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Abstract—Frequency-derivative information incorporated with ~ Specifically, in [4]-{7], the current is approximated by a ratio-
model-based parameter estimation (MBPE) is used to obtain scat- nal function and its coefficients are determined using frequency
tering from a perfectly conducting body of revolution (BOR). The - 5 fraquency-derivative data. In addition to a one-frequency

electric field integral equation (EFIE) is solved using the method L . L
of moments (MoM) to obtain the surface current on the perfectly derivative method, a multi-frequency derivative method has

conducting body. Instead of computing the MoM solution using a Peen presented [4], [7]. As a similar approach, Cauchy’s tech-
pointwise approach, a rational function model is used to approxi- nique is utilized to determine the electromagnetic response of a

mate the current as a function of frequency. The model coefficients conducting cylinder over a frequency band and the coefficients

are computed using both frequency and frequency-derivative in- o the rational function are obtained from the current and its
formation at one frequency in the band or alternatively two or - .

more frequencies in the band. With the rotational symmetry of d€rivatives at a few frequency points [8]. .

BOR, the computational cost can be significantly reduced com-  In this work, MBPE is applied to evaluate scattering from a

pared to that of arbitrary three-dimensional (3-D) objects and conducting body of revolution (BOR) over a certain frequency
more importantly scattering from an electrically large body canbe  range. In fact, the problem of electromagnetic scattering from a
pbtalned. Numerical results for various perfectly conductlng bod- BOR has been studied by lots of researchers for many years [9]
ies are presented. Results show that the MBPE provides excellent . . L2
agreement with the pointwise approach over a limited frequency [15]- With the rotational symmetry of BOR, the original 3-D
band. In addition, the MBPE performs well for predicting sharp  Problem can be reduced to a series of 2-D problems. As aresult,
resonances. electromagnetic scattering from a BOR can be computed with
a significant reduction of computational time and data storage.
However, when the frequency response over a frequency band
|. INTRODUCTION is required, computations involving a BOR can be costly when
Most electromagnetic problems are essentially involved the pointwise approach is used.
determining the response over a certain bandwidth rather tharin this work, instead of using a pointwise approach, a ra-
at one or a few sampling points. Traditionally when the soldional function model is utilized to approximate the current as a
tion over a frequency band is required, a conventional methhction of frequency and the model coefficients are determined
such as the method of moments (MoM) uses a set of discretgng both frequency information and frequency-derivative in-
frequency samples with linear or low order polynomial interpdermation within a frequency band. Consequently, the compu-
lation, which requires a large number of frequency samplestational cost can be dramatically reduced.
obtain an accurate frequency response curve over the frequency
band. In addition, for a response which contains very sharp res-
onances or is high Q, an excessive humber of closely spaced
frequency samples are required. As a result, the computatiopalcomputing model coefficients using frequency-derivative
cost would be very high. samples
In [1]-[2], model-based parameter estimation (MBPE) is in- ) , )
troduced to obtain a frequency response curve from both fre- The fundamental spectral-domain rational function model
quency and frequency-derivative data in a procedure where fif% P€ written as

Il. MODEL-BASED PARAMETER ESTIMATION

moment matrix equation is differentiated. As an application, NX) [, N X7
MBPE is used to evaluate the specialized Green’s function as- F(X)= D) = ;:0 — (1)
sociated with scatterers inside rectangular guided-wave struc- (X) [Zizo D; XI}

tures and cavities [3]. Typically, MBPE is applied to predict the

radar scattering cross section (RCS) of conducting and dielediere X would be the complex frequency (¥ o + jw). Of

tric two-dimensional (2-D) bodies over a frequency band [4¢ourse, polynomials of any orders can be used in the numerator
[5] and of arbitrarily shaped three-dimensional (3-D) perfectlgnd denominator of this model. Th&'s andD,’ s of (1) can be

electric conducting (PEC) objects versus frequency [6], [flound when frequency-derivative samples at a certain frequency
1054-4887 ' 2004 ACES
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are available. To find them, we begin by rewriting (1) as following equation at the first sampling poifi;
No+ N1 X1+ No X7+ -+ + Ny X7

=1+ D1 X1+ Do X7 + -+ + Dg X F(X1)
Starting with (2) and differentiatingtimes with respect td(, =F(X,)+ D F(X1)X1 + Do F(X1)X?
the following results occur

F(X)D(X) = N(X). @)

+ -+ DgF(X1) XY (8)
F'D+FD =N’ Similarly, (2) can be expanded as the following equation at the
F"D+2F' D +FD" = N" second sampling poirXs
- No+ N1 Xy + NoX2 4.4+ N, X3
“ - . e = (1+ D1 Xy + D2 X3 + -+ + Dy X5)F(X3)
t t—1 / m t—m
D D*“*(tn)F b = F(X2) + DyF(X2)Xy + DyF(X2)X3
4+ i g FDW = NO® + o+ DgF(X2) X4 9)

Differentiating (8)n times with respect t&; and differentiat-
where(t_tm) is the binomial coefficient, an&” dependance is ing (9) d — 1 times with respect td{s, we can obtain the fol-
implicit. Equations (2) and (3) form a systemiof 1 equations lowing matrix equation to compute the unknown coefficients

that can be used to determine the model coefficients. A B D
If the frequency derivatives are known at only a single fre- {A]th Bﬁj [Cu) = [D%l] (10)
quency Xy, (2) and (3) can be simplified by replacing by
X — X, whereX — X, represents the frequency deviation fronyvhere
Xo. Then settingDy = 1, settingt = n + d, and defining 1 X X2 .- X7
D =t + 1, we have the following matrix equation for the un- 0o 1 2X; --- nXpt
known coefficients Ay, = | . . : : (11)
Lt
[4] [B] =[] @ 00 0 frV(x)
whereA = 1 Xp X3 - Xy
12Xy, .- nXy !
1 0 -+ -~ 0 0 0o - 0 Ay =1 - . . : (12)
1 -« o 0 —F, 0 0 . : : : ddil-
00 1 0 -R —F 0 0 0 0 axr N (Xe)
oo -+ . 1 = 1 - 9 - _. d d_F(Xl)Xl d—F(Xl)Xfl
n— n— n— o
00 «+ «+ 0 —F, —Foq - —Fnpagn By — —Te AF(X) X1} - =g {(P(X)X{)
: : : o : :
_O 0 0 —FD_2 —FD_g s _FD—d—l_ 7@ {F(Xl)Xl} T dX" {F Xl Xl }
(5) (13)
;F(Xz)Xz e ;F(Xz)Xg
d
B=[No My Ny --- N, Dy -- Dd}T (6) 5 _d_Xz{F(Xz)Xz} g (R (X)X
T M2 = .
C= [Fo P o By Fapo oo FDfl} (7) ’ h
f&wmm}m - (P () X5
where F,,, = (1/m!)F()(0) for m = 0,1,...,D — 1 and (14)
F,, = 0whenm < 0, F' is regarded as a function 6K — X)),
and the superscrigt denotes the transpose of a row vector. By ¢, — [No,. Ny -+ N, Dy Dy -- Dd]T (15)

solving (4), we obtain the unknown coefficients.
If the frequency-derivative information is available at more -
than one frequency, then a more general matrix equation needs,, — {F(Xﬁ ﬁjﬁF(Xl) . d(;;" F(Xl)] (16)
to be taken instead of (4). Let us consider a two-frequency
model and choose sampling points at two frequendiesand .
X5. If we have one frequency sample amdfrequency- _ { _d_ R }
derivative samples aX’; and one frequency sample add- 1 Dasy F(X2) X2 FXs) ax; ! F(X2) (17)
frequency-derivative samples &t then the system of+d+1  where the superscrigt denotes the transpose of a row vector.
equations can be solved. In detail, (2) can be expanded as Byesolving (10), we obtain the unknown coefficients.
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B. Computing frequency derivatives in a method of moments
model

Following the development in [16], one obtains the fol-

lowing moment equation

ZI=V (18)
[EE] e
r= fgg} (20)
V= ‘gq (21)

whereZ, f, andV are theN x N moment matrix and current
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Fig. 1.  NormalizedRCS of a conducting sphere of radus a using MBPE
(n = 5andd = 4) andthe MoM solutionfroma /A = 0.4toa/\ = 0.8. The
samging point of MBPE isata/A = 0.6.

and voltageN x 1 column vectors respectively, and they are

all functions of frequency through = w, /i€ wherew is the
angular frequency.

I1l. NUMERICAL RESULTS

In this work, surface currents are modeled by rational func- The results of applying MBPE to BOR using MoM are con-

tions of frequency. In detail we assume that theelement of
I'in (18)isI;(k) modeled by

N(k) _ Z?:o Nk
D(k) 4  Djki

Ii(k) = (22)

in which there arex +- d + 1 coefficients (V;'s andD;’s) to be
determined (assume thaty = 1). The N;'s andD;’s of (22)

sideredbelow. RCScalcuations over frequerncy bands are done
for a conducting sphere, a conducting spherical shell with a5
degree hole and arother with a 30 degree hole, a conducting
finite circular cylinder of radus a and height h(= 2a) with flat
erd faces a conducting cone-sphere structure, and a conduct-
ing cylindrical container. The excitation is a plane wave axially
incidert. The numerical dataobtained using MBPE are com-
paredwith the reaults calcuatedusing the pointwise approach

can be found when frequency and frequency-derivative samplels the computations reported below were done with a Pertium

at a certain frequency are available.
Starting with (18) and differentiatingtimes with respect to
k, there results the following:

2=V
2T+ zI =V’
2'T+272'T + 21" = V"

ZOT 4 170-DF 4.y ( )Z(m)f(t—m)

t—m

I PO (23)

where(, * ) is the binomial coefficient and the dependence
is implicit. Solving the(s + 1)** of matrix equations (23) for
I'®)intermsofl, 7™M ... . T¢=1 we obtain

N s
-l £(0)

m=1
N

x (Z Z§$>I,§S"”)>} s=0,1,....,t
k=1

wherel(*) is the s derivative with respect té of thei*” ele-
ment offandYM is theij*"* element ofZ—!. The summation
with respect ton in (24) is to be omitted whesn = 0. The sum-
mation indexk in (24) is not to be confused with = w,/Jie.

(24)

IV 2.0 Ghz computer.

Triangle ard pulse bads functions are put on the gererating
curve of the conducting sphere in Figures1 ard 2 reallting in
61 unknown currert coefficients.

Figure 1 shows two normalized RCSs, MoM ard MBPE
(n = 5and d = 4). The MoM RCSis calcdatedby MoM at
100 equally spacedpoints froma/A = 0.4to a/\ = 0.8. The
MBPE RCSis obtained by using information only ata/\ =
0.6. The MoM solutionsfor the RCSatthe 100 points took 117
secands of CPU time. On the other hard, the MBPE took 14
secands of CPU timeto obtain the RCSatthe samepoints. The
MBPE reallt ageeswith the MoM reault to within 1% emor
betweena/\ = 0.49 ard a/\ = 0.73. MBPE achieves88% re-
duction comparedto the MoM solution where the % reduction
is defined by

MoM — MBPE

NoM x 100.

% reduction = (25)

In Figure 2 both MBPE'susen = 5 ard d = 4 in (22).
The one{frequency MBPE in Figure 2 uses (22) ard the first
nine derivativesof (22). The two-frequercy MBPE in Figure 2
uses (22) at both /A = 0.5 ard a/XA = 0.7, the first four
derivatives of (22) at /A = 0.5, ard the first four deriva-
tivesof (22) ata/A = 0.7. The onefrequercy MBPE took
14 secands of CPU time to compute the RCS at 100 equally
spacedfrequercieswhereasthe two-frequency MBPE took 27
secands of CPU time to compute the RCSat the same100 fre-

Note that the derivatives of the moment matrix and the excitguercies The MoM solution, however, took 117 secands. The
tion vector have to be expressed analytically before their norefrequency MBPE achieves88% reduction whereasthe two-

merical computation.

frequerncy MBPE does77% reduction. The formerageeswith

67
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Fig. 2. Normalized RCS of a conducting sphere of radiussing the MoM Fig. 4. Normalized RCS of a conducting spherical shell of radiugith
solution, the one-frequency MBPE, and the two-frequency MBPE figln=  a 5 degree hole using MBPE (= 4,d = 5) and the MoM solution from
0.4toa/X = 0.8. The sampling point of the one-frequency MBPE isah =  a/\ = 0.3 t0 0.5. The sampling point is at/\ = 0.4.

0.6 and the sampling points of the two-frequency MBPE are/at = 0.5 and
a/X=0.7.
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Fig. 3. Geometry of a conducting spherical shell of radiugith a 5 degree Fig. 5.  Normalized RCS of a conducting spherical shell of radiusith
hole. a 5 degree hole using MBPE (= 4,d = 4) and the MoM solution from
a/X = 0.75toa/X = 0.95. The sampling pointis at/\ = 0.85.

the MoM result to within 1% error betweesy A = 0.49 to
a/X\ = 0.73. On the other hand, the latter agrees with the MoNaken.
result to within 1% error betweew/\ = 0.43 to a/\ = 0.72. Figure 5 shows the normalized RCS in the vicinity of two
In terms of the computational time, the former is less than tletremely sharp resonances. The MBPE sampling point is at
latter, but the latter shows better agreement at the low end of #)e\ = 0.85. Triangle and pulse basis functions are put on the
frequency range. generating curve of the spherical shell resulting in 81 unknown
For the demonstration purpose of indicating extremely shagprrent coefficients. The RCS is calculated at 120 equally
resonances, a conducting spherical shell of radivgth a 5 spaced points from/A = 0.75to a/X = 0.95. The MBPE in-
degree hole is considered in Figure 3. dicates two extremely sharp resonances at araynd= 0.79
In Figure 4, triangle and pulse basis functions are put @ida/A = 0.92. The MBPE curve adequately indicates the
the generating curve of the spherical shell resulting in 61 ufixtremely sharp resonances and agrees to within 1% error be-
known current coefficients. The RCS is calculated at 12ween the extremely sharp resonances, but elsewhere it deviates
equally spaced points from/\ = 0.3 to a/\ = 0.5. Fig- from the MoM curve. MBPE took 26 seconds of CPU time to
ure 4 shows the normalized RCS in the vicinity of an extremefPmpute the RCS at the 120 points whereas MoM took 242 sec-
Sharp resonance and the MBPE Samp"ng po|ntd§/3t: 0.4. onds of CPU time to Compute the RCS at the same pOintS, that
The MBPE indicates the extremely sharp resonance efficientfy MBPE obtains9% reduction.
whereas MoM does not. MoM took 135 seconds of CPU time to Figure 6 shows the geometry of a spherical shell of radius
compute the RCS at the 120 points. On the other hand, MBR#th a 30 degree hole.
took only 15 seconds of CPU time to compute the RCS at theFigure 7 shows the normalized RCS using the one-frequency
120 points. As insinuated earlier, the conventional method ®BPE, the two-frequency MBPE, and MoM. Triangle and
quires an excessive number of closely spaced samples to obaitse basis functions are put on the generating curve of the
the extremely sharp resonance. In this example, although ggherical shell resulting in 41 unknown current coefficients.
took 120 equally spaced sampling points, MoM fails to indithe RCS curves are calculated at 91 equally spaced points from
cate the extremely sharp resonance. Aninsertin Figure 4 shaws = 0.1 to a/A = 0.4. Both MBPE's user = 5 andd = 4
MoM clearly indicates the extremely sharp resonance when 201(22). The sampling point of the one-frequency MBPE is
equally spaced points from/\ = 0.43 to a/\ = 0.44 are ata/X = 0.25 and the sampling points of the two-frequency
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Fig. 6. Geometry of a conducting spherical shell of radiwgith a 30 degree
hole.
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Fig. 8. Normalized RCS of a conducting spherical shell of radiusith

a 30 degree hole using the one-frequency MBPE, the two-frequency MBPE,
and MoM froma/\ = 0.35to a/X = 0.65. The sampling point of the one-
frequency MBPE is at/\ = 0.5 and the sampling points of the two-frequency
MBPE are ata/A = 0.44 anda/X\ = 0.59.
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Fig. 7. Normalized RCS of a conducting spherical shell of radiwgith a

30 degree hole using the one-frequency MBPE, the two-frequency MBPE, and ) S— =
MoM from a/A = 0.1toa/X = 0.4. The sampling point of the one-frequency
MBPE is ata/X\ = 0.25 and the sampling points of the two-frequency MBPE
are ata/\ = 0.17 anda/A = 0.35.

Fig. 9. Geometry of a conducting finite circular cylinder of radiuend height
h with flat end faces.

MBPE are az/\ = 0.17 anda/\ = 0.35. The one-frequency
MBPE took 8 seconds of CPU tim&3% reduction) and the
two-frequency MBPE took 14 seconds of CPU time (768% Figure 9 shows the geometry of a conducting finite circular
duction), whereas MoM took 47 seconds of CPU time. Theylinder of radius: and heighth.
two-frequency MBPE curve shows better agreement betweerFigure 10 shows the normalized RCS of a conducting finite
a/A = 0.1anda/X = 0.4 than the one-frequency MBPE curvecircular cylinder of radius and height2a with flat end faces
Figure 8 shows the normalized RCS using the one-frequenesing the one-frequency MBPE, the two-frequency MBPE, and
MBPE, the two-frequency MBPE, and MoM. Triangle andioM. Triangle and pulse basis functions are put on the gen-
pulse basis functions are put on the generating curve of theating curve of the cylinder resulting in 81 unknown current
spherical shell resulting in 81 unknown current coefficientgoefficients. The RCS curves are calculated at 100 equally
The RCS curves are calculated at 121 equally spaced poispsced points from/A = 0.02 to a/\ = 0.4. Both MBPE'’s
froma/A = 0.35t0a/A\ = 0.65. Both MBPE's use» = 4and usen = 5 andd = 4 in (22). The sampling point of the one-
d = 5in (22). The sampling point of the one-frequency MBPHErequency MBPE is at/A = 0.2 and the sampling points of
is ata/A = 0.5 and the sampling points of the two-frequencyhe two-frequency MBPE are a A = 0.1 anda/\ = 0.29.
MBPE are az/\ = 0.44 anda/\ = 0.59. The one-frequency The one-frequency MBPE took 25 seconds of CPU i
MBPE took 25 seconds of CPU tim89% reduction) and the reduction) and the two-frequency MBPE took 46 seconds of
two-frequency MBPE took 46 seconds of CPU time (86 CPU time (76%reduction), whereas MoM took 191 seconds of
duction), whereas MoM took 229 seconds of CPU time. It cabPU time. The two-frequency MBPE curve shows slightly bet-
be seen that the two-frequency MBPE curve agrees with Motdr agreement than the one-frequency MBPE curve especially
to within 1% error betweem/A = 0.39 anda/A = 0.64, arounda/\ = 0.02.
whereas the one-frequency MBPE curve agrees with MoM toFigure 11 shows the normalized RCS of the conducting finite
within 1% error only between/\ = 0.44 anda/\ = 0.57. circular cylinder of radius: and heigha with flat end faces
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Fig. 10. Normalized RCS of a conducting finite circular cylinder of radius

a and heigh2a with flat end faces fromu/A = 0.02to a/X = 0.4. The

sampling point of the one-frequency MBPE isaath = 0.2 and the sampling (b)
points of the two-frequency MBPE are@tA = 0.1 anda/\ = 0.29.

Fig. 12. Geometry of a cone-sphere structure illuminated by a plane wave
w which is axially incident and propagates either (a) from the cone tip toward the
Einc = spherical cap or (b) from the spherical cap toward the cone tip.

29
285 -
* Figure 12 shows the geometry of a cone-sphere structure il-
1 luminated by a plane wave which is axially incident and propa-
gates either from the cone tip toward the spherical cap or from
the spherical cap toward the cone tip.

1 Figure 13 shows the normalized RCS of the cone-sphere
in Figure 12(a) using the one-frequency MBPE, the two-
frequency MBPE, and MoM. The incident wave propagates
from the cone tip toward the spherical cap. Triangle and
‘ — pulse basis functions are put on the generating curve of the
ne freq. MBPE . . . .
By —- Twofreq. MBPE ||  COne-sphere resulting in 61 unknown current coefficients. The
s [/ ‘ ‘ ‘ — MoM RCS curves are calculated at 100 equally spaced points from
al;}\ 145 18 ¥ a/A = 0.02toa/X = 0.4. Both MBPE's usen = 5 and
d = 4in (22). The sampling point of the one-frequency MBPE
Fig. 11. Normalized RCS of the conducting finite circular cylinder of radiulS 8ta/A = 0.2 and the sampling points of the two-frequency
Caomoling ot of he e reauenet WSLE g o 5.4'and 6 samping Mo o A/ A = 0.1 anda/ s oo °”e'f;eq“§”ﬁy
mpling poin g =5 too seconds o time (89Fgéduction) and the
points of the two-frequency MBPE are@tA = 1.32 anda/\ = 1.46. two-frequency MBPE took 26 seconds of CPU time (766¢
duction), whereas MoM took 124 seconds of CPU time. The

in a higher frequency band using the one-frequency MBP&yo-frequency MBPE curve agrees with MoM to within 1%
the two-frequency MBPE, and MoM. Triangle and pulse barror betweem/\ = 0.08 anda/A = 0.32, whereas the one-
sis functions are put on the generating curve of the cylindéequency MBPE curve agrees with MoM to within 1% error
resulting in 201 unknown current coefficients. The RCS curvéstweem /) = 0.16 anda/\ = 0.24.

are calculated at 100 equally spaced points fighh = 1.25 Figure 14 shows the normalized RCS of the cone-sphere
to a/A = 1.55. Both MBPE’s usen = 5 andd = 4 in structure in Figure 12(b) using the one-frequency MBPE, the
(22). The sampling point of the one-frequency MBPE is atvo-frequency MBPE, and MoM. The incident wave propa-
a/\ = 1.4 and the sampling points of the two-frequency MBPBates from the spherical cap toward the cone tip. Triangle and
are ata/\ = 1.32 anda/\ = 1.46. The one-frequency MBPE pulse basis functions are put on the generating curve of the
took 153 seconds of CPU tim&§% reduction) and the two- cone-sphere resulting in 61 unknown current coefficients. The
frequency MBPE took 291 seconds of CPU time (7féfuc- RCS curves are calculated at 100 equally spaced points from
tion), whereas MoM took 1289 seconds of CPU time. The/A = 0.02 to a/\ = 0.4. Both MBPE’s usen = 5 and
two-frequency MBPE curve shows slightly better agreemetit= 4 in (22). The sampling point of the one-frequency MBPE
betweena/\ = 1.25 anda/A = 1.55 than the one-frequency is ata/A = 0.2 and the sampling points of the two-frequency
MBPE curve. MBPE are atz/\ = 0.14 anda/\ = 0.26. The one-frequency
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Fig. 13. Normalized RCS of a cone-sphere structure illuminated by a plane
wave which is axially incident and propagates from the cone tip toward the
spherical cap between/\ = 0.02 anda/X = 0.4. The sampling point of
the one-frequency MBPE is a/ A = 0.2 and the sampling points of the two-

frequency MBPE are at/\ = 0.14 anda/X = 0.26. 20
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al\ Fig. 16. Normalized RCS of a conducting cylindrical container frofm =

0.02 to a/X = 0.4. The sampling point of the one-frequency MBPE is at
Fig. 14. Normalized RCS of a cone-sphere structure illuminated by a plaﬁ. z;ng.s/z?\nitgzgémplmg points of the two-frequency MBPE are/at =
wave which is axially incident and propagates from the spherical cap toward the
cone tip between /A = 0.02 anda/A = 0.4. The sampling point of the one-
frequency MBPE is ai/\ = 0.2 and the sampling points of the two-frequency
MBPE are atz/A = 0.14 anda/X\ = 0.26.

functions are put on the generating curve of the container re-

MBPE took 14 seconds of CPU tim89(% reduction) and the sulting in 93 unknown current coefficients. The RCS curves
two-frequency MBPE took 26 seconds of CPU time (786¢ are calculated at 100 equally spaced points fegik = 0.02 to
duction), whereas MoM took 124 seconds of CPU time. The/\ = 0.4. Both MBPE's user = 5 andd = 4 in (22). The
two-frequency MBPE curve agrees with MoM to within 1%sampling point of the one-frequency MBPE is@at\ = 0.2
error betweer/\ = 0.08 anda/\ = 0.34, whereas the one- and the sampling points of the two-frequency MBPE are at
frequency MBPE curve agrees with MoM to within 1% erron/\ = 0.12 anda/\ = 0.28. The one-frequency MBPE
betweeru/\ = 0.15 anda/\ = 0.24. took 34 seconds of CPU time (88%eduction) and the two-

Figure 15 shows the geometry of a conducting cylindricétequency MBPE took 63 seconds of CPU time (78&guc-
container of outside diameter inside diamete€a, height3a, tion), whereas MoM took 289 seconds of CPU time. The two-
and thicknes%a. frequency MBPE curve agrees with MoM to within 1% er-

Figure 16 shows the normalized RCS of the conductingr betweera/A = 0.05 anda/)\ = 0.35, whereas the one-
cylindrical container by using the one-frequency MBPE, thigequency MBPE curve agrees with MoM to within 1% error
two-frequency MBPE, and MoM. Triangle and pulse basisetweeru/\ = 0.14 anda/\ = 0.26.
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IV. CONCLUSIONS [6]

An implementation of MBPE for the BOR using MoM in the
frequency domain is presented. The RCS for various PEC ohs
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C.J. Reddy, M. D. Deshpande, C. R. Cockrell, and F. B. Beck, “Fast RCS
computation over a frequency band using method of moments in con-
junction with asymptotic waveform evaluation techniqué&EE Trans.
Antennas Propagat., vol. 46, no. 8, pp. 1229-1233, Aug. 1998.

1 C. J. Reddy, “Application of model based parameter estimation for RCS

jects such as a sphere, a spherical shell with a 5 degree hole frequency response calculations using method of moments,” Contrac-

or with a 30 degree hole, a finite cylinder with flat end faces,
a cone-sphere structure, and a conducting cylindrical contain
are computed and compared with the MoM solutions over fre-
quency bands. Instead of using a pointwise approach, a ratio-
nal function model is used to approximate the induced surfa
as a function of frequency. The model coefficients are com-
puted using frequency and frequency-derivative information @&f!
one frequency in the band or alternatively at two frequencies in
the band. Sample results show the MBPE approach gives &4]
cellent results over a limited frequency band, and is much maQes,
efficient than the conventional pointwise approach.

As seen in numerical results, the two-frequency MBPE givés3]
better agreement than the one-frequency MBPE in terms of ac-
curacy although a rational function of the same order is usgty]
But the former requires adjustment at two sampling points to
obtain the best results, whereas the latter does not. [15]

Even though a higher order model generally gives a better ap-
proximation, careful treatment of the model is required. For in-
stance, high ordem(+ d > 7) derivatives in the one-frequency|ig]
MBPE make the sampling matrices ill-conditioned. To avoid
this problem, use of the two-frequency MBPE with the same

tor Report, NASA/CR-1998-206951, Hampton University, Hampton, VA
23668, Mar. 1998.
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order model is recommended. . . .
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Note that the E-field solution fails to provide a unique solug’s_ degree in electronics engineering from Kyunghee University, Ko-
tion for the current on a conducting body at any resonant freea, in 1997 and the M.S. and Ph.D. degrees in electrical engineering
quency of the region enclosed by the conducting surface of thiem Syracuse University, Syracuse, NY, in 2000 and 2003, respec-
body. Thus, if a sampling point of the MBPE is accidently at dively- _ _ _ _
in the vicinity of a resonant frequency, the results would not He is currently a Senior Research Engineer in LG Electronics,

. ; . . Eeoul, Korea. His current research interests include numerical electro-
reliable. This problem is more likely to occur when the MBPE,agnetics, radiation, scattering, antenna design, and microwave cir-

is applied to an electrically very large body. Because an elafiits and devices.
trically large body has resonant frequencies that are close to-
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the VICI.mty of an I_nternal resonf’;\nt frgquency. _Thef problem ¢ .S., M.S., and Ph.D. degrees in electrical engineering from Syracuse
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