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Abstract 

A novel time-domain technique is proposed for the analysis of 

MEMS-based variable devices involving motion to arbitrary 

in-plane directions using the adaptive body fitted grid 

generation method with moving boundaries. MEMS 

technology is growing rapidly in the RF field and the accurate 

design of RF MEMS switches that can be used for phase 

shifting or reconfigurable tuners requires the computationally 

effective modeling of their transient and steady-state behavior 

including the accurate analysis of their time-dependent moving 

boundaries. Due to the limitations of the conventional 

time-domain numerical techniques, it is tedious to simulate 

these problems numerically. The new technique proposed in this 

paper is based on the time-difference time-domain method with 

an adaptive implementation of grid generation. Employing this 

transformation, it is possible to apply the grid generation 

technique to the analysis of geometries with time-changing 

boundary conditions. A variable capacitor that consists of two 

metal plates that can move to arbitrary in-plane directions is 

analyzed as a benchmark. The numerical results expressing the 

relationship between the velocity of the plates and the 

capacitance are shown and the transient effect is accurately 

modeled. 

 

1. Introduction 

The accurate knowledge of the electromagnetic field variation 

for a moving or rotating body is very important for the 

realization of new optical  or microwave devices, such as the 

RF-MEMS structures used in phase-shifters, couplers or filters 

[1,2]. Computational method for moving boundary problems 

have been presented earlier in heat and fluid flow area [3-6]. In 

this paper, we propose a new numerical approach for the 

analysis of this type of problems that alleviates the limitations of 

the conventional time-domain techniques in the electromagnetic 

field [7-12] and shows good agreement with analytical results 

[13]. Employing the transformation with the time factor, it is 

possible to apply the grid generation technique of [14] to the 

time-domain analysis of geometries with  moving objects.  

With such a grid, the FD-TD method can be solved very easily 

on a “static” (time-invariant) rectangular mesh regardless of the 

shape and the motion of the physical region, something that 

makes it an especially good tool to analyze arbitrary shape and 

motion. In this paper, this simulation method is applied to the 

analysis of a two-dimensional MEMS variable capacitor with 

arbitrary in-plane motions of its interdigitated fingers. 

 

2. General Theory of the Body-Fitted Grid Generation 

Method with Moving Boundaries 

This technique is based on the finite-difference time-domain 

(FD-TD) method with an adaptive implementation of grid 

generation. The key feature of this method is that the time factor 

is added to the conventional numerical grid generation. We have 

improved the grid generation of [14] to the present one having a 

coordinate line coincident with arbitrarily shaped moving 

boundaries or moving bodies. Employing this transformation, it 

is possible to apply the grid generation technique to the analysis 

of geometries with time-changing boundary conditions. With 

such a grid, the FD-TD method can be solved very easily using 
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a time-invariant square grid (rectangular computational region) 

regardless of the shape and the motion of the physical region. 

Employing the transformation with the time factor, the partial 

differential equation in the physical region ),,,( tzyx is 

related to the computational region ),,,( τςηξ  as follows 

),,,( τςηξxx = ,             (1) 

),,,( τςηξyy = ,              (2) 

),,,( τςηξzz = ,             (3) 

),,,( τςηξtt = .                (4) 

 

The inverse transformation is given by 

),,( zyxξξ = ,                     (5) 

),,( zyxηη = ,                     (6) 

),,( zyxςς = ,                         (7) 

),,( zyxττ = .                         (8) 

 

According to the transformation, the first derivatives are 

transformed as follows, 
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The inverse transformation is given by, 
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where the matrices K and L are given by 
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By this transformation, there is a unique correspondence 

between the computational region and the physical region. The 

transformed region can be easily solved in the rectangular 

computational region by FD-TD method. The stability criterion 

for FD-TD algorithm is discussed in [8]. 

 

3. Two Dimensional Variable Capacitor with Arbitrary 

Motions 

The geometry to be considered here is shown in Fig. 1. Under 

the combined effect of mechanical and electrical force, the two 

plates are assumed to move with different velocities to arbitrary 

in-plane directions. For the two-dimensional TM-propagation 

case,  there are only Ex, Ey, Hz nonzero components with a 

time variation given by the following equations, 










∂
∂

−
∂

∂
=

∂
∂

x

E

y

E

t

H yxz

µ
1 ,         (13) 









−

∂
∂

=
∂

∂
x

zx J
y

H

t

E

ε
1 ,         (14) 








 +
∂

∂
−=

∂
∂

y
zy

J
x

H

t

E

ε
1 ,       (15) 

 

where ε, µ are the constitutive parameters of the respective 

media. In Fig. 1, the configurations of the physical and of the 

computational regions are shown. The interdigitated fingers are 

assumed to move to arbitrary directions in the xy-plane with 

velocities v and u, respectively and the direction of their motion 

is shown by the angles vθ  and 
uθ . Using a coordinates’ 

transformation technique, the time-changing physical region 

(x,y,t) can evolve to a time-invariant computational domain 

),,( τηξ . To transform the equations, it is easy to separate the 

physical region in 25 subregions, where (n, m) are the indices of 

each subregion in x- and y-direction. The number of subregions 

depends on the geometry of the moving parts of the geometry. 
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Different subregions are characterized by different velocities in 

amplitude and/or direction.  The transform equations between 

the physical and the computational regions are chosen as  
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where n=1, 2, 3, 4, 5 m=1, 2, 3, 4, 5 and ),(0 th  ),(1 th  

),(2 th ),(3 th ),(4 th ),(5 th ),(0 tg ),(1 tg ),(2 tg ),(3 tg

),(4 tg )(5 tg  are written in the following form assuming that 

the plate velocities remain constant for the whole time of their 

motion. 1−nα , 1−mβ are coefficients to normalize the 

computational region. The coordinates 4321 ,,, xxxx , and 

4321 ,,, yyyy  represent the initial positions of the plates, 

 

tvxth v )cos()( 11 θ+= ,      (19) 

tuxth u )cos()( 22 θ+= ,         (20) 

tvxth v )cos()( 33 θ+= ,         (21) 

tuxth u )cos()( 44 θ+= ,         (22) 

tuytg u )sin()( 11 θ+= ,        (23) 

t,vytg v )sin()( 22 θ+=      (24)  

t,vytg v )sin()( 33 θ+=             (25)  

t,uytg u )sin()( 44 θ+=             (26) 

 

The functions h1( t ), h2( t ), h3( t ), h4( t ), g1( t ), g2( t ), g3( t ), 

g4( t ), describe the movement along the x and y axis, 

respectively, and allow for the realization of a rectangular grid 

with stationary boundary conditions, where h0( t ) = 0, h5( t ) = 

Lx, g0( t ) = 0, g5( t ) = Ly, 0 ≤ θu ≤ 360o, 0 ≤ θv ≤ 360o. By 

choosing the angles, it is easy to apply this technique for the 

analysis of arbitrary motions. The partial time-derivatives in the 

transformed domain (ξ,η,τ) can be expressed in terms of the 

partial derivatives of the original domain (x,y,t) using eqs. 

(16)-(26). The FDTD technique can provide the time-domain 

solution of the rectangular (ξ,η,τ) grid. The stability criterion in 

this case is chosen as c ∆t ≤ δ / 0.707, where δ = ∆xo = ∆yo 

assuming the grid is uniformly discretized in both directions. In 

general, δ is the minimum space increment (minimum cell 

size) for x and y directions [8]. 

 

4.  Numerical Results 

To validate this approach, numerical results are calculated for a 

two-dimensional variable capacitor with its fingers moving only 

to the x-direction. The grid includes 200x200 cells  where Lx = 

Ly  = L = 5λ, ∆x = ∆y = L/200, and ∆t = L/800c. In this case, as 

the plates are moving only to the x-direction away from each 

other, the angles are 180,0 == vu θθ and as the plates are 

approaching other, the angles are 0,180 == vu θθ . The 

initial plate separation is 5L  and the grid is terminated with 

Mur’s absorbing boundary conditions. The relation between the 

velocity and the transient value of the capacitance between the 

moving fingers, assuming that they start to move away and 

approach each other at t=40 time-step and stop at t=60 time-step, 

is shown in Fig. 2. The capacitance is derived from [15] and is 

calculated in the area of no.43 in Fig. 2. Theoretically, the value 

of the capacitance is derived from C = ε0S/d, where d = λ, S = 

λ×1. The stationary value (u=v=0) in Fig. 2, is agreed with this 

theoretical value. It can be observed that different velocity 

values lead to different values of the capacitance, since they 
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Fig. 1. Physical region (top graph) and 

computational (bottom graph) region. 
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affect the spacing of the fingers for a specific to time-step. Fig. 3 

displays computational results of the time dependence of the 

transient capacitance for velocity values in the range of 

cvu 3102 −×==  to cvu 3108 −×== , assuming that the 

plates move away from each other from t=10 time-step to t=60 

time-step. The horizontal axis indicates the normalized time 

expressed in time steps and the vertical axis indicates the value 

of the transient capacitance. The stationary value (v=u=0) is 

displayed for reference reasons and demonstrates a (smoother) 

time-variation due to the time evolution of the excitation 

function itself. In Fig. 4, the time dependence of the transient 

capacitance is demonstrated for various velocity values, 

assuming that the plates approach each other from t=20 

time-step to t=60 time-step. Following this approach other, the 

angles are 180,0 == vu θθ and as the plates are approaching 

other, the angles are 0,180 == vu θθ . The initial plate 

separation is 5L  and the grid is terminated with Mur’s 

absorbing boundary conditions. The relation between the 

velocity and the transient value of the capacitance between the 

moving fingers, assuming that they start to move away and 

approach each other at t=40 time-step and stop at t=60 time-step, 

is shown in Fig. 2. The capacitance is derived from [15] and is 

calculated in the area of no.43 in Fig. 2. Theoretically, the value 

of the capacitance is derived from dSC 0ε= , where 

1, ×== λλ Sd . The stationary value (u=v=0) in Fig. 2, is 

agreed with this theoretical value.  

It can be observed that different velocity values lead to different 

values of the capacitance, since they affect the spacing of the 

fingers for a specific to time-step. Fig. 3 displays computational 

results of the time dependence of the transient capacitance for 

velocity values in the range of cvu 3102 −×==  to 

cvu 3108 −×== , assuming that the plates move away from 

each other from t=10 time-step to t=60 time-step. 
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F ig. 2. Capacitance versus velocity. 
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Fig. 3. Time dependence of transient capacitance for each 

velocity, where plates go away from t=10 time 

steps to t=60 time steps. 

0.00E+00

2.00E-12

4.00E-12

6.00E-12

8.00E-12

1 21 41 61 81

Time step

 C
ap

ac
ita

nc
e 

(F
)

u=v=2e-3*C

u=v=1e-3*C

u=v=0

 

Fig. 4. Time dependence of transient capacitance for each 

velocity, where plates approach each other from 

t=10 time- steps to t=60 time-steps. 

136 ACES JOURNAL, VOL. 19, NO. 1b, MARCH 2004



 

  

The horizontal axis indicates the normalized time expressed in 

time steps and the vertical axis indicates the value of the 

transient capacitance. The stationary value (v=u=0) is displayed 

for reference reasons and demonstrates a (smoother) 

time-variation due to the time evolution of the excitation 

function itself. In Fig. 4, the time dependence of the transient 

capacitance is demonstrated for various velocity values, 

assuming that the plates approach each other from t=20 

time-step to t=60 time-step. Following this approach for the 

whole period of the motion of the fingers, it is easy to perform 

an accurate analysis of the transient response of the structure and 

predict the ringing parasitic effects. It is clear that the transient 

effect is more pronounced for the higher values of velocity. 

 

Conclusions 

A novel time-domain modeling technique that has the capability 

to accurately simulate the transient effect of variable capacitors 

with arbitrary in-plane motion of their plates has been proposed. 

This technique is a combination of the FDTD method and the 

body fitted grid generation technique. The key point of this 

approach is the enhancement of a space and a time 

transformation factor that leads to the development of a 

time-invariant numerical grid. The numerical results of the 

relation between the capacitance and the velocity of the motion 

are shown for a MEMS capacitor and demonstrate the proposed 

technique’s  unique computational advantages in the modeling 

of microwave devices with moving boundaries. 
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