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Abstract—Frequency-derivative information incorporated with
model-based parameter estimation (MBPE) is used to obtain scat-
tering from a perfectly conducting body of revolution (BOR). The
electric field integral equation (EFIE) is solved using the method
of moments (MoM) to obtain the surface current on the perfectly
conducting body. Instead of computing the MoM solution using a
pointwise approach, a rational function model is used to approxi-
mate the current as a function of frequency. The model coefficients
are computed using both frequency and frequency-derivative in-
formation at one frequency in the band or alternatively two or
more frequencies in the band. With the rotational symmetry of
BOR, the computational cost can be significantly reduced com-
pared to that of arbitrary three-dimensional (3-D) objects and
more importantly scattering from an electrically large body can be
obtained. Numerical results for various perfectly conducting bod-
ies are presented. Results show that the MBPE provides excellent
agreement with the pointwise approach over a limited frequency
band. In addition, the MBPE performs well for predicting sharp
resonances.

I. I NTRODUCTION

Most electromagnetic problems are essentially involved in
determining the response over a certain bandwidth rather than
at one or a few sampling points. Traditionally when the solu-
tion over a frequency band is required, a conventional method
such as the method of moments (MoM) uses a set of discrete
frequency samples with linear or low order polynomial interpo-
lation, which requires a large number of frequency samples to
obtain an accurate frequency response curve over the frequency
band. In addition, for a response which contains very sharp res-
onances or is high Q, an excessive number of closely spaced
frequency samples are required. As a result, the computational
cost would be very high.

In [1]–[2], model-based parameter estimation (MBPE) is in-
troduced to obtain a frequency response curve from both fre-
quency and frequency-derivative data in a procedure where the
moment matrix equation is differentiated. As an application,
MBPE is used to evaluate the specialized Green’s function as-
sociated with scatterers inside rectangular guided-wave struc-
tures and cavities [3]. Typically, MBPE is applied to predict the
radar scattering cross section (RCS) of conducting and dielec-
tric two-dimensional (2-D) bodies over a frequency band [4],
[5] and of arbitrarily shaped three-dimensional (3-D) perfectly
electric conducting (PEC) objects versus frequency [6], [7].

Specifically, in [4]–[7], the current is approximated by a ratio-
nal function and its coefficients are determined using frequency
and frequency-derivative data. In addition to a one-frequency
derivative method, a multi-frequency derivative method has
been presented [4], [7]. As a similar approach, Cauchy’s tech-
nique is utilized to determine the electromagnetic response of a
conducting cylinder over a frequency band and the coefficients
of the rational function are obtained from the current and its
derivatives at a few frequency points [8].

In this work, MBPE is applied to evaluate scattering from a
conducting body of revolution (BOR) over a certain frequency
range. In fact, the problem of electromagnetic scattering from a
BOR has been studied by lots of researchers for many years [9]–
[15]. With the rotational symmetry of BOR, the original 3-D
problem can be reduced to a series of 2-D problems. As a result,
electromagnetic scattering from a BOR can be computed with
a significant reduction of computational time and data storage.
However, when the frequency response over a frequency band
is required, computations involving a BOR can be costly when
the pointwise approach is used.

In this work, instead of using a pointwise approach, a ra-
tional function model is utilized to approximate the current as a
function of frequency and the model coefficients are determined
using both frequency information and frequency-derivative in-
formation within a frequency band. Consequently, the compu-
tational cost can be dramatically reduced.

II. M ODEL-BASED PARAMETER ESTIMATION

A. Computing model coefficients using frequency-derivative
samples

The fundamental spectral-domain rational function model
can be written as

F (X) =
N(X)

D(X)
=

[
∑n

i=0 Ni Xi
]

[

∑d

i=0 Di Xi

] (1)

whereX would be the complex frequency (X= σ + jω). Of
course, polynomials of any orders can be used in the numerator
and denominator of this model. TheNi’s andDi’s of (1) can be
found when frequency-derivative samples at a certain frequency
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are available. To find them, we begin by rewriting (1) as

F (X)D(X) = N(X). (2)

Starting with (2) and differentiatingt times with respect toX,
the following results occur

F ′D + FD′ = N ′

F ′′D + 2F ′D′ + FD′′ = N ′′

... (3)

F (t)D + tF (t−1)D′ + · · · +
(

t

t − m

)

F (m)D(t−m)

+ · · · + FD(t) = N (t)

where
(

t

t−m

)

is the binomial coefficient, andX dependance is
implicit. Equations (2) and (3) form a system oft+1 equations
that can be used to determine the model coefficients.

If the frequency derivatives are known at only a single fre-
quencyX0, (2) and (3) can be simplified by replacingX by
X−X0 whereX−X0 represents the frequency deviation from
X0. Then settingD0 = 1, settingt = n + d, and defining
D = t + 1, we have the following matrix equation for the un-
known coefficients

[

A
] [

B
]

=
[

C
]

(4)

whereA =





























1 0 · · · · · · 0 0 0 · · · 0
0 1 · · · · · · 0 −F0 0 · · · 0
0 0 1 · · · 0 −F1 −F0 · · · 0
...

.. .
...

...
...

.. .
...

0 0 · · · · · · 1 −Fn−1 −Fn−2 · · · −Fn−d

0 0 · · · · · · 0 −Fn −Fn−1 · · · −Fn−d+1

...
.. .

...
...

...
.. .

...
0 0 · · · · · · 0 −FD−2 −FD−3 · · · −FD−d−1





























(5)

B =
[

N0 N1 N2 · · · Nn D1 · · · Dd

]T
(6)

C =
[

F0 F1 F2 · · · Fn Fn+1 · · · FD−1

]T
(7)

whereFm = (1/m!)F (m)(0) for m = 0, 1, . . . ,D − 1 and
Fm = 0 whenm < 0, F is regarded as a function of(X−X0),
and the superscriptT denotes the transpose of a row vector. By
solving (4), we obtain the unknown coefficients.

If the frequency-derivative information is available at more
than one frequency, then a more general matrix equation needs
to be taken instead of (4). Let us consider a two-frequency
model and choose sampling points at two frequenciesX1 and
X2. If we have one frequency sample andn frequency-
derivative samples atX1 and one frequency sample andd − 1
frequency-derivative samples atX2 then the system ofn+d+1
equations can be solved. In detail, (2) can be expanded as the

following equation at the first sampling pointX1

N0 + N1X1 + N2X
2
1 + · · · + NnXn

1

= (1 + D1X1 + D2X
2
1 + · · · + DdX

d
1 )F (X1)

= F (X1) + D1F (X1)X1 + D2F (X1)X
2
1

+ · · · + DdF (X1)X
d
1 (8)

Similarly, (2) can be expanded as the following equation at the
second sampling pointX2

N0 + N1X2 + N2X
2
2 + · · · + NnXn

2

= (1 + D1X2 + D2X
2
2 + · · · + DdX

d
2 )F (X2)

= F (X2) + D1F (X2)X2 + D2F (X2)X
2
2

+ · · · + DdF (X2)X
d
2 (9)

Differentiating (8)n times with respect toX1 and differentiat-
ing (9) d − 1 times with respect toX2, we can obtain the fol-
lowing matrix equation to compute the unknown coefficients,

[

AM1
BM1

AM2
BM2

]

[

CM

]

=

[

DM1

DM2

]

(10)

where

AM1
=











1 X1 X2
1 · · · Xn

1

0 1 2X1 · · · nXn−1
1

...
...

. ..
...

...
0 0 0 · · · dn

dXn

1

N(X1)











(11)

AM2
=













1 X2 X2
2 · · · Xn

2

0 1 2X2 · · · nXn−1
2

...
...

.. .
...

...

0 0 0 · · · dd−1

dX
d−1

2

N(X2)













(12)

BM1
=











−F (X1)X1 · · · −F (X1)X
d
1

− d
dX1

{F (X1)X1} · · · − d
dX1

{

F (X1)X
d
1

}

...
...

− dn

dXn

1

{F (X1)X1} · · · − dn

dXn

1

{

F (X1)X
d
1

}











(13)

BM2
=













−F (X2)X2 · · · −F (X2)X
d
2

− d
dX2

{F (X2)X2} · · · − d
dX2

{

F (X2)X
d
2

}

...
...

− dd−1

dX
d−1

2

{F (X2)X2} · · · − dd−1

dX
d−1

2

{

F (X2)X
d
2

}













(14)

CM =
[

N0 N1 · · · Nn D1 D2 · · · Dd

]T
(15)

DM1
=

[

F (X1)
d

dX1

F (X1) · · · dn

dXn

1

F (X1)
]T

(16)

DM2
=

[

F (X2)
d

dX2

F (X2) · · · dd−1

dX
d−1

2

F (X2)
]T

(17)

where the superscriptT denotes the transpose of a row vector.
By solving (10), we obtain the unknown coefficients.
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B. Computing frequency derivatives in a method of moments
model

Following the development in [16], one obtains the fol-
lowing moment equation

Z ~I = ~V (18)

Z =

[

Ztt
n Ztφ

n

Zφt
n Zφφ

n

]

(19)

~I =

[

Itq
n

Iφq
n

]

(20)

~V =

[

V tq
n

V φq
n

]

(21)

whereZ, ~I, and~V are theN × N moment matrix and current
and voltageN × 1 column vectors respectively, and they are
all functions of frequency throughk = ω

√
µε whereω is the

angular frequency.
In this work, surface currents are modeled by rational func-

tions of frequency. In detail we assume that theith element of
~I in (18) isIi(k) modeled by

Ii(k) =
N(k)

D(k)
=

∑n

j=0 Nj kj

∑d

j=0 Dj kj
(22)

in which there aren + d + 1 coefficients (Nj ’s andDj ’s) to be
determined (assume thatD0 = 1). TheNj ’s andDj ’s of (22)
can be found when frequency and frequency-derivative samples
at a certain frequency are available.

Starting with (18) and differentiatingt times with respect to
k, there results the following:

Z~I = ~V

Z ′~I + Z~I ′ = ~V ′

Z ′′~I + 2Z ′~I ′ + Z~I ′′ = ~V ′′

...

Z(t)~I + tZ(t−1)~I ′ + · · · +
(

t

t − m

)

Z(m)~I (t−m)

+ · · · + Z~I(t) = ~V (t) (23)

where
(

t

t−m

)

is the binomial coefficient and thek dependence
is implicit. Solving the(s + 1)th of matrix equations (23) for
~I (s) in terms of~I, ~I (1), . . . , ~I (s−1), we obtain

I
(s)
i =

N
∑

j=1

Yij

[

V
(s)
j −

s
∑

m=1

(

s

m

)

×
( N

∑

k=1

Z
(m)
jk I

(s−m)
k

)]

, s = 0, 1, . . . , t (24)

whereI
(s)
i is thesth derivative with respect tok of theith ele-

ment of~I andYij is theijth element ofZ−1. The summation
with respect tom in (24) is to be omitted whens = 0. The sum-
mation indexk in (24) is not to be confused withk = ω

√
µε.

Note that the derivatives of the moment matrix and the excita-
tion vector have to be expressed analytically before their nu-
merical computation.
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Fig. 1. NormalizedRCS of a conducting sphere of radius a using MBPE
(n = 5 and d = 4) and theMoM solution from a/λ = 0.4 to a/λ = 0.8. The
sampling point of MBPE is ata/λ = 0.6.

I I I . NUMERICAL RESULTS

The results of applying MBPE to BOR using MoM are con-
sideredbelow. RCScalculationsoverfrequency bandsaredone
for a conducting sphere, a conducting spherical shell with a 5
degree hole and another with a 30 degree hole, a conducting
finite circular cylinderof radiusa and height h(= 2a) with flat
end faces, a conducting cone-sphere structure, and a conduct-
ing cylindrical container. Theexcitation is aplanewaveaxially
incident. The numerical dataobtained using MBPE are com-
paredwith the results calculatedusing the pointwise approach.
All thecomputations reportedbelow weredonewith aPentium
IV 2.0 Ghz computer.

Triangle and pulse basis functions are put on the generating
curve of the conducting sphere in Figures1 and 2 resulting in
61 unknown current coefficients.

Figure 1 shows two normalizedRCS’s, MoM and MBPE
(n = 5 and d = 4). The MoM RCSis calculatedby MoM at
100 equally spacedpoints from a/λ = 0.4 to a/λ = 0.8. The
MBPE RCSis obtained by using information only at a/λ =
0.6. TheMoM solutionsfor theRCSat the100 points took 117
seconds of CPU time. On the other hand, the MBPE took 14
secondsof CPU timeto obtain theRCSat thesamepoints. The
MBPE result agreeswith the MoM result to within 1% error
betweena/λ = 0.49 and a/λ = 0.73. MBPE achieves88% re-
duction comparedto the MoM solution where the % reduction
is definedby

%reduction =
MoM − MBPE

MoM
× 100. (25)

In Figure 2 both MBPE’s use n = 5 and d = 4 in (22).
The one-frequency MBPE in Figure 2 uses (22) and the first
nine derivativesof (22). The two-frequency MBPE in Figure 2
uses (22) at both a/λ = 0.5 and a/λ = 0.7, the first four
derivatives of (22) at a/λ = 0.5, and the first four deriva-
tives of (22) at a/λ = 0.7. The one-frequency MBPE took
14 seconds of CPU time to compute the RCS at 100 equally
spacedfrequencieswhereasthe two-frequency MBPE took 27
seconds of CPU time to compute the RCSat the same100 fre-
quencies. The MoM solution, however, took 117 seconds. The
one-frequency MBPE achieves88% reduction whereasthetwo-
frequency MBPE does77% reduction. The formeragreeswith
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Fig. 2. Normalized RCS of a conducting sphere of radiusa using the MoM
solution, the one-frequency MBPE, and the two-frequency MBPE froma/λ =

0.4 toa/λ = 0.8. The sampling point of the one-frequency MBPE is ata/λ =

0.6 and the sampling points of the two-frequency MBPE are ata/λ = 0.5 and
a/λ = 0.7.
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Fig. 3. Geometry of a conducting spherical shell of radiusa with a 5 degree
hole.

the MoM result to within 1% error betweena/λ = 0.49 to
a/λ = 0.73. On the other hand, the latter agrees with the MoM
result to within 1% error betweena/λ = 0.43 to a/λ = 0.72.
In terms of the computational time, the former is less than the
latter, but the latter shows better agreement at the low end of the
frequency range.

For the demonstration purpose of indicating extremely sharp
resonances, a conducting spherical shell of radiusa with a 5
degree hole is considered in Figure 3.

In Figure 4, triangle and pulse basis functions are put on
the generating curve of the spherical shell resulting in 61 un-
known current coefficients. The RCS is calculated at 120
equally spaced points froma/λ = 0.3 to a/λ = 0.5. Fig-
ure 4 shows the normalized RCS in the vicinity of an extremely
sharp resonance and the MBPE sampling point is ata/λ = 0.4.
The MBPE indicates the extremely sharp resonance efficiently
whereas MoM does not. MoM took 135 seconds of CPU time to
compute the RCS at the 120 points. On the other hand, MBPE
took only 15 seconds of CPU time to compute the RCS at the
120 points. As insinuated earlier, the conventional method re-
quires an excessive number of closely spaced samples to obtain
the extremely sharp resonance. In this example, although we
took 120 equally spaced sampling points, MoM fails to indi-
cate the extremely sharp resonance. An insert in Figure 4 shows
MoM clearly indicates the extremely sharp resonance when 201
equally spaced points froma/λ = 0.43 to a/λ = 0.44 are
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Fig. 4. Normalized RCS of a conducting spherical shell of radiusa with
a 5 degree hole using MBPE (n= 4, d = 5) and the MoM solution from
a/λ = 0.3 to 0.5. The sampling point is ata/λ = 0.4.
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Fig. 5. Normalized RCS of a conducting spherical shell of radiusa with
a 5 degree hole using MBPE (n= 4, d = 4) and the MoM solution from
a/λ = 0.75 to a/λ = 0.95. The sampling point is ata/λ = 0.85.

taken.
Figure 5 shows the normalized RCS in the vicinity of two

extremely sharp resonances. The MBPE sampling point is at
a/λ = 0.85. Triangle and pulse basis functions are put on the
generating curve of the spherical shell resulting in 81 unknown
current coefficients. The RCS is calculated at 120 equally
spaced points froma/λ = 0.75 to a/λ = 0.95. The MBPE in-
dicates two extremely sharp resonances at arounda/λ = 0.79
anda/λ = 0.92. The MBPE curve adequately indicates the
extremely sharp resonances and agrees to within 1% error be-
tween the extremely sharp resonances, but elsewhere it deviates
from the MoM curve. MBPE took 26 seconds of CPU time to
compute the RCS at the 120 points whereas MoM took 242 sec-
onds of CPU time to compute the RCS at the same points, that
is, MBPE obtains89% reduction.

Figure 6 shows the geometry of a spherical shell of radiusa
with a 30 degree hole.

Figure 7 shows the normalized RCS using the one-frequency
MBPE, the two-frequency MBPE, and MoM. Triangle and
pulse basis functions are put on the generating curve of the
spherical shell resulting in 41 unknown current coefficients.
The RCS curves are calculated at 91 equally spaced points from
a/λ = 0.1 to a/λ = 0.4. Both MBPE’s usen = 5 andd = 4
in (22). The sampling point of the one-frequency MBPE is
at a/λ = 0.25 and the sampling points of the two-frequency
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Fig. 6. Geometry of a conducting spherical shell of radiusa with a 30 degree
hole.
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Fig. 7. Normalized RCS of a conducting spherical shell of radiusa with a
30 degree hole using the one-frequency MBPE, the two-frequency MBPE, and
MoM from a/λ = 0.1 toa/λ = 0.4. The sampling point of the one-frequency
MBPE is ata/λ = 0.25 and the sampling points of the two-frequency MBPE
are ata/λ = 0.17 anda/λ = 0.35.

MBPE are ata/λ = 0.17 anda/λ = 0.35. The one-frequency
MBPE took 8 seconds of CPU time (83% reduction) and the
two-frequency MBPE took 14 seconds of CPU time (70%re-
duction), whereas MoM took 47 seconds of CPU time. The
two-frequency MBPE curve shows better agreement between
a/λ = 0.1 anda/λ = 0.4 than the one-frequency MBPE curve.

Figure 8 shows the normalized RCS using the one-frequency
MBPE, the two-frequency MBPE, and MoM. Triangle and
pulse basis functions are put on the generating curve of the
spherical shell resulting in 81 unknown current coefficients.
The RCS curves are calculated at 121 equally spaced points
from a/λ = 0.35 to a/λ = 0.65. Both MBPE’s usen = 4 and
d = 5 in (22). The sampling point of the one-frequency MBPE
is ata/λ = 0.5 and the sampling points of the two-frequency
MBPE are ata/λ = 0.44 anda/λ = 0.59. The one-frequency
MBPE took 25 seconds of CPU time (89% reduction) and the
two-frequency MBPE took 46 seconds of CPU time (80%re-
duction), whereas MoM took 229 seconds of CPU time. It can
be seen that the two-frequency MBPE curve agrees with MoM
to within 1% error betweena/λ = 0.39 and a/λ = 0.64,
whereas the one-frequency MBPE curve agrees with MoM to
within 1% error only betweena/λ = 0.44 anda/λ = 0.57.
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Fig. 8. Normalized RCS of a conducting spherical shell of radiusa with
a 30 degree hole using the one-frequency MBPE, the two-frequency MBPE,
and MoM froma/λ = 0.35 to a/λ = 0.65. The sampling point of the one-
frequency MBPE is ata/λ = 0.5 and the sampling points of the two-frequency
MBPE are ata/λ = 0.44 anda/λ = 0.59.
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Fig. 9. Geometry of a conducting finite circular cylinder of radiusa and height
h with flat end faces.

Figure 9 shows the geometry of a conducting finite circular
cylinder of radiusa and heighth.

Figure 10 shows the normalized RCS of a conducting finite
circular cylinder of radiusa and height2a with flat end faces
using the one-frequency MBPE, the two-frequency MBPE, and
MoM. Triangle and pulse basis functions are put on the gen-
erating curve of the cylinder resulting in 81 unknown current
coefficients. The RCS curves are calculated at 100 equally
spaced points froma/λ = 0.02 to a/λ = 0.4. Both MBPE’s
usen = 5 andd = 4 in (22). The sampling point of the one-
frequency MBPE is ata/λ = 0.2 and the sampling points of
the two-frequency MBPE are ata/λ = 0.1 anda/λ = 0.29.
The one-frequency MBPE took 25 seconds of CPU time (87%
reduction) and the two-frequency MBPE took 46 seconds of
CPU time (76%reduction), whereas MoM took 191 seconds of
CPU time. The two-frequency MBPE curve shows slightly bet-
ter agreement than the one-frequency MBPE curve especially
arounda/λ = 0.02.

Figure 11 shows the normalized RCS of the conducting finite
circular cylinder of radiusa and height2a with flat end faces
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Fig. 10. Normalized RCS of a conducting finite circular cylinder of radius
a and height2a with flat end faces froma/λ = 0.02 to a/λ = 0.4. The
sampling point of the one-frequency MBPE is ata/λ = 0.2 and the sampling
points of the two-frequency MBPE are ata/λ = 0.1 anda/λ = 0.29.

1.25 1.3 1.35 1.4 1.45 1.5 1.55
24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

a / λ

σ 
/ λ

2  [d
B

]

One freq. MBPE
Two freq. MBPE
MoM

X

Y

Z
a

h = 2a

PSfrag replacements

E
inc

Fig. 11. Normalized RCS of the conducting finite circular cylinder of radius
a and height2a with flat end faces froma/λ = 1.25 to a/λ = 1.55. The
sampling point of the one-frequency MBPE is ata/λ = 1.4 and the sampling
points of the two-frequency MBPE are ata/λ = 1.32 anda/λ = 1.46.

in a higher frequency band using the one-frequency MBPE,
the two-frequency MBPE, and MoM. Triangle and pulse ba-
sis functions are put on the generating curve of the cylinder
resulting in 201 unknown current coefficients. The RCS curves
are calculated at 100 equally spaced points froma/λ = 1.25
to a/λ = 1.55. Both MBPE’s usen = 5 and d = 4 in
(22). The sampling point of the one-frequency MBPE is at
a/λ = 1.4 and the sampling points of the two-frequency MBPE
are ata/λ = 1.32 anda/λ = 1.46. The one-frequency MBPE
took 153 seconds of CPU time (88% reduction) and the two-
frequency MBPE took 291 seconds of CPU time (77%reduc-
tion), whereas MoM took 1289 seconds of CPU time. The
two-frequency MBPE curve shows slightly better agreement
betweena/λ = 1.25 anda/λ = 1.55 than the one-frequency
MBPE curve.
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Fig. 12. Geometry of a cone-sphere structure illuminated by a plane wave
which is axially incident and propagates either (a) from the cone tip toward the
spherical cap or (b) from the spherical cap toward the cone tip.

Figure 12 shows the geometry of a cone-sphere structure il-
luminated by a plane wave which is axially incident and propa-
gates either from the cone tip toward the spherical cap or from
the spherical cap toward the cone tip.

Figure 13 shows the normalized RCS of the cone-sphere
in Figure 12(a) using the one-frequency MBPE, the two-
frequency MBPE, and MoM. The incident wave propagates
from the cone tip toward the spherical cap. Triangle and
pulse basis functions are put on the generating curve of the
cone-sphere resulting in 61 unknown current coefficients. The
RCS curves are calculated at 100 equally spaced points from
a/λ = 0.02 to a/λ = 0.4. Both MBPE’s usen = 5 and
d = 4 in (22). The sampling point of the one-frequency MBPE
is ata/λ = 0.2 and the sampling points of the two-frequency
MBPE are ata/λ = 0.14 anda/λ = 0.26. The one-frequency
MBPE took 14 seconds of CPU time (89%reduction) and the
two-frequency MBPE took 26 seconds of CPU time (79%re-
duction), whereas MoM took 124 seconds of CPU time. The
two-frequency MBPE curve agrees with MoM to within 1%
error betweena/λ = 0.08 anda/λ = 0.32, whereas the one-
frequency MBPE curve agrees with MoM to within 1% error
betweena/λ = 0.16 anda/λ = 0.24.

Figure 14 shows the normalized RCS of the cone-sphere
structure in Figure 12(b) using the one-frequency MBPE, the
two-frequency MBPE, and MoM. The incident wave propa-
gates from the spherical cap toward the cone tip. Triangle and
pulse basis functions are put on the generating curve of the
cone-sphere resulting in 61 unknown current coefficients. The
RCS curves are calculated at 100 equally spaced points from
a/λ = 0.02 to a/λ = 0.4. Both MBPE’s usen = 5 and
d = 4 in (22). The sampling point of the one-frequency MBPE
is ata/λ = 0.2 and the sampling points of the two-frequency
MBPE are ata/λ = 0.14 anda/λ = 0.26. The one-frequency
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Fig. 13. Normalized RCS of a cone-sphere structure illuminated by a plane
wave which is axially incident and propagates from the cone tip toward the
spherical cap betweena/λ = 0.02 anda/λ = 0.4. The sampling point of
the one-frequency MBPE is ata/λ = 0.2 and the sampling points of the two-
frequency MBPE are ata/λ = 0.14 anda/λ = 0.26.
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Fig. 14. Normalized RCS of a cone-sphere structure illuminated by a plane
wave which is axially incident and propagates from the spherical cap toward the
cone tip betweena/λ = 0.02 anda/λ = 0.4. The sampling point of the one-
frequency MBPE is ata/λ = 0.2 and the sampling points of the two-frequency
MBPE are ata/λ = 0.14 anda/λ = 0.26.

MBPE took 14 seconds of CPU time (89% reduction) and the
two-frequency MBPE took 26 seconds of CPU time (79%re-
duction), whereas MoM took 124 seconds of CPU time. The
two-frequency MBPE curve agrees with MoM to within 1%
error betweena/λ = 0.08 anda/λ = 0.34, whereas the one-
frequency MBPE curve agrees with MoM to within 1% error
betweena/λ = 0.15 anda/λ = 0.24.

Figure 15 shows the geometry of a conducting cylindrical
container of outside diametera, inside diameter23a, height3a,
and thickness13a.

Figure 16 shows the normalized RCS of the conducting
cylindrical container by using the one-frequency MBPE, the
two-frequency MBPE, and MoM. Triangle and pulse basis
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Fig. 15. Geometry of a conducting cylindrical container of outside diameter
a, inside diameter2

3
a, height3a, and thickness1

3
a.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-60

-50

-40

-30

-20

-10

0

10

20

a / λ

σ 
/ λ

2  [d
B

]

One freq. MBPE
Two freq. MBPE
MoM

X

Y

Z

PSfrag replacements

E
inc

Fig. 16. Normalized RCS of a conducting cylindrical container froma/λ =

0.02 to a/λ = 0.4. The sampling point of the one-frequency MBPE is at
a/λ = 0.2 and the sampling points of the two-frequency MBPE are ata/λ =

0.12 anda/λ = 0.28.

functions are put on the generating curve of the container re-
sulting in 93 unknown current coefficients. The RCS curves
are calculated at 100 equally spaced points froma/λ = 0.02 to
a/λ = 0.4. Both MBPE’s usen = 5 andd = 4 in (22). The
sampling point of the one-frequency MBPE is ata/λ = 0.2
and the sampling points of the two-frequency MBPE are at
a/λ = 0.12 and a/λ = 0.28. The one-frequency MBPE
took 34 seconds of CPU time (88%reduction) and the two-
frequency MBPE took 63 seconds of CPU time (78%reduc-
tion), whereas MoM took 289 seconds of CPU time. The two-
frequency MBPE curve agrees with MoM to within 1% er-
ror betweena/λ = 0.05 anda/λ = 0.35, whereas the one-
frequency MBPE curve agrees with MoM to within 1% error
betweena/λ = 0.14 anda/λ = 0.26.
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IV. CONCLUSIONS

An implementation of MBPE for the BOR using MoM in the
frequency domain is presented. The RCS for various PEC ob-
jects such as a sphere, a spherical shell with a 5 degree hole
or with a 30 degree hole, a finite cylinder with flat end faces,
a cone-sphere structure, and a conducting cylindrical container
are computed and compared with the MoM solutions over fre-
quency bands. Instead of using a pointwise approach, a ratio-
nal function model is used to approximate the induced surface
as a function of frequency. The model coefficients are com-
puted using frequency and frequency-derivative information at
one frequency in the band or alternatively at two frequencies in
the band. Sample results show the MBPE approach gives ex-
cellent results over a limited frequency band, and is much more
efficient than the conventional pointwise approach.

As seen in numerical results, the two-frequency MBPE gives
better agreement than the one-frequency MBPE in terms of ac-
curacy although a rational function of the same order is used.
But the former requires adjustment at two sampling points to
obtain the best results, whereas the latter does not.

Even though a higher order model generally gives a better ap-
proximation, careful treatment of the model is required. For in-
stance, high order (n + d ≥ 7) derivatives in the one-frequency
MBPE make the sampling matrices ill-conditioned. To avoid
this problem, use of the two-frequency MBPE with the same
order model is recommended.

Note that the E-field solution fails to provide a unique solu-
tion for the current on a conducting body at any resonant fre-
quency of the region enclosed by the conducting surface of the
body. Thus, if a sampling point of the MBPE is accidently at or
in the vicinity of a resonant frequency, the results would not be
reliable. This problem is more likely to occur when the MBPE
is applied to an electrically very large body. Because an elec-
trically large body has resonant frequencies that are close to-
gether, wherever a sampling point is chosen it is likely to be in
the vicinity of an internal resonant frequency. The problem can
be avoided by using the combined field solution instead of the
E-field solution. The combined field solution uses a linear com-
bination of the E-field and H-field integral equations. When the
combined field solution is used, the MBPE will not incur loss of
accuracy caused by proximity to an internal resonant frequency.
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