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Abstract - A three-dimensional transmission-line matrix (TLM) model 
was developed to simulate microwave-scanning microscopy. A TLM 
algorithm that allows the simulation of the scanning was developed. 
Numerical modeling was carried out for frequencies that are commonly 
used in microwave nondestructive testing (1GHz – 20GHz). Structures 
with local discontinuities in the electric permittivity are modeled 
numerically. The excitation parameters used in numerical modeling of 
scanning microwave microscopy were determined based on an initial 
frequency experimental response obtained from a plate with known 
permittivity. The numerical model developed in this paper is based on 
the symmetric condensed node. The description of the TLM algorithm is 
given in a Hilbert space using a three-index notation.  

 

I. INTRODUCTION 

 

 Microwave scanning microscopy is now one of the 
fastest growing areas among nondestructive methods. This 
method is applied in very different areas: aircraft industry, 
biological investigation, semiconductor industry and civil 
engineering. All these applications are based on the fact that 
microwave propagation is affected by a large number of 
material properties: composition, structure, moisture, 
delamination and presence of discontinuities. To make the 
microwave inspection a powerful tool in quantitative 
characterization of materials it is necessary to have a well-
defined mathematical model of the testing problem. Because 
of the complexity of the problems, numerical methods were 
proven to give more appropriate models than analytical 
methods [1]. Microwave probes are robust enough to be 
placed in a hand-held configuration, which is the main 
advantage of microwave microscopy. Very high resolution 

can be achieved with probes that can work in-situ and on line. 
By comparison with other methods, currently used in 
nondestructive evaluation of materials, the advantages of the 
microwave microscopy are: 
• Possibility to detect subsurface discontinuities. 
• There are no problems related to material contamination 

caused by coupling. 
• No physical contact is required between the probe and 

the material to be investigated; therefore the surface can 
be surveyed rapidly. 

• No changes are caused in the material; the measurement 
is entirely nondestructive. 

• In the microwave frequency region, variation of 
dielectric permittivity for dielectric materials is 
significantly larger than the contrast due to density. 
 
The Transmission Line Matrix (TLM) as a time domain 

technique that can deal with complex geometries is one of the 
most suitable numerical methods to model microwave testing. 
Unlike some other numerical techniques, the TLM algorithm 
does not involve any convergence criteria, a property that 
makes it an inherently stable method. This stability is 
reflected in the flexibility of the TLM method when dealing 
with various types of input signals and boundaries. These 
advantages can be exploited for nondestructive investigation 
in several ways: 
• A configuration can be numerically modeled in order to 

improve the experiment design and for a better 
understanding of the results obtained. 
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• The TLM method offers a versatile tool to reconstruct 

the initial signal based on the actual digitized signal, for 
homogeneous media.  

• The TLM method can easily generate a time or 
frequency domain signal for known configurations. 
Based on this, a multi-layer structure can be fully 
characterized using an iterative process. The material 
parameters, of the multi-layer structure under 
investigation can be changed in the TLM model, so that 
the numerically generated signal fits the experimental 
signal.  
The first published account of TLM method dates back 

to 1971 [2]. This and following publications demonstrated 
that TLM could be used in a wide range of applications. 
Almost 30 years after the first article was published, the 
method is considered to be “a modeling process rather than a 
numerical method for solving differential equations” [3]. The 
advantage of TLM is that it provides a direct simulation of 
the phenomenon and not of the equation governing it [4]. 

 
II. ALGORITHM DESCRIPTION 

 
The TLM algorithm developed in this paper is based on 

Symmetrical Condensed Node (SCN) [5]. A description of 
the algorithm is given in a Hilbert space and it is based on a 
previous work [6]. This description was adapted to the three-
index notation used consistently in numerical 
implementation. The use of this notation has two immediate 
advantages:  
• A physical interpretation for the scattering matrix written 

in symmetrical notation is revealed [7].  
• The equivalence between the classical notation and the 

three-index notation is obtained directly. 
 
In Table 1 the first two rows and the last two columns 

were added in order to show the correspondence between the 
voltages used in the three-index notation (first row, last 
column) and the classical notation (second row, 13th column). 
The scattering matrix in symmetrical notation is obtained by 
changing the positions of rows and columns respectively in 
such a way that the initial scattering matrix is rewritten as a 
system of three four by four matrices [8]. The first two rows 
and last two columns in Table 1 show how the permutations 
between lines and columns, respectively, took place. The 
three-index notation shows that these permutations group 
together the voltages corresponding to each polarization. The 
factor of 1/2 that multiplies each element of the scattering 
matrix was omitted in Table 1 for space reasons. In Table 1, 
the constitutive matrices were colored in dark gray, light gray 
and white. The light gray matrix is the transpose of the dark 
gray matrix. These matrices can be rewritten in a symmetrical 
form by putting together the voltages (in the three-index 
notation) corresponding to each link line and polarization 
(Figure 1). 

 

 
Table 1. Elements of scattering matrix in symmetrical notation.  
Vxny Vxpy Vxnz Vxpz Vynz Vypz Vynx Vypx Vznx Vzpx Vzny Vzpy   

3 11 6 10 5 7 1 12 2 9 4 8   
0 0 0 0 0 0 1 -1 0 0 1 1 3 Vxny

0 0 0 0 0 0 -1 1 0 0 1 1 11 Vxpy

0 0 0 0 1 1 0 0 1 -1 0 0 6 Vxnz

0 0 0 0 1 1 0 0 -1 1 0 0 10 Vxpz

0 0 1 1 0 0 0 0 0 0 1 -1 5 Vynz

0 0 1 1 0 0 0 0 0 0 -1 1 7 Vypz

1 -1 0 0 0 0 0 0 1 1 0 0 1 Vynx

-1 1 0 0 0 0 0 0 1 1 0 0 12 Vypx

0 0 1 -1 0 0 1 1 0 0 0 0 2 Vznx

0 0 -1 1 0 0 1 1 0 0 0 0 9 Vzpx

1 1 0 0 1 -1 0 0 0 0 0 0 4 Vzny

1 1 0 0 -1 1 0 0 0 0 0 0 8 Vzpy

 
 
Having this formulation for the scattering matrix, TLM can 
be represented by a numerable set of real quantities. A 
Hilbert space representation of the field state and evolution 
was introduced in [9]. Using this representation, the 
scattering matrix can be expressed by an operator as shown 
below. Considering the scattering matrix in symmetrical 
notation as given by Table 1, the scattering matrix operator, 
S , is a real, symmetric and hermitian operator and it is 
written as 
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Figure 1. A schematic of SCN node. 
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with the matrix 0S given by 
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Consider the node with the discrete space coordinates (l, m, 
n). This corresponds to the space point of coordinates (x, y, 
z), with: x=l∆x, y=m∆y and z=n∆z. At the discrete time 
coordinate k, corresponding to the time t=k∆t, all the incident 
and scattered wave amplitudes can be described using the 12-

dimensional complex vectors of space , 12C i
lmnkV  and 

r
lmnkV respectively. These vectors belong to a twelve 

dimensional complex vector space , and are related, 
using the indices l, m n and k respectively, to the node with 
the discrete spatial coordinates (l, m, n) and to the temporal 
coordinate k. A Hilbert space, , is introduced [8], having a 
system of orthonormal space domain vectors 

12C

mH
n,m,l assigned 

to each node positioned at (l, m, n). In a similar way a Hilbert 
space,  is introduced by associating the time coordinate k 
with the base vector 

tH
k . The Hilbert space where the TLM 

algorithm can be described is the Cartesian product of the 
previously introduced Hilbert spaces 
 

                .                             (3) tmw HHCH ⊗⊗= 12

 
In this space the incident and reflected amplitudes are written 
as 
 

 ∑
∞

−∞=
=

n,m,l,k

i
lmnk

i n,m,l;kVV ,                         (4) 

∑
∞

−∞=
=

n,m,l,k

r
lmnk

r n,m,l;kVV .                        (5) 

 
In the Hw space the following operators are defined: 
• Time shift operator T , 
 

n,m,l;kn,m,l;kT 1+= .                        (6) 
 

• X-shift operator ( X ) and its Hermitian conjugate ( *X ), 
 

n,m,l;kn,m,l;kX 1+= ,                     (7) 

n,m,l;kn,m,l;kX 1−=∗ .                  (8) 
 

• Y-shift operator (Y ) and its Hermitian conjugate ( *Y ), 
 

n,m,l;kn,m,l;kY 1+= ,                     (9) 

 n,m,l;kn,m,l;kY 1−=∗ .                 (10) 
 
• Z-shift operator ( Z ) and its Hermitian conjugate ( *Z ), 

1+= n,m,l;kn,m,l;kZ ,                   (11) 

1−=∗ n,m,l;kn,m,l;kZ .                  (12) 

• Connection operator ( Γ ), 

ri VV Γ= .                                 (13) 

The connection operator shows that the reflected amplitudes 
are incident into the neighboring nodes and it is defined as 
 

( ) ( )
( ) ( )
( ) ( )

*

, , , ,

*

, , , ,

*

, , , , .

xny xpy xnz xpz xpy xny xpz xnz

ynz ypz ynx ypx ypz ynz ypx ynx

znx zpx zny zpy zpx znx zpy zny

X X

Y Y

Z Z

Γ = ∆ + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆ + ∆ +

+ ∆ + ∆ + ∆ + ∆

+

   (14) 

In Eq. (14) the matrices p,o∆  (o, p are each three- index 
notations defined in row 1 of Table 1) are 12 by 12 matrices 
and each element of these matrices ( )

p,oj,i∆  is defined as 
 

( ) p,jo,ip,oj,i δδ∆ = .                                 (15) 

The connection operator ( Γ ) is a hermitian and unitary 
operator and therefore 
  

    *ΓΓΓ == −1 .                                 (16) 

The simultaneous scattering matrix at all TLM mesh nodes is 
described as 
 

ir VSTV = .                               (17) 

Eq. (17) shows that scattering by a TLM node causes a unit 
time delay ∆t. The voltages defined in Figure 1 can be related 
to the tangential field components at the TLM node boundary 
by introducing the following vectors for each of the six faces 
of the TLM node: 
• Reflected wave vectors, 
 

( )1
, 1

2
r

f f ffV n n E Z n H f= − × × + × =⎡ ⎤⎣ ⎦ , 6.      (18) 

• Incident wave vectors, 
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( )1
, 1

2
i

f f ffV n n E Z n H f= − − × × + × =⎡ ⎤⎣ ⎦ , 6.    (19) 

The correspondence between the node cube faces denoted by 
f in Eqs. (18) and (19), and the three-index notation is given 
in Table 2: 
 

Table 2. The correspondence between the TLM node face notation (f 
index) and the three-index notation. 

f index 1 2 3 4 5 6 
Corresponding 
plane in three index 
notation 

xn xp yn yp zn zp 

 

As an example, the plane xp (corresponding to f=2) from 
Table 2 is that located on the positive half of the x axis. This 
plane contains the voltages Vxpy and Vxpz. The normal to this 
plane is given by, 
 

[ Tn 0012 = ]

]

.                                 (20) 

The field components in this plane are given by [6], 
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Substituting Eqs. (20) - (22) into Eqs. (18) and (19) the local 
reflected and incident wave vectors for a node located at 
(l,m,n) at moment k are given by [10] 
 

( ) [ Tr
xpz

r
xpy

r
n,m,lk VVV 02 = ,                           (23) 

( ) [ Ti
xpz

i
xpy

i
n,m,lk VVV 02 = ] .                            (24) 

 
The field quantities can be written in a more intuitive fashion 
in the three-index notation. For example, considering the 
notations in Figure 1, the components of the electric and 
magnetic fields are given by 
 

( i
znx

i
zpx

i
ypx

i
ynxx VVVV

l
E +++−=

∆2
1 ) ,               (25) 

( i
zny

i
zpy

i
xpy

i
xnyy VVVV

l
E +++−=

∆2
1 ),                (26) 

( )i
ynz

i
ypz

i
xpz

i
xnzz VVVV

l
E +++−=

∆2
1 ,                 (27) 

lZ
VVVV

H
o

iii
ynz

i
zny

x
zpyypz

∆2
−+−

= ,                             (28) 

lZ
VVVV

H
o

znxxpzzpxxnz
y ∆2

−−+
= ,                          (29) 

lZ
VVVV

H
o

ynxxyzypxxpy
z ∆2

+−−
= .                          (30) 

 
The numerical implementation of a desired model is 
performed in three steps: pre-processing, computation and 
post-processing.  
The pre-processing step includes determining the excitation 
signal parameters and generating the boundary coordinates of 
complex geometries. The excitation parameters in the TLM 
model are changed until a good fit is obtained between the 
experimental and numerical generated curves for a simple 
geometry. For instance, one experimental response was 
obtained from a bakelite plate. An appropriate numerical 
excitation that can give the same response as that obtained 
from this reflector was a Gaussian pulse with central 
frequency 1.6 GHz.  
The processing step is made mainly of the TLM algorithm. 
The main steps of this algorithm are [11]: initialization, 
scattering and connection. An additional step called scanning 
was added to these components. This step involves changing 
the position of excitation according to the experimental 
scanning pattern whereby he TLM algorithm is repeated for 
each new position. The time response for each position is 
saved in an output file for further processing.  
The programs developed for the post-processing part perform 
the following tasks:  
• Reading the data input files generated by the processing 

program. 
• Data visualization in two or three dimensions for each 

iteration considered. 
• Signal processing of the numerically generated signal in 

time and frequency domain. 
 

III. ALGORITHM IMPLEMENTATION 
 
The scattering matrix implementation of the SCN used for 
this application is based on an algorithm that explores the 
symmetry of the scattering matrix [12]. The voltages in the 
port model for SCN can be assigned using a three-character 
name [13]. A representation for this node is given in Figure 1. 
In Figure 1 the first index denotes polarization (x, y or z), the 
second is related to position on the link line, positive or 
negative ( p or n) and the last index is related to link line ( x, 
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y or z). The voltages at all ports can be obtained considering 
all circular permutations of indices (x,y,z) denoted in general 
form as (i,j,k). These voltages are obtained according to the 
scattering matrix. To minimize the number of operations the 
reflected voltages at any port are obtained using the following 
scheme [14] 

 

Stepper Motors
(x,y directions)

Network
Analyzer

Personal Computer 

GPIB 
Interface 

 

SERIAL 
Interface 

diftemp
r

inj VVV −= ,                             (31) 

temp
r

ipj VV = .                                     (32) 

In Eqs. (31) and (32) the following notations were used 
 

( difkpiknitemp VVVV ++=
2
1 ) ,                     (33) 

injipjdif VVV −= .                                     (34) 
 

The parameter used to obtain a microwave image is S11. This 
parameter cannot be obtained directly from the TLM 
algorithm because an incident field cannot be separated. To 
solve this problem, two successive runs of the program are 
needed. The first run is performed with excitation without a 
reflecting object. This run will provide data for the reference 
port. A second run of the program will be performed 
considering boundary conditions for objects to be 
investigated. The S11 parameter is given by 

 

0

0
11 FF

FFS
i

i

+
−

= .                                  (35) 

 
In relation (35) F0 and Fi are the frequency response obtained 
for the same position of excitation source without reflecting 
object and with reflector respectively. 

 
IV. RESULTS 

 
To validate the numerical model, the experimental set-up 

for microwave microscopy depicted schematically in Figure 2 
was used. It consisted of a microwave resonator (open-ended 
coaxial line sensor) connected to a network analyzer. The 
probe was mounted horizontally over an x-y table. During the 
scanning process, the probe was held at a constant height 
over the sample (typically 10 µm) Stepper motors controlled 
via a serial interface by computer assured the positioning of 
the sample (the minimum step size was 1µm).  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The experimental set-up used in  microwave microscopy 
experiments.  

 
Figure 3 shows the plot of the S11 parameter for three 
different materials: metal, bakelite (εr =5) and teflon (εr =2). 
The plot demonstrates the capability of the proposed TLM 
model to differentiate between materials with different 
electric permittivities. The frequency response was obtained 
after two intermediary signal - processing steps: filtering and 
windowing. The same signal processing process was applied 
to the reference and to the reflected signals. 
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Figure 3. S11 parameter extracted from the TLM generated signals 
for different materials. 

 
Figure 4 shows the numerical results for simulation of 
scanning over two small pieces of bakelite and teflon 
respectively. The length of the dielectric pieces was 1.6 mm 
and the step size in scanning was 0.033 mm. The dielectric 
profiles were obtained by selecting the corresponding 
computed S11 parameter for 1.72 GHz. This procedure is 
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identical to that used in experimental microwave microscopy 
[15].  
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Figure 4. Results of numerical scanning for two pieces of dielectric. 
 
The results obtained prove that the TLM algorithm can be 
used to model detection of local variation in permitivity. 
Furthermore, the TLM algorithm presented in this paper can 
be implemented as the forward solution  subroutine for the 
reconstruction of the permitivity profile. A reconstruction 
process of inhomogenities in permitivity based on a Newton’s 
iterative scheme  for microwave imaging  was proposed 
before [16]. This reconstruction code will involve the 
following steps: 

1. Computing the electric fields using the TLM 
algorithm described here for each of the different 
excitations, initially assuming a homogeneous 
sample. 

2. Obtaining the difference between the measured and 
computed fields (determined in step 1) at a finite 
number of locations for a finite number of incident 
fields. 

3. Constructing the Jacobian matrix required in the 
Newton’s method [17]. 

4. Computing a perturbation of complex valued wave 
number squared, ∆k2. 

5. Modifying the values of k2 based on the computed 
∆k2 and repeating steps 1-4 until a convergence 
criteria is satisfied. 
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        VI. CONCLUSIONS 
 

A numerical model for scanning microwave 
microscopy was implemented. The model is based on the 
TLM algorithm. The results shown in this paper demonstrate 
that the models can be applied to the dimensional 

characterization of structures with different electric 
permittivities. The scanning process was also implemented in 
the numerical model. The results obtained show that the 
numerical model can be run in parallel with the experimental 
scanning. This allows a better characterization of reflectors 
detected by microwave microscopy. Using TLM algorithm in 
reconstruction of permittivity profiles based on microwave 
measurements is proposed in this article. 
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