strip 

width for even and odd TE modes. 
 
Acknowledgement  

The author wishes to thank King Fahd 
University of Petroleum and Minerals for providing 
the facilities required to perform this research. 

 
Reference 
[1] H. Y. Yee and N. F. Audeh, “Cutoff frequencies 

of eccentric waveguides”, IEEE Trans. on 
Microwave Theory and Techniques, MTT-14, 
pp. 487-493, 1966. 

[2] J. R. Kuttler, “A new method for calculating TE 
and TM cutoff frequencies of uniform 
waveguide with lunar or eccentric cross 

 

168Ragheb and Hassan: Suspended Strip in a Circular Cylindrical Waveguide



section”, IEEE Trans. On Microwave Theory 
and Techniques, MTT-32, pp. 348-354, 1984. 

[3] A. Vishen, G. P. Srivastava and G. S. Singh, 
“Calculation of cutoff wavenumbers for TE and 
TM modes in tubular lines with offset center 
conductor”, IEEE Trans. On Microwave Theory 
and Techniques, MTT-34, pp. 292-294, 1986. 

[4] L. Zhang, J. Zhang and W. Wang, “Correct 
determination of TE and TM cutoff 
wavenumbers in transmission lines with circular 
outer conductors and eccentric circular inner 
conductor”, IEEE Trans. On Microwave Theory 
and Techniques, MTT-39, pp. 1416-1420, 1991. 

[5] G. I. Veselov and S. G. Semenov, “Theory of 
circular waveguide with eccentrically placed 
metallic conductor”, Radio Eng., Electron 
Phys., vol. 15, pp. 687-690, 1970. 

[6] B. N. Das and O. J. Vargheese, “Analysis of 
dominant and higher order modes for 
transmission lines using parallel cylinders”, 
IEEE Trans. On Microwave Theory and 
Techniques, MTT-42, pp. 681-683, 1994. 

[7] A. El-Sherbiny, “Cutoff Wavelengths of 
Ridged, Circular, and Elliptic Guides”, IEEE 
Trans. on Microwave Theory and Techniques, 
Vol. MTT-21, pp.7-12, 1973. 

[8] T. Rozzi, L. Luca and M. Ronzitti, “Analyses of 
the Suspended Strip in Elliptical Cross Section 
by Separation of Variables”, IEEE Trans. on 
Microwave Theory and Techniques, Vol. MTT-
45, pp.1778-1784, 1997. 

[9] H. A. Ragheb, ”Analysis of a Nonconfocal 
Suspended Strip in an Elliptical Cylindrical 
Waveguide”, IEEE Trans. on Microwave 
Theory and Techniques, Vol. MTT-48, pp. 
1148-1151, July 2000. 

[10] K. Saermark, “A note on addition theorems for 
Mathieu functions”, Z. Math. Phys., vol. 10, pp. 
426-428, 1958. 

[11] P. M. Morse and H. Feshbach, “Methods of 
Theoretical Physics”, McGraw-Hill Book 
Company, Inc., 1953. 

[12] S. Y. Liao, “Microwave Devices and Circuits”, 
Prentice Hall, 1990. 

 
Hassan Ragheb was born in 
Port-Said, Egypt, in 1953. He 
received the B. Sc. Degree in 
Electrical Engineering from 
Cairo University, Egypt, in 
1977 and the M. Sc. and Ph. 
D. degrees in Electrical 
Engineering from the 
University   of        Manitoba, 

Winnipeg, Canada, in 1984 and 1987, respectively. 
From 1987 to 1989, he was a research assistant in the 

Department of Electrical Engineering, University of 
Manitoba. In 1989, he joined the Department of 
Electrical Engineering at the King Fahd University 
of Petroleum and Minerals, where he is now as 
associate Professor of Electrical Engineering. His 
research interests include electromagnetic scattering 
by multiple and coated objects, microstrip antennas, 
phased arrays, slot and open-ended waveguide 
antennas. 
 

Essam Hassan was born in 
Alexandria, Egypt 1947. He 
obtained his B. S. degree in 
electrical engineering, (highest 
honors) from Alexandria Univ.  
in 1970, and M. S. and Ph. D. 
from the University of 
Manitoba, Canada in 1974, 
1978   respectively.          After 

graduation, Dr. Hassan worked at Nortel (then 
Northern Telecom) from 1977 to 1979 as a senior 
R&D engineer in the digital switching division 
(DSD). He then joined KFUPM at Dhahran, Saudi 
Arabia in 1979 where he is currently a Professor of 
electrical engineering. Dr. Hassan is an author and 
coauthor of over 30 papers in various disciplines of 
electrical engineering. He was a visiting Professor at 
Concordia University, Canada and has served as a 
consultant in several electrical engineering projects.      
 
 
 
 
 
 
 
 
 

 

169 ACES JOURNAL, VOL. 19, NO. 3, NOVEMBER 2004



RCS of Two Lossy Dielectric Loaded Semi-Elliptic  
Channels in a Conducting Plane 

 
 

A-K. Hamid 
Department of Electrical and Computer Eng. 

University of  Sharjah 
P.O. Box 27272, Sharjah, U.A.E 
email: akhamid@Sharjah.ac.ae 

 
 

 
 

Abstract 
 
Analytical solution to the problem of scattering of a plane 
electromagnetic wave by two lossy dielectric loaded semi-
elliptic channels in a conducting plane is investigated using 
an iterative procedure to account for the interaction fields 
between the channels. The incident, scattered and 
transmitted fields in every region are expressed in terms of 
complex Mathieu functions. The translation addition 
theorem is used to compute the higher order scattered fields.  
Numerical results are presented for the far scattered field for 
different axial ratios, electrical separation distances, angles 
of incidence and loss of dielectric materials. 

 
1. Introduction 
 
The electromagnetic scattering from grooves, channels and 
cracks has many practical applications. The solution may be 
used to study the scattering by rough surfaces, 
nondestructive testing of materials, and to check the 
numerical accuracy of approximate and numerical methods 
of similar geometries.   

Lately, there have been many analytical studies available in 
the literature on the scattering by hollow and dielectric 
loaded semi-circular channels [1-5].  Most of these studies 
are based on the exact dual-series eigenfunction solution.  
On the other hand, some numerical solutions based on the 
coupled integral equations for the induced currents were 
obtained by Senior et. al. [6-7]. 

Up to date, the analytical solutions available in the literature 
are for the case of scattering by single semi-elliptic channels 
loaded by a lossy or lossless dielectric material in a 
conducting ground plane [8-10].  In this paper, we extend 
the solution of scattering by a single lossy dielectric loaded 
semi-elliptic channel in a ground plane to the case of 
scattering by two adjacent lossy dielectric loaded semi-
elliptic channels in a conducting ground plane.   

 

 

2. Formulation of the scattering problem 

Consider the case of a linearly polarized electromagnetic 
TM plane wave incident on a two lossy dielectric loaded 
semi-elliptic channels in a conducting ground plane at an 
angle iφ with respect to the x axis, as shown in Figure 1. 
The major axes of the channels are denoted by a1 and a2  
while the minor axes are denoted by b1 and b2. The ground 
plane is assumed to be perfectly conducting. The time 
dependence  is assumed and omitted throughout. The 
electric field component of the TM polarized plane wave of 
amplitude  is given by 
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where  is the wave number in free space. The incident 
electric field may be expressed in terms of Mathieu 
functions around the origins o
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where 1η  and 2η  are the intrinsic impedance of ellipse 1 
and 2, respectively, and 
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1 and F2  are the semi-focal 

length of channels one and two,  and are the even 
and odd angular Mathieu functions of order m, respectively, 

 and are the even and odd radial Mathieu 

functions of the first kind, and  are the even and 
odd normalized functions [11], and d is the separation 
distance between the centers of the two  channels. The 
scattered electric fields outside the two semi-elliptic 
channels are decomposed to two parts: reflected and 
diffracted fields. These fields should only be written in 
terms of odd Mathieu functions since the incident and 
scattered fields should vanish at the conducting plane, i.e. at 
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where  and  are the unknown odd scattered field 

expansion coefficients and  is the odd radial Mathieu 
function of the fourth kind.  The transmitted electric fields 
inside the two semi-elliptic channels can also be written in 
terms of Mathieu functions as 
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where 1111 Fkc = , , 2222 Fkc = 111 εµω=k , 

22εµ 1ε =

omC1 C2

2 ω=k

emC2

, , while , 
and , are the even and odd unknown 

transmitted field expansion coefficients. The magnetic fields 
inside and outside the two loaded semi-elliptic channels can 
be obtained using Maxwell’s equations. 
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3. First order scattered fields  

The first order scattered fields result from the separate 
excitation of each semi-channel by the incident plane wave 
alone. The first order field expansion coefficients can be 
determined using the boundary conditions which require the 
total tangential electric field component inside the channels 
to vanish at the conducting parts, i.e. at 1ξξ = , 2ξξ =  and 

πηπ 2<< , while the total tangential electric and magnetic 
field components to be continuous across the imaginary 
apertures at 1ξξ = , 2ξξ =  and πη <<0 . Using the 
partial orthogonality properties of the angular Mathieu 
functions, the first order odd scattered and even transmitted 
field coefficients can be written in matrix form as follows 
[10]  
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and  , , and   ,  are the first order odd 
scattered and even transmitted filed vector matrices. 
Matrices Q

1
1oB 1

2oB 1
1eC 1

2eC

5, Q6, Q7, Q8, V3 and V4 correspond to the second 
semi-elliptic channel can be written similarly. Equations 
(14) and (15) may be solved by matrix inversion to obtain 
the first order scattered field coefficients for given electrical 
size of semi-elliptic channels, electrical separation, angle of 
incidence, and lossy dielectric material.  

4. Higher order scattered fields 

The second order scattered field results from the excitation 
of each semi-elliptic channel by the scattered field from the 
other semi-elliptic channel due to the initial incident field. 
To enforce the boundary conditions, the first order scattered 
field from the second semi-elliptic channel must be 
expressed in terms of the coordinate system of the first 
semi-elliptic channel and vice versa using the addition 
theorem of Mathieu functions [12], i.e., 
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where  is given by [12]. Again, the boundary 
conditions require the tangential electric field component 
inside the channels to vanish at 

12→
olmWO

1ξξ = , 2ξξ =  and 
πηπ 2<< , while the total tangential electric and magnetic 

fields components to be continuous across the imaginary 
apertures at 1ξξ = , 2ξξ =  and πη <<0 . Using the 
partial orthogonality properties of the angular Mathieu 
functions along with equation (26), we obtain the second 
order scattered field coefficients for semi-elliptic channel 
one in matrix form as  
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and  and C  are the second order scattered and 
transmitted field vector matrices for channel one. The vector 
field matrices , that correspond to the second 
channel can be obtained similarly. 
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To obtain a general solution, we solve similarly for the 
higher order scattered fields, which are sensitive to the 
electrical sizes and separation distances, angles of incidence 
and dielectric materials. The general expression for the kth 
order scattered field coefficients of channel one may be 
written as  
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It should be noted that the matrices in equation (35) are 
computed once (i.e., k=2) for the electrical size, dielectric 
material, and electrical separation considered and used for 
the subsequent iterations (i.e., k=3,4,…).  

Once the scattered field coefficients are determined, the 
total far field from the two semi-elliptic channels due to the 
kth order scattered fields can be determined. 
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5. Numerical Results 

The scattered near and far fields can be calculated once the 
scattered field expansion coefficients are computed. The 
scattered far field expression may be written as follows 
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In order to solve for the unknown scattered field 
coefficients, the infinite series are first truncated to include 
only the first N terms, where N in general is a suitable 
truncation number proportional to the channel electrical 
sizes, separation distances and the dielectric loading 
materials. In the computation, the value of N has been 
chosen to impose a convergence condition that provides 
solution accuracy with at least four significant figures [14]. 
It is found that increasing the electrical sizes of the channel 
will increase the total truncation number of N terms. Also, 
to set a criterion for terminating the iteration process, the 
scattered field after each iteration is calculated and divided 
by the total field scattered from the pervious iterations, and 
the process is terminated when the ratio is smaller than 10-4.  

The accuracy of the numerical results is checked against the 
special case of two semi-circular channels loaded with a 
lossless dielectric material [13].  Fig. 2 shows the 
normalized backscattered field versus the electrical size ka1,2 
for two identical loaded semi-circular channels with an 
incident angle , axial ratio ao

i 90=φ 1,2/b1,2=1.0 and d=8.0 
a1,2. The electrical sizes are taken from 0.5 to 5.0. The solid 
line represents the solution of [13], which is in excellent 
agreement with our calculation represented by circles. Also, 
the dashed line represents the lossy dielectric circular 
channels from which we can see that the resonances start to  
disappear [14]. Figure 3 is similar to Fig. 2 except for semi-
elliptic channels with axial ratio a1,2/b1,2=2.0. It can be seen 
that the location of the resonances has been changed when it 
is compared with the circular channels. It is worth 
mentioning that the numerical results given by [13] were 
only for loaded channels and no hollow cases. Figure 4 is 
similar to Fig. 3 except for the incident angle changed to 45 
degrees. It can be seen that the number of resonances is 
increased significantly when the incident angle is changed 
from 90 to 45 degrees.  

Fig. 5 shows the normalized backscattered field versus the 
electrical separation distance kd for two dielectric loaded 

identical semi-elliptic channels with ka1,2=2.0, a1,2/b1,2=1.5 
and . The electrical separation is taken from 5.0 to 
16.5.  Fig. 6 shows the echo pattern width versus the 
scattering angle  for two dielectric loaded identical 

channels with ka

o
i 60=φ

φ

1,2=1.5, a1,2/b1,2=2.0, kd=5.0 and . 

Fig. 7 is similar to 6 except for .  Figure 8 shows 
the normalized backscattered field versus the incident angle 

o
i 90=φ

o
i 60=φ

iφ  for two dielectric loaded two channels with ka1,2=2.0, 
a1,2/b1,2=1.5  and kd=5.0. 
 
6. Conclusions 

Analytical solution and numerical results of the 
electromagnetic scattering by a two lossy dielectric loaded 
semi-elliptic channels in a ground plane is obtained for the 
case of TM (transverse magnetic) polarization. The validity 
and accuracy of the obtained numerical results were verified 
against the special case of two lossless semicircular 
channels. It is worth mentioning that the number of higher 
order scattered fields used in the computation of numerical 
results was ranged from k=2 to 4. The agreement was 
excellent in all cases. It was shown that the presence of 
lossy and lossless dielectric materials in the channels has 
significantly changed the scattered field patterns when it 
was compared with the hollow case. The present work will 
be extended to the case of  an infinite array of semi-elliptic 
channels in a ground plane since this would be useful for the 
study of  scattering by rough surface. 
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Figure 1. Scattering geometry of two lossy dielectric 
loaded semi-elliptic channels in a ground plane. 
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Figure 2. Backscattered field versus electrical size ka1,2 for 
two dielectric loaded identical semi-circular channels with  
a1,2/b1,2=1.0 and . o

i 90=φ
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Figure 3. Backscattered field versus electrical size ka1,2 for 
two dielectric loaded identical semi-elliptic channels with  
a1,2/b1,2=2.0 and . o

i 90=φ
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Figure 4. Backscattered field versus electrical size ka1,2 for 
two dielectric loaded identical semi-elliptic channels with  
a1,2/b1,2=2.0 and . o

i 45=φ
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Figure 5. Backscattered field versus electrical separation 
distance kd for two dielectric loaded identical semi-elliptic 
channels with ka1,2=2.0, a1,2/b1,2=1.5 and . o

i 60=φ
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Figure 6. Echo pattern width versus the scattering angle  
for two dielectric loaded identical semi-elliptic channels 
with ka

φ

1,2=1.5, a1,2/b1,2=2.0 , kd=5.0 and . o
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Figure 7.  Echo pattern width versus the scattering angle  
for two dielectric loaded  identical semi-elliptic channels 
with ka

φ

1,2=1.5, a1,2/b1,2=2.0 , kd=5.0 and . o
i 60=φ
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Figure 8.  Backscattered field versus the incident angle iφ  
for two dielectric loaded identical semi-elliptic channels 
with ka1,2=2.0, a1,2/b1,2=1.5 .   
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AbstractAn efficient Method of Moments 
formulation using curved segmentation (MoM-CS) to 
model curl and helical antenna structures is 
implemented and compared to straight wire 
segmentation code. This integral equation solver is 
then employed in conjunction with genetic algorithm 
(GA) to design and optimize complex helical wire 
antennas such as Tapered Single Helical Antenna 
(TSHA), Single Elliptical Curl Antenna (SECA) and 
Tapered Quadrifilar Antenna (TQFA) mounted over 
infinite ground plane. An optimum gain, VSWR and 
circular polarization properties that make these 
antennas suitable to be used in satellite 
communications systems are obtained. The numerical 
results show that the hybrid GA/ MoM-CS produces 
superior antenna designs for such complex geometries 
with reduced computation time compared to codes that 
use straight wire segmentations. 
 
Keywords- Method of Moments, curved segmentation, 
genetic algorithm, circular polarization. 

I. INTRODUCTION 

Many satellite and wireless communications 
systems require high efficiency, lightweight and low 
cost circularly polarized (CP) antennas. Due to the 
resonant characteristics, circular microstrip antennas 
have narrow bandwidth. However, the tapered helical, 
curl and quadrifilar are nonresonant antennas that 
radiate circularly polarized waves and they have wider 
bandwidth. Designing these kind of complex 
geometrical antennas is typically a slow haphazard 
process. Consequently, a numerical model and a 
numerical optimization of that model are important for 
developing realistic designs.  Most of the previous 
work for GA / MoM formulation consider straight 
wires for fitness function calculations [1] and [2]. In 
this paper an efficient MoM algorithm is described 
using curved segmentation [3] to model the curved 
geometrical antennas, which is then run under a GA 
optimization routine to design an antenna with specific 
performance attributes similar to [4]. The use of curved 
segment   keeps  the   computational  time  manageable  

 

throughout the many runs required in this evolutionary 
procedure. The requirement of fewer segments gives 
the curved segment model a speed advantage therefore 
important when the MoM is combined with GA for 
optimization problems.  

The organization of the paper is as follows: curved 
wire segmentations formulation is reported for the 
analysis of helical structures with its validation results 
in section II. In section III, GA and the MoM 
integration is described. In section IV the results of 
three circular polarized designs using the developed 
code are illustrated and discussed. Finally, conclusions 
are derived in section V.     

II. CURVED WIRE SEGMENTATIONS 

This section shows a novel formulation of MoM 
for simulation of helical structures with limited number 
of segments using the newly developed curved 
segment code. A polynomial basis current function 
with a Galerkin solution for both curved wire segments 
is applied and implemented. Helical antenna examples 
are studied using curved wire segments modeled using 
a newly implemented formulation and compared to 
straight wire code results.  

A. Helical Antenna Description and Curved-Segment 
Formulation  

 The curved wire segment has the advantage of 
correcting the errors produced from integral current 
equations and junctions of straight segments. In this 
section the current distribution is assumed uniform 
over the wire surface transverse to the axis and 
therefore the approximated kernel solution is used. 
Curved wire geometry like the helical antenna is 
considered, the helical structure and its parameters 
being shown in Fig. 1. Zo is the starting height of the 
helix, b is the helix radius and p is the pitch angle on 
the helix. Φ  is the radial angle for the projection of 
helix points on the horizontal plane z = 0 and oΦ  is the 
initial radial angle describing the location of the 
starting point of the helix. The (xh, yh, zh) coordinates 
of any point on the helix can be given by the following   
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where (0< <2π). As shown in Fig. 2 the length of 
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Fig. 1.  Basis and weighting functions on curved
segments of helical antenna. 
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 Fig. 2. Part of one curved segment showing and Φ. 

The unit vector, âγ , which describes the contour of the 
helix is defined by 
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The current is obtained on this general helical antenna 
geometry by using Galerkin type moment method for 
the electric field integral equation (EFIE). The surface 
current Js(r') is approximated as a line current given by 

'â )'(I γγ , where  is defined at the source point and 
follows the contour of the helix. Then, for Galerkin 
type functions the typical input impedance term can be 
written as:   
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This integral depends only on γ and ' γ , the lengths of 
the wire contours for the source and the observation 
points and their corresponding  and . The basis 
and weighting functions for the helical antenna 
problem are chosen as two segments with first order 
polynomial (linear) functions, as shown in Fig. 1, can 
be given by: 
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function
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Y
where 1mγ  and  2mγ  are the lengths of the two 
segments of the weighting function and   and  1s'γ 2s'γ  
are the lengths of the two segments of the basis 
function.    

Φ Φ1 Φo γ 
 

γ1 Φ=0
Zo 

B. Computation of the Integral Used in the Impedance 
Matrix Elements for Curved Segments 

For computing the impedance matrix elements it 
can be expressed in terms of the radial horizontal angle 
Φ  instead of the contour length γ  as follows: 

π2
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where ' 'sb 'γ = Φ  and 'mbγ = Φ  as shown from Fig. 2 
while b and are defined in equation (1), and m' s'b
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where 'sΦ  and Φ are the radial horizontal angles 

covering the segments lengths over the basis and test 
functions, γs and γm respectively, assuming the use of 
curved segments with equal lengths. Before equation 
(3) can be implemented, the dot product 

m

( )'ˆ ˆa aγ γ⋅  and 

the distance R between the source and the observation 
points on curved segments in terms of Φ and 'Φ  must 
be defined. The dot product term is given by: 
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The distance R can be written as 
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where Φ  and Φ  are the starting radial angles for the 
source and observation curved segments, as shown in 
Fig. 1. Substituting equations (6), (7) and (8) into 
equation (5), makes the integral a function of 

1 1'

Φ  and 
 only. A Fortran computer subroutine was written 

to solve this integral by dividing it into real and 
imaginary parts of the Green's function. The integral 
with respect to Φ  is solved numerically by using a 
Gaussian-Legendre Formula for 8-16 points, while two 
integrals over Φ  for both real and imaginary parts are 
also solved numerically, that solves singular or pseudo-
singular integral adaptively within 10-6 relative error. In 
this case, the approximated kernel is used, thus pseudo-
singular integrals are considered.  

'Φ

'

The mathematical analysis and numerical solutions 
given in this section were simulated by the (MoM-CS) 
computer program. The results obtained from this 
MoM-CS code are compared with equivalent ones 
from the 'Numerical Electromagnetics Code' (NEC). It 
should be stated that NEC has different basis and 
weighting functions for its solution from those used in 
(MoM-CS). Also, unlike (MoM-CS), NEC uses 
straight wire approximations to model curved wire 
antennas. An investigation of the current distribution in 
wire antennas and especially normal-mode helical 
antennas (NMHA) will be demonstrated. The input 
resistance is particularly used to test (MoM-CS) 

subroutines discussed earlier. Considering a center-fed 
normal mode helical antenna in free space with the 
following parameters; helix radius b = 0.0273 m; pitch 
p = 0.03646 m; number of turns n = 10; and wire 
radius a = 0.001 m. The helix is oriented along the z-
axis and it starts from the x-axis (Φ = ).  0

Figure 3 shows the convergence plots of input 
resistance of the specified helix. It is seen that 
significantly fewer segments are needed when the 
curved segments of (MoM-CS) are used versus NEC 
straight wire segments representing the curved helix 
geometry.  For straight wire segments, the accuracy of 
the thin-wire approximation for a wire of radius a and 
segment length ∆ is acceptable, within 1% error, for 
the following condition; 8a < ∆ < 0.1λ, while if the 
extended thin-wire kernel is used 2a < ∆ could be used 
[5]. NEC results are fairly well converged at 401 
segments or 40 segments per turn. The (MoM-CS) 
models with curved segments are stable for numbers of 
21 curved segments or 2 segments per turn, so it can be 
said that the number of segments is reduced by 20 
times which means more efficiency in terms of 
unknowns and computer memory for modeling curved 
structures. Also one should be careful when modeling 
curved geometries using straight wire segments to 
avoid the unstable region when modeling the helix 
with small numbers of segments (51 segments in this 
example).  

For testing (MoM-CS) over a wide band, the 
response of the input impedance of the previous ten-
turn NMHA is presented in Fig. 4 for input reactance 
versus the frequency for various pitch distances. The 
results of 21 segmentations with (MoM-CS) agree well 
with those calculated using 401 segments with NEC. 
Three different pitch distances of 0.036, 0.045, and 
0.054 m are used with fixed axial length for the helix, 
which means that the number of turns and the total 
length of the wire are changed. From the obtained 
results it can be concluded that MoM-CS routines 
performs well and the use of curved segments allows 
accurate modeling especially for normal mode helical 
antenna.
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Fig 3. Normal mode center fed helix input resistance
convergence versus number of segments. 
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Fig. 4. The input reactance of a ten-turn NMHA for 
various pitch distances using MoM-CS and NEC. 

III. GA AND THE METHOD OF MOMENTS 
INTEGRATION 

 
The GA/MoM-CS integration program is 

developed to utilize the numerical calculations for the 
fitness function of the GA program by curved wire 
segmentation formula. That significantly reduces the 
computational cost of the optimization process 
compared to the MoM approach that uses linear 
segmentations. Fewer curved basis functions are 
required for an accurate representation of the spiral or 
curved contour and current distribution. Moreover, the 
speeds up of the matrix inversion process for the MoM 
technique, leading to a reduction in the cpu time and 
the used memory becomes increasingly important 
when the code is linked with the GA optimization 
procedures that need to run the MoM code many times. 

 
In any optimization problem, candidate solutions 

are evaluated according to a fitness function. For 
antennas used in satellite systems, the optimization 
criteria targeted is a good CP main lobe at a specific 
angle with respect to the antenna axis with good gain 
and low VSWR (good matching). The objective 
(fitness) function for one iteration (chromosome) 
involves solving an electric field integral equation with 
the previously described curved segment formulation. 
The GA code initializes a random sample of 
individuals with different parameters that maps the 
antenna geometrical parameters that are optimized by 
evolution via survival of the fittest.  That is calculated 
using the numerical technique of MoM-CS. The 
selection scheme used is tournament selection with a 
shuffling technique for choosing random pairs for 
mating.  The routine includes binary coding for the 
individuals, jump mutation, creep mutation, and 
uniform crossover. Mutation caused small random 
changes in chromosomes so that the search doesn’t trap 

in a local optimum. The process is repeated till the 
algorithm converges. 

IV. SIMULATIONS AND NUMERICAL RESULTS 
 

The efficiency of the developed hybrid GA/MoM-
CS code is illustrated by using it to design three 
different complex helical structures for mobile satellite 
applications. These antennas are optimized to have 
good circular polarization properties with a high gain 
and minimum VSWR values. The antennas are 
Tapered Single Helical Antenna (TSHA), Single 
Elliptical Curl Antenna (SECA) and Tapered 
Quadrifilar Antenna (TQFA) mounted over infinite 
ground plane. For these antennas, the GA/MoM-CS is 
allowed to search for the optimum configuration that 
will produce the desired properties. The fitness 
function of GA is obtained by MoM-CS to evaluate the 
average gain over the elevation angles (Av-gain), 
average axial ratio over the elevation angles (AR) and 
average voltage standing wave ratio over the operating 
frequencies (VSWR) in terms of the optimization 
parameters is given as:  

∑ ∑∑ 







θ×+θ×

θθf
),f(AxiaB),f(gainA

NM
1 +

∑

×

f
)f(VSWR

CN  

where A, B and C are constants chosen by user, N is 
the number of frequency steps, f  is the frequency. M is 
the number of elevation angle steps, θ is the elevation 
angle. We chose to weight the axial ratio and the gain 
more heavily than the VSWR as it is possible to 
enhance the VSWR by using a matching technique. 
This fitness Function is constrained such that the 
average VSWR lies between 1 and 10 and if it is not 
satisfied the fitness function resets to zero and the 
population is discarded. For the following examples, 
1.8 GHz is selected here as a convenient operating 
frequency because it falls close to the transmitting and 
receiving bands (L and S band) of the LEO personal 
satellite systems. However, dual band optimization 
could be performed. 

A. Tapered Single Helical Antenna (TSHA): 
 

Figure 5 defines the basic geometric parameters of 
the TSHA over the ground plane on elevation and side 
view angles. The helix has overall length h1 and tapers 
from a radius of ro at the base to r1 at the top, a taper 
angle β and a pitch p. The wire has a radius r and a 
tilted wire feeds the helix over the ground with a height 
h2. The six parameters p, h1, ro, r1, r and h2 are encoded 
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each into 6 bit genes. The parameters of the GA are 
number of population = 8, discard rate = 0.5 and 
mutation rate =0.1, number of generations = 500. That 
means that for each run the GA routine requires 4000 
evaluations of the fitness function obtained by the 
numerical MoM-CS technique. The gain and axial ratio 
are samples every 30-degree in elevation. From θ =-90 
to 90 for azimuth angle φ = 0 at operating frequency of 
1800 MHz. It is found that 30-degree increments yield 
better circular polarization performance than 5, 10 and 
20-degree sampling steps. Then the gain and AR is 
averaged over the angles and frequencies for dual and 
tri band designs. The six optimization parameters are 
as shown in the table 1 
 

   

          
 
 
 
 
 
 

The genes u
variations are sh
chromosome ha
genes in the righ

 Table 1. TSHA
results 

Genes 

Pitch 

Total length 

Base radius 

Top radius 

Wire radius  

Feeder height 

Av. gain =2.05

The optimized average gain, average axial ratio 
from –90 to 90 and VSWR over the operating band for 
the best chromosome are illustrated in the last row in 
Table 1. Clearly these values are acceptable and show 
good circular polarization properties. Other ranked 
individual chromosomes may have higher values for 
one of the three-design parameters; but the chosen one 
has the highest fitness function for the three-scaled 
values combined together. 

B.  Single Elliptical Curl Antenna (SECA) 

The type of curl antenna investigated here is an 
elliptical spiral antenna with a single arm fed by a 5 cm 
prob against infinite perfectly conducting ground 
plane. The general configuration of the SECA is shown 

1

h

Fig. 5. Tapered
configuration an
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r
 in Fig. 6. It is made of a thin wire of radius r and is β 
r

bent and curled above the ground plane. The antenna is 
composed of a straight vertical and horizontal and a 
curled horizontal section. Generally, the curled section 

can take the shape as shown in Fig 6.  
 

rp 

ro 
2 
h
 
 

sed along with their permitted range 
own in Table 1. The highest ranked 
s characteristics determined by the 
t hand column of the table.  

 optimization Genes and optimum 

Range 

From              To 

Optimum 

0.001 0.05 0.028222 

0.001 0.05 0.049222 

0.001 0.05 0.025111 

0.001 0.05 0.028222 

0.001 0.005 0.001063 

0.01 0.05 0.013174 

 Av. AR = 0.57 VSWR =3.25 

 
 

rxo
ry

rx1
ry

h1=5 
cm

 Single Helical Antenna (TSHA)
d optimization parameters. 
 
 
 

Fig. 6. General Configuration of Elliptical curl
antenna and top view with optimization parameters.
The curved equation of the curled section is: x = a 
φ cos(φ), y = a φ sin (φ),  where a and b are constants if 
a=b this antenna will be a circular curl antenna. φ is the 
winding angle starting at φo, and ending at φ1=φo+2π ×. 
A range of parameters is assigned to find the design 
that gives the optimum characteristics. These 
parameters are as shown in Fig. 6, where N: number of 
turns, rx0: inner radius in x-axis: rx1: outer radius in x-
axis, ry0: inner radius in y-axis, ry1: outer radius in y-
axis and r: wire radius. The GA/MoM-CS described 
earlier is used to optimize the values. Different 
segments were tested to evaluate the stability of the 
results. The constraints on the designed parameters are 
given in table 2. The maximum antenna dimension is 
chosen to be 10 cm in radius that can be changed 
depending on the required volume.  

The program initializations and the chromosomes 
structures are similar to the previous TSHA runs. Also, 
the same fitness function is applied to obtain the 
minimum VSWR, maximum average axial ratio and 
maximum average gain over the ±90 angular angles 



from the zenith in the x-z elevation plane sampled each 
30-degree at 1800 MHz. The results of GA/MoM-CS 
for the optimum design configuration and best fitness 
functions values are illustrated at the left column and 
bottom row of Table 2. Good circular polarization 
properties with nearly similar values of gain, AR and 
VSWR to the previous antenna are obtained. It is found 
that the best design has the same value for the outer 
radius in x and y-axis, which produces circular curl 
geometry.  

Table 2. SECA optimization Genes and optimum 
results 

Genes Range 

From           To 

Optimum 

Number of turns 1 10 4 

Inner radius: x-axis 0.001 0.01   0.001143 

Outer radius: x-axis 0.015 0.1 0.098651 

Inner radius: y-axis 0.001 0.01    0.001429 

Outer radius: y-axis 0.015 0.1    0.098651 

Wire radius 0.001 0.005 0.003731 

Av. Gain =6.2 Av. AR=0.55 VSWR=7.4   

 

C.  Tapered Quadrifilar Antenna (TQFA): 

One of the best candidates for the satellite 
applications is the quadrifilar antenna. Thus, Tapered 
Quadrifilar Antenna (TQFA) with nonuniform radius is 
chosen to be optimized by the developed GA/MoM-CS 
code. The TQFA of Fig. 7 has the following 
geometrical parameters:  ro, r1, r, p and h2 respectively 
for base radius, top radius, wire radius, pitch and total 
length.  
 

 

The above five parameters are optimized using 
GA/MoM-CS employing 30 bit chromosomes, 8 
populations and 500 generations. The rest of the GA 
parameters are the same as the previous two cases. The 
Quadrifilar structure with its four helices required 
many basis functions to represent the vector direction 
of the current along the meandering wire. That means 
more computational time and memory is required for 
this structure. However, the results of the optimum 
designs are shown in the left column and the last row 
of Table 3.  

These results indicates that this antenna has high 
average axial ratio = 0.71 for the zenith coverage and it 
better than the previous two designs. The average 
computational run time is about 1 h on a Pentium IV 
processor.  

Table 3. TQFA optimization Genes and optimum 
results 

Genes Range Optimum 

Pitch 0.01 0.02 0.018095238  

Total length 0.02 0.05 0.044761905 

Base radius 0.001 0.05 0.029777778  

Top radius 0.001 0.05 0.008777778  

Wire radius  0.001 0.005 0.004936508   

Av. Gain =2.11 Av. AR=0.71 VSWR=4.63 

Finally, the best three designs for the previous case 
studies are compared together. Figure 8 shows the axial 
ratio versus the elevation angle θ for the three antennas 
mounted on infinite ground plane at 1800 MHz and at 
φ=0. Generally, true circular polarization is achieved 
for wide angular coverage. The polarization purity is 
acceptable for the axial ratio under 3 dB level. Thus 
TSHA has good circular polarization characteristics for 
the θ in the range between     -37o and 65o. However, 
this range is between -45o and 55o for SECA. The best 
result is found to be for the TQHA that provides low 
axial ratio in the symmetric range ±77o.  
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Fig. 7. Tapered quadrifilar helical antenna 3D and side
view with optimization parameters. 
 Fig. 8. Computed axial ratio versus the elevation
angle. θ for the three antennas mounted on infinite
ground plane. 



Figure 9 illustrates the power gain pattern for the 
elevation cut corresponding to azimuth angle of 0o. We 
note that for these three cases the coverage is excellent 
over most of the ±90o zenith range. The previous result 
indicates that TQHA gives the best circular 
polarization and that the developed GA/MoM-CS 
performs well in designing such antennas.  
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Measurement and Technology, vol. 149, no. 5, pp. 
272 – 276, Sept. 2002  
R. M. Edwards, G. G. Cook, S. K. Khamas, R. J. 
Aidley, “Design of circularly polarized printed 
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algorithm” Electronics Letters, vol. 34, no. 7, pp. 
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Fig. 9. Power gain in the xz plane for the three
antennas at 1800 MHz. ( SECA, …… TSHA, −
− − TQHA). 
V.CONCLUSION 

Tapered Single Helical Antenna (TSHA), Single 
Elliptical Curl Antenna (SECA) and Tapered 
Quadrifilar Antenna (TQFA) mounted over infinite 
conducting ground plane have been designed using GA 
with MoM-CS optimization technique. Good circular 
polarization properties, high zenith gain and minimum 
VSWR were considered in the evaluation of the 
numerical fitness function to produce optimum 
geometrical parameters of these antennas. Such 
combination of antenna characteristics would be 
difficult to achieve through extensive runs for MoM 
alone especially for complex helical and curl 
structures. It is concluded that the efficient GA/MoM-
CS holds much promise in the development of new 
designs for satellite antenna applications with its 
circular polarization requirements.  
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Abstract: The return loss of rectangular, single layer,
coax fed patch antennas designed to resonate at 1904
MHz was computed using WIPL-D and HFSS and the
results compared with experiment. Both codes
predicted the bandwidth at –10 dB return loss points
with good accuracy but not the resonant frequency and
the corresponding return loss. It was also found that the
resonant frequency predicted by WIPL-D was
substantially closer to the experimental value than that
predicted by HFSS. 

1. INTRODUCTION 

With growing use of microstrip antennas in a variety of
applications, there is a great need for modeling and 
analysis software packages that can accurately and 
efficiently predict the performance of these antennas.
The cost, ease of use, and the time spent in both the
design and calculations are additional and important
key factors in selecting a software package. A number
of microstrip antennas modeling software packages are
compared in [1] where it is shown that custom-written
codes are more accurate than standard commercial
packages. In this paper designs of single-layer coax fed
rectangular microstrip patch antennas are examined
using WIPL-D and HFSS (High-Frequency Structure
Simulator) software packages and the results compared
with experiment.

WIPL-D is a frequency domain moment method
program that models metallic and/or
dielectric/magnetic structures (antennas, scatterers,
passive microwave circuits, etc.) [2]. The geometry of 
the structure is defined in an interactive way using a
combination of wires, plates and material objects. 
HFSS is a frequency domain finite element code. The
version used in this paper is Agilent Version 5.6. 
Instead of using the performance measures introduced
in [1] here comparisons of computed and experimental
results employ the return loss as a function of
frequency.

The initial patch dimensions and substrate thickness
were chosen on the basis of a standard simplified

transmission line model [3], [4] and subsequently
adjusted in accordance with repeated applications of
WIPL-D. Once the dimensions and feed point position
that yield a match at the desired resonant frequency
(1904 MHz) were determined the return loss was 
computed as a function of frequency. Both a single
patch and a 3-element linear patch array were modeled.
The calculations were then repeated with HFSS.
Several patch antennas were fabricated with 
dimensions held to within 10 microns of the values
used in the calculations. Special care was exercised to 
duplicate the physical parameters of the coaxial feed
used in the computer models. Measurements of return
loss were carried out using a carefully calibrated HP
8722D network analyzer.

2. PATCH GEOMETRY AND COAXIAL FEED 

Fig. 1 shows the geometry of a single-layer patch
antenna, where L denotes the length and W the width.
The patch is fed by a coaxial line (Fig. 2) with the feed

point located at  and = W/2.  The dimensions

of the rectangle defining the extent of the ground plane
are denoted by u and v. Figure 2 shows the cross-
section of the rectangular patch and substrate in the
E-plane. The length of the coaxial line is T and the 
radii of the inner and outer conductors are r

rx ry

0 and r1,
respectively. The dielectric constant of the coaxial line
is 1 and only the inner conductor is extended into the
substrate. The coaxial line characteristic impedance
was kept at 50 Ohms with r0 and r1 as well as the
dielectric constant chosen to corresponding to a 
standard SMA connector.

Fig. 1. Rectangular microstrip patch.
1054-4887 © 2004 ACES
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3. COMPARISON OF RETURN LOSS 
COMPUTED USING WIPL-D AND HFSS 

The computations assumed perfectly conducting
patches with a thickness of 35 microns. The substrate
material was RT/duroid 5880 with manufacturer’s
specified dielectric constant 

2 2.2(1 0.0009)i (where the loss tangent
corresponds to vendor’s measured value at 10GHz) and 
a thickness h = 1.575mm. It is worth mentioning that
WIPL-D simulations with loss tangents between
0.0009 and 0.0004 (the vendor’s value at 1 MHz)
yielded negligible differences both in regard to
bandwidth and resonant frequency. Calculations were
performed for a single patch radiator and a linear array
of three identical patches aligned in the E-plane.
Referring to Fig. 2 the pertinent dimensions for the
single patch were L=51.22 mm, W=60mm, =0.35L,

= W/2, u=L+40h, and v=W+40h.
rx

ry

The accuracy levels in WIPL were chosen to be
enhanced 2 for both the current expansion and integral
accuracy. In addition, double edging (finer resolution)
around the patch edges were specified [2]. In HFSS,
the port boundary condition is used. Furthermore, the
ground plane boundary condition is used in the model.
The final calculations of the field and the S-parameters
depend on the precision of the mesh and hence mesh
refinement is performed. The frequency of refinement
was chosen in such a manner that the return loss at this
frequency is expected to be 10 dB or better.

Two sets of identical patches and arrays were

fabricated. A panel comprised of 35 micron (1 oz)
rolled copper on both sides with RT/5880 Duroid
0.062’’ substrate sandwiched in between was used for
this purpose. One side of the panel was etched to 
produce patch radiators with the desired dimensions
while on the other side SMA flanged 50 Ohm
connectors were attached with screws to ¼ inch thick
copper extenders that were glued to the 35 micron
copper ground plane using a highly conducting epoxy.
The top and bottom of the resulting configurations are
shown in Fig. 3. The return loss was measured using
the HP 8722D network analyzer. The three-element
array was centered on a ground plane/substrate with 
dimensions u=114.2 mm and v=304.8 mm, as shown in
Fig. 4. 

Fig. 2. Rectangular microstrip patch, E-plane cut.

Fig. 4. 3-element patch array.

To test for measurement repeatability and for effects of
possible dimensional deviations two sets of identical
configurations were fabricated and measured. No 
differences were discerned in the measured return loss. 
In Fig. 5 the plots of the return loss for the single
element patch antenna computed by WIPL-D and 
HFSS are compared with the experimental curve. The
measured results show that the patch resonates at 1909
MHz. Clearly the resonances predicted by both
WIPL-D (1904 MHz) and HFSS (1886 MHz) deviate
from the experimental value.

Fig. 3. Top and bottom views of typical test patches.

Frequency (GHz)

Fig. 5. Return loss predicted by WIPL-D and HFSS
with for a single patch compared with experiment.
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Fig. 6. Return loss predicted by WIPL-D and HFSS
with for a 3-element patch compared with experiment.

The extent to which the disagreements of calculations
with measurement can be attributed to deviations of the
dielectric constant from its nominal value of 2.20 was
investigated by carrying out the return loss
computations with WIPL-D over the full tolerance
range (2.19-2.22) certified by the vendor (Rogers
Corp.) The results are plotted in Fig. 7. As shown in the
figure, the predicted resonant frequency varied from
1.896 GHz to 1.908 GHz (The return loss curve
corresponding to the nominal value of 2.2 is indicated
by the thick solid line.).

o

4. CONCLUDING REMARKS 

The plots in Figs. 5 and 6 show noticeable differences
between WIPL-D and HFSS modeling capabilities,
with WIPL-D results closer to experimental data.
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ABSTRACT: A new method for computing the 
resonant frequency of the circular microstrip antenna, 
based on the adaptive neuro-fuzzy inference system 
(ANFIS), is presented. A hybrid learning algorithm is 
used to identify the parameters of ANFIS. The results 
of the new method are in excellent agreement with 
the experimental results reported elsewhere. 
 
1. INTRODUCTION 
 
Microstrip antennas (MSAs) have many attractive 
features such as low profile, light weight, ease of 
manufacture, conformability to curved surfaces, low 
production cost, and compatibility with integrated 
circuit technology [1-5]. These attractive features 
have recently increased the application of MSAs and 
stimulated greater effort to investigate their 
performances. MSAs have been used in various 
configurations: square, rectangular, circular, 
triangular, trapezoidal, elliptical etc. Circular 
microstrip patches can be used as resonant antennas, 
and also as planar resonators for oscillators and filters 
in microwave integrated circuits. In circular MSA 
designs, it is important to determine the resonant 
frequencies of the antenna accurately because MSAs 
have narrow bandwidths and can only operate 
effectively in the vicinity of the resonant frequency. 
Thus, a model to determine the resonant frequency is 
helpful in antenna designs. Several methods [1-29], 
varying in accuracy and computational effort, have 
been proposed and used to calculate the resonant 
frequency of circular MSAs. These methods can be 
broadly classified into two categories: analytical and 
numerical methods. The analytical methods, based on 
some fundamental simplifying physical assumptions 
regarding the radiation mechanism of antennas, are 
the most useful for practical designs as well as for 
providing a good intuitive explanation of the 
operation of MSAs. However, these methods are not 
suitable for many structures, in particular, if the 
thickness of the substrate is not very thin. The 
numerical methods are mathematically complex, take 
tremendous computational efforts, still can not make 
a practical antenna design feasible within a 
reasonable period of time, require strong background 
knowledge and have time-consuming numerical 
calculations which need very expensive software 
packages. So, they are not very attractive for the 
interactive computer aided design (CAD) models. In 

general, the numerical methods are based on an 
electromagnetic boundary problem, which leads to 
expression as an integral equation, using proper 
Green’s function, either in the spectral domain, or 
directly in the space domain, using moment methods. 
Without any initial assumption, the choice of test 
functions and the path integration appear to be more 
critical during the final, numerical solution. The 
numerical methods also suffer from the fact that any 
change in the geometry (patch shape, feeding method, 
addition of a cover layer, etc.) requires the 
development of a new solution. Furthermore, the 
theoretical resonant frequency results calculated from 
the curve-fitting formulas [18], [21] based on the 
rigorous numerical methods are not in good 
agreement with the experimental results [6], [8], [11], 
[14-17]. However, the results of these curve-fitting 
formulas are in very good agreement with the results 
of numerical methods [1-5]. 

In this paper, a new method based on the adaptive 
neuro-fuzzy inference system (ANFIS) [30], [31] is 
presented to calculate accurately the resonant 
frequencies of the circular MSAs. First, the antenna 
parameters related to the resonant frequencies are 
determined, and then the resonant frequencies 
depending on these parameters are calculated by 
using the ANFIS. The ANFIS is a class of adaptive 
networks which are functionally equivalent to fuzzy 
inference systems (FISs). It combines the powerful 
features of FISs with those of artificial neural 
networks (ANNs). A hybrid learning algorithm [30, 
31], which combines the least-square method and the 
backpropagation algorithm, is used to determine 
optimally the values of ANFIS parameters. Fast and 
accurate learning, excellent explanation facilities in 
the form of semantically meaningful fuzzy rules, the 
ability to accommodate both data and existing expert 
knowledge about the problem, and good 
generalization capability features have made neuro-
fuzzy systems popular in recent years [30-34]. 
Because of these attractive features, the ANFIS in 
this paper is used to model the relationship between 
the parameters of the circular MSAs and the 
measured resonant frequency results. 

In previous works [35-37], we successfully used 
ANFIS to calculate the resonant frequency of 
triangular MSAs and the input resistance of 
rectangular and circular MSAs. We also proposed 
FISs [38], [39] and ANNs [40-50] for computing 
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h 

ro 

accurately the various parameters of the rectangular, 
circular, and triangular MSAs, and pyramidal horn 
antennas. In the following sections, the resonant 
frequency of a circular MSA and the ANFIS are 
described briefly, and the application of ANFIS to the 
computation of the resonant frequency of a circular 
MSA is then explained. 

 
2. RESONANT FREQUENCY OF A CIRCULAR 
MICROSTRIP ANTENNA 
 
Figure 1 shows a circular patch of radius ro over a 
ground plane with a substrate of thickness h and a 
relative dielectric constant εr. The resonant frequency 
of this circular MSA for the TMnm mode is expressed 
as 
 

2
nm o

nm
o r

c
f

r
α
π ε

=  (1)

 
where αnm is the mth zero of the derivative of the 
Bessel function of order n and co is the velocity of 
electromagnetic waves in free space. The dominant 
mode is TM11 (n = m =1), for which α11 =1.84118. 
Equation (1) is based on the assumption of a perfect 
magnetic wall and neglects the fringing fields at the 
open-end edge of the microstrip patch. Several 
suggestions have been presented in the literature  
[1-29] to account for these fringing fields. A survey 
of the literature [1-29] clearly shows that the resonant 
frequency of a circular MSA for TM11 mode strongly 
depends on ro, h, and εr. Therefore, the effect of the 
size of the dielectric substrate is not considered in 
calculating the resonant frequency. In this work, the 
resonant frequency of the circular MSA is computed 
by using a method based on the ANFIS. Only three 
parameters, ro, h, and εr, are used in calculating the 
resonant frequency.  
 

Fig. 1. Geometry of a circular microstrip antenna. 

3. ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEM (ANFIS) 
 
The ANFIS is a FIS implemented in the framework 
of an adaptive fuzzy neural network, and is a very 
powerful approach for building complex and 
nonlinear relationship between a set of input and 
output data [30], [31]. It combines the explicit 
knowledge representation of FIS with the learning 
power of ANNs. Usually, the transformation of 
human knowledge into a fuzzy system (in the form of 
rules and membership functions) does not give 
exactly the target response. So, the optimum values 
of the FIS parameters should be found. The main 
objective of the ANFIS is to determine the optimum 
values of the equivalent FIS parameters by applying a 
learning algorithm using input-output data sets. The 
parameter optimization is done in such a way that the 
error between the target and the actual output is 
minimized. 

The ANFIS architecture consists of fuzzy layer, 
product layer, normalized layer, de-fuzzy layer, and 
summation layer. A typical ANFIS architecture is 
shown in Figure 2, in which a circle indicates a fixed 
node, whereas a square indicates an adaptive node. 
For simplicity, we assume that the FIS under 
consideration has two inputs x and y and one output 
z. The ANFIS used in this work implements a first-
order Sugeno fuzzy model. Among many FIS models, 
the Sugeno fuzzy model is the most widely applied 
one for its high interpretability and computational 
efficiency, and built-in optimal and adaptive 
techniques. For a first-order Sugeno fuzzy model, a 
common rule set with two fuzzy if-then rules can be 
expressed as 

 
1 1 1 1 1 1 1:         ,  Rule If x is A and y is B then z p x q y r= + + (2a) 

2 2 2 2 2 2 2:         , Rule If x is A and y is B then z p x q y r= + + (2b) 
 
where Ai and Bi are the fuzzy sets in the antecedent, 
and pi, qi, and ri are the design parameters that are 
determined during the training process. As in Figure 
2, the ANFIS consists of five layers:  
 
Layer 1: Every node i in this layer is an adaptive 
node with a node function:  
 
 1 ( ), 1, 2

ii AO x iµ= =  (3a)

 
2

1 ( ), 3,4
ii BO y iµ
−

= =  (3b)
 
where x (or y) is the input of node i. ( )

iA xµ  and 

2
( )

iB yµ
−

 can adopt any fuzzy membership function 
(MF). In general, the types of the MFs are determined 
by trial-and-error method and/or operator's 
experience. After this determination, the parameters 
of MFs and the number of fuzzy rules can be 
optimally obtained by using optimization techniques. 
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 Fig. 2. Architecture of ANFIS. 
 
 
In this paper, the following MFs are obtained by 
using trial-and-error methods:  
 

i) Gaussian MFs 
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ii) Triangular MFs 
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where {ai, bi, ci, σi} is the parameter set that changes 
the shape of the MF. Parameters in this layer are 
named the premise parameters. 
 
Layer 2: Every node in this layer is a fixed node 
labeled Π, which multiplies the incoming signals and 
outputs the product:  
 

2 ( ) ( ), 1, 2
i ii i A BO x y iω µ µ= = =  (5)

 
Each node output represents the firing strength of a 
rule. 
 

Layer 3: Every node in this layer is a fixed node 
labeled N. The ith node calculates the ratio of the ith 
rule’s firing strength to the sum of all rules’ firing 
strengths: 
 

3

1 2

, 1, 2i
i iO i

ω
ω

ω ω
= = =

+
 (6)

 
where iω  is referred to as the normalized firing 
strength. 
 
Layer 4: Every node i in this layer is an adaptive 
node with a node function: 
 

4 ( ), 1, 2i i i i i i iO z p x q y r iω ω= = + + =  (7)
 
where iω  is the output of layer 3, and {pi, qi, ri} is 
the parameter set. Parameters in this layer are referred 
to as the consequent parameters. 
 
Layer 5: The single node in this layer is a fixed node 
labeled Σ, which computes the overall output as the 
summation of all incoming signals: 
 

21

22112

1i
ii

5
1

zzzO
ωω
ωωω

+
+

=∑=
=

. (8)

 
   It can be seen from the ANFIS architecture that 
when the values of the premise parameters are fixed, 
the overall output can be expressed as a linear 
combination of the consequent parameters: 
 

222222111111 r)(q)y(p)x(r)(q)y(p)x(z ωωωωωω +++++= . (9)
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The optimal values of the consequent parameters can 
be found by using the least-squares method (LSM). 
When the premise parameters are not fixed, the 
search space becomes larger and the convergence of 
training becomes slower. The hybrid learning 
algorithm combining the LSM and the 
backpropagation (BP) algorithm [51] can be used to 
solve this problem. This algorithm converges much 
faster since it reduces the dimension of the search 
space of the BP algorithm. During the learning 
process, the premise parameters in layer 1 and the 
consequent parameters in layer 4 are tuned until the 
desired response of the FIS is achieved.  

The hybrid learning algorithm has a two-step 
process. First, while holding the premise parameters 
fixed, the functional signals are propagated forward 
to layer 4, where the consequent parameters are 
identified by the LSM. Then the consequent 
parameters are held fixed while the error signals, the 
derivative of the error measure with respect to each 
node output, are propagated from the output end to 
the input end, and the premise parameters are updated 
by the standard BP algorithm. The weight of each 
input variable to output is also determined by 
utilizing the hybrid-learning algorithm. 
 
4. ANFIS FOR RESONANT FREQUENCY 
COMPUTATION  
 
In this paper, the ANFIS has been used to calculate 
the resonant frequencies of circular MSAs. For the 
ANFIS, the inputs are ro, h, and εr, and the output is 
the measured resonant frequencies fme. The ANFIS 
model used in computing the resonant frequencies is 
illustrated in Figure 3. 

There are two types of data generators for antenna 
applications. These data generators are measurements 
and simulations. The selection of a data generator 
depends on the application and the availability of the 
data generator. The training and test data sets used in 
this paper have been obtained from the previous 
experimental works published in seven sources [6], 
[8], [11], [14-17], and are given in Table 1. The 17 
data sets in Table 1 were used to  
 

εr 

fme 

ro 

h 
ANFIS Model for Resonant 

Frequency Calculation 

 
Fig. 3. ANFIS model for resonant frequency 
calculation. 

Table 1. The measured resonant frequencies and the 
resonant frequencies obtained from the ANFIS 
proposed in this paper for circular microstrip antennas. 

Patch 
No 

ro  
(cm)

h 
 (cm) εr h/λd 

Measured  
fme  

(MHz) 

Present 
ANFIS 
Method 
(MHz) 

1 6.800 0.08000 2.32 0.003392   835□   835 
  2* 6.800 0.15900 2.32 0.006692   829□   832 

3 6.800 0.31800 2.32 0.013159   815□   815 
4 5.000 0.15900 2.32 0.009106 1128∆ 1128 
5 3.800 0.15240 2.49 0.011567 1443∇ 1443 
6 4.850 0.31800 2.52 0.018493 1099x 1099 
7 3.493 0.15880 2.50 0.013140 1570♦ 1570 

8 1.270 0.07940 2.59 0.017336 4070♦ 4070 
9 3.493 0.31750 2.50 0.025268 1510♦ 1510 

10 4.950 0.23500 4.55 0.013785   825   825 
11 3.975 0.23500 4.55 0.017210 1030 1030 

  12* 2.990 0.23500 4.55 0.022724 1360 1360 
13 2.000 0.23500 4.55 0.033468 2003 2003 
14 1.040 0.23500 4.55 0.062659 3750 3750 
15 0.770 0.23500 4.55 0.082626 4945 4945 
16 1.150 0.15875 2.65 0.038118 4425† 4425 
17 1.070 0.15875 2.65 0.040684 4723† 4723 

  18* 0.960 0.15875 2.65 0.045006 5224† 5225 
19 0.740 0.15875 2.65 0.057146 6634† 6634 
20 0.820 0.15875 2.65 0.052300 6074† 6074 

□These frequencies are measured by Dahele and Lee [14]; 
∆this frequency is measured by Dahele and Lee [15]; ∇ this 
frequency is measured by Carver [11]; x this frequency is 
measured by Antoszkiewicz and Shafai [17]; ♦these 
frequencies are measured by Howell [8]; † these frequencies 
are measured by Itoh and Mittra [6]; the remainder are 
measured by Abboud et al. [16]. *Test data sets. 
 
 
train the ANFIS. Three data sets, marked with an 
asterisk in Table 1, were used for testing. The values 
of electrical thickness, defined as h/λd where λd is the 
wavelength in the substrate, are also given in Table 1. 
The training and test data sets used in this paper are 
the same as those used for ANNs in [41], [47]. The 
antennas given in Table 1 vary in patch radius from 
0.74 cm to 6.80 cm, and in physical thickness from 
0.0794 cm to 0.318 cm, and operate over the 
frequency range 815 MHz - 6634 MHz.  

Training an ANFIS by using the hybrid learning 
algorithm to calculate the resonant frequency 
involves presenting it sequentially with different sets 
(ro, h, εr) and corresponding measured values fme. 
Differences between the target output fme and the 
actual output of the ANFIS are evaluated by the 
hybrid learning algorithm. The adaptation is carried 
out after the presentation of each set (ro, h, εr) until 
the calculation accuracy of the ANFIS is deemed 
satisfactory according to some criterion (for example, 
when the error between fme and the actual output for 
all the training sets falls below a given threshold) or 
when the maximum allowable number of epochs is 
reached. 
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The number of epochs was 100 for training. The 
number of MFs for the input variables ro, h, and εr are 
8, 2, and 6, respectively. The number of rules is then 
96 (8x2x6=96). The type of MF is gaussian for ro and 
triangular for h and εr. It is clear from eq. (4) that the 
gaussian and triangular MFs are specified by two and 
three parameters, respectively. Therefore, the ANFIS 
used here contains a total of 424 fitting parameters, of 
which 40 (8x2+2x3+6x3=40) are the premise 
parameters and 384 (4x96=384) are the consequent 
parameters.  
 
5. RESULTS AND CONCLUSIONS 
 
The resonant frequencies computed by using ANFIS 
presented in this paper for different circular MSAs 
are listed in Table 1. For comparison, the results 
obtained by using the conventional methods  
[8], [10], [11], [16], [18-21], [24-27] and by using the 
neural models [41, 47] based on the multilayered 
perceptrons and the radial basis function networks are 
given in Tables 2 and 3, respectively. BP, EDBD, 
DBD, QP, DRS, GA, and RBFN in Table 3 represent, 
respectively, the resonant frequencies calculated by 
using multilayered perceptrons trained by 
backpropagation (BP) [51], extended delta-bar-delta 
(EDBD) [52], delta-bar-delta (DBD) [53], quick 
propagation (QP) [54], directed random search (DRS) 
[55], and genetic algorithms (GA) [56], [57], and 
calculated by using the radial basis function network 
(RBFN) [58-60] trained by EDBD algorithm. The 
sum of the absolute errors between the theoretical and 
experimental results in Tables 1, 2, and 3 for every 
method is also listed in Table 4. 

In Table 2, the results of Carver [11] were 
obtained by using the modal expansion technique. 
The formula based on the cavity model with a perfect 
magnetic wall was used by Howell [8]. The accuracy 
of the cavity model can be improved by taking modal 
and fringing field effects into consideration. In [10], 
the results were determined from the combination of 
the effective patch radius formula suggested by Shen 
et al. [9] and the relative dielectric constant. Abboud 
et al. [16] computed the resonant frequencies by 
using the dynamic permittivity constant expression 
presented by Wolff and Knoppik [7] and the effective 
patch radius expression derived from the static 
fringing capacitance formula presented by Chew and 
Kong [12]. 

The resonant frequency can be obtained 
rigorously using the vector Hankel transform method 
[13] in terms of vector dual integral equations. This 
method is mathematically complex and requires high 
performance large-scale computer resources and a 
very large number of computations. For this reason, 
Liu and Chew [18] proposed a Fortran program of 
curve-fitting formula for the resonant frequency. This 
formula was obtained by using a database built by 
Galerkin’s method, based on the formulation by 
Chew and Kong [13]. Close agreement was obtained 

between the results of the curve-fitting formula and 
the results of Galerkin’s method. However, the results 
of the curve-fitting formula are not in very good 
agreement with the experimental results, as shown in 
Tables 2 and 4.  

Roy and Jecko [19] calculated the resonant 
frequencies by using a curve-fitting formula based on 
the computed data of existing theory. For this 
formula, it is not necessary to compute the zeros of 
the derivative of the Bessel function, however, it is 
clear from Tables 2 and 4 that the results obtained 
from the formula are not in very good agreement with 
the experimental results. The results of Guney [20] 
were determined by using the effective values for 
both the patch radius and the substrate permittivity. 

The moment-method is one of the most widely 
used methods in analyzing the performance of MSAs. 
This method is not practical as a quick antenna design 
aid because its computational cost is high due to the 
evaluation of the slowly decaying integrals and the 
iterative nature of the solution process. Because of 
this problem, Lee and Fan [21] presented the curve-
fitting formulas based on the moment-method results. 
These relatively simple formulas allow designers to 
calculate the resonant frequencies for a given design 
without having to develop or run the moment-method 
code themselves. It was shown in [21] that the 
resonant frequencies predicted by the curve-fitting 
formulas agree well with the moment-method results. 
However, it is apparent from Tables 2 and 4 that the 
results of these formulas are not in very good 
agreement with the experimental results.  

In [24], [25], the simple effective patch radius 
expressions obtained from the tabu search and genetic 
algorithms have been presented for calculating the 
resonant frequency. The tabu search and genetic 
algorithms were used to determine optimally the 
unknown coefficient values of the models chosen for 
the effective patch radius expressions.  

Gurel and Yazgan [26] computed the resonant 
frequencies by using an effective patch radius 
expression combined with the proper effective 
permittivity formula. In order to improve the 
accuracy of the calculations in [26], a modified 
dynamic permittivity formula was also used by Gurel 
and Yazgan [27]. 

It can be clearly seen from Tables 2 and 4 that the 
conventional methods give comparable results. Some 
cases are in good agreement with measurements, and 
others are far off. The best result among conventional 
methods is obtained from the formulas proposed by 
Akdagli and Guney [25]. 

As it is seen from Tables 2, 3, and 4, the results of 
all neural models are better than those predicted by 
the conventional methods. These results clearly show 
the superiority of ANNs over the conventional 
methods. When the performances of neural models 
presented in [41], [47] are compared with each other, 
the highest accuracy was achieved with the ANN 
trained by the EDBD algorithm.  
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Table 2. Resonant frequencies obtained from conventional methods available in the literature  
[8, 10, 11, 16, 18-21, 24-27] for circular microstrip antennas. 

Conventional Methods in the Literature Patch 
No 

Measured 
fme  

(MHz ) [11] [8] [10] [16] [18] [19] [20] [21] [24] [25] [26] [27] 

1   835   845   849   840   842   844   838   841   840   843   840   842   839
2   829   842   849   833   837   839   831   836   832   838   831   837   833
3   815   834   849   821   826   829   819   826   818   828   815   827   824
4 1128 1141 1154 1127 1133 1136 1124 1132 1125 1135 1123 1133 1129
5 1443 1445 1466 1427 1436 1439 1423 1435 1423 1438 1432 1436 1431
6 1099 1115 1142 1098 1105 1109 1095 1105 1091 1107 1100 1107 1103
7 1570 1565 1580 1545 1555 1559 1541 1554 1539 1558 1550 1556 1550
8 4070 4203 4290 4145 4175 4187 4134 4173 4120 4183 4168 4179 4163
9 1510 1539 1580 1513 1522 1529 1509 1523 1498 1524 1510 1525 1520

10   825   818   833   818   827   827   816   825   817   824   823   827   823
11 1030 1014 1037 1016 1027 1027 1013 1026 1013 1024 1022 1028 1023
12 1360 1339 1379 1344 1358 1360 1340 1359 1336 1355 1352 1361 1355
13 2003 1972 2061 1990 2009 2012 1984 2012 1966 2007 2002 2015 2009
14 3750 3627 3963 3749 3744 3737 3739 3752 3634 3750 3750 3750 3751
15 4945 4722 5353 5001 4938 4922 4987 4943 4817 4948 4945 4932 4944
16 4425 4461 4695 4399 4413 4437 4388 4422 4328 4422 4413 4423 4415
17 4723 4776 5046 4712 4723 4749 4699 4731 4630 4730 4722 4733 4725
18 5224 5289 5625 5223 5226 5257 5209 5237 5121 5231 5224 5237 5231
19 6634 6733 7297 6679 6644 6684 6661 6658 6499 6634 6636 6652 6651
20 6074 6125 6585 6063 6047 6084 6046 6061 5920 6046 6043 6057 6054

 
 
 

Table 3. Resonant frequencies obtained by using artificial neural networks (ANNs) presented in 
[41, 47] for circular microstrip antennas. 

Artificial Neural Networks (ANNs) [41, 47] Patch 
No  

Measured 
fme  

(MHz) BP EDBD DBD QP DRS GA RBFN 
1   835   835   835   835   835   835   930   835 
2   829   828   828   828   828   932   898   812 
3   815   815   815   815   815   816   899   815 
4 1128 1128 1128 1128 1126 1126   944 1129 
5 1443 1443 1443 1443 1446 1443 1435 1440 
6 1099 1099 1099 1099 1100 1098 1081 1099 
7 1570 1570 1570 1570 1568 1572 1582 1572 
8 4070 4070 4070 4070 4070 4070 4028 4070 
9 1510 1510 1510 1510 1509 1510 1516 1510 

10   825   825   825   825   826   828   885   826 
11 1030 1030 1030 1030 1029 1024 1013 1029 
12 1360 1361 1361 1364 1357 1362 1198 1399 
13 2003 2003 2003 2003 2003 2007 1996 2004 
14 3750 3750 3750 3750 3750 3747 3751 3749 
15 4945 4945 4945 4945 4945 4947 4943 4946 
16 4425 4425 4428 4425 4426 4413 4471 4427 
17 4723 4723 4720 4723 4721 4732 4690 4719 
18 5224 5233 5224 5232 5225 5261 5184 5230 
19 6634 6634 6634 6634 6633 6617 6632 6630 
20 6074 6074 6075 6074 6075 6094 6078 6080 
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Table 4. Sum of absolute errors between measured 
and calculated resonant frequencies. 

Methods  

Total absolute 
deviations from 

the measured 
data (MHz) 

ANFIS Present 
Method 4 

[11] 965 
[8]         3341 

[10] 337 
[16] 253 
[18] 383 
[19] 380 
[20] 253 
[21]         1047 
[24] 253 
[25] 207 
[26] 275 

Conventional 
Methods in the 

Literature 

[27] 235 
BP  11 

EDBD   9 
DBD  13 
QP  21 

DRS 224 
GA 892 

Artificial Neural 
Networks (ANNs)  

[41, 47] 

RBFN  89 
 

It is evident from Tables 1-4 that the results of 
ANFIS show better agreement with the experimental 
results as compared to the results of the conventional 
methods [8], [10], [11], [16], [18-21], [24-27] and the 
ANN models [41], [47]. The excellent agreement 
between the experimental results and our computed 
resonant frequency results supports the validity of the 
ANFIS model proposed in this paper.  

For accurately computing the various parameters 
of complicated antenna structures, the ANFIS can be 
used but it should be trained by using appropriate 
training data sets. The training data sets should 
contain desired input/output data pairs of the target 
antenna to be modeled. A prominent advantage of the 
ANFIS model is that, after proper training, ANFIS 
completely bypasses the repeated use of complex 
iterative processes for new cases presented to it. Even 
if training takes a few minutes, the test process takes 
only a few microseconds to produce the resonant 
frequency. ANFIS are also less susceptible to the 
noise inherent in measured data and antenna 
imperfections [61]. 

In the last decade, ANNs have been widely used 
to solve antenna and electromagnetic engineering 
problems as a fast, accurate, and flexible method  
[62], [63]. However, better results can be obtained by 
using the ANFIS in solving these problems because 
the ANFIS is a very effective modeling scheme 
combining the benefits of both ANNs and FISs in a 
single model. We expect that the ANFIS will find a 

wide application area in antenna and electromagnetic 
engineering as ANNs did.  

In this study, the ANFIS is trained and tested 
with the experimental data taken from the previous 
experimental works [6], [8], [11], [14-17]. It is 
apparent from Tables 2 and 4 that the theoretical 
resonant frequency results of the conventional 
methods are not in very good agreement with the 
experimental results. For this reason, the theoretical 
data sets obtained from the conventional methods 
are not used in this work. Only the measured data 
set is used for training and testing the ANFIS. It 
also needs to be emphasized that better results may 
be obtained from the ANFIS either by choosing 
different training and test data sets from the ones 
used in the paper or by supplying more input data 
set values for training.  

In this paper, only the lowest resonant frequency 
f11 for the TM11 mode is calculated by using the 
ANFIS because this circular microstrip patch mode 
is widely used in MSA applications. However, the 
ANFIS can be easily adapted to compute the 
resonant frequencies of higher-order modes of 
practical interest if the data sets for these modes are 
available. It must also be emphasized that the 
proposed ANFIS method is not limited to the 
resonant frequency calculation of circular MSAs. 
This method can be easily applied to other antenna 
and microwave engineering problems. Accurate, 
fast, and reliable ANFIS models can be developed 
from measured/simulated antenna data. Once 
developed, these ANFIS models can be used in 
place of computationally intensive numerical 
models to speed up antenna design. 

As a result, the ANFIS trained by means of the 
measured data is presented to calculate accurately 
the resonant frequency of circular MSAs with 
substrates with 2.32 ≤ εr ≤ 4.55 and  
0.0794 cm ≤ h ≤ 0.318 cm. A hybrid learning 
algorithm is used to optimize the parameters of 
ANFIS. The results of ANFIS are in excellent 
agreement with the measurements, and better 
accuracy with respect to the previous conventional 
methods and neural models is obtained. The ANFIS 
offers an accurate and efficient alternative to 
previous methods for the calculation of the resonant 
frequencies.  
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ABSTRACT 
 

This paper presents an implementation of an 
iterative method based on the waves concept for 
analyzing patch antennas fed by coaxial probes. 
This method includes a two-dimensional fast 
Fourier transform (FFT-2D) in a wave guide 
environment. The method has the advantage of 
simplicity in that it does not involve basis functions 
and inversion of matrices, as used in other 
calculation methods. Therefore, it is capable of 
analyzing larger bodies than other classical 
techniques. An implementation of the iterative 
calculation is shown for the extraction of S 
parameters of microwave components and 
antennas. The good agreement between simulation 
results and experimental published data justifies 
the design procedure and validates the present 
analysis approach. 

 
INDEX TERMS :   Iterative method, fast Fourier 
transform in  waveguide environment, probe feed. 

 
I-  INTRODUCTION 

 
Microstrip patch antennas are widely used in wireless 
communication because of their advantages, such as 
being low profile, light weight, and conformal. 
Different numerical electromagnetic analysis 
techniques such as the method of moments [1], the 
finite elements method [2], and the finite difference 
time domain method can be used to accurately 
simulate the microstrip antenna [3]. In most cases 
those numerical techniques are not practical to use 

directly in CAD software for design and optimisation 
purposes, due to the enormous amount of computer 
time required. Circuit simulators on the other hand are 
very fast. However, models of microwave integrated 
circuits used in circuit simulators are often inaccurate 
or even invariable. To overcome these difficulties, the 
use of the iterative method, which is based on the 
concept of waves, has been proposed. It consists of 
generating a recursive relationship between incident 
waves and reflected waves at the interface containing 
the circuit which is divided into cells [4]. A high 
computational speed has been achieved by using 2D 
fast Fourier Transform in wave-guide environment [5]. 
 
In this paper, a general implementation of the iterative 
method is proposed to treat microstrip patch antennas. 
The theory as well as its procedure implementation is 
described. The numerical results are compared to 
measured data [8] to establish the validity and 
usefulness of the iterative method given in this study. 
 
 
II- GENERAL FORMULATION OF ITERATIVE 

METHOD 

We consider the shielded microstrip circuit, assumed 
to be loss-less, presented in Fig. 1. 
The air-dielectric interface π is divided into cells 
denoted by three sub-domains corresponding to metal, 
source and dielectric. 
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Figure . Typical planar circuit.
ve concept is introduced by writing the 
se (plane π) electric field Ei and current 
Ji in terms of incident and reflected waves [5]. 
to the following set of equations:  
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 equivalent to a magnetic current density.  

t Fourier Transform (FFT-2D) in waveguide 
ent is then used to obtain two spectral waves  

 Bi TM in each region. Then, these spectral 
re reflected in the spectral domain of the 

1) and Region(2) as described in Fig. 2. 

 
 
 

 
 

The travelling part of these waves is then stored in 
memory, whereas the evanescent part constitutes the 
incident waves for the second iteration. The 
implementation of the iterative process consists of 
establishing a recursive relationship between waves 
(incident and reflected) at the q and q-1 iteration. 
 
Initially, the interface circuit (plane (π)) on which the 
boundary conditions have to be satisfied (spatial 
domain) must be meshed. 
 
Let us note Hd and Hm the indicator functions of 
respectively the dielectric and metal. These are equal 
to one in the considered domain and zero elsewhere. 
Due to the continuity relationship (Et1=Et2 and J1+ J2=0 
on the dielectric, Et1=Et2=0 on the metal) in each point 
of the discontinuity plane, it is easy to deduce from the 
equation (1) and (2) the following system:  
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Then the  scattering matrix corresponding to the metal 
and dielectric domains can be expressed as follows: 
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Hm=1 on the source and 0 elsewhere. 

Hd=1 on the source and 0 elsewhere.   

       

• Sub-domain of the source 
There are numerous possibilities for choosing the 
source. The most simple consist in a realistic 
description of the excitation by a microstrip line 
(Fig.1). 
This source generates two waves on both sides of 
the interface. The boundary condition on the    
source can be written as follows: 
 

E1 =E2 = E0 – Z0(J1+J2). 
Then the scattering matrix on the sub-domain source 
is expressed as 

 
The drawback of this source is that we must use a box 
with electric walls to connect the source to the ground 
plane.  
 Another technique of spatial excitation is described in 
Section (III). 

The waves Bi
α are reflected on the upper and 

lower parts of the structure.  Consequently, in spectral 
domain the relation between waves become: 
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III- MODELISATION OF PROBE FEED 

The coaxial current probe offers a more realistic 
method to excite currents on a patch antenna [9]-[10]. 
The coaxial probe is connected through the ground 
plane with the centre conductor embedded vertically 
and terminated on the patch surface, where the outer 
conductor of the coax is connected to the ground 
plane. Figure 3 shows the attachment of the coaxial 
probe to the patch antenna surface.  
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The purpose is to determine the relationship between 
B1, B2 and A1, A2 on the sub-domain source. 
 

Figure 3. Microstrip patch antenna excited by coaxial 
probe feed. 
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We suppose that there are four metallic cells on the 
discontinuity plane (P1) which are connected to the via 
hole. In this case the current density distribution is 
illustrated in Fig.4. 

 
 
 
 
 
 
Let us note that I is the current excitation that verifies 
the following relationship: 
 

IhJ =× .                                                              
 
According to Fig.4, it is possible to establish the 
following relationship: 
 

JJJJJ =+++ 4321 .                                         
 
The vector J which characterizes the 
distribution on the pixels of the discontinu
hole-patch) is given by:  
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In order to modelize the discontinuity ( via hole
P1), we assume that only fundamental mode 
propagated in the via hole and the other mo
evanescent. The passage from four cells charac
the current density J to modes and vice versa
considered as multi-port network depicted in Fi
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Q is a two-port network which characterizes the via 
hole, using the theory of transmission lines. 

XJ2 
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The scattering matrix of this two-port network is given 
by: 
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 Consequently, the relationship between waves a2, a3, 
b2, and b3,   can be deduced: 

Figure 4. Bottom view of the patch antenna:
Distribution of magnetic field on the discontinuity
patch-via hole. 
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The expression of the matrix M characterizing the 
multi-port network is demonstrated in reference [6]. It 
is given by the following equation: 
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Therefore, the relationship between incident and 
reflected waves is: 
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(7)

The source can be modelized by the equivalent circuit 
illustrated in Fig. 6. 



As is known from the equivalent circuit given in fig.6, 
it is possible to deduce: 
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Let us assume that the source excites  the m
However the magnitude of b3 = 0. Using the eq
(5) and (6) we deduce: 
 

322 )1( JaeAJJB jt θ+−=  .                        
 
According to equations  (7) and (11) we deduce
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The complete scattering matrix can be expresse
follows 
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At  iteration, it is possible to calculate the electric 
field and current density at interface plane: Figure 6. Equivalent circuit of the source. 
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IV- RESULTS AND DESIGN EXA

As an application, we are interested 
two differents shapes of patch ant
developed a program to calculate the
and the reflection coefficient of each a
 
1. Rectangular patch antenna: 
The first example is a rectangula
deposited on substrate with relative d
εr = 2.2. The coaxial probe is attac
antenna at (xc, yc). 
 
In this case, the circuit plane is me
square cells. 
 
 c
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Figure 7. Rectangular patch antenna 
c=100mm, d=76mm, a=25mm, b=19
yc=34,5mm , 2.2=rε . 
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First,  the convergence of parameters is tested. 
In Fig. 8, The real part of Zin is illustrated as function 
of the iteration number. It is seen that convergence is 
achieved for 160 iterations. 
The iterative process is terminated when the 
convergence is reached. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

iterat io ns

 

Figure 10 shows that the second resonance frequency 
is eliminated when the position of probe feed 
excitation is at the center of the patch antenna 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Input impedance of rectangular patch antenna  
c=100mm, d=76mm, a=25mm, b=19mm, xc=0, yc=0, 
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Figure 8: Real part of Zin  as function of the iteration
number. 
Figure.9. show the comparison between simulation 
and measured data reference [7]. It is seen that the 
error between them is 5 to 7%. The error can be 
minimized by meshing the structure with high 
resolution (128x128 pixels).  
 
 

 ε
 

2.2=r . 

2. Patch Inverted-F Antenna (PIFA):   
The antenna was printed on a thin, flexible Mylar 
substrate. The end of the ground plane is wrapped 
around the former, reducing the overall length of the 
antenna by the height without affecting the antenna 
performance.  
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Figure 11 shows the geometries and dimensions of the 
studied structure. 
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Finally the reflection coefficient is extracted and 
compared in Fig. 12 to the measured response given in 
reference [8], an agreement between them is observed. 
 
IV- CONCLUSION 

 
An iterative technique based on the concept of waves 
has been used for the simulation of the input 
impedance of rectangular patch antenna and the 
reflection coefficient of PIFA antenna. Thanks to its 
simplicity, the presented method does not involve 
bases functions and inversion of matrix. The good 
agreement between computed and published results 
justifies the design procedure and validates the present 
analysis approach. Consequently, the present approach 
will be investigated for further new applications such 
as air bridges, diodes, active elements. 
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