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Abstract: The electrical properties of IC interconnects at 
multi-GHz frequencies must be described with Max-
well’s equations. We have created an entirely new float-
ing random-walk (RW) algorithm to solve the time-
harmonic Maxwell-Helmholtz equations. Traditional 
RW algorithms for Maxwell-Helmholtz equations are 
constrained to length scales that are less than a quarter-
wavelength. This is because of the problem of resonance 
in finite-domain Green’s function for Helmholtz equa-
tion at multiple quarter-wavelength length scales. In this 
paper, we report the major discovery of extending our 
floating RW algorithm beyond a quarter-wavelength. 
The problem of Green’s function resonance has been 
eliminated by the use of an infinite-domain Green’s 
function. In this work, we formulate this algorithm and 
describe its successful application to homogeneous and 
heterogeneous 1D problems and homogeneous 2D prob-
lems. We believe, that with additional work, this RW 
algorithm will prove useful in the development of CAD 
tools for electromagnetic analysis of IC interconnect 
systems. It can be noted that the algorithm exhibits full 
parallelism, requiring minimal interprocessor communi-
cation. Thus, significant performance enhancement can 
be expected in any future parallel software or hardware 
implementation. 
 
Keywords: Floating random-walk method/algorithm, 
Dirichlet-Neumann algorithm, Maxwell-Helmholtz 
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1. Introduction 
 

Fundamentally, the electrical properties of advanced 
multilevel IC interconnects at present multi-GHz fre-
quencies must be described with Maxwell’s equations. 
Traditional numerical methods[1-3] require, usually, a 
discretization mesh.   Mesh size and resultant difficulty 
of solution become somewhat unmanageable in compli-
cated 3D problem domains. The RW algorithm that we 

present here does not involve the use of a mesh. In es-
sence, the algorithm executes a Monte Carlo integration 
[4] of an infinite series of multi-dimensional integrals [5] 
by means of random walks (RWs) through the problem 
domain. These integrals contain both “surface” and 
“volume” Green’s function kernels. Conventional RW 
algorithms for Maxwell-Helmholtz equation are con-
strained to sub-quarter-wavelength length scales. This is 
due to the mathematical difficulties associated with un-
wanted multiple quarter-wavelength resonances [6] in 
finite-domain Green’s functions. In this work, the prob-
lem of finite-domain Green’s function resonance has 
been eliminated by the use of an infinite-domain Green’s 
function. The additional complexity of having now to 
propagate RWs for both the field and its derivative pre-
sents little practical difficulty. In the next section, we 
present the RW equations for the time-harmonic Max-
well-Helmholtz equations in 1D and 2D. 

2. Random-Walk Equations 

Consider the 1D time-harmonic Maxwell-Helmholtz 
equation with a source term on the right-hand side 
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The quantity A is the field variable of interest and k is a 
constant wave vector whose magnitude is determined by 
the frequency and material properties of the problem 
domain. Both the boundary value and derivative are as-
sumed to be known at the two endpoints of the 1D prob-
lem domain. Now, one may wonder why we want to 
solve an “over-specified” problem. This criticism can be 
countered by observing that in IC-interconnect struc-
tures, the current is specified at certain conducting re-
gions. These currents appear as source terms in the right 
hand side of the Helmholtz equation given in (1). Inte-
grals involving these source terms will appear in our RW 
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formulation and the RWs will terminate at infinity, that 
is, at large distances from the interconnect structure, 
where the field vector of interest and its spatial deriva-
tives are known to be zero from physical considerations. 
The non-zero contributions to the RW solution will come 
from integrals involving source terms. So, having estab-
lished the motivation for solving the 1D problem of in-
terest, we can write the Green’s function differential 
equation associated with (1) 
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where δ (x−x0) is the Dirac delta function centered at x = 
xo . There can be any number of Green’s functions satis-
fying equation (2), depending on the arbitrary nature of 
boundary conditions applied to (2). In a previous 
work[6], we have employed one such finite-domain 
Green’s function that vanishes at problem-domain 
boundaries For instance, over –L ≤ x ≤ L, such a Green’s 
function has the form 
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The use of a finite-domain Green’s function like the one 
in (3) produces the most economical set of RW equa-
tions, and is traditional in RW literature. On the other 
hand, it is precisely this form of the finite-domain 
Green’s function that generates unwanted multiple quar-
ter-wavelength resonance, produced by the zeros in the 
denominator of (3). 
 
In this work, we suggest the use of an infinite-domain 
Green’s function, where both the boundary value and the 
boundary derivative never simultaneously vanish at do-
main boundaries. One such Green’s function satisfying 
(2) is, for example, 
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Using (4), the problem of quarter-wavelength resonance 
can be avoided, at the minimal expense of now propagat-
ing, by RWs, both field values and derivatives through 
the problem domain. We therefore call this new modifi-
cation a D-N floating  RW algorithm, where “D-N” sig-
nifies “Dirichlet-Neumann”. To obtain the RW equa-
tions, we multiply (1) by and (2) by and 
subtract one from the other, which yields 

)|( oxxG )(xA
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Integrating (5) from L−  to , yields L+

                   

             (6)              
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In the zero-centered notation, meaning 0=ox , (6) can 
be written as 
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where ),0|()( ),0|()( LGLGLGLG xx ==  and so forth. 
Taking a derivative of (6) with respect to , and writing 
in zero-centered notation, gives 

ox
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Equations (7) and (8) can be written in the vector-matrix 
form 
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where A and Ax at the center of the domain oxx = , re-
lates to the hop-interval endpoint values at x = ±L. The 
different derivatives of the infinite-domain Green’s func-
tion in (4), which shows up in the matrix-equation (9) are 
given by 
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In the 2D case, the infinite-domain Green’s function 
chosen is 

( . 
4
1)( oo rrr|r −= kYG o )                    (11)                       

Above,  represents Neumann function of zeroth order. 
Using the Green’s function in (11), we can solve for the 
2D Helmholtz equation with an arbitrary forcing func-
tion

oY

),( φrf . Following a procedure identical to the one 
that led to the derivation of (7) and (8), the field variable 
A of interest, and its derivative at the center (ro = 0) of a 
circular domain of radius R are given by 
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Here, subscripts denote differentiation. The different 
derivatives of the infinite-domain Green’s function given 
in (11) with respect to r  and ro  are given by 
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Thus, we have formulated the RW propagation equations 
for solving the Helmholtz equation in 1D and 2D. In the 
following section, we will present the results for test 
problems in 1D and 2D. 
 
 

3. Benchmark Problems 
 
We have chosen four benchmark problems. The first two 
problems involve the solution of Helmholtz equation in 
1D. The first problem involves the solution of Helmholtz 
equation in a medium with real propagation constant (k = 
1.0) with a sinusoidal (kf = 1.5) forcing term. A real 
propagation constant corresponds to insulating medium, 
while a complex propagation constant corresponds to 
conducting medium. The analytical solution chosen is 
proportional to the forcing term. The rationale behind the 
choice of a sinusoidal forcing term is that any forcing 
function, piecewise continuous in the problem domain of 
interest can be decomposed into an infinite sum of sinu-
soids. The second problem involves a heterogeneous 
problem domain with a real propagation constant (k = 
3.0) on the left and a complex propagation constant (k = 
3.0 + 0.4i). An analytical solution of the 
form )cos()sin( kxBkxA + is imposed on either side of 
the interface, while maintaining the continuity of the 
solution and its derivative at the interface. The third and 
the fourth problem involve the solution of 2D Helmholtz 
equation in insulating medium. For the third problem, we 
have chosen a circular cross section whose radius is 
equal to twice the wavelength in normalized length 
scales with k = 1. The solution imposed on the problem 
domain is the Bessel function of zeroth order. For the 
fourth problem, we have chosen a Fourier mode solution 
in a square problem domain whose side is equal to four 
times the wavelength in normalized length scales with k 
= 1. The field variable of interest A is zero in the top 
bottom and right boundary line; along the left boundary 
line A is equal to )/cos( Lyπ , where L represents the 
length of the side of the square domain with  y = 0 coin-
ciding with the bottom boundary line. The reason behind 
choosing such a solution is again that any piecewise con-
tinuous boundary condition can be decomposed into in-
finite number of such Fourier modes. 
 
In order to estimate our field variable, A, of interest, we 
define RWs to start at the point, where we need to esti-
mate A. The RWs propagate as “hops” of different sizes 
from the point of interest to the problem boundary, con-
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sistent with a stochastic interpretation of (9) and (12). An 
accurate statistical estimate for A can be obtained by 
averaging over large number of such RWs. 
 
The results for these problems are shown in Figures (1) 
to (5). As seen from the figures, there is very good 
agreement between the analytical and RW results. We 
also observe that our algorithm has been able to capture 
multiple wavelengths. In addition, it can be noted that for 
the heterogeneous 1D problem, the solution is purely 
oscillatory in dielectric, while the solution is damped in 
the conductor. This is consistent with the usual skin-
effect type behavior expected in conducting medium. We 
coded the algorithm in MATLAB 5.0™, using a 400-
MHz Apple PowerBook G3™ development platform. 
The computational details are presented in Table (1). 
 
 
 

A 

 
    x 

Figure 1:  1D homogeneous problem with real forcing 
term in insulating medium. -10 ≤ x ≤ 10 in normalized 
length scales and k = 1. A real, forcing term equal to 

 is applied with . The solid line repre-
sents the exact analytical solution. The dots represent the 
random-walk solution points. 

)sin( xfk 5.1=fk

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re(A) 

 
    x 

Figure 2: 1D heterogeneous problem, the real part of the 
solution.  Heterogeneous domain with -10 ≤ x ≤ 10 in 
normalized length scales. For x ≤ 0, k = 3, while for x ≥ 
0, k = 3 + 0.4i.  The solid line represents the exact ana-
lytical solution. The dots represent the random-walk so-
lution points. 
 
 
 

Im(A) 

 
    x 

Figure 3: 1D heterogeneous problem, the imaginary part 
of the solution.  Heterogeneous domain with -10 ≤ x ≤ 10 
in normalized length scales. For x ≤ 0, k = 3, while for x 
≥ 0, k = 3 + 0.4i.  The solid line represents the exact ana-
lytical solution. The dots represent the random-walk so-
lution points. 
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A 

 

      x 
Figure 4: 2D homogeneous problem in an insulating 
circular cross section of diameter 4λ in normalized 
length scales with k = 1. A solution consisting of the 
zeroth order Bessel function is imposed. The solution is 
plotted along a diameter of the cross section. The solid 
line represents the exact analytical solution. The dots 
represent the random-walk solution points.  
 
 
 

  A 

 
    x 

Figure 5: 2D homogeneous problem in an insulating 
square problem domain with a side equal to 4λ in nor-
malized length scales and k = 1. A Fourier mode solution 
is imposed and the solution is plotted along the center-
line x axis. The solid line represents the exact analytical 
solution. The dots represent the random-walk solution 
points. 
 
 
 
 
 
 
 
 

 
Table 1: Computational details for the verification prob-
lems. 
 
Problem 
Specifications 

RWs per 
solution 
point 

Time per 
solution 
point 

Mean abso-
lute error 

1D Helmholtz 
equation with 
source term 

20000 About 1 
second 

0.004 on a 
solution range 
(−0.8 to  0.8) 

1D Helmholtz 
equation in 
heterogeneous 
problem do-
main 

500 About 1 
second 

(1.7+2.8i)×10-

15 on a solu-
tion range 
(−1−i) to 
(1+i) 

2D Helmholtz 
equation with 
a zeroth order 
Bessel func-
tion solution 

15000 About 1 
minute 

0.027+0.017i 
on a solution 
range (−0.4 to 
+1.0) 

2D Helmholtz 
equation with 
a Fourier 
mode solution 

15000 About 
one min-

ute 

0.106+0.143i 
on a solution 
range (−5 to 
+5) 

 
 

4. Conclusions 
 
In conclusion, we have been able to create a floating RW 
algorithm for Maxwell-Helmholtz equations at multiple 
wavelength scales. Our next goal is to extend this ap-
proach to heterogeneous problems in 2D and 3D. The 
absence of analytical Green’s function in 2D and 3D for 
structures of arbitrary heterogeneity makes this an inter-
esting problem. A possible future application of this al-
gorithm would be the extraction of frequency- dependent 
inductance, resistance and capacitance. We believe that 
with additional development, this algorithm will lead to 
the development of IC CAD for high-end digital IC in-
terconnect systems.   
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