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Abstract — In this paper, the perfectly matched layer 

(PML) has been implemented into the Envelope Finite 
Element (EVFE) technique. The PML performance tests 
show that it can provide sufficient absorption of the 
incident waves both in 2D and 3D cases. The 3D guided 
wave structures are efficiently analyzed by the EVFE 
technique with the PML boundary condition. 
Furthermore, a new plane wave excitation scheme inside 
the PML boundary with EVFE technique is also 
presented here for the analysis of scattering problems, 
and the numerical examples validate the formulations. 

 

I. INTRODUCTION 
 
In modern optical and wireless communication systems, 
the digital modulated signals are usually further modulated 
with a very high frequency carrier, such that the signal 
bandwidth to carrier frequency ratio is very small.  To 
analyze the transient response of the components and 
devices in this kind of system, the traditional time domain 
techniques are not efficient and precise enough. The 
reasons are: first, although we can develop implicit method 
to make the time domain algorithms unconditionally 
stable, such as implicit finite element time domain (FETD) 
method [1], the time step size is still governed by Nyquist 
sampling criterion, which requires that the sampling rate is 
at least twice of the simulation bandwidth. As the 
simulation bandwidth in FETD ranges from DC to the 
highest frequency of the narrowband modulated signal, the 
required time step should be very small in order to follow 
the variance of high frequency carrier. Second, as FETD is 
low pass type of algorithm, the time dispersion error is 
smallest at DC, and continually increases as frequency 
increases. This characteristic made traditional FETD 
unsuitable to simulate narrow band systems because its 
time dispersion will be very large at the carrier frequency 
[2].   
Recently, a new numerical technique called envelope finite 
element was proposed in [2]-[5]. In this method, the 
carrier information is de-embedded from the narrowband 
signal thus only the complex signal envelopes are sampled. 
Its simulation bandwidth is much smaller compared with 
finite element time domain (FETD) method. Numerical 

tests in [2] shows, with same time step size, EVFE has a 
much lower time dispersion error than FETD. This is 
accomplished while, keeping the same time dispersion 
error, suggesting that EVFE can use much larger time step 
size than FETD. It can be asserted that EVFE is a 
powerful tool to simulate the transient response of 
components and devices in the narrowband system. The 
concept of envelope simulation itself is not new, which has 
been employed into the circuit simulator, such as ADS’s 
Circuit Envelope Simulator [6]. It has been proven to be 
much more efficient than the regular transient simulator. 
EVFE technique makes it possible to do the efficient EM 
and circuit co-simulation combining with Circuit Envelope 
Simulator. 
Previous researchers have already applied EVFE 
technique to 2-D guided wave problems [3] and 3-D 
microwave passive structures [4] with the first order 
absorbing boundary condition (ABC); however, an 
alternative and better choice to ABC is perfectly matched 
layer (PML) boundary condition, which has wider 
bandwidth and can provide more absorption of the 
incident waves.  Perfectly matched layer was first 
introduced into finite difference time domain (FDTD) 
method by Berenger [7], however, it has several 
limitations such as the governing equation inside the PML 
region is non-Maxwellian. Sacks [8] has suggested a new 
PML based on a lossy uniaxial medium and successfully 
implemented into frequency domain finite element 
method.  Gendey [9] further developed the formulation for 
the FDTD method with anisotropic perfectly matched 
layer and applied it in the analysis of microwave circuits 
and antennas. Recently, PML has been successfully 
implemented into finite element time domain technique 
(FETD) in the analysis of scattering problems [10], and 
active nonlinear microwave circuit modeling [11].  Based 
on the anisotropic PML concept, we derived the PML 
formulations for EVFE technique. Several numerical tests 
and examples will be shown to validate our formulations. 
This paper is organized as follows. Section II presents the 
EVFE formulations for implementing the anisotropic 
perfectly matched layer and two examples are presented to 
test the PML’s performance both in 2-D and 3-D. Section 
III presents 3-D examples for the analysis of guided wave 
structures with EVFE and PML technique. In section IV a 
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new plane wave excitation scheme inside the PML 
boundary is proposed and scattering problems are 
analyzed with this method. Finally, conclusions are made 
in section V.     

           
II. PML FOR EVFE FORMULATIONS 

 
In this section, the PML formulation will be derived for 
EVFE technique. To make the discussion more general, 
we present 3-D formulations here, which can be easily 
reduced to 2-D formulations. We would like to start from 
the general time-harmonic form of Maxwell equations in 
PML regions: 
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Here we assume there is no source in PML region, and the 
second-order wave equation from (1), (2), and (3) is:   
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Based on the vector finite element method, we can recast 
(4) into the following form 
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while ,i jN N
� �  are the vector basis functions.  

To solve equation (5), we need to define another three 
variables: 
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Equations (3)-(5) are reduced to 
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and defining the signal envelope as 
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Substituting (9) into (8) we can obtain the differential 
equation about the signal envelope  
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Using Newmark-Beta formulation to descretize (10), we 
can obtain the time recursive formulation 

2
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where Ri are the coefficient matrixes. According to (7), we 
can obtain the relationship between the ψξ, (ξ=x,y,z)  and u 
with Newmark-Beta formulation 
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where ξ=x,y,z and aξi are the complex coefficients. 
Combining equations (12) and (13), and solving them, the 
complex signal envelope vectors u=[u1,u2,…,uN] and Ψξ 
=[ Ψξ1, Ψξ2,…, ΨξN] can be solved in time domain. 
In order to reduce the discretization error, we use spatially 
variant conductivity along the normal axis [7] 
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where z0 is the interface between the PML region and non-
PML region, d is the depth of the PML and m is the order 
the polynomial variation. The order m =2 is chosen for 
better absorption.        
Two examples will be presented here to validate our 
EVFE formulations with PML boundary conditions. The 
first one is a 2-D example with the PML set at the end of a 
parallel waveguide. The incident modulated Guassian 
pulse’s carrier frequency is 2.91 GHz and the excitation 
bandwidth is 0.8 GHz. The second example is a 3-D 
rectangle waveguide terminated with PML absorber. The 
crossection of the waveguide is 10.16 mm and 22.86 mm.   
The excitation’s carrier frequency is about 10 GHz and the 
bandwidth is about 4 GHz. 
Figs 1 and 2 show the results of PML tests. Both in 2-D 
and 3-D cases, PML can provide about -40dB absorption 
when four layers of PML are set. As the layers of PML 
increase, the absorption to the incident increases quickly.  
 

III. WAVEGUIDE PROBLEM SOLUTION WITH THE 
3-D EVFE AND PML 

Two numerical examples will be shown here to verify the 
precision and efficiency of EVFE technique with PML. 
The first simulation structure is a rectangular waveguide 
with a dielectric post discontinuity shown in Fig. 3. The 
same geometry was analyzed by J-S Wang using FEM 
[12]. The waveguide has a width a = 22.86 mm (y-
direction) and height b = 10.16 mm (x-direction). The 
dielectric slab has a height equal to that of the guide, width 

c = 12 mm, and length d = 6 mm. The relative dielectric 
constant of the slab is 8.2. In order to avoid the influence 
of the higher order modes, we set the observation point far 
enough from the discontinuity. TE10 mode is excited inside 
the waveguide with the center frequency 10 GHz and 
bandwidth 4 GHz. The excitation of EVFE in equation is 
represented as 
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where T = 4dt, t0 = 12dt and dt = 25 ps.   

 
Fig. 1. Performance of PML for 2-D. 

 

        
Fig. 2. Performance of PML for 3-D. 
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Fig. 3. Dielectric post discontinuity in a rectangular  
            waveguide. 

In FETD or FDTD case, CFL condition requires the time 
step to be less than 2ps. The total steps are about 12.5 
times as many as what EVFE requires. In this example, 10 
layers of PML are set at the each end of the waveguide. 

  

Fig. 4. Incident, reflection and transmission waves. 

 

Fig. 5. Magnitudes of S11 and S21. 

Numerical Results for the time domain fields and 
magnitudes of S11 and S21 are shown in Fig. 4 and Fig. 5 
respectively. The magnitudes of S11 and S21 are compared 
with the results calculated using HFSS, and they agree 
with each other very well. 
The second example is a waveguide with a rectangle 
corner bend, filled with air, shown in Fig. 6.  The 
waveguide has a width a = 20 mm and height b = 4 mm, 
with 10 layers PML set in two ends. In order to avoid the 
influence of the high order modes, we set the observation 
point far enough from the discontinuity. TE10 mode is 
excited inside the waveguide with a center frequency, fc = 
13 GHz and bandwidth ∆f = 4 GHz. Numerical results of 
magnitudes of S11 and S21 are shown in Fig. 7. S11 and S21 
are compared with the results calculated using HFSS, and 
they agree very well. 
 
 

                    

Fig. 6. Waveguide with right-angel  corner band. a = 20 
mm, b = 4 mm. 

 

Fig. 7. Magnitudes of S11 and S21. 
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c 

b 
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a 

b 

87Yao, et al.: Envelope - Finite Element (EVFE) Technique in Electromagnetics with Perfectly Matched Layer (PML)



IV. ANALYSIS OF 2-D SCATTERING PROBLEMS 
WITH EVFE & PML 

 
Finite element methods have been extensively applied for 
scattering problem analysis with absorbing boundary 
conditions (ABCs). The plane wave excitation is 
straightforward for traditional Mur’s ABCs. However, how 
to excite a plane wave in finite element analysis coupled 
with Perfect Matching Layer (PML) efficiently has not 
been thoroughly studied. In [13], a scattered field 
formulation is used for the entire computational domain. 
Therefore the applicability is limited for conductor only 
cases. In [10] and [14] the first effective approach 
addressing the excitation problem is proposed. The wave 
equation for the total field is used for the computational 
region while in PML region the incident field is switched 
to that in free space. To solve the unknown scattered field, 
however, it involves the updating of incident fields over 
the entire computational domain. Here, a simple and 
physically clear way to excite the plane wave is proposed 
based on the equivalence principle. The essential idea is to 
use both equivalent electric and magnetic currents on the 
virtual surface between these two regions. Though this 
concept has been well accepted for finite difference time 
domain (FDTD) simulations with PML [15], the 
implementation to the finite element approach has not 
been reported in literature yet. The main reason is that 
FEM is based on the single field (E-field) formulation, 
while both equivalent electric and magnetic currents need 
to be used to satisfy equivalence principle. In this paper, 
we shall present the implementation of the equivalence 
principle for plane wave incidence. With the proposed 
approach, this technique is applied to solve the scattering 
problems using finite element time domain (FETD) or 
envelope-finite element (EVFE) techniques, as the final 
performance of these techniques are strongly dependent on 
the perfect implementation of the PML boundary 
condition.     
                                            

               
Fig. 8. Geometry of the 2-D scattering problem. 

To derive the EVFE_PML formulations for the 2-D 
scattering problems, we start from the general wave 
equation in PML region  
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where S is the surface of the whole 2-D computational 
domain. Defining an inner boundary C, S is separated into 
the inner region S2 and outer region S1, as shown in Fig. 8. 
It should be noted that the equivalent sources are placed 
on C and the inner boundary should be selected in the free 
space area enclosed by PML. Therefore, we represent the 
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Furthermore, the field can be expanded using finite 
element basis functions by letting 
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Substituting (1), (2), (20) into (18) and (19), for 2-D TM 
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Adding (21) and (22) together, we can obtain 
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                  (23) 
In (23), e represents e+ inside region S1 and e- inside S2. 
The loop integral in (23) shows the contribution of the 
equivalent electric current on C. The relation between the 
fields in region 1 and region 2 can be expressed as 
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Because the electric field on the boundary C is not 
continuous due to the magnetic current excitation, it needs 
to be defined. Here we assume e=e- on C, thus e+ 
unknowns on the excitation boundary can be eliminated by 
using (24). Substituting (24) and (25) into (23) yields a 
general equation for E fields 
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In (26), both electric and magnetic currents are included in 
the right hand side. N1 denotes the element numbering 
which are related with the excitation boundary C.  
Thus we can obtain the matrix equation  
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Notice that Einc is zero except on the excitation boundary 
C. The internal boundary integral terms inside PML vanish 
because of the continuity of tangential H field. If we define 
another variable Φ and Φinc 
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So far, (29) is the derived frequency domain wave 
equation in PML medium. A transformation is needed in 
order to change (29) to time/envelope domain. First we 
define the complex signal envelope of the fields as 
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where ωc is the carrier frequency and u,ψ, jz are the 
complex envelopes. Further incorporating the Fourier 
transform relationship between frequency domain and time 
domain, the transform between the frequency domain 
operators and envelope domain operators are: 
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It is evident that setting ωc as zero in the above formulas 
leads to the conventional Fourier transform. Therefore, 
(29) is converted into envelope domain:  
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For the same reason, equation (28) results in, 
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       (34) 
Using Newmark-Beta formulations [3] to discretize (32) 
and (34) in time domain yields two difference equations. 
The “Mutual Difference” scheme [5] can then be used to 
solve these two equations jointly to update the complex 
signal envelope vector u=[u1,u2,…,uN] and Ψ=[ Ψ1, Ψ2,…, 
ΨN] in time. 
Two numerical examples are presented to validate the 
proposed scheme. The scattering problem about the 
cylindrical perfect electric conductor (PEC) is first solved 
using EVFE technique. Here we define the incident plane 
wave in the form of modulated Gaussian pulse. For 
simplicity, we assume the incident wave impinges in x 
direction, and the carrier frequency is ωc, the envelopes of 
the incident fields thus become 
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                                                                                      (35) 
 

 
Fig.9. Magnitude of surface current on upper half  cylinder 

at f=2 GHz.  

 
                        
 

 
 Fig.10. Normalized RCS of the cylinder in Fig. 9 at 

different observation angles at f=2 GHz. 

 
Consider a perfectly conducting square cylinder with the 
side length 0.15 m. Six PML layers are set 2.5 cm away 
from the PEC cylinder’s surface. The incidence wave is a 
modulated Gaussian pulse (35) with a center frequency 2 
GHz and a bandwidth of 1 GHz. The polarization is TM. 
The excitation boundary C is only 1.5 cm away from the 
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PEC object and 1 cm away from the PML region. The 
result for the surface current on the upper half of the 
cylinder is plotted in Fig. 9, where the frequency is 2 GHz.  
The result of the normalized RCS is presented in Fig. 10. 
The results agree well with those obtained using Method 
of Moments (MoM). 
 
Another example is a square two-dimensional 
homogeneous anisotropic dielectric scatterer. The scatterer 
to be simulated is a square anisotropic cylinder with 
εzz=1.5, µxx=1.5, µyy=3 and k0s=10, where k0 is set 
according to the center frequency of the Gaussian incident 
plane wave, and s is the side length of the square cylinder. 
In this case, the excitation boundary C is only 0.1λ0 away 
from the scatter and 0.1λ0 away from the ten layers PML 
region, where λ0 is according to the center frequency.   
The result about the magnitude of the magnetic current on 
center frequency is plotted in Fig. 11 which agrees well 
with the result of FDTD [16]. 
                                                  

 
Fig. 11. Surface magnetic current distribution of square 

anisotropic cylinder with εzz=1.5, µxx=1.5, µyy=3 
and k0s=10. 

 

V. CONCLUSION 

In this paper, anisotropic PML has been implemented into 
the 2-D and 3-D EVFE formulations. Numerical examples 
have been presented to evaluate the PML’s performance 
and about 40dB absorption is achieved when a 4-layer 
absorber is used in both 2-D and 3-D cases. The EVFE 
technique with PML is validated through the simulation of 
the guided wave structures. The new method for exciting a 
plane wave inside the PML boundary has been proposed 

and the numerical examples of scattering problems are 
also presented to show the validity of the formulations. 
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