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Abstract—We consider a double-periodic slab which is char-
acterized by two lattice vectors a1 and a2 on the (x,y)−plane,
the thickness hz and a three-dimensional scalar function
ε(x,y,z) specifying the dielectric constitution of the slab. Above
and below the slab is free space. These assumptions imply that
the z−direction is special in this problem. Therefore, follow-
ing a general scheme we diagonalize the Maxwell’s equations
with respect to this direction. The periodicity in two direc-
tions suggests the use of spatially harmonic functions as a ba-
sis. We exploit this property; however, contrary to the tradi-
tional schemes, we propose an expansion of the fields in the
form Ψ(r ,z) = ∑n fn(z)exp( jkn · r) allowing fn(z) to be a fairly
general function of thez-coordinate, rather than an exponen-
tial function. In this expression r is the position vector in the
(x,y−) transversal plane. To guarantee maximum flexibility we
discretize f in terms of finite differences. We demonstrate the
superiority of our method by discussing the following proper-
ties: i) Diagonalization only involves the transversal field com-
ponents, ii ) Diagonalization allows us easily to construct and
implement various boundary conditions at the bounding sur-
facesz = 0 and z = hz, iii ) The resulting discretized system is
extraordinarily stable and robust, and facilitates fast compu-
tations; from the computational performance point of view it
compares well with existing methods, while it by far applies to
larger class of problems,iv) It allows to use both the radian fre-
quency ω and the wavevector K as input parameters. There-
fore, the resulting discrete system can be solved at individual
(ω ,K)-points of interest, v) Finally, the method is applicable to
both the eigenstate end the excitation problems.

I. I NTRODUCTION

We consider a doubly-periodic slab which is character-
ized by a dielectric functionε(x,y,z) satisfying the condi-
tion ε (r + ma1 + na2,z) = ε(r ,z) for arbitrary negative or
positive whole numbersm and n. Here r is the position
vector anda1 anda2 are lattice vectors in the(x,y)−plane.
Above and below the slab, which is bounded by the planes
z = 0 andz = hz, various boundary conditions can be ac-
commodated, e.g. electrically or magnetically conducting,

or, dielectrically or magnetically open, or, a combination
of both. In the case of open boundaries we require that
the cladding media satisfy the following conditions: a) the
dielectric media are independent of thez−coordinate; i.e.
∂ε(x,y,z)/∂z≡ 0, and b) the media possess the same peri-
odicity properties as in the slab along the lattice vector di-
rections.

The periodicity property in two directions suggests the
use of spatially harmonic basis functions in the transversal
(x,y)−plane. Obviously thez−direction in our slab prob-
lem, suggests the diagonalization of the Maxwell’s equa-
tions with respect to this ‘‘normal’’ direction. We ex-
ploit these properties and expand the fields in terms of a
sum of products of separable functions in the formΨ =
∑n fn(z)exp( jkn · r). In order to determine various func-
tions fn(z), we discretize them in terms of finite differences
(FD) which leads to a simple yet powerful implementation.
Standard FD techniques involve all the three components
of the electric fieldE and the magnetic fieldH. On con-
trary, in the proposed diagonalized form only an optimized
subset of field components are involved: It turns out that
only those field components which enter the interface- and
boundary conditions onz= constplanes have to included in
our formalism. In the next section it is shown that, once the
transversal field componentse = (e1,e2) andh = (h1,h2)
are known on az= constplane, the remaining components
in the normal (diagonalization) direction can be derived eas-
ily, straightforwardly and inexpensively.

II. PLANEWAVE FD IN 3D

A. Constructing the diagonalized operator

The curl operator can be written in the form

∇×= ∂xN1 +∂yN2 +∂zN3, (1)

where

N1 =




0 0 0
0 0 −1
0 1 0


 , (2a)
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N2 =




0 0 1
0 0 0
−1 0 0


 , (2b)

N3 =




0 −1 0
1 0 0
0 0 0


 . (2c)

Adopting this notation the Maxwell’s equations are

(∂xN1 +∂yN2 +∂zN3)E = jωµH, (3a)

(∂xN1 +∂yN2 +∂zN3)H =− jωεE. (3b)

In what follows we describe a simple recipe for the diago-
nalization of Maxwell’s equations as written in (3). Thereby,
we arbitrarily choose any of the directionsx, y, or z. How-
ever, we reference to our discussion in the introduction and
select thez−direction as our diagonalization direction. To
this end, we consider the decomposition of the3×3 identity
matrix I in the following form

I =




1 0 0
0 1 0
0 0 0


+




0 0 0
0 0 0
0 0 1


 (4a)

=




0 1 0
−1 0 0
0 0 0







0 −1 0
1 0 0
0 0 0




+




0 0 0
0 0 0
0 0 1




︸ ︷︷ ︸
U3

(4b)

= NT
3 N3 +U3, (4c)

where the matrixU3 in (4b) has been introduced in the ob-
vious manner. The superscriptT denotes transposition.

Recognizing the form ofNT
3 N3 (Eqs. (4)) and the orthog-

onality property ofN3 andU3, and thusNT
3 andU3, the di-

agonalization procedure amounts to the following steps: (i)
Multiply (3a), from the left, successively byNT

3 andU3, (ii)
multiply (3b), from the left, successively byNT

3 andU3. (iii)
It is immediately seen that the equations obtained from the
U3−multiplication allow us to express the transversal field
componentse1, e2, h1 andh2 in terms of the normal field
componentse3, h3. Furthermore, it can be seen that these
equations do not involve anyz−derivatives at all. Substitut-
ing the resulting matrix equation in the combined systems of
equations, obtained from the multiplication ofNT

3 , results in
the desired diagonalized form. In the following we provide
examples by discussing several special cases.

In the present case, considering isotropic media only, the
equations (3) are extraordinarily simple: Once the equations
are written out explicitly the reader can easily recognize all

the aforementioned relationships just simply by inspection.
We have

∂x




0
−e3

e2


+∂y




e3

0
−e1


− jωµ




h1

h2

h3




=−∂z



−e2

e1

0


 , (5a)

∂x




0
−h3

h2


+∂y




h3

0
−h1


+ jωε




e1

e2

e3




=−∂z



−h2

h1

0


 . (5b)

Due to the properties of the Maxwell’s equations, (5b)
can be obtained from (5a) simply by the replacementshi ↔
ei (i = 1,2,3) and ε ↔ −µ . Therefore, it is sufficient to
restrict our manipulations only to one set of these equations.
We consider (5a). Obviously these equations split into the
equations

∂x

[
e3

0

]
+∂y

[
0
e3

]
+ jωµ

[
h2

−h1

]
= ∂z

[
e1

e2

]
, (6)

and

h3 =
1

jωµ
∂xe2− 1

jωµ
∂ye1. (7)

The counterpart of (7) is

e3 =− 1
jωε

∂xh2 +
1

jωε
∂yh1. (8)

Substitutinge3 from (8) into (6) we obtain

A

[
h1

h2

]
= ∂z

[
e1

e2

]
, (9)

where

A =




∂x
1

jωε ∂y −∂x
1

jωε ∂x + jωµ

∂y
1

jωε ∂y− jωµ −∂y
1

jωε ∂x


 . (10)

Performing the aforementioned replacements we obtain the
corresponding counterpart

B

[
e1

e2

]
= ∂z

[
h1

h2

]
, (11)

where

B =




−∂x
1

jωµ ∂y ∂x
1

jωµ ∂x− jωε

−∂y
1

jωµ ∂y + jωε ∂y
1

jωµ ∂x


 . (12)
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Therefore, we have transformed the Maxwell’s curl equa-
tions into the following two sets of equations

[
0 A
B 0

]



e1

e2

h1

h2


 = ∂z




e1

e2

h1

h2


 , (13)

and



0 0 1
jωε ∂y − 1

jωε ∂x

− 1
jωµ ∂y

1
jωµ ∂x 0 0







e1

e2

h1

h2




=
[

e3

h3

]
. (14)

Equation (13) is the desired diagonalized form with the
aforementioned properties: This equation only involves
variables which enter into theinterface conditionsif we
cross az = zi = const plane at a point(xi ,yi ,zi) in the
z−direction. This property implies that if we are given
the field distribution on thezi−plane, we obtain the rate of
change of the field distribution in thez−direction by apply-
ing the matrix operator at the LHS of (13). Consequently,
by having the information about the field distribution on the
zi−plane, and its rate of change we can approximate the
field distribution on a neighboring planez = z0± ∆. We
would like to point out that by repeated application of the
matrix operator at the LHS of (13) to this equation, and us-
ing (13), we obtain higher-order derivatives of the field vec-
tor in (13). Having computed higher-order derivatives, and
using Taylor series expansions we can construct approxima-
tions to the fields to any order of accuracy desired.

We wish to conclude this section with the following com-
ment: TheNormal componentse3 andh3 can be computed
from the transversal field distribution by using operators
and material parameters which only depend on thex and
y transversal coordinates as seen in (14).

B. Discretization

1) Field expansions:The periodicity in two dimensions
suggests the following expansion for the fields

Ψ(x,y,z) = ∑
m,n

fm,n(z)ejkm,n·r , (15)

whereΨ represents any of the transversal field components
and r is the position vector on az = constplane. The re-
ciprocal vectorkm,n denotes a certain lattice vector super-
imposed by a Bloch phasing vectorK = K1k1+K2k2 which
can be conveniently written in the following form

km,n = (m+K1)k1 +(n+K2)k2, (16)

for a discreteM×N set of reciprocal lattice. The expansion
coefficientsfm,n(z) are generally functions ofz−coordinate.
The next section is devoted to the discretization of the fields
in thez−direction, followed by a thorough discussion of the
specifics of the numerical implementation.

The choice of the harmonic dependence in the
(x,y)−plane has been inspired by two reasons: (i) opera-
torsA andB only involve derivatives with respect tox and
y which can be evaluated efficiently and (ii ) the implemen-
tation of the Bloch periodic boundaries is straightforward.

2) Discretization in the orthogonalization direction:Ac-
cording to our diagonalization formula, the application of
the matrix operator, as defined in (10), to the transversal
magnetich-field on a certain planez = z0 = const, results
in the normal derivative of the transversal electrice-field on
the same plane. This property can be utilized in establishing
a relationship between fields which are defined on consecu-
tive z= constlayers. In this section we develop the general
idea and briefly address issues concerning the accuracy of
the numerical results. In the next section we will focus on
procedural details.

To communicate the basic idea, we start with probably
the simplest assumption: Assume thate2≡ 0 andh1≡ 0 and
thath2 is given on the planez= 0. Our goal is to establish a
relationship betweene1 on planesz=−∆/2 andz= ∆/2 to
h2 on the planez= 0. Using Taylor’s series expansion we
can write

e1

(
∆
2

)
= e1(0)+

∆
2

{(
∂e1

∂z

)
(0+)

}

+
∆2

8

{(
∂ 2e1

∂z2

)
(0+)

}
+O3(∆), (17a)

e1

(
−∆

2

)
= e1(0)− ∆

2

{(
∂e1

∂z

)
(0−)

}

+
∆2

8

{(
∂ 2e1

∂z2

)
(0−)

}
+O3(∆), (17b)

where the symbols+ and−, respectively, indicate that the
z−derivatives have to be computed at0+ ε and0− ε for
arbitrarily small but positiveε. The derivatives can be cal-
culated using (9) and the information about the functionh2

on thez= 0 plane. Subtracting (17b) from (17a), and keep-
ing the first order terms only, we obtain

e1

(
∆
2

)
−e1

(
−∆

2

)

=
∆
2

{(
∂e1

∂z

)
(0+)+

(
∂e1

∂z

)
(0−)

}
. (18)

103Varis and Baghai-Wadji: A Novel 3D Pseudo-spectral Analysis of Photonic Crystal Slabs



In view of the operatorA in (10) we recognize that if the
material parameters on the two sides of the(z= 0)−plane
are the same, the involved derivatives are equal to an ar-
bitrary order. In present case the second order derivatives
cancel out and the error term in this expression is anO3−
term in ∆. If the material parameters on the two sides of
the (z= 0)−plane are different, then they have to be aver-
aged, leading to an accuracy of only orderO2 in ∆. Similar
results can be obtained for the remaining three transversal
field components.

3) Construction of the system matrix:In our formula-
tion we have adopted the following notation: Assume a ba-
sis consisting ofM×N plane waves. Leteo and ho, re-
spectively, be2×M ×N coefficient vectors representing
the electric and magnetic fields, which are defined on the
z = o∆−plane. (Note thatM×N coefficients are required
for each of thex− andy−directions.) Let the2×M×N by
2×M×N sub-matrixÂo, be the discrete version ofA , mul-
tiplied by ∆, and evaluated on the planez= o∆. Similarly,
let B̂o representB. Using this notation we can establish re-
lationships between the electric fields on the planeso−1/2
ando+1/2, and the magnetic field on the interleaved plane
o. Likewise we can establish relationships between the mag-
netic fields on the planeso ando+1, and the electric field on
the interleaved planeo+1/2. Keeping first order expansion
terms only, we obtain the result given in (19),

eo− 1
2
−eo+ 1

2
+ Âoho = 0, (19a)

ho−ho+1 + B̂o+ 1
2
eo+ 1

2
= 0. (19b)

We recognize that the equation in (19) comprise a finite dif-
ference implementation. However, in contrast to the stan-
dard formulations, the present formulation is based on a
finite difference discretization of the Fourier coefficients,
rather than of the fields in the spatial domain [1].

The dielectric function characterizing the slab is defined
between layers[0,O∆], whereO is the index of the last layer.
Furthermore, in order to incorporate the boundary condition
equations in our system of equations, we need to define the
electric fields on two layers,−0.5∆ and(O+0.5)∆, outside
the slab

Φl e0.5−h0 = 0, (20a)

hO +ΦueO+0.5 = 0. (20b)

The following section is devoted to the construction of these
equations.

The general system equation can be created by formulat-
ing equations (19) for each of thez−layer in the slab and
incorporating the boundary conditions (20). Collecting all

unknowns into one vectorf and all multipliers into one ma-
trix M leads to

Mf = 0. (21)

The efficient solution of this homogeneous equation will
be discussed below.

C. Boundary conditions

Our goal is to interrelate the electric- and magnetic fields
on the lowest- and most upper bounding planes.

Various boundary conditions can arise in the applica-
tions: In the case of electrically- or magnetically conducting
boundaries, e.g. we merely need to require that the electric
or the magnetic field, respectively, vanishes. In this paper
we address a slightly more complex problem with mixed-
type boundary conditions by assuming free space above
(z > hz) and beneath (z < 0) our slab. Generally speaking
our formulation is valid whenever the following conditions
are met: (i) ∂ε(x,y,z)/∂z≡ 0 for z< 0 andz> hz. (Material
is homogeneous in thez-direction). (ii ) The materials above
and below the slab share the lattice periodicity with the slab.

These conditions suggest slightly different field expan-
sions for the fields in regions outside the slab:

Ψ(x,y,z) = ∑
m,n,o

αo fm,n,oeλozejkm,n·r . (22)

Hereλo represents the complex-valued propagation con-
stant inz−direction associated with one of the4×M×N
eigenvectors, andfm,n,o is the corresponding coefficient.
Substituting (22) into (13) and utilizing the orthogonal prop-
erty of the basis functions involved results in the eigenvalue
equation in (23),

[
0 A
B 0

][
e
h

]
= λ

[
e
h

]
. (23)

Forε varying in the (x,y)-plane, we need to solve the sys-
tem numerically for4×M×N eigenpairs. Restricting our-
selves to constantε, the general4×M×N eigenvalue sys-
tem decouples intoM×N (analytically solvable) eigenvalue
systems of dimension 4. For constantε, the system has two
doubly degenerate eigenvalues for each[m,n] pair

λm,n =±wm,n =±
√

d2
x(m,n)+d2

y(m,n)−ω2εµ , (24)

wherew is the magnitude of the eigenvalue. The symbol
dx(m,n) is related to the numerical value of the basis func-
tion derivative as defined in (25).

∂
∂x

ejkn,m·r = jdx(m,n)ejkn,m·r (25)
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A similar definition holds fordy(m,n). These values de-
pend on the reciprocal lattice geometry and will considered
in more detail later.

The corresponding eigenvectors can also be solved ana-
lytically, which are summarized below

Ψ1
−w =




− j dxdy
wωε

− j
d2

y−ω2εµ
wωε

1

0




, Ψ2
−w =




j d2
x−ω2εµ

wωε

j dxdy
wωε

0

1




,

(26a)

Ψ1
w =




− j dxdy
wωε

− j
d2

y−ω2εµ
wωε

−1

0




, Ψ2
w =




j d2
x−ω2εµ

wωε

j dxdy
wωε

0

−1




.

(26b)

Since eigenvectors are known up to a constant multiplier
the normalization of the eigenvectors is arbitrary. Here we
have chosen a multiplier which produces ah-field with unity
length as depicted in (20).

A few remarks are in place:i) If w becomes complex-
valued for anym,n pair, then the corresponding eigenmode
radiates energy away from the slab into infinity, preventing
the formation of bounded modes.ii ) For z> hz we have to
discard half of the eigenvectors which correspond to posi-
tive eigenvalues in order to satisfy the Sommerfeld’s radi-
ation condition (Inclusion of the fields with finite energy.).
Similarly we have to discard eigenvectors corresponding to
λ < 0 in thez< 0 region.

Finally, it should be pointed out that in our finite differ-
ence implementation we have defined thee-fields at discrete
z = (o+ 0.5)∆−layers, while theh− fields have been de-
fined atz = o∆−layers. We should be aware of this fact
whenever a shift of the fields by a distance0.5∆ becomes
necessary, e.g. in establishing a relationship between the
field components. In present case this relationship can be es-
tablished fairly easily since we know thez-directional prop-
agation constant of the eigenvectors.

Taking into account these details we obtain the matrices

which describe the boundary conditions

Φl ,u(m,n) =
e0.5∆wl ,u(m,n)

jwl ,u(m,n)ωεl ,u
(27)

×



dx(m,n)dy(m,n) −d2
x(m,n)+ω2εl ,uµ

d2
y(m,n)−ω2εl ,uµ −dx(m,n)dy(m,n)




Here the subindicesl and u, respectively, indicate the
lower and the upper semispaces. We can obtain discretized
versions of this equation by replacing the matrix entries by
diagonal submatrices, whose elements individually corre-
spond to different (m,n)-pairs. For semispaces with non-
constantε, these submatrices will become dense since the
eigenvectors of (23) will in general have4×M×N non-
zero elements.

D. Solving the equation system

Ordinarily system matrices for three dimensional prob-
lems can be prohibitively large. Therefore, we recom-
mend the use of iterative solvers. Most solvers operate only
on matrix vector products which frees us from construct-
ing the matrix; only a routine constructing vector prod-
ucts is needed. Our choise for iterative solver has been
the transpose free quasi minimal residual method (TFQMR)
[2], which is efficient, handles non-symmetric and non-
Hermitian matrices well, and even manages to solve nearly
singular matrices.

1) Numerical evaluation of operators:The operators in
our problem generally involve derivatives and spatial func-
tions appearing in multiplicative form. We discretize the
equations by treating the derivatives in Fourier domain and
the spatial functions in real domain. To perform the cal-
culations we Fourier transform the trial vectors back and
forth from spatial domain to spectral domain and vice versa.
This is justified because derivation in Fourier domain, and
multiplication by a function, i.e.,ε, in real domain are both
O(N) operations for a trial vector withN elements. The pro-
hibitive factor is the FFT, which is anO(N ln(N)) operation.
Alternatively, we could operate exclusively in Fourier do-
main, by treating multiplications byε by means of discrete
convolution, which is a costlyO(N3) operation.

We illustrate the aforementioned ideas by an example:
The application of the operation∂x{1/( jωε(x,y))}∂y to a
trial vectorf consists of the following steps:

• multiply f by ay−derivative matrix, to be defined be-
low,

• inverse Fourier transform the result,
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• multiply the result by a sampled version of
1/( jωε(x,y)),

• Fourier transform, and, finally,

• perform thex−derivative.

The computation of derivatives is fairly straightforward.
Once the reciprocal lattice vectorsk1 and k2 have been
chosen, differentiation with respect tox−coordinates yields
multiplication by a diagonal matrix with elements being

j[(m̂+K1)kx
1 +(n̂+K2)kx

2], (28)

m∈ [0,M−1],n∈ [0,N−1],

whereK1 andK2 are Bloch phasing factors andkx
1 andkx

2 are
projections of reciprocal lattice vectors on thex−axis. The
whole number̂m is defined as follows

m̂=





m 0≤m≤ M
2

m−M M
2 < m≤M−1

. (29)

A similar definition holds for̂n. The rational behind this
definition is that we need to include negative harmonics into
the set of basis functions in order to make it complete. The
ordering of harmonics is irrelevant, however, this choice is
implemented in most FFT algorithms. The matrix for the
y−derivative can be obtained from (28) by replacing the pro-
jections onx−axis with projections ony−axis.

2) Solving excitation problems:The interface condition
for the magnetic field can be written as follows

lim
δ→0

hx

(
z0 +

δ
2

)
−hx

(
z0− δ

2

)
= ρy(z0), (30)

wherehx(z) is thex−directional magnetic field component
andρy is a y−directional current element. Consider (19b)
and insert a new layer, designated byh′o+1, at the location
z= (o+1)∆−δ whereδ represents an infinitesimally small
distance.

Assume that there is a horizontal current filamentρ po-
sitioned at planez= (o+ 1)∆− δ

2 . Using the above infor-
mation and (30) we can rewrite (19b) in order to include the
assumed excitation,

ho−ho+1 +B′
o+ 1

2
eo+ 1

2
=−ρo+ 1

2
. (31)

We specify the excitation byo+ 1
2 since it is inserted be-

tween the layerso ando+1. The incorporation of this con-
dition into the system equation (21) can be achieved by sim-
ply replacing the RHS zero vector by the Fourier transform
of the assumed excitation current function

MK (ω)fK (ω) = ρK (ω). (32)

The Bloch vectorK and angular frequencyω are written
explicitly in (32) to emphasize their role as input parameters.

It should be pointed out that using the Bloch-wave basis
not only we can solve phased-periodic excitation problems,
but also we can tackle elementary excitation problems: The
latter are defined as elementary non-periodic excitations of
geometrically periodic structures.

3) Solving eigenproblems:Equation (21) is a homoge-
neous system and has non trivial solutions if and only ifM
is singular. Therefore, the eigenmodes of the system for a
givenK can be found by defining a suitable measure for the
detection of the singularity ofM as a function ofω. A pos-
sible measure for singularity is, e.g. the magnitude of the
determinant. However, solving determinants iteratively is
computationally costly and complicated. Instead, we pro-
pose a method which is more physics-based: We assume a
current distribution to excite the system under consideration,
and compute the square norm of the resulting field coeffi-
cients. ForM near the singularity, the norm grows - ideally
- without bounds. Furthermore, the solution approaches the
eigenvector corresponding to the eigenvalue0. The formal
justification for this approach is given in [3] but we review
the important steps here:

Consider the following system of equations

Ay = b. (33)

Both sides of this equation can be expanded in terms of the
eigenvectorsvj of A as

∑
j

α jλ jvj = ∑
j

βj vj . (34)

Hereα j is the coefficient set fory andλ j is the eigenvalue
of A corresponding to eigenvectorvj . Due to the linear in-
dependence of the eigenvectors, we can write

y = ∑
j

β j

λ j
v j . (35)

From this form it is easy to see that if one of the eigenvalues
λ j is close to zero, the only significant contribution to the
solution comes from the corresponding eigenvectorv j . Fur-
thermore, asλ j approaches zero, the norm of the solution
vector approaches infinity.

This behaviour can be understood from physical reason-
ing as well: If the system is in resonance with the excitation,
the energy in the system grows indefinitely as time elapses
rendering the eigensolution an infinite energy.

Instead of seeking the maximum of the solution norm, we
alternatively, seek the minimum of its inverse

GK (ω) =
1√||fK (ω)||2

, (36)
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where fK is the solution to (32). The introduction of the
square root is to smoothen out the curve. We have a great
flexibility in choosing the current distribution for eigenmode
computations but practise has shown that with a few ran-
domly placed and oriented dipoles the functionalG behaves
smoothly between the singular points. One should be aware
of the fact if< v j ,b >= 0 in (33), thenβ j = 0 and the solu-
tion norm does not grow even ifλ j = 0. As an example, this
happens if the system is excited with a singley−directional
dipole positioned exactly at a node ofhx for the correspond-
ing eigenmode. Numerically this means thatG does not nec-
essarily possess a minimum even ifM is singular for a given
ω.

4) Preconditioning:Typically, iterative solvers converge
poorly for non-preconditioned systems, and very often they
even completely fail to converge. Therefore, the implemen-
tation of a good preconditioner is a prerequisite for perfor-
mance enhancement. Instead of solving (32), we suggest
solving the modified system in (37)

P−1
1 MP−1

2 (P2f) = P−1
1 ρ, (37)

for the new unknown vectory = P2f. The problem is to
find suitable preconditioner matricesP1 andP2 such that the
solver converges faster for the new matrixB = P−1

1 MP−1
2 .

It can be shown that the convergence is quicker ifB is near
diagonal.

We constructP1 out of submatrices which we encounter
in the main block diagonal of the matrixM . More precisely,
we discretize the matrix operator elementsA∞,∞, A∈,∈,
B∞,∞ and B∈,∈ defined in (10) and (12) for allz−layers
in the system, from which we can construct a block diago-
nal matrix. In place of boundary condition matrices inM ,
we use diagonal unity matrices inP1. Due to the block di-
agonal property,P1 is fairly easy to invert, as each block
can be inverted individually. However, it should be noted
that in practiceP1 is never actually constructed nor inverted:
Instead we first invert the operators analytically in a sense
that L −1 (L f ) = f for a suitably chosen test functionf ,
and then carry out their discretized versions as outlined ear-
lier. As an example, the inverse of∂x{1/( jωεo(x,y))}∂y is
I y ( jωεo(x,y)) I x whereI ξ denotes integration with respect
to ξ . In Fourier domain, integrals can be computed by the
application of the inverse of the derivative matrix (28).

It should be noted that (28) may contain zero elements
and, therefore, prevent inversion. However, there is a sim-
ple remedy to circumvent this problem:select a suitable
orientation for the lattice vector relative to the coordinate
system. We illustrate this idea with an example. However,
before doing so, we summarize a few facts from the theory
of Fourier analysis which will be of help to our discussion.

Comments:

• Invariance and symmetry properties of the Fourier
transform: A significant part of the utility of the
Fourier transform is due to the fact that it has natural
invariance properties under the actions of rotations, di-
lations, and translations. In particular, a rotation is an
orthogonal matrix with determinant1 (a special orthog-
onal matrix).

• Proposition: Let ρ be a rotation ofRN. We define
ρ f (x) = f (ρ(x)). Then we have the formula:̂ρ f =
ρ f̂

Proof: Remember thatρ is orthogonal and has deter-
minant1. We then have

ρ̂ f (ξ ) =
∫

dt (ρ f )(t)e− jtξ (38a)

=
∫

dt f (ρ(t))e− jtξ (38b)

=
∫

ds f(s)e− jρ−1(s)ξ (38c)

=
∫

ds f(s)e− jsρ(ξ ) (38d)

= f̂ (ρξ ) (38e)

= ρ f̂ (ξ ). (38f)

In the above we have used the variable substitution
s= ρ(t), and the fact thatρ−1 = ρT for an orthogonal
matrix, with the superscriptT denoting the transposi-
tion.

We now are in a position to continue with our example.
Consider a rectangular lattice with reciprocal lattice vec-
tors k1 = k1ux andk2 = k2uy. The projections ofk1 and
k2, respectively, onto thex−axis arek1,x = k1 andk2,x = 0.
Assuming for the components of the Bloch phasing factor
K1 = 0 and K2 6= 0 results in a zero element in (28) for
m̂= 0. A simple yet very effective solution to this problem
can be obtained by rotating the original(x,y)−coordinate
system around thez−axis about an angleθ . Denote the
new coordinate system by(x̃, ỹ, z̃). Projections ofk1 and
k2, respectively, onto thẽx−axis arek1,x̃ = k1cos(−θ) and
k2,x̃ = k2cos(π/2− θ) 6= 0. The angleθ can easily be se-
lected in such a manner that there are no zero elements in
either of the derivative matrices. The solution to the prob-
lem remains unaltered as the choice of the coordinate system
is arbitrary.

It should be noted that there is still the point[K1,K2] =
[0,0] at which the singularity cannot be removed by chang-
ing the coordinate system. (The pointK = 0 corresponds to
strictly periodic field distributions without any phase change
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in two consecutive cells. The field is static and no wave
propagation takes place.) Therefore,K = 0 does not cause a
serious problem: All bounded fields in the slab haveω = 0
at this point.

Additional improvements can be achieved by appropri-
ately choosing the matrixP2. Our approach is to use the
system matrix for a simpler auxiliary problem for which
∂xε(x,y,z) = ∂yε(x,y,z) ≡ 0, and,εk = ave(εk(x,y)) where
ave means averaging in the(x,y)−plane over one unit cell.
Sinceεk is constant in our auxiliary problem, the resulting
system matrixM̂ will have nonzero elements only on five
diagonals. This matrix can be constructed explicitly. Our
goal is thatP−1

2 diagonalizesP−1
1 M as closely as possible.

Therefore, we set

P2 = diag(P−1
1 )M̂ , (39)

where ‘‘diag (A)’’ means the main diagonal ofA. Instead
of explicitly invertingP2 we perform an LU-decomposition
and use the resulting coefficients to solvex = P2f. In our
implementation of the LU-decomposition we omit pivoting.
This omission enables us to store the coefficients in loca-
tions of nonzero elements of the original matrix, instead of
occupying a general banded matrix. Fortunately, it appears
as if pivoting is not necessary in first place: In our sys-
tematic and comprehensive testings we never encountered
a vanishingly small pivot element.

In summary, the application ofP−1
1 MP−1

2 to a certain test
vector̃f consists of the following steps:i) Computez= P−1

2 f̃
by solving f̃ = P2z using the LU-coefficients,ii ) compute
x = Mz, and, finally,iii ) applyP−1

1 to x. Once the iterative
solver reports convergence, the non-preconditioned solution
can be obtained fromf = P−1

2 f̃.
We conclude this section with the following remarks:i)

SettingP1 = I andP2 = M̂ is sufficient to solve the system.
However, definingP1 as described above seems to improve
the iterative procedure by a significant factor in most prob-
lems and not worsen it in any problems we have solved so
far. ii ) We also experimented with a diagonal preconditioner
in which P1 = I andP2 = diag(M). However, the results
were not satisfying. For most problems the system did not
converge at all, and even if it did, thousands of iterations
were required.iii ) Typically, convergence requires10−300
iterations, depending on the specific values ofK andω, and
the functionε(x,y,z), and the singularity ofM .

III. N UMERICAL RESULTS

We have computed a variety of test examples with our
method and compared them, whenever possible, to the cor-
responding results obtained by the planewave method [4].
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Fig. 1. Shows the dispersion diagram for a triangular lattice of cylindri-
cal holes (voids) in a dielectric slab. Curves marked with ‘o’ have been
computed with our method, and those marked with with ‘+’ have been
computed with the planewave method. The thick black line represents the
light-line along which the modes become guided in free space. Modes lo-
cated above this line are not guided by the slab, and are artifacts due to
artificial periodization of the structure required by the planewave method.

Planewave method is not fully adapted to slab problems, be-
cause it assumes the structure to be periodic in all spatial
directions. It can be used though, by introducing a long lat-
tice vector inz−direction. This extended unit cell, a super-
cell, is first filled with the background material and the slab
is then inserted into it. This approach is justified as long
as the modes of interest are well confined around the slab
in z−direction, and thus the interaction between neighbour-
ing supercells can be assumed to be negligibly small. If the
modes are not well localized, the solutions will interfere,
and we can expect a significant deterioration of the results.
Furthermore, modes that are not guided by the slab, will ap-
pear guided due to this artificial periodization. Results can
be verified by increasing thez−directional lattice vector un-
til convergence is reached.

A. Dispersion diagram of equilateral triangular lattices

Our first test case is an equilateral triangular lattice of
cylindrical air holes (voids) in a dielectric slab. The thick-
ness of the slab ishz = 0.4, and the dielectric constant is
ε = 12. The radius of the air holes isr = 0.38, and the
lattice constanta = 1.0. The cladding material above and
below the slab is free space.

Dispersion diagram computed with our method and with
the planewave method is shown in Fig. (1).
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Fig. 2. Convergence as a function of grid size for the lowest order mode at
K = [0, 0.5]. Relative error compared to the result obtained with48 grid
points in all directions. The curve with marker ‘+’ is computed with the
planewave method, while the curve with marker ‘o’ with our method. It can
be seen that our method provides accurate results with comparatively few
grid points. The difference between the two methods at finest discretization
is 0.0205%

In both methods we used32 planewaves in both lattice
vector directions. In our method, we used25 electric field
layers and24 magnetic field layers inz−direction. In the
planewave method we used a super-cell with the periodic-
ity length in z− direction being10a, with a denoting the
lattice constant. Thereby, we employed384 planewaves.
This results in15.36 planewaves for a slab with the thick-
nesshz = 0.4.

Quite often the lowest bands are the most significant
ones; therefore, we conducted a convergence analysis for
the first mode at theM−point (K = [0, 0.5]) (see Fig. (1)).
We solved the problem utilizing both methods with sev-
eral discretizations and compared the results as shown in
Fig. (2). Problem parameters were as above except that we
used the same number of grid points in all directions. In
the planewave method this means using10/0.4 = 25 times
more planewaves inz−direction in order to compensate for
the larger super-cell size.

B. Fields in an array of dielectric spheres

Our second test case consists of a rectangular lattice of
dielectric spheres positioned on a dielectric substrate. The
structure is shown in Fig. (3).

The fields shown in Figs. (4) and (5) are solved for the
lowest order eigenmode, at the frequencyω = 0.298(2πc)

Fig. 3. Geometry of test case 2. Spheres withr = 0.45 are positioned
on a dielectric substrate with a rectangular lattice specified bya = 1. The
spheres, having the dielectric constantεsphere= 12, are immersed in free
space. The dielectric constant of the substrate isεsubstrate= 5. Fields are
plotted on the plane marked withy = 0.5.
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and the point[K1,K2] = [0.5,0.5]. The eigenfrequency has
been determined iteratively using the technique described
in Section 3); when the result converged, we Fourier trans-
formed the solution to get the real space fields.

In the solution we used48 planewaves inx−direction,
and48 planewaves iny−direction. Inz−direction we used
48 and 47 layers for the electric and magnetic fields, re-
spectively. The electromagnetic field outside the slab (z< 0
and z > 0.9) has been computed using the eigenpairs for
Maxwell’s equations in free space. Note that we already
have constructed these eigenpairs for the implementation
of boundary conditions. Note also that having imposed
the interface- and boundary conditions the unknowns in our
problem, and, therefore, field distributions in the slab as well
as in free space are uniquely determined. Finally, note that
while the transversal fieldse1, e2, h1 andh2 have been ob-
tained from the solution of (37), the orthogonal field compo-
nentse3 andh3 are computed as a postprocessing step using
(14).
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Fig. 4. Electrical field distributions for test case 2, which consists of di-
electric spheres on a dielectric surface. Spheres are centered at[x,y,z] =
[0.5,0.5,0.45] and forz< 0 the dielectric constant isεsubst= 5. The spheres
are immersed in free space. Ripples one3 are most likely due the proper-
ties of Fourier transform. However, the amplitude of this field component
is negligibly small.
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