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Abstract—We presented a novel method for the accurate and 
efficient computation of the reflection and transmission coefficients 
of waveguide discontinuities within planar photonic crystals (PhCs). 
This method proposes a novel kind of field source that optimally 
excites the dominant waveguide mode and mimics procedures that 
are typically used for the measurement of reflection coefficients. 
This technique may be applied to arbitrary field simulators working 
in the frequency domain. The presented reflection compensation 
scheme is elucidated along the Method of Auxiliary Sources (MAS). 
In order to verify the results, we compare two test cases with the 
rigorous connection technique provided by the Multiple Multipole 
Method (MMP).  

Indexing Terms— method of auxiliary sources (MAS), multiple 
multipole method (MMP), photonic crystals (PhCs), waveguide 
discontinuities, boundary conditions. 

I. INTRODUCTION 

HOTONIC crystals (PhCs) have first been proposed as an 
optical counterpart to semiconductor crystals [1], i.e., in 

PhCs, the photon plays the role of the electron in semiconductors. 
In nature, PhCs are rarely observed, but nanotechnology allows 
one to fabricate PhCs as a novel kind of meta-materials. 
Although it is nice to know that perfect PhCs may exhibit band 
gaps, i.e., frequency ranges that do not allow electromagnetic 
waves to penetrate the crystal, this pure meta-material aspect 
does not sufficiently explain the current interest in PhCs. In fact, 
doping makes semiconductors attractive and virtually the same 
holds for PhCs. Despite of this analogy, doping of PhCs is pretty 
different from the semiconductor doping because the atoms in 
semiconductors are compared to rather large macroscopic cells 
of the PhCs. Nanotechnology may allow one to modify any cell 
of a PhC quite precisely. By introducing linear defects (line of 
vacancies or substitutional defects with different size or material) 
into the lattice structure, one can easily obtain waveguide 
channels in PhCs [2], [3]. One of the main drawbacks of 
standard waveguides for integrated optics is the fact that the 
bending radius must be large compared to the wavelength in 
order to avoid bending loss. This makes standard structures of 

integrated optics large compared to the wavelength. The PhC 
concept allows one to obtain sharp waveguide bends virtually 
without radiation loss and with zero reflection for some distinct 
frequency [4]-[6] or even for a wide frequency range [7], when 
some optimization procedure is subsequently added. For the 
analysis of PhC waveguide bends and PhC waveguide 
discontinuities, numerical techniques are required that allow one 
to accurately compute the S-parameters, i.e., the transmission 
and reflection coefficients at the PhC’s waveguide ports. Up to 
now, a variety of numerical techniques have been proposed [5], 
[8]-[10].  
During the investigation of numerous models for waveguide 
discontinuities fast and efficient methods are of great interest. 
This especially holds when the optimization of a whole PhC 
device is required, such as an achromatic waveguide bend with 
almost zero reflection over a wide frequency range within the 
photonic bandgap (PBG) [7]. It has been observed that such 
optimizations may lead to very critical cells in a PhC [7] that 
require a highly accurate numerical model. Thus an efficient 
but highly accurate method is required.  
After a short outline of the standard PhC modeling methods and a 
short introduction to the MMP-connection approach, we present 
three new procedures 1) for the excitation of the fundamental 
waveguide modes, 2) for the reflections compensation at the 
output ports, and 3) for the S-parameters computation. Together 
with the Method of Auxiliary Sources (MAS) [11] we can apply 
these procedures to the efficient computation of waveguide 
discontinuities in PhCs. Comparisons with the rigorous MMP-
connection approach demonstrate that the results are sufficiently 
accurate for being used within optimization procedures. 

II. STANDARD PHC MODELING PROCEDURES 

In order to obtain a finite-size model for PhC waveguide 
devices most of the standard procedures truncate the planar 
PhC structure at some distance D from the discontinuity. After 
this, some fictitious excitation is introduced in order to excite 
an incident mode at the input port (see Fig. 1). Typically, plane 
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waves, monopoles, or dipoles are introduced as fictitious 
excitations. The proper positioning of the fictitious excitation 
is crucial because it often happens that a significant amount of 
the excitation energy does not couple into the desired wave-
guide mode. Furthermore, the fictitious excitation may also 
excite higher order or evanescent modes or even additional modes 
in the output ports. These undesired modes in the output ports 
can easily be suppressed by using appropriate excitations, i.e. a 
suitably confined field at the input port. Suppressing the 
influence of evanescent modes is much more delicate. The 
distance D between the PhC waveguide port and the waveguide 
discontinuity is limited only by the decay of the evanescent 
modes produced by the discontinuity itself. Since D may extend 
to large values, the truncated model may also become rather 
bulky, which leads to long computation times. 
An even more difficult problem is imposed by the residual 
reflections at the output ports. Generally speaking the interface 
between discrete and continuous translation symmetry (as 
present in any finite PhC structure) imposes a discontinuity, 
which causes a bunch of virtually reflected waves that travel 
back to the discontinuity. Such multiple reflections strongly 
interfere with a proper estimation of e.g. the S-parameters. The 
pedestrian way to avoid such undesired reflections at the output 
ports uses absorbing boundary conditions along the truncation 
lines (i.e. the fictitious boundary in the Fig. 1). Especially for 
time-domain methods like FDTD [14], truncation of the infinite 
space is very straightforward. Thus, many techniques have 
been developed for absorbing outgoing waves on such 
boundaries, i.e., at the truncation lines of the finite numerical 
model. Currently the best technique is PML [15]. Recalling 
now the special nature of the interface at the PhC boundary 
where spatial symmetry breaking occurs: Such discontinuity is 
nearly intractable when using conventional boundary conditions. 
Therefore, these absorption techniques become very sophisticated, 
although perfect absorption without any spurious waves is 
practically impossible.  
A laborious way to circumvent the impact of spurious 
reflections in (time-domain) models relies on time gating, where 
the distance D is increased accordingly to provide a temporal 
separation between all emergent signal pulses. As a result, such 
models are either not sufficiently accurate or very time-consuming. 
A well-known alternative to the truncated models with fictitious 

excitation and absorbing boundary conditions is offered by the 
supercell method that approximates the structure by a periodically 
continued one [10], [16], [17]. A simple example is given by the 
W1 defect waveguide (see Fig. 2 for example, where a sequence of 
point defects is forming the line-defect). The periodic 
continuation of a waveguide discontinuity is only feasible for 
relatively simple cases. Furthermore, it is hard to quantify the 
errors introduced by the periodic continuation, and finally, the 
supercell method is not efficient at all. 

III. MMP-CONNECTION PROCEDURE 

The most rigorous method for handling waveguide discontinuities 
in an almost analytic way uses a fictitious separation between 
the waveguide ports (see Fig. 3) and the area that includes 
discontinuity [10]. As outlined before along the truncation 
method, the fictitious separation lines are placed at some 
distance D from the discontinuity. If D gets large enough, the 
evanescent wave amplitude may vanish at the waveguide ports and 
the fields therein are fully described by the corresponding 
waveguide’s set of guided modes. Along the fictitious separation 
lines, the modal expansions in the different waveguides are 
matched with the fields that are excited by the discontinuity 
region. This is essentially the same procedure as carried out within 
the standard mode matching technique [18], [19] for the 
computation of waveguide discontinuities in the microwave 
regime.  
It is worth mentioning that the description of conventional 
waveguides assumes cylindrical symmetry along the z-axis. 
The longitudinal dependence of the electromagnetic field is 
then simply described according to 

 ( ) ( ) ( ){ }1, , i z t
T TF r z t Re F r e γ ω−=

G GG G
  (1) 

where a harmonic time-dependence of the form  

 i te− ⋅ ⋅ω  (2) 

 

Fig. 1: Schematic treatment of a waveguide discontinuity. The excitation, 
reflection and transmission of apparent electromagnetic waves are indicated 
by the corresponding arrows.  

 

Fig. 2: The supercell approach for a W1 (one line of vacancies) defect wave-
guide (left). The supercell is defined by its surrounding periodic boundary 
conditions (right).  
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has been assumed, and the propagation constant γ fully describes 
the propagation in z-direction. Along the direction of 
propagation, PhC defect waveguides are periodic rather than 
invariant. Since this is a lower symmetry, the description of the 
field becomes more complicated. When x is assumed as the 
direction of the PhC waveguide and dx stands for the periodicity 
of the PhC in this direction, we have for each mode 

 ( ) ( ) x xiC d
x xF r e d F r e+ =

G GG G G
  (3) 

where Cx is a complex number that plays the role of the 
propagation constant. Note that (3) only relates the electro-
magnetic field at one boundary of the PhC waveguide’s unit cell to 
the field distribution at the opposite boundary (which is separated 
from the first one by dx). Thus, Cx does not describe the 
propagation of the field within the unit cell. Furthermore, if the 
defect waveguide is confined by two PhC layers that have a finite 
thickness, in-plane radiation leakage inevitably occurs. This 
renders Cx to become complex valued even when no material 
losses are present. The resulting eigenmode analysis gets even 
more demanding [20], [21], but it does not prevent one from 
adapting the mode matching technique to PhC waveguides. 
The Multiple Multipole Program (MMP) [21] is a very flexible, 

semi-analytic boundary method that allows one to accurately and 
efficiently compute not only classical waveguide modes but also 
the eigenmodes of a PhC waveguide using either the supercell 
approach or a direct approach that includes radiation leakage 
as well [20]. In addition the MMP implementation in MaX-1 
[22] contains a so-called connection feature. Within this 
description the data of previously analyzed problem solutions 
(e.g. the eigenmodes of the PhC waveguide) may be packed 
into connections that are then introduced as new expansions 
into the subsequent model of the PhC waveguide discontinuity. 
This means that the MMP-connection procedure consists of two 
different steps: 1) the computation of all relevant modes in the PhC 
waveguide ports and 2) the computation of the PhC waveguide 
discontinuity using the modes given by the connections. The 
former requires the solution of an eigenvalue problem, whereas 
the latter essentially defines a simple scattering problem. 
The main advantages of the MMP-connection scheme are that 
arbitrary high accuracy and reliability can be reached because 
of its affinity to mode matching and to analytic procedures. It is 
important to know that the eigenvalue problem associated with 
PhC waveguide modes is theoretically demanding, but the 
resulting matrices set up by the eigenvalue problem are small 

 

Fig. 3: Schematic description of the MMP-connection procedure: The eigenvalue search is performed as a first step making use of the supercell approach. All 
information concerning the resulting eigenfield is contained within the set of the waveguide’s multipole expansions, which is then packed into a connection. The 
connection is introduced as a representation of the input (i.e. excitation, E), the reflected (R) and the transmitted (T) electromagnetic wave into the PhC device model. 
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because only the unit cell of the waveguide must be taken into 
account. The scattering model for the PhC discontinuity region is 
theoretically simpler, but numerically much more demanding 
because it often involves a larger PhC volume than the wave-
guide’s unit cell, leading to a relatively large matrix equation. 
Referring to the eigensolutions that are provided as connections 
we are now able to introduce perfect matching conditions for 
PhC waveguide terminations. This allows us to significantly 
reduce the size of the simulation domain, i.e., to decrease the 
distance D. Thus, the resulting MMP matrix becomes relatively 
small. Consequently not only high accuracy but also short 
computation times are obtained. Therefore, the procedure is 
very well suited for any kind of optimization scenario such as 
the successful optimization of achromatic PhC bends [7] and 
PhC diplexers [23]. 
The main drawback of the MMP-connection procedure lays in 
the fact that the computation of guided modes and its embedding 
into corresponding connections may become quite demanding. 
Therefore, only experienced users are able to perform such 
computations. In the following, we present an alternative 
technique that does not explicitly requires the PhC waveguide’s 
eigenmodes. For the sake of simplicity only the case of single 
mode PhC defect waveguides are treated hereafter. 

IV. IWGA SOURCES 

The alternative technique relies on the following procedure: 
Instead of solving an eigenvalue problem for the PhC 
waveguide’s eigenmodes, we now search for a simple, fictitious 
excitation that mimics the mode profile at the fictitious boundary 
which accounts for the waveguide termination. In order to 
emblematize this approach one has just to envision the 
reciprocal scenario as depicted in Fig. 4 where a radiation field 
is excited at the termination of a W1 defect waveguide. Just by 
time-reversing this radiation field one would already get a beam-
like excitation for the corresponding PhC waveguide mode. 
Even without knowing the proper radiation field as shown in 

Fig. 4 one may expect efficient waveguide mode excitation 
while introducing a fictitious but suitably parameterized beam 
source. First, Gaussian beams [24] may be applied here, but the 
implementation of an excitation basis that rests on Gaussian 
beams is still not very straightforward. Furthermore, using 
complex-origin multipoles [25] or monopoles becomes more 
natural in the framework of MMP or MAS whereas for the 
latter only monopoles (i.e., zero order multipoles) are applied 
(for TM polarization):  

 { } ( ) ( )0Im 1 ω
0 0

,  kR i t

z
E A e H kR e− −=   (4) 

 ( ) ( )( )22

0 0
( cos ) sinR x x i y y i= − + β + − + βA A ,  (5) 

 ( ) ( )2 2

0 0 0
cos sinR x i y i= + β + + βA A ,  (6) 

with H0
(1)(kR) being the zero order Hankel function of the first 

kind, A0e
–Im{kR0} is a complex normalizing factor, β stands for the 

angle of maximal radiation direction, x, y is the observation point, 
whereas x0, y0 defines the source location, ℓ the source half-widths, 
and for the R and R0 arguments the principal ones are taken. From 

Fig. 5 we see that e.g. the modulus of the radiation field Ez 
provided by the complex origin monopole already gives a good 
approximation of the fundamental mode at the waveguide 
termination. Even the scattering field (as given in Fig. 4) is well 
reproduced by Ez . Hence we call this kind of beam excitation 
the Imitating WaveGuide Apperture (IWGA) source. 
On one hand, finding an appropriate IWGA source is obviously 
much easier then finding the waveguide's eigenfields by solving a 
complex eigenvalue problem. On the other hand as the IWGA 
source may also excite some undesired evanescent modes, the 
distance D associated to the port must be extended compared to 
the MMP-connection approach where, in principle, evanescent 

 

 
 

Fig. 4: The Ez-field at a W1 defect waveguide termination. 

 

Fig. 5:  Intensity plot of Ez (left) and of the modulus of Ez (right) in the X-Y plane 
 x = [–6.0, 6.0]; y = [–20.5, 0.5]; x0 = y0 = 0.0;  

 k = 2.0; l = 3.0; β = 270°. 
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modes are still tractable. Even if the present version of the 
proposed technique yet lacks in handling multimode 
waveguides it is important to see that besides MAS the IWGA 
source method is also applicable to MMP and all the other 
frequency domain methods. It should even be possible to 
develop a time-domain version of this technique. 

V. REFLECTION EXTINCTION AT THE OUTPUT PORTS 

The IWGA concept essentially handles the excitation problem of 
the PhC discontinuity in a pragmatic and thus more efficient way 
than conventional techniques, but it does not solve the problem 
of the spurious back-reflections at the output ports. This problem 
is much more demanding. Note that absorbing layers can also be 
introduced for MMP and MAS but such techniques are difficult 
and inaccurate for large model sizes. As elucidated earlier the 
connection concept of MMP removes the reflection problem in a 
rather rigorous way, but it is difficult to handle. An interesting 
alternative is obtained from the following consideration.  
Given an incident wave, which is transmitted through the 
waveguide discontinuity and propagates towards one of the output 
ports. When this mode (which is assumed being fundamental after 
traveling a sufficient distance in the single-mode defect wave-
guide) hits the waveguide port (i.e., the boundary of the scattering 
model associated with the finite PhC structure), it is partially 
reflected and travels back to the discontinuity (where it is partially 
reflected again, and so forth). One can now treat the reflected wave 
at any output port exactly in the same way as the incident wave at 
the input port. This means one may excite this reflected wave just 
by setting an IWGA source at the corresponding output port. 
Assuming a finite PhC structure where a waveguide discontinuity 
is interconnected to N ports (one input, N–1 outputs), we consider 
N models consisting of the same scattering model with N different 
excitations, i.e., N IWGA sources in the N ports. This model is 
described by a matrix equation with N right hand sides  

( ) ( ) ( ){ }1 2  , ,  , ,  ..., ,inc inc N inc

AS z q q z q q z q q
A x E x y E x y E x y=   (7) 

where the matrix A is obtained from the numerical method that 
handles the discontinuity region, M(xq, yq) are the collocation 
points on the interface surface [21], nEz

inc(xq, yq) denotes the 
electric field of the n-th IWGA source (with unit amplitude) 
placed at the corresponding n-th port.  
As an illustrative example (that will be scrutinized later) we 
analyzed the 90° PhC waveguide bend depicted in Fig. 6 using 
the MAS [11] simulation code. A standard MAS matrix is 
obtained 1) when approximating the electromagnetic field in 
each domain by means of auxiliary sources (i.e., monopolar 
field expansions), 2) by enforcing simple point matching on the 
domain boundaries, and 3) making use of an appropriate Tikhonov 
regularization [26]. The MAS matrix equation (7) is then 
efficiently solved with LU decomposition techniques. Note 
that the excitation (i.e. the IWGA source) is contained in the 
right hand side of the MAS matrix equations. Since we have N 
IWGA sources, we also obtain N right hand sides. Using LU 
decomposition the system is solved simultaneously for all N 
right hand sides, i.e. for all waveguide excitations involved. 

The outcome of (7) therefore consists of N field solutions 
according to the N scattering problems (each having an identical 
geometry but different excitations). Any superposition of these N 
fields  

 
( ) ( ) ( )

( )

1 1 2 2

2
,total scat inc scat inc

z z z z z

N scat N inc

N z z

E x y E E a E E

a E E

= + + + +

+ +

…
   (8) 

is again a solution of the entire problem associated with a linear 
combination of the corresponding excitations. The linear 
parameters ai are then computed in such a way that the 
amplitude of the incident mode becomes unity whereas the N–1 
amplitudes of all reflected waves are forced to vanish. This sets 
up an additional simple and small system of N–1 equations 
with regard to the parametrized total field 

 ( ) ( )( )
0

0

/16

1 /16

/ 4 0
m

m

LN
total total

z m z m m
n L

E L i E L dL
+λ

= −λ

+ + λ =∑ ∫   (9) 

Where m = 1, 2,…,N and 2π/λ = h is the propagation constant 
in the waveguide arm, Lm indicates the centerline of the n-th 
channel, and L0

m is its midpoint. In fact (9) defines the matching 
condition for each PhC waveguide port considering any guided 
mode involved. Here we just used the spatial shift between real 
an imaginary part of any traveling wave to be a quarter of a 
wavelength, which is easily testable by direct substitution of 
such guided modes into (9). As a result, we obtain the field 
solution for the waveguide discontinuity but now without any 
reflections at the output ports 

 0( ) .total
z m mE L E const= =   

The reflection coefficient at the input port and the transmission 
coefficients for the output ports are computed mimicking the 
Standing Wave Ratio (SWR) measurement that is well-known 
from microwave techniques. Thus we define observation lines 
along the waveguides of the different ports where we compute 
the total field. Let E0

m denote the amplitude of the transmitted 
wave in each output port. The resulting error in fulfilling condition 
(9) can be determined as follows  

01
( ) .

m

total

m m m m

Lm

E L E dL
L

− = ∆∫  (10) 

The amplitudes of the incident and the reflected waves for the 
input port are determined according to the following standard 
procedure (for considerable input reflections) 

 

( ) ( )( )
( ) ( )( )

0 max min

0 max min

0 0

2 2

1

2

1

2

 ,  

inc total total

in in

reflect total total

in in

in in in

E E L E L

E E L E L

L L Lλ λ

= +

= −

∈ − +⎡ ⎤⎣ ⎦

 (11) 

where Lin stands for the input port’s centre line, and L0
in for its 

midpoint. Later it becomes adequate to normalize the electric 
field in the finite PhC according to E0

inc. For the output ports 
where the reflection is significantly lower, it is preferable to 
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determine the transmitted and reflected wave’s amplitudes 
using the relation given below 

 
( )

( )

0

0 0

1
 ,

1
.

m

m

transmit total

m z m m

Lm

reflected transmit total

m m z m m

Lm

E E L dL
L

E E E L dL
L

=

= −

∫

∫

 (12) 

It should be noted that the evanescent waves being excited at 
the waveguide discontinuity and at the waveguide ports as well 
may interfere with the proposed measurement procedure. The 
waveguide arms must therefore become sufficiently long 
resulting in a scattering model that is usually larger with respect 
to the MMP connection approach (but it’s still competing well 
against model sizes required for techniques using imperfect  
absorbing boundary conditions for the outgoing waves). 

In order to illustrate the procedure outlined before, we now 
consider two simple examples, namely a 90° PhC waveguide 
bend and a filtering T-junction, which have been previously 
analyzed along the MMP-connection approach [7], [23].  

VI. 90° BEND 

Our first test model is a 90° waveguide bend whereas the 
underlying 2D-PhC consists of dielectric rods arranged in a square 
lattice and embedded in air. The lattice data are as follows: the 
radius of each dielectric rod is r/a = 0.18 (with a = 1 µm being the 
lattice constant), and the rod’s dielectric constant is ε = 11.56. The 
normalized operation frequency is a/λ = 0.416. In Fig. 6 the gray 
rectangle outlines the truncation region of the MAS model. It 
contains a finite section of 199 rods. Since we know that the 
PhC structure has a complete band gap only for TM-waves, we 
only consider z-component of the electric field, where z is the 
direction of the cylinder axis. Without lack of generality this 
considerably simplifies the numerical model.  
The electomagnetic field inside each rod is now approximated 
by a set of M auxiliary sources, i.e., monopoles located on  
 
auxiliary lines around the rod. Since the rods are circular, it is 
reasonable to use a concentric circle as auxiliary line for each 
rod and to distribute the auxiliary sources uniformly on these 
circles. Similarly, we introduce a circular auxiliary line inside 
each rod and uniformly distribute M auxiliary sources for 
modeling the field outside the rods. Since we are considering 
the TM-polarization, all auxiliary sources are E-type monopoles 
with unit amplitude. Furthermore, we select M = 12 being equal 
for all rods because the rods have the same shape and size. 
Thus, we obtain a model with 199 × 2 × 12 = 4776 unknowns. 
These unknowns are then computed by a simple point matching 
or collocation method on each rod’s M = 12 uniformly distributed 
matching points by enforcing there two boundary conditions, 
namely the continuity for the longitudinal component of the 
electric field and for the tangential component of the magnetic 
respectively. As in conventional scattering problems the structure 
is illuminated by a well-defined incident wave. In our case the 
IWGA sources are located in the center of both input and 

output ports as shown in Fig. 6. Thus, we obtain a linear system 
of 4776 equations with 4776 unknowns and two right hand 
sides. The computation time for this problem on an Athlon 
1200 PC is approximately 180 seconds when using the LAPACK 
LU-decomposition routine for the matrix solution. 
 

Fig. 6: MAS simulation of the 90о W1 defect waveguide bend. The gray 
rectangle outlines the truncation boundary of the finite PhC model. The 
underlying PhC consists of a square lattice with a/λ = 0.416, ε = 11.56, 
and r/a = 0.18.  

(i) MAS simulation; relative error of E and H: 0.3%; 
 Transmission T1 = 91.15%; Reflection Rin = 8.58%. 

(ii) MMP simulation; relative error of E and H: 0.45%;  
 Transmission T1 = 91.26%; Reflection Rin = = 8.56%. 

IWGA source feeding 

Balancing IWGA source 

Lin 

L1 

Fig. 7: Electric field Ez along the line L1. At the low SWR value in the 
waveguide arm the Lsh-value (i.e. the phase-shift between Re{Ez} and 
Im{Ez}) determine the propagation coefficient: h = 2π /(4Lsh).  
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Fig. 9: Poynting vector field distribution within the 90о W1 defect wave-
guide bend achieved with MMP. The model data are the same as in Fig. 6. 

 
As soon as the linear system for the two right hand sides is 

solved the superposition of the corresponding two solutions is 
computed in such a way that the reflected wave at e.g. the output 
port (or the reflected field in the horizontal arm) vanishes. 
Fig. 7 shows the resulting dependence of the electric field along 
the observation line L1 in the center of the horizontal arm (as 
defined in Fig. 6). It is clearly visible, that this function shows 
some oscillatory behavior (instead of being constant) due to 
inaccuracies in the matching procedure at the output port. It is 
reasonable to assume that the amplitude of the transmitted wave 
lays somewhere between the maximum and minimum of the 
oscillating envelope. We therefore define power transmission 
according to the mean ⎜ Ez ⎜ value along L1: 

( )

( )

01 1 1

1

2

1 01

1
 0.9547;

100% 91.15% , 

m

transmit total

z

L

transmit

E E L dL
L

T E

= =

= =

∫  (13) 

Furthermore, the mean ⎜ Ez ⎜ deviation form the average value 
(i.e. the difference between the maximum and minimum value) 

 ( )1 01 1 1

1

1
0.01

m

transmit total

z

L

E E L dL
L

∆ = − =∫  (14) 

gives us some information about the accuracy of reflection 
suppression in the output ports with regard to our MAS 
simulation scenario. Fig. 8 shows the behavior of the electric 
field in the vertical arm, i.e. near the input port. As one can see 
this mimics a nice standing wave pattern from which one can not 
only obtain the reflection coefficient but also an approximation of 
the propagation constant, or more precisely of the guided mode’s 

characteristic constant C as given e.g. in equation (3). It is easy 
to understand that C is complex valued due to the inplane 
radiation leakage [20] of the waveguide but since these losses 
are usually extremely small C becomes almost real. 

In addition to the error estimated for the reflection suppression, 
we can also consider energy conservation. Neglecting radiation 
leakage we obtain T1 + Rin  ≈ 91.15% + 8.58% = 99.73%. These 
internal error checks already show an acceptable accuracy of 
the proposed MAS model. In order to obtain even more 
information on the quality, we compare these results with those 
of a model based on MMP-connections. The comparison is 

  

a/λ 

100

 80 

 60 

 40 

 20 

   0 
0.32 0.34 0.36 0.39 0.41 0.43 

Rin, T1,% 

Rin 

T1 

Fig. 10: Comparison of the MAS (circles) and MMP (dashed lines) model 
for a 90о W1 defect wave-guide bend as a function of the normalized 
frequency a/λ. The discrepancy is less than 1%.  
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Fig. 8: Electric field along the line Lin in input port. The propagation 
constant is h = 2π /λ = 2.068 and the amplitude of the reflected wave 
E0

reflect = ½(⎜ Ez ⎜max – ⎜ Ez ⎜min) = 0.2928; thus, power reflection becomes 
Rin = (E0

reflect)2100% = 8.58%. 
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visualized in Fig. 10. 
As one can see from e.g. Fig. 6 and Fig. 9, the MMP model is 
considerably smaller and consists of only 89 rods. Here, the 
field inside each rod is approximated by a Bessel-type expansion 
whereas the field outside is represented by a multipole expansion. 
The total number of unknowns per rod is 22, that is almost the 
same as in the MAS model. Thus, we only have 22 × 89 = 1958 
unknowns, i.e., less then half of what we have for the MAS model. 
But now, the handling of the output ports with connections 
requires the introduction of a fictitious boundary that separates the 
region of the PhC discontinuity from the PhC waveguide problem. 
Along these fictitious boundaries, additional multipoles must be 
placed together with the connections that describe the waveguide  

 
modes. Finding an appropriate set of matching points for the 
resulting model is rather difficult. In order to overcome these 
problems, MMP works with a generalized point matching 
technique that leads to an overdetermined system of equations 
which is then solved in the least squares sense. In our example, 
we obtain 2181 unknowns for 8964 matching conditions. The 
solution of this system involves the QR decomposition routine 
of LAPACK and takes 177 seconds, i.e., almost the same 
computation time as the MAS solution. Note that the MMP 
system of equations is more than four times overdetermined. 
Usually two times overdetermined systems are still sufficient 
and in our special case, we could use even no overdetermination 
for the PhC lattice (i.e. the rods) and an overdetermination 
factor two for the fictitious boundaries. This would allow us to 
reduce the computation time of the MMP-connection model by 
a factor of three. Since this model serves only for comparison 
purposes and because the minimization of the computation 
time in the framework of MMP could become quite tricky, we 
did not optimized the model with regard to speed-up. 
Fig. 10 shows the comparison of MAS and MMP results where 
we can see an excellent agreement between these two results. 
Furthermore, we observe our error estimation to be quite 
reliable. In conclusion, the simulation of complicated PhC 
waveguide discontinuities is now reduced to the solution of a 
standard scattering problem. 

VII. FILTERING T-JUNCTION 

The analysis of filtering T-junction as depicted in Fig. 11 is 
more demanding than the 90° PhC waveguide bend for several 
reasons. First of all, it has two output ports where the incoming 
wave is guided to the left output port at an operating frequency of 
f = 1.038·1014 Hz and to the right output port for f = 1.23·1014 Hz. 
Within our analysis we must evaluate this model at least for two 
different frequencies, i.e., the computation time is doubled. 
Furthermore, wavelength selective power splitting is enabled, 

|Ez(L)| 

 L 

1.60 
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0.96 

0.64 

0.32 

0.00 
0.00 1.24 2.48 3.72 4.96 6.20 

Fig. 13: Distribution of ⎜ Ez ⎜ along the test lines at f = 1.038·1014 Hz: 
─── vertical arm;   –  –  –  –  right arm;    · · · · · · · · left arm 
 

Fig. 11: Geometry of the filtering T-Junction (diplexer).The radii of the rods 
are given in units of lattice the period a. For all of rods: µ  = 1.0; ε = 11.56. 
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Fig. 12: Distribution of ⎜ Ez ⎜ along the test lines at f = 1.23·1014 Hz: 
─── vertical arm;   – – – – left arm;    ········ right arm 
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by introducing corresponding dispersive elements (like e.g. 
substitutional defects) into the two output waveguides of the T-
junction. Such substitutional defects may consist of rods with 
different sizes compared to those of the underlying PhC lattice 

0.18; 0.35; 0.25.base large smallr r r= = =  

The numbers of auxiliary sources and matching points for these 
rods are slightly higher (we use M = 14 for the rods that constitute 
the PhC lattice and Mf  = 16 for the substituitional defects). 
The MAS model is described here by a matrix equation, which 
contains 6576 equations with 6576 unknowns and three right 
hand sides due to the existence of one auxiliary IWGA source 
per port (see Table 1). 

Table 1 
Source x0 y0 β l 
Input 0.0 8.5a 270º 3.5a 
Left -12.5a 0.0 0º 3.5a 

Right  12.5a 0.0 180º 3.5a 
 

The unknown amplitudes of the IWGA sources are determined 
according to condition (9), i.e. the reflections suppression 
condition at the cutoff slice x0 = ± (12·a + rbase). We shall not care 
about the matching condition at the input port y0 = 8·a + rbase 
because there is always a reflected wave present coming from the 
discontinuity (i.e. branching region) itself.  

Table 2 
 f = 1.038·1014 Hz f = 1.23·1014 Hz 

Source |A0| Phase |A0| Phase 
Input 1.0 0º 1.0 0º 
Left 0.2774 -35.4º 0.0058º -75.0º 

Right 0.0232 -22.1º 0.1370º -20.7º 

This wave will impact the incoming field accordingly but its 
influence is minimized when using the input field amplitude as 
normalization for all other wave amplitudes involved. In all other 
respects the procedure is the same as for the 90° PhC waveguide 
bend. The solution of the excitation problem (7) and the reflection 
suppression condition (9) for the given T-junction (Fig. 11) 
provide one with the values for the complex IWGA sources’ 
amplitudes (Table 2). Since we now dispose of the IWGA source 
amplitudes (and phase values) providing efficient wave matching 
at the output ports, we obtain almost constant field distributions 
along the two observation lines in the output arms of the T-
Junction for the two different frequencies (see Fig. 12 and 13).  

   Table 3 
f = 1.038·1014 Hz, h = 2π /λ = 1.156 

Port |Etrans| T(%) |Ereflect| R(%) SWR 
Input 1.0 100 0. 6031 36.38 2.144 

Left 0.7982 63.71 0.0024 0.001 1.000 

Right 0.0652 0.42 0.0002 0.000 1.000 

 

Fig. 15: MAS analysis: Ez-field of the filtering T-junction at f = 1.23·1014 Hz. Fig. 14: MAS analysis: Ez-field of the filtering T-junction at f = 1.038·1014 Hz. 

 

 
 
Fig. 16: MMP analysis: Poynting vector field distribution within the filtering 
T-junction at f = 1.038·1014 Hz (left diplexer channel). 

 

 
 
Fig. 17: MMP analysis: Poynting vector field distribution within the filtering 
T-junction at f = 1.23·1014 Hz (right diplexer channel). 
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Knowing the field distribution in the two output channels the 
transmission/reflection coefficients, the propagation constants and 
a first estimate of the error can be obtained using equations (9)-
(12): 

a) Propagation constant: h = 2π /λ = 2.00 

b) Amplitude of the reflected wave in the output port 

 ( ) ( )( )z zmax min

1
 0.6002,

2
reflect

in in inE E L E L= − =  

the corresponding power reflection coefficient and the SWR 
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c) Amplitude of the transmitted wave in the right arm 

 ( )1
 0.7985,

right

transmit total

right z right right

Lright

E E L dL
L

= =∫  

and the corresponding transmission coefficient  

 ( )2

100% 63.76% ; transmit

right right
T E= =  

d) Amplitude of the reflected wave from the end of the right arm 

 ( )1
0.0075,

right

reflected transmit total

right right z right right

Lright

E E E L dL
L

= − =∫  

and the corresponding standing wave ratio SWR = 1.002;  

e) Amplitude of the transmitted wave in the left arm 

 ( )1
 0.0335,

left

transmit total

left z left left

Lleft

E E L dL
L

= =∫  

and the corresponding transmission coefficient 

 ( )2

0 100% 0.11% ; transmit

left left
T E= =  

f) Amplitude of the reflected wave from the end of the left arm 
 ,0.0003=reflected

leftE  

and corresponding standing wave ratio is SWR = 1.002.  

g) Energy balance: ∆W = Tin –  (Rin + Tlef t+ Tright) = 0.1% 

 
The solution of the initial boundary problem provides the 
continuity of the E- and H-field components along the boundary 
with the error of less than 0.1% Having such high precision of the 
calculation allows detailed investigation of the wave propagation 
characteristics in complicated finite PhC. For example Fig. 14 and 
Fig. 15 show the contour plot of the electromagnetic field com-
ponent Ez for the given diplexer geometry. The calculated 
amplitude of the electric field along the each waveguide channel 
for a frequency of f = 1.038·1014 Hz is depicted in Fig. 13 whereas  
 

the transmission/reflection coefficients are listed in Table 3. 
The overall simulation procedure and the degree of accuracy is 
comparable to the analyis of the 90° PhC waveguide bend. As 
shown in Fig. 14 and Fig. 15 accurate calculations allow a very 
detailed description of the complicated fields in finite PhC devices. 
In order to compare the results with MMP, we use a MMP-
connection model (see Fig 16 and 17) that sets up an over-
determined 2974 × 9126 matrix and requires almost the same 
computation time as the corresponding MAS-model. Comparable 
figures that result from the two methods are listed in Table 4. 
As one can see, there is an excellent agreement between both 
methods. 

VIII.  CONCLUSIONS 

We have presented a new powerful method for the accurate and 
efficient computation of PhC waveguide discontinuities. The 
method essentially proposes (i) the introduction of special IWGA 
sources that excite the guided modes in the PhC waveguides and 
(ii) it provides also a very straightforward technique for sup-
pressing reflected waves at the waveguide ports. Together with 
such excitation and matching conditions the method delivers an 
additional technique for the computation of the S-parameters in 
PhC devices. This rather intuitive way (i.e. when relying on the 
minimization of the SWR) will gain recognition especially when 
complicated waveguide structures in e.g. planar 3D-PhCs are 
involved and thus proper eigenmode calculation becomes too 
cumbersome. Even if the proposed technique was developed for 
the method of auxiliary sources (MAS) it will easily apply for any 
other frequency domain method. 
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Abstract: Generalizations of fractal Koch curves 
and their use in designing multi-resonant antennas 
are presented in this paper.  Both recursive and 
non-recursive generalizations of the curve are 
examined.  Variation of the indentation angle is 
used for this approach.  Although this variation has 
a direct bearing on the unfolded length of the 
curve, this should be considered as a primary 
variable since several geometries with the same 
unfolded length can be constructed with different 
permutations of indentation angles.  Antenna input 
characteristics such as the primary resonant 
frequency, the input resistance at this resonance, 
and ratios of the first few resonant frequencies 
have been studied by numerical simulations.  This 
study shows that it is possible to design multi-
resonant antennas using Koch curves with various 
indentation angles.  Identifying similar parameters 
with other known fractal geometries would offer a 
viable route for designing multiband and 
multifunctional antennas for modern wireless 
applications using them. 

Keywords: Fractals, Multifrequency antennas, 
Wire antennas. 

1. INTRODUCTION 

Fractal geometries have found numerous 
applications in several fields of science and 
engineering in the past few decades, ever since the 
term fractal was coined by Mandelbrott for a class 
of seemingly irregular geometries [1]-[5].  
Disciplines such as geology, atmospheric sciences, 
forest sciences, physiology have all benefited 
significantly by fractal modeling of several 
naturally occurring phenomena.  In 
electromagnetics, fractal geometries have been 
studied in the context of various wave propagation 
scenarios.  Scattering and diffraction from fractal 
screens have been studied extensively [6]-[7].  
More recently fractal geometries have also been 
used in frequency selective screens [8]-[10]. 
Similarly, fractal concepts have also been used in 
antenna engineering.  The primary motivation for 

the use of fractals in this area has been to extend 
antenna design and synthesis concepts beyond 
Euclidean geometry   [11]-[12]. Obtaining special 
antenna characteristics using a fractal distribution 
of elements is the main objective of the study on 
fractal antenna arrays.  Self-similar arrays have 
frequency independent multi-band characteristics 
[13].   

Antenna elements with fractal shapes have also 
been investigated in recent years.  It is the irregular 
nature of these geometries that has caught the 
attention of antenna designers - primarily as a past-
time.  Over the past decade or so, several antenna 
properties have been qualitatively linked to the 
nature of these geometries. With the deepening of 
such an understanding of relationships between 
geometric properties and antenna features, a new 
class of antennas, called fractal shaped antennas is 
becoming popular.  Initial investigations with 
fractal geometries for antenna applications have 
been experimental.  Fractal geometries such as 
Koch curves, Minkowski curves, Sierpinski carpets 
were investigated by Cohen for various types of 
antennas [14].  Fractal trees were also explored and 
found to have multiband characteristics [15].  Self-
similarity of these fractal geometries has since been 
qualitatively associated with multiband 
characteristics of antennas using them.  Several 
self-similar geometries have therefore been 
explored to obtain multiband antenna 
characteristics [16]-[19]. For example, Sierpinski 
gaskets have been studied extensively for 
monopole and dipole antenna configurations [20].  
The self-similar current distribution on these 
antennas is expected to cause its multi-band 
characteristics [21].  Yet another fractal geometry 
pursued by many antenna researchers is the Koch 
curve.  Several variants of this geometry have been 
used as dipole, monopole, loop and patch antennas 
with equally diverse performance [14], [22]-[28]. 
Historically, Koch monopoles are among the first 
antennas based on a fractal geometry designed as 
small sized antennas. In addition to being small, 
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these geometries can potentially lead to multiband 
antenna characteristics [22].   

Fractal shaped antennas for numerous wireless 
applications have been commercialized recently.  
The advantages of using fractal shaped antenna 
elements are manifold.  These geometries can lead 
to antennas with multiband characteristics, often 
with similar radiation characteristics in these 
bands.  However, it may be pointed out that the 
ordered nature of fractals introduces a substantial 
advantage over an antenna geometry obtained by 
arbitrarily shrinking the geometry, and this could 
be exploited in novel antenna design and analysis 
approaches.  However, thus far the research on 
using these geometries, has more or less 
concentrated on introducing them into the realm of 
antenna design, without seriously getting into novel 
design ideas.  There are few exceptions including 
the works by Werner et. al. [28]-[29] where 
antenna properties were optimized by modifying 
the geometry using a genetic algorithm.  The 
present authors have reported a design approach for 
Hilbert curve and Koch cure dipole antennas 
making use of its fractal features [30]-[33]. 

In this paper however, it is attempted to make a 
parametric study of dipole antennas using Koch 
curves, with the indentation angle as the design 
parameter.  If this angle is kept a constant for 
various iterations, the resultant geometry is self-
similar.  A variation in the indentation angle of 
these self-similar geometries can be used to obtain 
a parametric correlation between the antenna 
characteristics and a mathematically expressible 
feature (e.g., fractal dimension) of the fractal 
geometry [32]-[33].  However a convenient means 
for designing such antennas can be obtained if the 
indentation angles for all iterations are chosen 
independently.  The resultant geometry is non-
recursive and may not be truly called fractal.  

The geometries studied here may be considered as 
a special case of those presented in [28] and [29], 
since the initiator in the present case has one line 
segment less.  The approach for generalization of 
the geometry is described in the next section.  
Results of numerical simulations using NEC for 
antennas with these geometries are described in 
Section 3.  It has been found that the indentation 
angle of each Koch iteration may be varied to 
design multi-resonant antennas with variable 
frequency intervals.  A brief summary of the new 
findings in this paper are presented in Section 4.  It 
is expected that the use of these ideas would 
significantly reduce the computational intensity of 

optimization approaches for design of antennas 
using fractal geometries, and would help antenna 
designers approach the problem with due merit. 

2. GENERALIZATION OF KOCH CURVES 

The antenna geometry used in this paper is based 
on a fractal curve originally introduced by Swedish 
mathematician Helge von Koch in 1904 [34].  
Several generalizations of the original geometry 
exist.  The recursive construction of the basic 
fractal curve is shown in Fig. 1.  To distinguish this 
from generalizations introduced later, this 
geometry will be referred to as the standard Koch 
curve for the rest of the discussions.   

The geometric construction of the standard Koch 
curve is fairly simple.  One starts with a straight 
line, called the initiator.  This is partitioned into 
three equal parts, and the segment at the middle is 
replaced with two others of the same length.  This 
is the first iterated version of the geometry and is 
called the generator.  The process is reused in the 
generation of higher iterations. 

It may be recalled that each segment in the first 
iterated curve is 1/3 the length of the initiator.  
There are four such segments.  Thus for nth iterated 
curve the unfolded (or stretched out) length of the 
curve is (4/3)n.  This is an important property useful 
in the design of antennas using them. 

2.1. IFS for the Standard Koch Curve 

An iterative function system (IFS) can be 
effectively used to generate the standard Koch 
curve.  A set of affine transformations forms the 
IFS for its generation. Let us suppose that the 
initiator (unit length) is placed along the x-axis, 
with its left end at the origin.  The transformations 
to obtain the segments of the generator are 
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Fig. 1. Geometrical construction of standard Koch 
curve (indentation angle=60°). 

 

Fig. 2. A recursive generalization based on fractal 
Koch curves of first four iterations with an 
identical indentation angle of 30° for various 
stages.   

The generator is then obtained as 

).()()()()( 43211 AWAWAWAWAWA ∪∪∪== (5) 

This process can be repeated for all higher 
iterations of the geometry.  It may be observed that 

end points of curves of all iterations is the same.  
Various iterations of the geometry obtained with 
this IFS are shown in Fig. 1. 

the (straight line) distance between the start and 

2.2. Recursive Generalizations  

tudied as part of 
Initiator Generator 

In the proposed generalizations s
this work, the rotation (indentation) angle is made a 
variable.  This leads to generalization of IFS with 
the following transformations 
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where the scale factor s is angle dependent and is 
given by 

( ) .
cos12
11

θ+
=

s
 (10) 

This ensures the distance between the start and end 

be obtained as 

points for all iterations is the same.  It may be 
easily verified that this formulation degenerates to 
the standard Koch curve for θ=60°. 

The generator for the geometry can 
in eq. (5).  These affine transformations in the 
generalized case also lead to a self-similar fractal 
geometry.  As an example, self-similar geometries 
of various iterations obtained by recursively 
applying the above transformations have been 
shown in Fig. 2.  The indentation angle in these 
cases is 30°, as compared to 60° used for the 
standard Koch curve geometry.  In fact this 
variation in indentation angle causes a 
corresponding variation in the fractal dimension of 
the geometry.  The fractal similarity dimension of 
this generalization of the geometry is obtained as 

( )[ ] .
cos12log
4log

θ+
=D  (11) 
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Similar geometries with
dimensions can be obtained 
indentation angles with this recursive 

factor for all 
e in the 

ve.  Further 

 varying fractal similarity 
for different 

generalization.  The indentation angle may vary 
between 0 and 90°. For the indentation angle θ=0, 
the curve is linear (dimension=1) while for θ=90°, 
a geometry of sufficiently large iteration tends to 
fill a triangular area (dimension=2).  

2.3. Non-recursive Generalizations 

The indentation angle and the scale 
stages of iteration are kept the sam
recursive generalization described abo
generalized curves can be obtained by removing 
this restriction and are used in the study presented 
in this paper.  In order to ensure that the approach 
is systematic, all sub-sections of the curve are kept 
identical.  Thus all line segments of the final 
geometry have the same length, and indentation 
angles for subsections of the geometry at individual 
iteration are identical.  Such generalizations of a 
third iterated Koch curve are shown in Fig. 3.  The 
indentation angle for iteration stages are 20°, 40°, 

and 60°, with the last angle used in the outermost 
generator for case (c) and vice versa for case (d).  
For a given end-to-end distance l, the length of 
individual line segments m constituting an nth 
iterated geometry is given by 

( )
.

cos12 ∏ +
= n

n

lm
θ

 (12) 
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i

Likewise, the total unfolded length of the curve is 
given by 
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∏
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iθ

It may be observed that for a given l, various 
permutations of angles can result in the same 
unfolded length.  Thus this generalization offers a 

Di  with arms consisting of Koch 
es and fractal 

g a moment method 

ilar Geometry 

Characteristics of antennas using the standard 
Koch curve of this type have been studied 
previously by experiments as well as numerical 

possibility of studying the effects of indentation 
angles, as opposed to unfolded length. 

3. MODELING STUDIES ON THE 
ANTENNA 

3.1. Dipole Antenna Model 

pole antennas
curves of different indentation angl
iterations are simulated usin
based software G-NEC.  A typical dipole antenna 
using 4th order iteration curves with an indentation 
angle of 60° and with the feed located at the center 
of the geometry is shown in Fig. 4.  Similar 
geometries with various fractal iterations and 
indentation angles have been extensively studied 
by numerical simulations [33]. This model consists 
of wire elements only. The radius of wire segments 
constituting the antenna model is consistently kept 
at 0.1 mm.  It may be noted that this values is much 
smaller than the wavelength (~60 mm) at the 
highest frequency considered in the present study.  
The segmentation length used in the NEC model is 
taken as approximately 0.5 mm, uniform in all 
cases.  Each dipole arm has an end-to-end distance 
of 10 cm.   

3.2. Numerical Simulations of Antennas with 
Self-Sim

20° 

40° 

60° 

(a) 

(b) 

(c) 

(d) 

Fig. 3. Generalized curves obtained by non-
recursive approach.  The curve in (b) has four
copies of the one in (a), but with a different
indentation angle.  Similarly the curves in (c) is
obtained from (b). Two such 3rd iterated curvs are
compared in (c) and (d).  Indentation angles are:
(c) 20°-40°-60° (d) 60°-40°-20°. The angle for
the first generator listed first. 
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Table 1. Primary (first) resonant frequencies for dipole antennas with self-similar Koch curves (with
recursive IFS) for various iterations obtained by numerical simulations.  The end-to-end distance of these 
arms are kept constant at 0.1 m. 

Unfolded arm length (m) for various 
iterations  

Resonant frequencies (MHz) for 
various iterations  

Indentation 
Angle (Deg.) 

1 2 3 4 1 2 3 4 
10 0.101 0.102 0.102 0.103 710.1 713.5 711.7 710.1 
20 0.103 0.106 0.116 0.113 685.8 693.9 687.8 685.8 
30 0.107 0.115 0.123 0.132 643.2 662.4 649.6 643.2 
40 0.113 0.128 0.145 0.164 589.1 618.8 595.1 589.1 
50 0.122 0.148 0.18 0.22 512.5 565.6 528.6 512.5 
60 0.133 0.178 0.237 0.316 427.9 505.1 453.8 427.9 
70 0.149 0.222 0.331 0.493 337.2 441.2 376 337.2 
80 0.170 0.290 0.495 0.843 256.6 381.3 304.6 256.6 
simulations [22]-[27]. Since these antennas are 
small in terms of operational wavelength, their 

ation performance is notradi  expected to change 

quency may as well be attributed to 

nput resistance of about 

 for very small indentation angles, these 

significantly.  Hence only the input characteristics 
of these antennas are examined in the following 
discussions.   

Resonant frequencies for antennas with various 
iterations of self-similar geometry have been listed 
in Table 1.  This indicates that by changing the 
indentation angle or fractal iteration, the resonant 
frequency can be reduced.  However this reduction 

in resonant fre
 

the increase in the unfolded length of the curve.  In 
contrast to previous designs using a genetic 
algorithm [28]-[29], the present approach strives to 
generate a knowledge base using geometrical 
features and hence is expected to be less 
computation intensive.   

The input resistance at the resonant frequency also 
changes by these modifications to the standard 
geometry.  In Fig. 5, these variations are plotted for 
various iterations of the fractal.  For angle θ=0, 
these antennas all degenerate to identical linear 
dipoles with a resonant iAntenna Feed 

Fig. 4. Configuration of Koch dipole antenna.
Arms of the antenna have 4th iteration Koch curves
with indentation angle=60°. 

72Ω.  As the angle or the fractal iteration is 
increased, this value is reduced significantly.  It 
may be observed that it is always preferable to 
match the antenna impedance to a standard value 
(50Ω).  Although not attempted in this paper, this 
approach of generalization may be used to design 
antennas with the required input characteristics at a 
specified frequency.  In other words, the 
indentation angle may be used as a design 
parameter. 

The antenna input characteristics at higher resonant 
frequencies are also altered by the change in 
angles.  To compare these, the variations of first 
four resonant frequencies are plotted in Fig. 6 for 
the first four iterations of the geometry.  It may be 
noticed that0
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antennas behave similar to linear dipoles.  
However as the angle is increased, the periodicity 
of these multiple resonances is changed.  It may be 
argued that the indentation angle of the self-similar 
antenna can be changed for appropriate positioning 
of its resonant frequencies.  

Fig. 5. Variation of input resistance of the dipole
antennas with generalized Koch curves (self-similar)
of various fractal iterations. 



3.3. Numerical Simulations of Antennas with 
Non-Recursive Geometry 

The geometries used thus far were all generated 
recursively by using an IFS.  If one were to break 
this rule, antenna properties may be tailored with 
better flexibility.  Although the resulting antenna 
structure may not be called truly fractal, this offers 

unfo ent sets of angles 

re listed.  As mentioned earlier, 
ermutations of indentation angles, such as (20°, 
0°) and (40°, 20°) lead to the same unfolded 

ng identical unfolded length does 

the possibility of studying curves with the same 
lded length, but with differ

for various iterations.  Extensive numerical 
simulation studies have been performed on 
antennas using such non-recursive geometries to 
explore the usefulness of indentation angle, 
contrary to the unfolded length, as the primary  

 

parameter.  A few representative cases are 
presented here. 

In Table 2 the unfolded length of arms of the 
dipole and the resulting primary resonant 
frequency a
p
4
length, but different resonant frequencies.  This 
shows that havi
not guarantee similar input characteristics of the 
antenna.  Furthermore a consistent variation in the 
input resistance of the antenna at its primary 
resonance is also observed.  These are plotted for 
various indentation angles in Fig. 7.  Similarly, the 
variation in the periodicity of distribution of first 
four resonant frequencies of various antenna 
geometries can be observed from Table 3.  Thus if 
one has the flexibility of arbitrarily choosing the 
indentation angle at each stage of generation of the 

Fig. 6. Variation of resonant frequencies of dipole
antennas with generalized self-similar Koch curves of
various fractal iterations.  The resonant frequencies
for each resonance of all cases converge to that of
linear dipole when the indentation angle approaches
zero. 
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Table 2. Unfolded curve length and resonant frequencies for various indentation angles of the non-recursive 
generalization of the 2nd iterated Koch curve.  The end-to-end distance of its arms are kept constant at 0.1 m. 

Unfolded Curve-Length (m) for 
various (outer) Indentation angles 

Resonant Frequencies (MHz) for 
(outer) Indentation angles  

Indentation 
angle (inner) 

20° 40° 60° 80° 20° 40° 60° 80° 
20° 0.106 0.117 0.137 0.176 694 662 610 554 
40° 0.117 0.128 0.151 0.193 650 619 570 515 
60° 0.137 0.151 0.178 0.227 580 550 505 455 
80° 0.176 0.193 0.227 0.290 497 469 427 382 
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Fig. 7. Input resistance at the first (primary)
resonance of dipole antennas based on generalized
Koch curves.  In all antennas, end-to-end distance
of their arms are kept constant at 0.1 m, and have
2nd generation non-recursive Koch curve.  The
angle at the inner iteration is the parametric
variation while the x-axis is for the angle of the
outer stage. 
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able 3. Resonant frequencies of dipole antennas with 2nd generation generalized non-recursive Koch curves. 
he indentation angle in each generation stage is different.  The end-to-end distance of these arms are kept 
onstant at 0.1 m. 

Indentation 
Angles 

Input 
Resistance  

Resonant Frequencies (MHz) Ratios of Resonant 
Frequencies 

Inner Outer at  fr1 fr1 fr2 fr3 fr4 fr2/fr1 fr3/fr2 fr4/fr3
20 68.7 705 2157 3615 5078 3.060 1.676 1.405 
40 59.7 660 1999 3348 4716 3.029 1.675 1.409 
60 46.9 590 1748 2910 4130 2.963 1.665 1.419 

0 

80 34.2 511 1432 2300 3311 2.802 1.606 1.440 
20 66.7 694 2121 3549 4981 3.056 1.673 1.403 
40 58.1 650 1964 3284 4621 3.022 1.672 1.407 
60 45.5 580 1714 2847 4035 2.955 1.661 1.417 

20 

80 32.4 497 1395 2247 3236 2.807 1.611 1.440 
20 61.1 662 2012 3354 4690 3.039 1.667 1.398 
40 52.8 619 1861 3093 4332 3.006 1.662 1.401 
60 41.1 550 1619 2666 3748 2.944 1.647 1.406 

40 

80 29.1 469 1308 2093 2991 2.789 1.600 1.429 
20 52.2 610 1839 3043 4221 3.015 1.655 1.387 
40 45.4 570 1696 2792 3870 2.975 1.646 1.386 
60 35.1 505 1468 2386 3317 2.907 1.625 1.390 

60 

80 24.5 427 1177 1858 2619 2.756 1.579 1.410 
20 43.6 554 1648 2689 3663 2.975 1.632 1.362 
40 37.4 515 1513 2451 3336 2.938 1.620 1.361 
60 28.8 455 1299 2075 2828 2.855 1.597 1.363 

80 

80 19.9 382 1031 1599 2194 2.699 1.551 1.372 
rve, antennas with varied input characteristics 
n be obtained.   

milar variations in input characteristics are also 
tained for antennas with 3rd iteration geometries.  

esonant frequencies of antenna geometries with 
rious permutations of indentation angles, with 
e innermost angle kept constant at 60° are listed 
 Table 4. 

llowing this approach one can have several 

s in terms of both the input resistance 

ude both recursive 
and non-recursive curves. Schemes for such 

geometries are introduced.  

rves with the same length, but with a different 
t of resonant frequencies.  These differences in 
sonant frequencies are found to be more 
onounced as the order of iteration is increased.  
ence this approach offers a scheme of designing 
tennas based on Koch curves suiting the 
quirement
d the resonant frequency.  It is concluded from 
is study one can design multi-resonant antennas 
ith considerable flexibility by choosing their 
dentation angles arbitrarily for each iteration 
hile generating the geometry. 

4. CONCLUSIONS 

In this paper, the variation in the input 
characteristics of multi-resonant antennas based on 
generalizations of fractal Koch curves is presented.  
Geometries considered here incl

generalization of these 
In this study, the indentation angle in the 
transformations of the iterated function system is 
varied to obtain a set of geometries.  Although this 
variation has a direct bearing on the unfolded 
length of the curve, the indentation angle should be 
considered a primary variable since several 
geometries with the same unfolded length can be 
constructed with different permutations of 
indentation angles.  Antenna parameters such as 
the primary resonant frequency, the input 
resistance at this resonance, and ratios of the first 
few resonant frequencies have been studied by 
numerical simulations.  This study shows that it is 
possible to design multi-resonant antennas using 
Koch curves by individually choosing an optimum 
indentation angle for various iteration stages of the 
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Table 4. Resonant frequencies of 3rd iterated non-recursive geometry.  The innermost angle is kept θ1= 60°.  The 
ther angles are varied as listed. 

Resonant Frequencies (MHz) Ratios of Resonant 
Frequencies 

θ2 θ3 Input 
resistance 

at fr1 fr1 fr2 fr3 fr4 fr2/fr1 fr3/fr2 fr4/fr3
0 20 57.5 649 1968 3281 4589 3.032 1.667 1.399 
 40 49.6 605 1815 3017 4223 3.000 1.662 1.400 
 60 38.6 537 1571 2582 3632 2.926 1.644 1.407 
 80 27.2 456 1261 1995 2848 2.765 1.582 1.428 
20 20 55.7 638 1932 3215 4491 3.028 1.664 1.397 
 40 48.2 595 1780 2952 4129 2.992 1.658 1.399 
 60 37.1 526 1539 2523 3547 2.926 1.639 1.406 
 80 25.7 443 1229 1952 2798 2.774 1.588 1.433 
40 20 50.4 605 1822 3018 4194 3.012 1.656 1.390 
 40 43.4 563 1677 2762 3841 2.979 1.647 1.391 
 60 33.3 497 1445 2349 3285 2.907 1.626 1.398 
 80 23.1 417 1150 1816 2586 2.758 1.579 1.424 
60 20 42.6 553 1646 2697 3709 2.976 1.639 1.375 
 40 36.4 513 1509 2457 3380 2.942 1.628 1.376 
 60 27.8 451 1294 2077 2870 2.869 1.605 1.382 
 80 19 376 1023 1598 2234 2.721 1.562 1.398 
80 20 33.7 489 1428 2295 3099 2.920 1.607 1.350 
 40 29.1 454 1307 2087 2818 2.879 1.597 1.350 
 60 22 397 1113 1753 2369 2.804 1.575 1.351 
 80 14.8 328 871 1335 1820 2.655 1.533 1.363 
underlying fractal geometry.  Identifying similar 
parameters for other known fractal geometries 
would ease the complexity in designing multiband 
and multifunctional antennas for modern wireless 
applications. 
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Abstract 
 
An analytic solution to the problem of a plane 
electromagnetic wave scattering by two infinitely long 
conducting strips is presented using an iterative procedure to 
account for the multiple scattered field between the strips. 
To compute the higher order terms of the scattered fields, 
the translation addition theorem for Mathieu functions is 
implemented to express the field scattered by one strip in 
terms of the elliptic coordinate system of the other strip in 
order to impose the boundary conditions. Scattered field 
coefficients of high order fields are obtained and written in 
matrix form. Numerical results are plotted for the scattered 
in far zone for different strip widths, electrical separations 
and angles of incidence. 
  
1. Introduction 
 
The multiple scattering of a plane electromagnetic wave by 
a system of infinitely long conducting strips is important in 
a variety of practical applications. For example, the solution 
may be used to study the scattering by complex bodies 
modeled by a collection of strips, prediction of radiation 
from elliptical reflector antennas, and to check the accuracy 
of the results of numerical and approximate methods [1].  
Exact analytic solution of the problem of scattering by a 
system of N conducting strips has been formulated using the 
translation addition theorem for Mathieu functions to 
enforce the boundary condition [1]. The required computer 
time and memory to invert the resulting system of matrix 
increase rapidly with the number of strips. In addition, 
numerical results for certain strips dimensions, electrical 
separations and angles of incidence are difficult to obtain by 
this analytical method may be due to the associated ill-
condition system matrices. 
In the present paper an iterative procedure is proposed to the 
scattering by an arbitrary oriented two infinitely long 
conducting strips. This approach requires the solution of the 
scattered field by each strip, assumed to be alone in the 
incident field that acts as an incident field on the other strip.  
Therefore, the first order scattered field results from the 
excitation of each strip by the incident field only, while the 

second order scattered field results from the excitation of 
each strip by the first order scattered field. Hence, this 
iterative procedure continues until the solution convergence.  
One of the advantages of the iterative procedure is that the 
proposed solution does not require matrix inversion and 
therefore the desired scattered field coefficients are obtained 
after each iteration and used in the subsequent iteration. 
The solution of the electromagnetic scattering by a system 
of N infinitely long conducting strips has received little 
attention in the literature due to the complexity of 
computing Mathieu functions of higher orders and its 
associated translation addition theorem. Recently, there 
have been many studies on the multiple scattering by strips 
[1], circular or elliptic cylinders [2]-[6], spheres [7], and 
spheroids [8], [9] using different techniques.  
Numerical results showing the number of scattered fields 
are plotted for the normalized echo pattern width with 
various electrical separations, widths, angles of incidence, 
and also compared with published results to demonstrate the 
efficiency of the method [1].   
 
2. Formulation of the problem 

Fig. 1 shows the scattering geometry of two infinitely long 
conducting strips with different widths and arbitrary 
orientation. The center axes of the two strips are assumed to 
be parallel to the z-axes.  The first strip is located at the 
origin o1 while the second strip is located at the polar 
coordinate point (d, )γ  with respect to the global coordinate 
system (x,y,z). The width of the strips are a1 and a2 
respectively, and each strip's local coordinate system makes  
angle 1α  for the first strip and 2α for the second strip with 
its global coordinate system. Consider elliptic coordinate 
systems u, v, and z such that   

           zzvuFyvuFx === ,sinsinh,coscosh         (1) 

where F is the semifocal length, ∞<≤ u0  , 
π20 <≤ v , and ∞<≤∞− z . It is usually convenient 

to introduce  

               ucosh=ξ , vcos=η                           (2) 
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with   ∞≤≤ ξ1   and .11 ≤≤− η                                     

Consider the case of a linearly polarized electromagnetic 
plane wave incident on the two infinitely long conducting 
strips at an angle iφ  with respect to the positive x axis, as 

shown in Fig. 1, with  time dependence. The electric 
field component of the TM polarized plane wave of 
amplitude  is given by 

jwte

0E
cos( )

0
ijki

zE E e ρ φ φ−=                                                   (3) 

where  is the wave number in free space. The incident 
electric field may be expressed in terms of Mathieu 
functions about the origins o

k

1 and o2 and as follows [10] 
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and , ,  and are the even 

and odd angular Mathieu functions of order m, respectively, 
 and are the even and odd radial Mathieu 

functions of the first kind, and and  are the even 
and odd normalized functions. 

11 Fkc =
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The scattered electric field from the conducting strips can be 
expressed in terms of Mathieu functions as   

                             (11) 
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where , , , and  are the unknown even 

and odd scattered field expansion coefficients, and  

and are the even and odd Mathieu functions of the 
fourth kind. 
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3. First Order Scattered Field by Strips 

The first order scattered field results from the separate 
excitation of each strip by the incident plane wave alone. 
The boundary condition at the surface of first strip requires 
the tangential components of the total electric field to be 
zero, i.e.,   
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where and  are the first order scattered field 

expansion coefficients. A similar equation may be written 
corresponds to the second strip. Using the orthogonality 
properties of the angular Mathieu function yields the first 
order scattered field coefficients, which may be written for 
each strip in matrix form as 
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 where and are the first order scattered field 
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4. Higher Order Scattered Field by Strips 

The second order field results from the excitation of each 
strip by the scattered field from the other strip due to the 
initial incident field. The boundary condition at the surface 
of first strip requires the tangential components of the total 
electric field to be zero, i.e,    
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where and  are the second order scattered field 

expansion coefficients of the first strip. To enforce the 
boundary condition, the first order scattered field from the 
second strip must be expressed in terms of the coordinate 
systems of the first strip by using the addition theorem for 
the Mathieu functions [11], i.e., 
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with 

1221 Ψ+Ψ=Ψ+ pi ,   .                         (23) 1221 Ψ−Ψ=Ψ− pi

 In the above equations, 12Ψ  and  are measured from 
the local positive x axis of each strip to the separation 
distance between the strips,  is the Hankel function 

of  the second kind with argument kd , and  and  are 
the Fourier coefficients of the Mathieu functions [10]. The 
sum is over only even or odd values of  i(p) depending 
whether m(l) is even or odd in equations (19) and (20).
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Substituting equation (18) into (17) and using the 
orthogonality properties of the angular Mathieu functions 
yields the second order scattered field coefficients, which 
may be written for each strip in matrix form as 
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where and C  are the second order scattered field 

expansion coefficients of the second strip, and  
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To obtain a general solution, we solve similarly for the 
higher order scattered fields which are sensitive to the 
electrical widths, separation between the strips and angles of 
incidence. This means if the strips are located very close to 
one another, then the higher order scattered fields are 
significant and therefore should be included in the solution. 
The significance of the higher order scattered fields will be 
verified numerically by comparison with published data.  
The general expression for the kth order scattered field 
coefficients may be written as  
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It should be noted that the matrices in equations (27) and 
(28) are computed once (i.e., k=2) for the electrical sizes and 
separation considered and used for the subsequent iterations 
(i.e., k=3,4,…).  
Once the  scattered field coefficients are determined, the 
total far field from the strips due to the kth order scattered 
field can be determined [1]-[5]. 
 
5. Numerical Results 

In order to solve for the unknown scattered field 
coefficients, the infinite series  are first truncated to include 
only the first N terms, where N in general, is a suitable 
truncation number proportional to the strips electrical width. 
In the computation, the value of N   has been chosen to 
impose a convergence condition that provides solution 
accuracy with at least four significant figures [14], [15]. It is 
found that increasing the electrical width of the scatterers 
will increase the total truncation number of N terms [16].   
To check the accuracy of our computer program, we 
recomputed first the results given in references [2], [12] for 
large electrical separation when it is compared with the 
electrical sizes of the scatteres  and we obtained complete 
agreement between methods by only implementing the first 
order scattered field using the iterative solution.  Fig. 2 
shows the numerical result of the normalized echo width 
pattern λσ /  versus the scattering angle φ  for two 
identical strips with electrical width ka=3.14. The electrical 
separation between the center of the strips is assumed to be 
kd=12.5 and at an angle of incidence o

i 90=φ  (broadside 
incidence). It can be seen that the results of the first 
scattered order (k=1) presented by solid line is satisfactory 
at all backscattering angles because the electrical separation 
between the strips is large compared to their width. To set a 
criterion for terminating the iteration process, the scattered 
field after each iteration is calculated and divided by the 
total field scattered from the pervious iterations, and the 
process is terminated when the ratio is smaller than 10-4 [7]. 
Fig. 3 has the same electrical parameters except the 
electrical separation is reduced to 7. It can be seen that the 
numerical results of the first order scattered field is 
satisfactory except at resonance scattering angles. This is 
because the first order scattered field does not take into 
account the interaction between the strips and hence k=1 
represents the sum of the scattered field due to the incident 
field only. The significance of the multiple scattered fields 
can be seen in the second scattered order term (k=2) which 
includes the scattered fields due to the plane wave incidence 
plus the scattered fields due to the first order scattered field 
due to the incident field on each strip. However, the results 
show that four scattered field orders are needed to obtain 

convergent solution at the resonance scattering angles. Fig. 
4 is similar to Fig. 2 except the width of the second strip is 
reduced from 3.14 to 2.0 and kd=5.5. We can see that the 
number of scattered fields needed is four to obtain 
convergent solution. Fig. 5 shows  the normalized echo 
width pattern for two identical strips of width ka=5.0, 
kd=13, and at angle of incidence of zero degree (endfire). 
Three iterations are needed to obtain convergent solution. 
Fig. 6 is similar to Fig. 5 except that the incident angle is 90 
degrees and kd=11. 
Fig. 7 shows the numerical results of the normalized 
backscattering echo width pattern versus the electrical 
separation (kd) for two identical strips of width ka=5.0 and 
at angle of incidence of zero degree. The electrical 
separation is taken between 11 and 23. The results show that 
the behavior of the backscattering cross section is 
sinusoidally and with k=4 a convergent solution is obtained 
at all electrical separations. Fig. 8 is similar to Fig. 7 except 
the incident angle is 90 degrees. Again, the backscattering 
cross section is behaving sinusoidally and four scattered 
field orders is needed to obtain convergent solution.    
 
6. Conclusions  

We have investigated the problem of multiply field scattered 
due to a plane electromagnetic wave incident on arbitrary 
oriented two perfectly conducting strips. The boundary 
conditions were implemented using the translation addition 
theorem. The numerical results indicated that the number of 
multiple scattered fields depends on the electrical width of 
the strips, electrical separations and incident angles. We 
have seen that the iterative solution gives insight to the 
nature of the multiple scattered fields where it is sometime 
strong (more terms needed, Fig. 3 at φ  88o) or weak (less 
terms needed, Fig. 3 at φ  200o) at some specific scattering 
angles.  A potential advantage of using the iterative solution 
is that of saving computer time and memory by avoiding the 
inversion of system matrix. 
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Figure 1: Scattering geometry of two conducting     

strips. 

 

35Hamid and Hussein: Iterative Solution to the Multiple Scattering by Two Infinitely Long Conducting Strips



 

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

 φ  in degrees

 s
qr

t 
(σ

(φ
)/
λ

 )

k=1,    .... k=2,    oooo k=3 and Ref. [1]

  

Figure 2: Normalized echo pattern width versus the 
scattering angle φ  for two identical 
conducting strips with ka1=ka2=3.14, 
kd=12.5, , , 
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Figure 3: Normalized echo pattern width versus the 

scattering angle φ  for two identical conducting 

strips with ka1=ka2=3.14, kd=7, , 
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Figure 4: Normalized echo pattern width versus the 

scattering angle φ  for two conducting 
strips with ka1=3.14 , ka2=2.0, kd=5.5, 
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Figure 5: Normalized echo pattern width versus the 
scattering angle φ  for two conducting strips 

with ka1=ka2=5.0, kd=13, , 
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Figure 6: Normalized echo pattern width versus the 
scattering angle φ  for two conducting 
strips with ka1=ka2=5.0, kd=11, 
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Figure 7:  Normalized backscattering cross section versus 

the electrical separation  kd for conducting strips 
with  ka1=ka2 =5 , , , . o021 ==αα o

i 0=φ o0=γ
References 

[1] H. A. Ragheb and M. Hamid, "Simulation of 
cylindrical scattering surfaces by conducting strips, " 
Int. J. Electronics, vol. 64, pp. 521-535, 1988. 

[2] A. Sebak, "Transverse magnetic scattering by parallel 
conducting elliptic cylinders," Can. J. Phys., vol. 69, 
pp. 1233-1241, 1991. 

[3] Sebak, "Electromagnetic scattering by two parallel 
dielectric elliptic cylinders," IEEE Trans. Antennas and 
Propagat., vol. AP-42, pp. 1521-1527, 1994.  

[4] K. Hongo, "Multiple scattering by two conducting 
circular cylinders," IEEE Trans. Antennas and 
Propagat., vol. AP-26, pp. 784-751, 1978. 

12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

kd

 s
qr

t (
σ

 /λ
 )

k=1,    .... k=2,  oooo k=3,  xxxx k=4

 

Figure 8:  Normalized backscattering cross section 
versus the electrical separation kd for 
conducting strips with  ka1=ka2 =5, 

, , . o021 ==αα o
i 90=φ o0=γ

 
[5] H. Ragheb and M. Hamid, "Scattering by N parallel 

conducting circular cylinders," Int. J. of Electronics, 
vol. 59, pp. 407-421, 1985. 

[6] A.Z. Elsherbeni and M. Hamid, "Scattering by parallel 
conducting circular cylinders," IEEE Trans. Antennas 
and Propagat., vol. AP-35, pp. 335-358, 1987.  

[7] A-K. Hamid, I.R. Ciric, and M. Hamid, "Iterative 
solution of the scattering by an arbitrary configuration 
of conducting or dielectric spheres," IEE Proc. Part H, 
vol. 138, pp. 565-572, 1991. 

[8] P. Sinha and R. H. MacPhie," Electromagnetic plane 
wave scattering by a system of two parallel conducting 
prolate spheroids," IEEE Trans. Antennas and 
Propagat., vol. AP-31, pp. 294-304, 1983.  

[9] M. Cooray and I.R. Ciric," Electromagnetic wave 
scattering by a system of two spheroids of arbitrary 
orientation," IEEE Trans. Antennas and Propagat., vol. 
No. 37, pp. 608-618, 1983.  

[10] P. M. Morse and H. Feshach, Methods of theoretical 
physics, pp. 1407-1420. New York: McGraw-Hill, 
1953. 

[11] K. Saemark," A note on addition theorems for Mathieu 
functions," Z. Math. Phys., vol. 10, pp. 426-428, 1959. 

[12] M. G. Andreasen," Scattering from parallel metallic 
cylinders with arbitrary cross sections," IEEE Trans. 
Antennas and Propagat., vol. AP-12, pp. 746-754, 
1964.  

[13] M. Ouda, M. Hussein, A. Sebak, and Y. 
Antar,"Multiple scattering by dielectric cylinders using 
a multifilament current model," J. of electromagnetic 
waves and applications (JEWA), vol. 7, pp. 215-234, 
1993. 

 

37Hamid and Hussein: Iterative Solution to the Multiple Scattering by Two Infinitely Long Conducting Strips



[14] Toyama, N., and Shogen, K., "Computation of the 
value of the even and odd Mathieu functions of order N 
for a given parameter S and argument X," IEEE Trans. 
Antennas and Propagat., vol. AP-32, pp. 537-539, 
1984. 

[15] A-K. Hamid, M.I. Hussein, H. Ragheb, and M. Hamid, 
“Mathieu Functions of Complex Arguments and Their 
Applications to the Scattering by Lossy elliptic 
Cylinders,” Appl. Comput. Electromagnetics Soc., Vol. 
17, no. 3, pp. 209-217, 2002. 

[16] M.I. Hussien, and A-K. Hamid, "Electromagnetic 
Scattering by a Lossy Dielectric Cylinder", J. of 
electromagnetic waves and applications (JEWA), vol. 
15, no. 11, pp. 1469-1482, 2001. 
 

A.-K. Hamid was born in Tulkarm, West Bank, on Sept. 9, 
1963. He received the B.Sc. degree in Electrical Engineering 
from West Virginia Tech, West Virginia, U.S.A. in 1985. He 
received the M.Sc. and Ph.D. degrees from the university of 
Manitoba, Winnipeg, Manitoba, Canada in 1988 and 1991, 
respectively, both in Electrical Engineering. From 1991-
1993, he was with Quantic Laboratories Inc., Winnipeg, 
Manitoba, Canada, developing two and three dimensional 
electromagnetic field solvers using boundary integral 
method. From 1994-2000 he was with the faculty of 
electrical engineering at King Fahd University of Petroleum 
and Minerals, Dhahran, Saudi Arabia. Since Sept. 2000 he 
has been an associate Prof. in the electrical\electronics and 
computer engineering department at the University of 
Sharjah, Sharjah, United Arab Emirates. His research 
interest includes EM wave scattering from two and three 
dimensional bodies, propagation along waveguides with 
discontinuities, FDTD simulation of cellular phones, and 
inverse scattering usingneural networks. 
 
Mousa I. Hussein received the B.Sc. degree in electrical 
engineering from West Virginia Tech, USA, 1985,M.Sc. and 
Ph.D. degrees from University of Manitoba, Winnipeg, MB, 
Canada, in 1992 and 1995, respectively, both in electrical 
engineering. From 1995 to 1997, he was with research and 
development group at Integrated Engineering Software Inc., 
Winnipeg, Canada, working on developing EM specialized 
software based on the Boundary Element method. In 1997 he 
joined the faculty of engineering at Amman University, 
Amman, Jordan, as an Assistant Professor. He is currently 
with the Electrical Engineering Dept. at the United Arab 
Emirates University. Dr. Hussein current research interests 
includes, computational electromagnetics, electromagnetic 
scattering, antenna analysis and design, EMI and signal 
integrity. microstrip antennas, phased arrays, slot and open 
ended waveguide antennas. 
 
 

 

38 ACES JOURNAL, VOL. 19, NO. 1a, MARCH 2004



Numerical Analysis of Impedance of Asymmetric 
TEM Cell Filled With Inhomogeneous, Isotropic 

Dielectric
K. Malathi Annapurna Das

School of Electronics and Communication Engineering,
Anna University, Chennai-600 025 INDIA 

Abstract This paper investigates the effect of
vertically offset septum on characteristic impedance 
(Z0) of transverse electromagnetic (TEM) cell. The
Septum is considered to be of finite thickness for the
analysis. Impedance analysis is done initially for
symmetric TEM cell with homogenous dielectric using 
Finite Element Method (FEM) and the numerical
results included are compared with results obtained 
by other authors. A good agreement is established.
Numerical analysis using FEM is also done for Z0 of 
Asymmetric TEM cell with septum of finite thickness 
filled with inhomogeneous dielectric. The effect of
inhomogenity and offset of septum on Z0 is discussed.
Variation of Z0 with width of the septum is
represented graphically. 

Key Words: TEM cell, FEM, effective dielectric 
constant

1.  INTRODUCTION

The TEM cell is similar in structure to a rectangular
coaxial transmission line (RCTL), except for the fact that
width of the inner conductor of TEM cell is
comparatively larger (Figure 1). These cells are used in
the generation of standard electromagnetic fields and to
study the effects of electromagnetic radiation on
biological objects and electronic systems [1].

The common configuration of TEM cell is, rectangular
shaped metallic shielded outer conductors and a flat 
septum with air dielectric inside the cell. The septum may
be located arbitrarily inside the enclosure, parallel to the
top and bottom outer conductors. Both the inner and outer
conductors are tapered at the ends for impedance
matching with the standard 50 ohms coaxial connectors.
The central section of the Cell is termed as uniform cross 
section that propagates uniform TEM fields. A plane
wave field environment inside the cell is simulated for
electromagnetic interference (EMI) testing of equipments
placed between septum and outer conductor.

Some of the problems concerning the design of such 
cells are the maximization of

- Usable test space. 

- Transmitted power through the cells. 

School of Electronics and Communication Engineering,
Anna University, Chennai-600 025 INDIA 

Optimum dimensions of these cells are to be determined
to solve the above problems specified.

Offseting the inner conductor from the center in
vertical direction creates two chambers of unequal sizes
that allow the testing of both larger equipment and
smaller probes without increasing the overall size of the
cell.

Some of the asymmetric configurations are available 
commercially. GTEM cell is a class of asymmetric cell
that can be used for the Electromagnetic Susceptibility
measurements in the Ghz range. Rohde and Schwarz have
fabricated S-Line that is used in the measurement of 
Electromagnetic interference and Susceptibility. Its 
operating range spans from 150 KHz to GHz. It offers 
test volume comparable to that of anechoic chambers.
This S line is characterized by high field strength and 
field uniformity. These lines have a compact design.

Another type of compact test cell which Rohde and
Schwarz presents is an M-line which can be used in the 
frequency range of 800 MHz to 40 GHz which can be 
used for measurements in the RF and microwave range. 

The TEM cell and the tapered transitions should have 
Z0 that matches with the coaxial connectors connected at 
the end. This ensures minimum standing wave ratio
(SWR) and hence maximum power transfer to the cell
from the feeder line.

Therefore, for accurate design of such cells and to 
interpret RF measurements made, Z0 has to be determined
considering finite thickness of septum for its different
vertical positions in the cross section.

Rectangular Coaxial Transmission Line was analyzed
by [5]-[8] for symmetrically placed inner conductor of 
finite thickness. A set of design curves for Z0 of RCTL 
was given by [6], [7]. Guckel [9] used conformal
mapping to find Z0 of rectangular transmission lines of 
asymmetrically placed inner conductor with air dielectric 
inside. Pantic and Mittra [10] performed Quasi TEM
analysis on thick transmission lines with multidielectric
layers to find Z0 neglecting the influence of sidewalls.
However in TEM cells the effect of sidewalls on Z0

cannot be neglected, as it influences the RF
measurements made inside the cell.

1054-4887 © 2004 ACES
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In the light of above observations this paper analyses
the effect of finite thickness septum placed in different 
vertical off set positions, on the characteristic impedance
(Z0) of the TEM cell. In this analysis, inhomogeneous
dielectric in the cell is considered.  The region above the
septum is considered to have air dielectric ( r1 = 1) and 
the region below the septum is considered to have a
dielectric with (  = r2 0) (Figure 1).  The dielectric 
placed below the septum lends a good mechanical support 
to the EUT placed inside for RF measurements. The 
effect of this inhomogenity on the characteristic
impedance is also studied. The analysis helps in the
design of such cells and to interpret the RF measurements
made inside the cell.

Classical method of approaches may fail if the medium
is inhomogeneous or anisotropic [12]. So Finite Element
Method (FEM) is used to solve the laplace equation to
obtain the potential distribution inside the cell. Then
Gauss’s law is applied to find the charge around the
septum, which, in turn, is used to find the capacitance and
hence the impedance of the cell.

2. FEM FORMULATION 

To find the potential distribution, Laplace equation

² V = 0 (1)

is solved, where V is the potential at (x,y) (Figure 1).
The boundary conditions are

V (x, 0) = 0 = V (x, b1)  ;  for 0 < x < 2 a 
V (0,y) = 0 = V (2a, y) ;  for 0 < y < b1  (2) 

and V = V0 at       D – W < x < D + W at  y = h1
for zero thickness septum.

D – W < x < D + W at  h1 

h1- t/2 < y < h1 + t/2

for septum of finite thickness.

2.1 Discretisation

Due to uniaxial symmetry  of the domain, only one half
of the cross section (0 < x < a,  0 < y < b1) of the TEM
cell is considered for the analysis. The domain is

subdivided into a set of triangular subdomains called
finite elements as shown in Figure 2, with local nodes (1,
2,3) and global node numbering 1,2,3 … (nx + 1), (nx + 
1)(ny + 1). 

ny (1+nx)+1 (nx+1) (ny+1)

nxny

nx+2

2.2 Element Equation

The approximate solution to equation (1) within a
typical finite element in the domain is of the form

),(
1

),( yxVV e
j

e
j

n

j
yx            (3) 

where Vj
e is the value of the potential at the jth node (xj,

yj) of the element and j
e are the  lagrange interpolation

functions [2]. The polynomial approximation for V
within an element is chosen as 

 Ve
(x,y)  = g1 + g2x + g3y , (4)

Y
X

r1

b=
b1

/2 1        2       3  . . nx    nx+1 

b1
Septum

t

X

h1 2w
r2

Figure 1. Cross section of asymmetric TEM cell with
inhomogeneous dielectric. X
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e
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e

3,y3)

V2
e

(x2,y2) 1

Y Y

V3
e

2a

(32 x3,y3)

3
V1

e

(x1,y1)
V2

e
21

X
(x2,y2)

Typical triangular elements: 1,2,3 are local
                          node numbers.

Figure 2. Finite Element Mesh. 
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where g1, g2, g3 are constants pertaining to local nodes 
(Figure 2) equation (4) contains three linearly
independent terms and it is linear in both x and y
considering a typical triangular element the potential V1

e,
V2

e, V3
e are obtained using equation (4) as 

   (5) 

1 11 1

2 2 2

3 3 33

1

1

1

e

e

e

V gx y

V x y

x y gV
2 .g

The coefficients g1, g2, and g3 are determined from (5)
and substituted in (4) to obtain,

(6))y,x(VV e
j

e
j

3

1j

e

where

)3,2,1(
2

1
iyx

A
e
i

e
i

e
ie

e
j ,        (7)

i, i and i are  geometric constants given by
i = xj yk – xk yj

i = yj - yk (8)

I = - (xj – xk)
 i  j  k and i, j, and k permute in natural order, 
and Ae is  the area of the triangle [2] given by

2
A 321e . (9)

The value of A is positive if the nodes are numbered
counter clockwise [3].  Equation (6) gives the potential at
any point (x, y) within the element. The  calculus of 
variations, an extension of ordinary calculus, is concerned 
with the theory of maxima and minima [3]. In this
problem we are concerned with seeking the minima of an 
integral expression involving a function of functions or 
functionals. Moreover we are interested in the necessary
condition for a functional to achieve a stationary value.
This necessary condition on the functional is generally in
the form of a differential equation with boundary
conditions on the required function.

In the problem considered, the minimum potential
energy requires the potential distribution, which will 
minimize the stored field energy per unit length.
Minimization of the energy then determines the
coefficients and thereby implicitly determines an
approximation to the potential distribution.

The functional corresponding to Laplace equation is
[4]

dS|V|
2

1
dS|E|

2

1
F 2e2

e (10)

where Fe is the energy / unit length associated with the
element e; E is the electric field strength over the surface
dS;  is the permittivity of the medium.

From (6), (11)i
e
i

3

1i

e TVV

Substitute equation (11) in (10)

e
jji

e
i

3

1j

3

1i
e VdS..V

2

1
F . (12)

The term in the brackets of (12) is defined as 

.                  (13)dS.K ji
e
ij

Writing (12) in Matrix form

eete
e VKV

2

1
F               (14) 

where the subscript t denotes the transpose of the matrix,

, (15)

e
3

e
2

e
1

e

V

V

V

V

and (16)
eee

eee

eee

e

KKK

KKK

KKK

K

333231

232221

131211

is the element coefficient matrix.

The matrix element Kij
e  of the coefficient matrix may

be regarded as the coupling between nodes i and j.  Its
value is obtained from equations (7) and (13). 

2.3 Assembling of All Elements

Having considered a typical element, all such elements
in the solution region are assembled. The energy
associated with the assemblage of elements is 

VKV
2

1
FF t

e

N

1e

, (17)

where , (18)

n

2

1

V

.

.

V

V

V

and where N is the number of elements and n is the 
number of nodes and [K] is called global coefficient
matrix [2] with the following properties:

1) It is symmetric.

2) Kij = 0 if no coupling exists between nodes i and j,
so [K] is sparse. 

3) It is singular.

3. SOLVING THE RESULTING EQUATIONS 

Laplace equation is satisfied when the total energy in the 
solution region is minimum i.e.,

0
V

F
.........

V

F

V

F

n21
 (19) 
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x
or n....,2,1K0

V

F

k
.                 (20) 

In general 0
V

F

k
   leads to , (21) 0

1,
iki

n

ik

KV

where n is the number of nodes in the mesh. Writing
equation (21) for all nodes we obtain a set of 
simultaneous equations from which the solution of [V]t = 
[V1, V2, ….. , Vn] can be found by the method of
iteration.  As node m is a mesh with n nodes 

mii

n

mi,1imm
m KV

K

1
V     , (22)

where node m is a free node. Since Kmi = 0 if node m is
not directly connected to node i.  Only nodes that are
directly linked to node m contribute to Vm in equation
(22) can be iteratively applied to all the free nodes where
the value of the potential is to be found. The global
coefficient matrix was obtained with the help of computer
implementation using MATLAB package. 

4. THE CHARACTERISTIC IMPEDANCE Zo

The characteristic impedance Z0 is obtained as follows

  Z0 = 1/uC                (23) 

where
eff

o
o

u

C

Co
uu  (24) 

eff = C/Co , (25)

where u0 is speed of light in free space, eff is the
effective dielectric constant, C = Capacitance of the cell 
with the dielectric of relative permittivity r2 below the
septum, and Co the capacitance of the cell without the
dielectric below the septum  (i.e) ( r2 = 0). Thus to find
Z0 for an inhomogeneous medium requires calculation of 
capacitance / unit length of the structure with and without
the dielectric substrate below the septum. If Vo is the
potential difference between the inner and the outer
conductors, then,

                             C = 2Q/Vo    (26) 

where Q is the charge / unit length.  The factor 2 is
included since only half of the domain was considered for 
the analysis.  To find Q, Gauss’s law is applied [4] to the
closed path J enclosing the septum, as shown in Figure
(3),

dl
n

V
dIDQ ..  (27) 

.....

a cb d u w

y z

V V V V V V
Q x x y

y y x

V V
y

x

       (28) 

Since x = y, Q = 0 ri Vi for nodes i on external
rectangle b,d,f...r, p,n with corners (such l and x) not 
counted. Q =- 0 ri Vifor nodes i on inner rectangle a, 
c, e, ...q,o,m with corners (such as i and u) counted twice 
where Vi and ri are the potential and dielectric constant at 
ith node. If i is on the dielectric interface ri =( r1 + r2) / 2. 
Also if i is on the line of symmetry
Vi = Vi/2 to avoid Vi twice in equation (28) [4]

Co = Q0 / V0 , (29)

where Q0 is obtained by removing the dielectric and 
finding Vi at the free nodes and then using (31) with ri = 
1 at all nodes. Once Q and Q0 are calculated C, Co and Z0

are obtained,
0

0
1

CCuo
Z , (30)

where u0 = 3 x 108 m/sec.

5. RESULTS AND DISCUSSIONS 

Uniform Cross section of the TEM cell for two
dimensions 2a/b1=1 and 2a/b1=2 and septum thickness
t/b1=0.1 is considered for the impedance analysis. Table
1 gives the impedance values (Z0) of Symmetric TEM 
cell computed by FEM and its comparison with other
methods. The impedance values obtained by FEM are 
found to be in good agreement with those published by
other authors. Tables 2 and 3 gives Z0 values of 
asymmetric TEM cell for various vertical offset position
of septum for homogeneous and for inhomogeneous
dielectric inside the cell. 

It is observed that maximum impedance is achieved
when the septum is placed at the center of the TEM cell. 
Offsetting the septum vertically decreases Z0 of the cell. 
(Figures 4 and 5). The variation of Z0 for different 
dielectric constants (2.1< r2 < 9.9) below septum.is
shown in Figures 6 to 10. It is shown in figures 8 to 10 
the variation of Z0  with the width of the septum.
Effective permittivity of the cell is presented in Tables 2
and 3.It is observed that presence of a different dielectric

Figure 3. Illustrating path to find Q. 
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(other than air) below the septum decreases the value of 
Z0.So by proper choice of r2 and the width of the septum
desired values of Z0 can be obtained by suitably offsetting
the septum (to lesser height) so that bigger equipments
can be tested. 
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Figure 7. Relative dielectric constant below spectrum.
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Figure 5. Z0 versus h1/b. 

Figure 9. Relative dielectric constant below septum.

Figure 6. Relative dielectric constant below septum. Figure 10. Relative dielectric constant below septum.
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Table 1.  COMPARISON OF Z0 VALUES (t/b1=0.1) r1= r2=1

Dimension
FEM

Chen
expression [5]

Cruzen
&

graver
[6]

Metcalf
[7]

Getsinger
[8]

2a/b
1

2w/b1 Z0 Z0 Z0 Z0 Z0

1 0.8 45.2 44.7 40.9 40.5 40.9
1 0.7 55.6 57.4 55.3 54.7 55.2
2 1.8 26.6 29.3 27.7 27.7 27.6
2 1.5 36.5 38.7 38.0 38.3 38.1
2 0.9 58.9 58.6 58.6 58.7 58.6

2 0.5 87.9 86.7 86.5 85.9 87.3

Table 2.  Z0 VALUES OF TEM CELL WITH INHOMOGENEOUS DIELECTRIC (2a/b1=1 & t/b1=0.1) r1= 1 

Relative Dielectric constant below septum  ( r2)2a/b1 w/a h1/b r1= r2

Z0 2.1 2.2 2.3 2.6 3 4 5 5.7 7 9.9
Z0 17.75 17.4 17.07 16.19 15.21 13.36 12.059 11.34 10.298 8.73

1 0.8 0.25 25.76
Eps_eff 1.79 1.86 1.94 2.15 2.44 3.16 3.88 4.39 5.32 5.71

Z0 31.83 31.34 30.88 29.59 28.11 25.197 23.04 21.82 19.99 17.15
1 0.8 1 40.66

Eps_eff 1.53 1.57 1.62 1.77 1.96 2.44 2.91 3.25 3.87 5.26
Z0 16.35 16.25 16.15 15.87 15.52 14.73 14.05 13.63 12.93 12.39

1 0.8 1.6 26.71
Eps_eff 2.47 2.5 2.53 2.62 2.75 3.05 3.35 3.56 3.95 3.69

Z0 15.55 15.4 15.25 14.84 14.33 13.26 12.397 11.89 11.08 10.92
1 0.65 0.25 32.01

Eps_eff 3.72 3.799 3.87 4.1 4.39 5.12 5.86 6.38 7.33 7.56
Z0 42.93 42.26 41.62 39.87 37.84 33.88 30.95 29.296 26.82 22.99

1 0.65 1 54.27
Eps_eff 1.54 1.59 1.64 1.79 1.98 2.47 2.96 3.31 3.94 5.37

Z0 34.03 33.61 33.19 32.04 30.68 27.91 25.78 24.54 22.66 19.65
1 0.65 1.5 41.17

Eps_eff 1.39 1.43 1.46 1.57 1.71 2.07 2.43 2.68 3.14 4.18
Z0 20.52 20.41 20.296 19.97 19.55 18.62 17.81 17.30 16.46 17.32

1 0.65 1.6 33.54
Eps_eff 2.51 2.54 2.57 2.66 2.77 3.05 3.33 3.54 3.91 3.53

Table 3.  Z0 VALUES OF TEM CELL WITH INHOMOGENEOUS DIELECTRIC (2a/b1=2 & t/b1=0.1) r1=1

Relative Dielectric constant below septum2a/b
1

2w/b1 w/a h1/b r1= r2

Z0 2.1 2.2 2.3 2.6 3 4 5 5.7 7 9.9

Z0 29.6 29.15 29.12 27.52 26.14 23.44 21.43 20.29 18.59 15.952 1.5 0.75 1 37.57
Eps_eff 1.53 1.57 1.62 1.76 1.96 2.43 2.91 3.25 3.87 5.25

Z0 45.64 44.95 44.28 42.45 40.32 36.15 33.05 31.3 28.68 24.612 0.9 0.45 1 58.36
Eps_eff 1.52 1.57 1.62 1.76 1.95 2.43 2.91 3.24 3.86 5.25

Z0 67.84 66.797 65.798 63.05 59.87 53.65 49.03 46.43 42.52 36.472 0.45 0.225 1 86.2
Eps_eff 1.53 1.58 1.63 1.77 1.97 2.45 2.93 3.27 3.897 5.298

Z0 14.55 14.24 13.96 13.69 13.19 12.34 10.78 9.69 9.097 6.962 1.2 0.6 0.25 20.097
3

Eps_eff 1.91 1.99 2.07 2.16 2.32 2.65 3.48 4.3 4.88 8.35
Z0 11.13 10.896 10.68 10.09 9.44 8.25 7.42 6.96 6.3 5.322 1.6 0.8 0.25 15.36

Eps_eff 1.91 1.99 2.07 2.32 2.65 3.47 4.29 4.87 5.94 8.32
Z0 20.07 19.92 19.76 19.32 18.78 17.60 16.62 16.02 15.06 13.432 1.2 0.6 1.6 22.09

Eps_eff 1.21 1 1.25 1.31 1.38 1.58 1.77 1.9 2.15 2.71
Z0 15.34 15.22 15.1 14.76 14.34 13.42 12.66 12.2 11.47 10.212 1.6 0.8 1.6 16.91

Eps_eff 1.22 1.24 1.25 1.31 1.39 1.59 1.78 1.92 2.18 2.74
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 ABSTRACT – In the framework of photonic crystal’s band 
structure calculations, we present a novel way – based on several 
advanced techniques for searching and tracing eigenvalues with 
the multiple multipole program – to compute these diagrams 
automatically, efficiently, and with a high accuracy. Finally, we 
validate the results for some well known test cases. 

Keywords – band diagram; multiple multipole program; photonic 
crystal; eigenvalue analysis. 

I. INTRODUCTION 
HOTONIC Crystals (PhCs) were proposed in 1987 by E. 
Yablonovitch [1] at the University of California, as an 

optical counterpart to semiconductors, i.e., PhCs should 
provide a photonic bandgap in the same way that a 
semiconductor possesses an electronic bandgap. In fact, PhCs 
are rarely found in nature. Exceptions are opals and butterfly 
wings. However, thanks to nano-technology it has become 
possible to fabricate artificial PhCs in the last decade. These 
PhCs essentially consist of a periodic assembly of dielectric 
scatterers, i.e., there is a strong link to the well-known 
structures of grating theory. One of the important differences 
between PhCs and semiconductors is the size of the unit cell. 
For a semiconductor, one has a 3D grid consisting of identical 
atoms, i.e., the lattice constant in all three directions of the 
crystal is in the order of the diameter of an atom, whereas the 
cell size of a PhC is in the order of half an optical wavelength, 
i.e., much larger. From this fact, one expects that the Photonic 
Integrated Circuits (PICs) based on PhC concept must be 
much larger than the traditional semiconductor ICs. But – 
because of the macroscopic size of the PhC’s unit cell – one 
has much more freedom in introducing and fabricating defects 
in a PhC than in a semiconductor. Note that a semiconductor 
becomes interesting from the technological point of view only 
when a few impurities or defects are introduced and the same 
holds for PhCs. Doping traditional semiconductors is a rather 
statistical way of introducing defect atoms in a semiconductor 
and therefore, the building blocks of semiconductor are 
relatively large blocks of material with a specific doping. 
These blocks obviously consist of many atoms. When 
designing a "doped" PhC, one can precisely position and 
fabricate all defects with a high degree of freedom – at least it 
is expected that this can be done in the near future [2]. 

Although the variety of PhC structures that might be 
fabricated one day seems to be almost infinite and although 
many interesting structures were already proposed (various 
types of waveguides, sharp bends in waveguides without any 
reflection, couplers, resonators, etc.) or even fabricated on a 
prototype level, one currently cannot say what kind of PhC 
structures will be favored. At the moment, one can neither 
know the materials that are best suited for PhCs – it is well 
known that a large dielectric contrast is required for obtaining 
a bandgap, which somehow limits the materials that may be 
used, but there is no unique choice at all – nor what kind of 
geometry (2D crystals or 3D crystals [3]-[5], symmetry, shape 
of the scatterers) is most appropriate. Thus, there is a strong 
need for theoretical investigations and simulations of potential 
structures. The first step of such investigations consists in the 
computation of the band diagrams of perfect PhCs without 
any defects. The goal is to find structures that may easily be 
fabricated and exhibit a broad band gap, i.e., a frequency 
range where no electromagnetic waves are allowed to 
propagate within the crystal. In order to find the band gap, one 
must compute the band diagram of the lowest order modes of 
the PhC. This is essentially an eigenvalue problem that 
exhibits several special cases that may cause difficult 
numerical problems, especially when one is designing a 
procedure for the automatic, efficient, accurate, and reliable 
computation of the complete band diagrams for arbitrary 
structures. 
Currently, the most frequently used approach is the Plane 
Wave Method (PWM) that mainly approximates the 
electromagnetic field by a superposition of plane waves [6]-
[10]. It is well known, that this method has a problematic 
convergence [11]-[13],[10]. Other methods that were used for 
PhCs are the Finite Difference Time Domain (FDTD) [14], 
[15], the transfer matrix method [16], the Finite Element 
Method (FEM) [17], and the Boundary Element Method 
(BEM) [18]. In the following, we apply the latest version of 
the Multiple Multipole Program (MMP) [19] implemented in 
the MaX-1 software [20].  
In order to obtain efficient, reliable, and accurate results, we 
carefully analyze the numerical problems that may occur and 
introduce several new techniques. For reasons of simplicity 
we focus on the 2D case.  

P
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The remainder of the paper is organized as follows: A commonly 
used representation of PhCs in terms of their band diagram is 
elucidated in Section II. In Section III we briefly explain the 
core of our photonic crystal calculations, when MMP is 
considered. The proper framework of the eigenvalue search is 
reported in Section IV, whereas in Section V a successful 
automation of such search procedure is proposed. A validation 
of our band structure calculation by means of various test 
examples is given in Section VI. And finally, we conclude this 
contribution with a short summary in Section VII. 

II. DEFINITION OF THE BAND DIAGRAM 
As an introductory example let us consider the simple case of 

a 2D PhC consisting of dielectric rods arranged in a square 
lattice and embedded in, e.g., air. For periodic structures it is 
possible to apply some fundamental theorems from solid state 
physics. The original lattice for this crystal is given on the left 
hand side of Fig. 1. For the dielectric constant we can write 

 where )()( Rrr += εε R  is one of the original lattice vectors. 
According to Bloch’s theorem [6], [7] for the modal field inside 
the crystal we write 
 

( ) ( ) ,ikr
kn knE E r u r e= = ⋅                      (1) 

( ) ( ) .kn knu r u r R= +                             (2) 

 
Note that (1) holds not only for the electric but also for the 
magnetic field. Bloch’s theorem may be proven in classical electro-
dynamics [6]. Important consequences of this theorem are [6], [7] 
 
1. , i.e., 1ik Re ⋅ = 2k R N π⋅ = ⋅ , where N is an integer – the 

wave vector space (reciprocal space) is discrete, 
2. )()( ,, rErE nGknk +

= , i.e., the reciprocal space is 

periodic.G  is one of the reciprocal lattice vectors. 
 
This allows us to define the so-called reciprocal lattice space, 
spanned by the reciprocal lattice vectors. We first define the 
original lattice vectors as follows 
 

1 1 2 2 3 3R e e eη η η= + +                                      (3) 
 
where , ,  are three independent lattice vectors and , 

, 
1e 2e 3e 1η

2η 3η  are integer numbers. Note that  is missing in 2D 
crystals. Similarly, we write for the primitive reciprocal lattice 
vectors 

3e

 
                        (4) 

1 1 2 2 3 3 .G f f fκ κ κ= + +
 
If we want to construct the reciprocal lattice, we can use [7] 
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These equations are derived from the definition of the 
reciprocal lattice vector space. For 2D crystals (cylindrical 

geometry), the vector 3f  is omitted and the vector 
3e  is the 

unit vector ze  along the cylinder axis. 
From the equations above, we can conclude that the discrete 
translational symmetry of a photonic crystal leads to the fact 
that modes with the wave vector k  and modes with the wave 
vector Gk +  are identical, i.e., we have periodicity also in the 
reciprocal space. A special representation of the primitive cell 
for this periodicity is called the first Brillouin zone (1st BZ). It 
can be defined as a zone around any lattice point in the 
reciprocal space with points that are closer to this lattice point 
than to any other lattice point. 
The Brillouin zone construction (using Bragg’s planes – 

dashed lines) for the square lattice is shown in Fig. 2. Because 
of the high degree of symmetry, we need to analyze only a 
small part of the 1st BZ. This part is called the irreducible BZ 
(IBZ), [6], [7]. In the case of periodic structures, it is 
sufficient to perform the modal field analysis in the area of the 
IBZ. As illustrated in Fig. 2 the IBZ for a square lattice is a 
triangle with the corners Γ, X, and M. Since the maxima and 
minima of the eigenvalues (resonance frequencies) are 
supposed to be on the borders of the IBZ, it is sufficient to 
trace the eigenvalues along the sides of the IBZ in order to get 
the photonic bandgaps. Therefore, the standard band diagram 
consists of three sections: Γ–X, X–M, and M–Γ (see Fig. 5). 
For other lattices, the procedure is essentially the same [21], 

             
Fig. 1: The original (left) and reciprocal (right) lattice for a 2D photonic
crystal (square lattice). Construction details for reciprocal lattice are given in 
the text.  

 
Fig. 2: Construction of the 1st Brillouin zone (solid square), its irreducible part 
(triangle Γ-X-M) and characteristic points for band structure computation (Γ, X, 
and M). 
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[22]. Assume that an arbitrary point in the reciprocal space is 
considered. This point essentially defines a wave vector. For the 
periodicity of (3) we then obtain for the field in the original 
space 
 

(( ) ( ) ( ) i C e C ei k RF r R F r e F r e η + η⋅+ = ⋅ = ⋅ 1 1 1 2 2 2 )

h

        (5) 
 
where F stands for the electric as well as for the magnetic field. 
In the MMP implementation of the periodic boundary problem 
C1, C2 are parameters that characterize the point in the reciprocal 
lattice space. As a consequence, it is sufficient to know the field 
in a unit cell (as an equivalent representation of the primitive 
cell) of the original space. Let us call this the original cell. Note 
that neither the shape nor the location of the original cell is 
unique, but for both the square and the hexagonal lattice we 
may simply use quadrangular original cells as shown in Figs. 3 
and 4. 
For the square lattice, the relation between the periodic 
constants (C1, C2) and the position in the IBZ is very straight 
forward, i.e., t ese are the Cartesian components (Cx, Cy) of the 
wave vector . For the hexagonal lattice, the situation is a bit 
more complicated [23]-[25]. 

k

III. THE MMP SOLUTION OF PERIODIC PROBLEMS WITH 
FICTITIOUS BOUNDARIES 

Any software for computing band diagrams must handle both 
eigenvalue problems and periodic structures. The MMP 
implementation of MaX-1 contains a simple concept for 
handling arbitrary periodic structures: First, the structure is 
subdivided into cells by an appropriate grid of fictitious 
boundaries (dashed lines in Fig. 3 and Fig. 4). Assume that the 
field in one of the infinitely many cells is known, then, the 
field in all other cells is easily obtained from the periodicity 
conditions (5), i.e., the Floquet theorem [7].  
The geometric shape of the original cell depends on the 
crystallographic structure (i.e. the crystal symmetry), but it is 
not unique for a given crystallographic structure at all, because 
the fictitious boundaries we have introduced, are quite 
ambiguous. For example, in Fig. 3 we used straight lines 

between the circular rods. We could replace these lines by 
curved, periodic lines and we could move these lines to any 
other position in space. Since we will impose so-called 
periodic boundary conditions along the fictitious boundaries 
of the original cell, we have to minimize the numerical 
problems when we select the fictitious boundaries in such a 
way that the electromagnetic field along them is as well 
behaved as possible. Therefore, straight lines in the middle 
between neighbor rods are most reasonable when the rods are 
circular or rectangular. When the geometric shape of the rods 
is more complicated, it may be advantageous to use curved 
lines. 
Once, the original cell is isolated by introducing fictitious 
boundaries, we can derive boundary conditions for the field 
along them. In 2D PhCs, the original cell is bounded by two 
pairs of parallel lines. For example, when r  is a point on the 
left border of the original cell in Fig. 3, 1er +  is the 
corresponding point on the right border, where 1e  corresponds 
to one of the primitive lattice vectors. Because of the 
periodicity, we obtain from (5) 
 

1 1( )
1( ) ( ) i C eF r e F r e+ = ⋅ .                      (5') 

 
This condition holds for both the electric and the magnetic field 
in every point along the right boundary of the original cell. We 
call this the periodic boundary condition that is imposed on the 
right border of the original cell. Similarly, we can introduce a 
periodic boundary condition for the upper border. 
Having defined the original cell and its periodic boundary 
conditions, one has to set up the MMP model of the scattering 
body in the lattice point: We approximate the field in each 
domain by a superposition of multipole expansions and some-
times by additional, analytic solutions of Maxwell’s equations 
(in the frequency domain). The amplitudes or parameters of the 
resulting series expansions are then computed with the 
generalized point matching technique, i.e., by minimizing a 
weighted error function defined along all natural and fictitious 
boundaries. For example, for the simple geometry in Fig. 4 we 
use the following expansions 

 
Fig. 3. The basic cell of the photonic crystal with dielectric rods 

and square lattice 

 
Fig. 4: The unit cell of the photonic crystal with dielectric rods arranged on a
hexagonal lattice. 

 
Fig. 3: The unit cell of the photonic crystal with dielectric rods arranged on a
square lattice. 
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Fig. 5: The band diagram of the photonic crystal with dielectric rods on a square lattice (for H-polarization).The algorithms used within the 
eigenvalue search procedure are labeled correspondingly. 
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where Jn is Bessel function of order n, Hn

1 is Hankel function 
of first kind and order n, κ is transverse propagation constant 
and (r,ϕ) are polar coordinates with respect to the origin at the 
position of the corresponding expansion. Expansion (6) 
(Bessel expansion) is used in the case of E-polarization and 
expansion (7) is used in the case of H-polarization. These 
Bessel expansions are used for the domain inside of the 
dielectric rod because these functions have no singularity at 
origin. Furthermore, these expansions are sufficient because 
the domain is simply connected. The background domain is 
not simply connected, because it contains a hole. Therefore, 
we need at least two different expansions, namely a multipole 
expansion (8) or (9) and Bessel expansion (6) or (7). Note that 
the moltipole expansion essentially accounts for the field 
scattered at the inner boundary, whereas the Bessel expansion 
accounts for the outer, ficitious boundaries. This means that 
the Bessel expansion simulates the field that comes from all 
rods outside the original cell. According to Vekua [24], our 
set of expansions is complete in the sense that the error of the 
field is below an arbitrarily small value ε provided that the 

highest orders are big enough and provided that the 
amplitudes (A, B, C, D in (6)-(9) ) are computed correctly. 

IV. THE MMP-MAS EIGENVALUE SOLVER 
For obtaining the band diagram of a PhC, it is necessary to 

solve an eigenvalue problem, because there is no excitation like 
in scattering problems. This means that we only obtain non-
trivial solutions (i.e. frequencies) for an arbitrary point of the 
IBZ (i.e., for a given set of complex values C1, C2). Thus, we 
essentially have a periodic resonator problem to solve. The 
search of resonance frequencies in the MMP code MaX-1 is 
somehow different from many other numerical methods because 
MMP uses a full rectangular system matrix obtained from the 
generalized point matching technique. For such type of matrix it 
is very demanding to obtain accurate results while avoiding 
problems with the condition number [25]. Note that condition 
number problems are especially crucial when one is solving 
eigenvalue problems. If this is not properly done, one can obtain 
a "noisy" behavior near the eigenvalues and this can heavily 
disturb the numerical eigenvalue search procedures. However, 
the standard MMP eigenvalue search procedure first defines a 
real valued, positive eigenvalue search function 
 

)(
)(

)( 2

2

eA
eE

e =η                          (10) 

 
where e is the eigenvalue (i.e. the resonance frequency), E is the 
weighted residual, and A is an amplitude that may be retrieved 
from any field component in a specific test point (or an integral 
over some field profile). For the band gap computation, it is 
most reasonable to define A2 as the total electromagnetic 
energy within the original cell. According to (10) the desired 
eigenvalues are characterized by the minima of the search 
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function η . Analyzing the shape of η  near the minima provides 
additional information on the accuracy of the solution.  
Although more reliable results are obtained when the amplitude 
is defined by an appropriate integral, the definition in one or a 
few test points is sufficient for most cases. Since the numerical 
intergration may be time-consuming, one usually prefers the 
simpler test point method. However, it is important to note that 
the definition of the search function is not unique. By defining 
different search functions, one can gain even more intrinsic 
information providing a good error estimation and for validation 
purposes. As depicted in Fig. 6, even for a single model (fixed 
amplitude definition and fixed multipole expansion), one can 
address the different minima of the same eigenvalue search 
functions simply by rearranging the columns of the MMP 
matrix. In fact, in the Givens update algorithm [25], which 

was used for solving the MMP matrix equation, the last 
expansion somehow plays the role of an excitation. When it 
happens that the spatial symmetry of such excitation is not 
contained in the symmetry of the searched eigenmode, this 
mode will not be "excited", hence, the corresponding 
minimum of the eigen-value search function is suppressed. 
Although, it may be desirable to suppress some modes in 
applications where not all modes must be considered, this is 
usually inconvenient for the automatic computation of the 
complete band structure. We therefore look for an alternative 
technique. 
Remember that we have introduced fictitious boundaries for 
handling the periodic problem. Similarly, we now can 
introduce a fictitious excitation that is defined in such a way 
that all modes are excited (Fig. 7). This concept mimics the 
measurement of resonance frequencies, where one always 
needs an excitation of the resonator and a test point (or port) 
where the signal is measured. By sweeping the frequency of 
the exitation, the peaks of the amplitude A in the test point can 
be readily assigned to the resonance frequencies of the 
different modes. This procedure was first introduced by the 
Method of Auxiliary Sources (MAS) [26] and a similar 
method was used by Sakoda [27]. Finally, the method was 
adapted to MMP by Moreno [28]. MAS uses eigenvalue search 
functions µ such as the energy density A2 at the test point are 
used. The eigenvalues are then obtained from the maxima of µ. 
The analysis of µ near the maxima has yielded a strange "double 
peak" phenomenon that disturbs the numerical search 
procedure. The standard MMP-MAS eigenvalue solver 
searches for minima of the eigenvalue search function 

21/ 1/ Aη µ= = , i.e., one obtains "twin minima" instead of 
double peaks, as shown in Fig. 8. The "double peak" 
phenomenon and the "twin minima" are caused by a very 
sharp peak of the residual E at the correct eigenvalue position. 
Note that this peak is not obtained in the standard MMP 
approach without fictitous excitations. Of course, the residual 

Fig
sin
exp
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po
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. 6: The behavior of the eigenvalue search function (in the Γ point) of one 
gle model with four different “last” expansions (the order of the last
ansion is labelled in the figure).  
peak may also be used for defining the eigenvalues. Since 

 
Fig. 8: The “twin minima” phenomenon, behavior of the eigenvalue search
function within the eigenvalue search procedure using a randomly located 
fictitious excitation. 

 
g. 7: The behavior of the eigenvalue search function (for a k-vector in the Γ
int) using the fictitious excitation in a random and symmetric position
spectively. 



 
 

these peaks are extremely sharp, it is very likely that one of 
the eigenvalues is missed by the rough search routine that 
searches for all eigenvalues. In order to overcome these 
problems, one can define more complicated eigenvalue search 
functions η  as proposed in Fig. 8. This allows one to suppress 
the double peak phenomenon. Unfortunately, one may 
encounter numerical underflow problems in some applications. 
Therefore, the current MaX-1 eigenvalue solvers uses three 
different "competing" eigenvalue search functions: 1) A 
complicated one with user-definable exponent n, 2) the inverse 
of the amplitude, and 3) the proper residual. Using all of these 
three functions, the code is capable to detect the correct 
locations of the eigenvalues. An alternative to overcome the 
twin minima problems is the introduction of "fictitious losses" 
that smoothen the resulting search function η . 
Since one often considers a broad frequency range, it is not 
reasonable to find the eigenvalues by plotting the eigenvalue 
search function over the entire range with a very high 
resolution. It is much more efficient to subdivide the search 
process into two steps: 1) Rough detection of all eigenvalues 
and 2) fine search, i.e., accurate computation of the eigenvalues. 
The first step seems to be trivial as soon as the problems 

mentioned above have been solved. The second step requires a 
fast minimum search procedure for real functions. The algorithm 
used in MaX-1 is mainly based on a parabolic interpolation 
because the search function near the minima is usually almost 
parabolic – provided that the double peak phenomenon has been 
removed. 
Having a closer look to typical band diagrams (Fig. 3), we see 
different situations which can cause problems for both the rough 
search and the fine search. Mainly at the Γ and the M point we 
usually observe degenerate modes. Furthermore, we have areas 
with almost degenerate modes and points where different lines 
seem to cross each other, where the modes are (accidentally) 
degenerated. When the rough search is performed to degenerate 
points, it usually cannot detect all modes involved. Even if the 
search procedure is started in a close vicinity to such 
degeneracies, it will be too time-consuming to iterate into all 
eigenmodes. In order to overcome these problems, it is 
reasonable to start a rough search in a domain where all 
eigenvalues could be easily tracked down (e.g. the interval 
between Γ and X in the band diagram of Fig. 5). Once this has 
been done, one can trace each eigenvalue by moving a small 
step either to the left or right side within the band diagram, and 

Fig. 9: The algorithm for the band structure computation using MMP. 

 
 

Fig. 10: The algorithm for band diagram computation written in the MaX-1 
script language. 
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repeating this procedure until the border of the diagram is 
reached. For each such step, only a fine search must be 
performed. Depending on 1) the desired accuracy, 2) the step 
size, and 3) special properties of the model, several iterations 
are required. The number of iterations could be drastically 
reduced when using the Eigenvalue Estimation Technique 
(EET) implemented in MaX-1 [19]. This technique uses the 
information of previous eigenvalue solutions for the 
extrapolation of the current eigenvalue’s search interval. 
Typically, 4–12 iterations per step are sufficient for obtaining an 
eigenvalue with a high precision. For example, for tracing the 
first mode in Fig. 3, 280 search steps were performed and 5 
iterations per step were required in the average.  

V. AUTOMATIC EIGENVALUE SEARCH 
Referring to e.g. Fig. 5 a standard band diagram consists of 

three different intervals corresponding to the three sides of the 
IBZ. When the rough search is started somewhere in the middle 
of such an interval (e.g. in the area between Γ and X in the band 

diagram), it must be repeated three times. After each rough 
search the fine search must be repeated for each obtained 
eigenvalue and, finally, the fine search routine must run for each 
eigenvalue once towards the left and once towards the right side 
of the band diagram, as depicted in Fig. 5. MaX-1 contains a 
script language that allows one to define complicated 
procedures such as the search procedure mentioned above. The 
set of MaX-1 directives for the automatic generation of a band 
diagram from the point in the middle between Γ and X to the Γ 
point, is given in Fig. 10, and the complete algorithm for this 
procedure is given in Fig. 9. It is obvious that the algorithm is 
not simple and the overall procedure relies on fast computer 
resources. 

CONVERGENCE CHARACTERISTICS, COMPUTATIO

Eigenfrequency 1 Number of 
unknowns 

Frequency (Hz) Error (%) Field mism
20 1.0223585e14 1.473 9.6207
36 1.0095955e14 0.206 4.2046
52 1.0078338e14 0.032 0.2881
94 1.0074678e14 0.005 4.4657

164 1.0075153e14 0.000 4.7297

VI. NUMERICAL VERIFICATION 
We have applied MMP to various PhC lattices. Internal tests 
show excellent convergence. Therefore high accuracy may 
easily be obtained. Table I shows the MMP estimate of the 
mismatching errors along the boundary for the model outlined 

Fig.
squa

 
Fig. 13: The band diagram of the photonic crystal with dielectric rods and
hexagonal lattice, H-polarization, the first 6 modes. 

Fig.
squa
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 11: The band diagram of the photonic crystal with dielectric rods and
re lattice, H-polarization, the first 6 modes. 
 
Fig. 14: The band diagram of the photonic crystal with dielectric rods and
 
 12: The band diagram of the photonic crystal with dielectric rods and
re lattice, E-polarization, the first 6 modes. 
TABLE I 
N FOR 1ST AND 6TH EIGENFREQUENCY AT X POINT OF IBZ 

Eigenfrequency 6 

atch. (%) Frequency (Hz) Error (%) Field mismatch. (%) 
48e-0 2.3465308e14 4.194 2.306028e+1 
39e-0 2.2567438e14 0.207 4.449937e+0 
15e-0 2.2512072e14 0.039 0.824365e-0 
47e-2 2.2519421e14 0.006 0.128581e-0 
21e-7 2.2520785e14 0.000 3.551224e-6 
hexagonal lattice, E-polarization, the first 6 modes. 



 
 

in Fig. 3 with different maximum orders of the multipoles and 
Bessel expansions, i.e., with different numbers of unknowns. 
Note that the computation time typically is proportional to the 
cube of the number of unknowns because we use a brute-force 
full matrix solver (Givens update scheme). Despite of this, the 
computation time remains reasonably short because the matrices 
obviously are much smaller than the matrices used in other 
methods. For example Fig. 11 was obtained with 3 rough-search 
routines, 100 frequency steps each. The total number of 1656 
plotted points required were then computed with 8280 MMP 
evaluations of η , i.e. approximately 5 iterations per point in the 
diagram were performed. The total calculation time was 40 
minutes on a Pentium 4, 2GHz. Because of the excellent 
convergence, we also can estimate the accuracy of the 
eigenvalues by comparing them with a very accurate MMP 
model. As one can see from Table I, one only obtains one more 
digit when doubling the number of unknowns.  
In order to validate this algorithm, several calculations were 
performed and results were compared with the results of MPB 
package developed at the MIT [29]. For the PhC with square 
lattice and dielectric rods (Fig. 3), a band diagram calculation 
was performed for different field polarizations and the results 
are given in Fig. 11 (H-polarization) and Fig. 12 (E-
polarization). The results for the hexagonal lattice case (Fig. 4), 
are depicted in Fig. 13 (H-polarization) and Fig. 14 (E-
polarization). These two types of PhC rely on the same lattice 
data: A dielectric rod with radius  and a dielectric 
constant of 

ar 3.0=
56.11=ε , the lattice is embedded in air and the 

lattice constant is . From Figs. 11–14 we deduce a 
perfect agreement with the MPB results documented in [29].  

)(10 6 ma −=

VII. CONCLUSION 
We have presented an efficient method for band structure 
calculation for 2D dielectric PhCs. In this framework a fully 
automatic algorithm was developed and evaluated along several 
examples. The eigenvalue searching procedure in the frequency 
domain has been performed using a fictitious excitation. 
Optimal eigenvalue search functions have been found while 
evaluating the total eigenvalue spectrum for k-values at three 
preferable points on the IBZ. The three resulting sets of 
eigenvalues are evolved into a full band diagram using a highly 
efficient Eigenvalue Estimation Technique (EET). The overall 
algorithm performs photonic band diagram calculations at a 
very high level of accuracy and at reasonable computational 
costs. This algorithm is easily extendable for applications 
involving localized defect mode analysis [30], various PhC 
defect waveguide types (supercell approach [31]) and photonic 
waveguide discontinuities [31], as well. 
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Thin Wire Representation of the Vertical
Conductor in Surge Simulation

Md. Osman Goni, Eiji Kaneko, Hideomi Takahashi

Abstract— Simulation of very fast surge phenomena in
a three-dimensional (3-D) structure requires a method
based on Maxwell’s equations, such as the FDTD (finite
difference time domain) method or the MoM (method of
moments), because circuit-equation-based methods can-
not handle the phenomena. This paper describes a
method of thin wire representation of the vertical con-
ductor system for the FDTD method which is suitable for
the 3-D surge simulation. The thin wire representation is
indispensable to simulate electromagnetic surges on wires
or steel frames of which the radius is smaller than a dis-
cretized space step used in the FDTD simulation. A gen-
eral surge analysis program named VSTL (Virtual Surge
Test Lab.) based on the Maxwell equations formulated by
the FDTD method is used to simulate the surge phenom-
ena of a vertical conductor, including the effects of ground
plane and without ground plane. By use of the Maxwell
equations, VSTL is inherently able to take into account
the three-dimensional geometrical features of a simulated
structure unlike EMTP-type circuit-based transient pro-
grams. Comparisons between calculated results by the
FDTD method, theoretical results and computed results
by the NEC-2 (Numerical Electromagnetic Code) based
on the MoM are presented to show the accuracy of the
thin wire representation.

Keywords— FDTD method, Maxwell equations, thin
wire, surge analysis, Numerical electromagnetic field anal-
ysis, vertical conductor.

I. INTRODUCTION

CONVENTIONAL surge problems have successfully
been solved by circuit theory, where transmission

lines consisting of wires parallel to the earth surface are
modeled by distributed-parameter circuit elements and
the other components by lumped-parameter circuit ele-
ments [1]. The distributed-parameter circuit theory as-
sumes plane-wave propagation that is a reasonable and
accurate approximation for the transmission lines, and
this assumption enables handling of the electromagnetic
wave propagation within the circuit theory. On the other
hand, very fast surge phenomena in a three-dimensional
(3-D) structure, which includes surge propagation in a
transmission tower and in a tall building, cannot be
approximated by plane-wave propagation. Thus, those
phenomena cannot be dealt with by circuit theory but
need to be solved by Maxwell’s equation as an electro-
magnetic field problem. Nowadays, the surge propaga-
tion in a transmission tower needs to be analyzed for eco-
nomical insulation design. Furthermore, in a tall build-
ing, it is also important to assess the interference of light-
ning surges with information devices inside the building.

The processing speed and the memory capacity of com-
puters have rapidly been progressing, and the FDTD
(finite difference time domain) method that solves the
Maxwell’s equations by the method of difference becomes

a practical choice in the field of antenna analysis [2], [3].
At present, even a personal computer can be used for
FDTD analysis, and these circumstances caused the au-
thors to analyze vertical conductor surge response based
on the FDTD method.

This paper describes the surge analysis program
named VSTL (Virtual Surge Test Lab.) based on the
FDTD method. VSTL has been developed by Noda et
al. from scratch at CRIEPI since late 1999. and contin-
uous development is being carried out. VSTL is one of
the registered programs of CRIEPI which are available
to Japanese electric power utilities and to non-profitable
research groups in the world. The FDTD method di-
vides the space of interest into cubic cells and directly
calculates the electric and magnetic fields of the cells
by discretizing the Maxwell equations, where the deriva-
tives with respect to time and space are replaced by a
numerical difference. Updating the procedure at each
time step gives the transient solution of electric and mag-
netic fields. By use of the FDTD method, the developed
program VSTL is inherently able to take into account
the geometrical features of a simulated structure, unlike
EMTP-type circuit-based transient programs. Thus, the
program is advantageous to solve both of the following
problem types:

(i) surge propagation on a three-dimensional circuit
(3-D skeleton structure);

(ii) surge propagation inside a three-dimensional im-
perfectly conducting medium such as earth soil.

The MoM (method of moments) also numerically
solves the Maxwell Equations [4], and the NEC-2 (Nu-
merical Electromagnetic Code)is a well-known program
based on MoM [5]. Although MoM efficiently solves the
type (i) problems, it cannot solve the type (ii) ones ex-
cept very simple cases, because the handing of three-
dimensional current distribution in a imperfectly con-
ducting medium is complicated [6]. On the other hand,
FDTD is inherently able to solve both problem types ef-
ficiently. One weak point of FDTD is the treatment of a
thin wire. Thus, a field correction method to accurately
treat the radius of the thin wire is proposed in [7] and
implemented in VSTL. This paper proposes a method to
accurately represent the thin wire for the single vertical
conductor in the FDTD simulation (“thin wire” is de-
fined as a conductive wire of which the radius is smaller
than the size of a discretized cell). Then, surge simula-
tion results using NEC-2 for the thin wire representation
of a vertical conductor are also presented.

One of the authors derived the formula of surge
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impedance with a ground plane: Z = 60{ln(2
√

2h/r0)−
1.983} (Ω) and without a ground plane: Z =
60{ln(2

√
2h/r0)−1.540} (Ω) [8]. The theoretical formula

of surge impedance with the ground plane is very close to
the well known experimental formula of Hara et al. [9].
The theoretical values of surge impedance at t = 2h/c
agree satisfactorily with the experimental and computed
results using NEC-2 [10], [11]. Finally, this paper shows
the comparisons between the theoretical results and sim-
ulation results of surge impedance with ground plane and
without ground plane, based on the FDTD method and
NEC-2.

II. ALGORITHM

In the analysis of VSTL, the analysis space is defined
as a rectangular-parallelepiped space. Arbitrary number
of thin wire conductors, rectangular-parallelepiped con-
ductors, and localized voltage and current sources are
arbitrarily placed in the analysis space, and transient
electric and magnetic fields are calculated. The bottom
of the analysis space can be defined as an imperfectly-
conducting medium such as earth, and each boundary
of the analysis space can independently be defined as a
perfectly-conducting plane or an absorbing plane. The
waveform of a localized voltage or current at an arbitrary
position is outputted as specified.

A. FDTD Formulation

There exist several different formulations of FDTD
method. In order to precisely describe the proposed
method of thin wire representation, the formulation used
in this paper is briefly reviewed here. Assuming neither
anisotropic nor dispersive medium in the space of inter-
est, the Maxwell equations in Cartesian coordinates are

∇× E = −µ
∂H

∂t
, ∇× H = ε

∂E

∂t
+ σE, (1)

∇ · E =
ρ

ε
, and ∇ · H = 0. (2)

where
E electric field;
H magnetic field;
ρ charge density;
ε permittivity;
µ permeability;
σ conductivity.

Discretizing the analysis space by a small length ∆s in
all the directions, the space is filled with cubes of which
the sides are ∆s, and each cube is called a cell. Assume
that the number of divisions of the analysis space along
the x coordinate is Nx, along the y coordinate Ny, and
along the z coordinate Nz. The analysis space is given
by the following range,

x = i∆s, (0 ≤ i ≤ Nx), y = j∆s, (0 ≤ j ≤ Ny),
z = k∆s, (0 ≤ k ≤ Nz). (3)

Equation (1) includes derivatives with respect to po-
sition x, y, z, and time t. In the FDTD formulation,
representing values of electric and magnetic fields in a
cell is shown in Fig. 1, and this yields the replacement
of the derivatives with respect to x, y, and z in (1) with
the following central difference,

∂f(x)
∂x

∼= f(x + ∆x/2) − f(x − ∆x/2)
∆s

. (4)

In the above equation, f is a component of E or H,
and the same equation is valid also for y and z. The
same central difference shown in the following equa-
tion replaces the derivatives with respect to time in
(1), assuming that electric fields are calculated at time
steps t = n∆t (n = 0, 1, · · ·) and magnetic fields at
t = (n + 1/2)∆t (n = 0, 1, · · ·) by turns,

∂f(t)
∂t

∼= f(t + ∆t/2) − f(t − ∆t/2)
∆t

. (5)

Applying (4) and (5) to (1) yields the following differ-
ence equations (e.g. En

x(i + 1/2, j, k) represents x com-
ponent electric field at position x = (i + 1/2)∆s, y =
j∆s, z = k∆s, and at time t = n∆t, and the other com-
ponents are expressed in the same manner),

En
x (i +

1
2
, j, k) = K1E

n−1
x (i +

1
2
, j, k)

+K2{Hn−1/2
z (i +

1
2
, j +

1
2
, k) − Hn−1/2

z (i +
1
2
, j − 1

2
, k)

−Hn−1/2
y (i +

1
2
, j, k +

1
2
) + Hn−1/2

y (i +
1
2
, j, k − 1

2
)} (6)

En
y (i, j +

1
2
, k) = K1E

n−1
y (i, j +

1
2
, k)

+K2{Hn−1/2
x (i, j +

1
2
, k +

1
2
) − Hn−1/2

x (i, j +
1
2
, k − 1

2
)

−Hn−1/2
z (i +

1
2
, j +

1
2
, k) + Hn−1/2

z (i − 1
2
, j +

1
2
, k)}(7)

En
z (i, j, k +

1
2
) = K1E

n−1
z (i, j, k +

1
2
)

+K2{Hn−1/2
y (i +

1
2
, j, k +

1
2
) − Hn−1/2

y (i − 1
2
, j, k +

1
2
)

−Hn−1/2
x (i, j +

1
2
, k +

1
2
) + Hn−1/2

x (i, j − 1
2
, k +

1
2
)}(8)

Hn+1/2
x (i, j +

1
2
, k +

1
2
) = Hn−1/2

x (i, j +
1
2
, k +

1
2
)

+K3{−En
z (i, j + 1, k +

1
2
) + En

z (i, j, k +
1
2
)

+En
y (i, j +

1
2
, k + 1) − En

y (i, j +
1
2
, k)} (9)
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Fig. 1. Configuration of electric and magnetic fields in cell.

Hn+1/2
y (i +

1
2
, j, k +

1
2
) = Hn−1/2

y (i +
1
2
, j, k +

1
2
)

+K3{−En
x (i +

1
2
, j, k + 1) + En

x (i +
1
2
, j, k)

+En
z (i + 1, j, k +

1
2
) − En

z (i, j, k +
1
2
)} (10)

Hn+1/2
z (i +

1
2
, j +

1
2
, k) = Hn−1/2

z (i +
1
2
, j +

1
2
, k)

+K3{−En
y (i + 1, j +

1
2
, k) + En

y (i, j +
1
2
, k)

+En
x (i +

1
2
, j + 1, k) − En

x (i +
1
2
, j, k)}. (11)

In the derivation of the above equations, an approxi-
mation σEn−1/2 ∼= σ{En−1 + En}/2 is used, and coeffi-
cients K1, K2, and K3 are given by the following equa-
tions,

K1 =
1 − σ∆t

2ε

1 + σ∆t
2ε

, K2 =
∆t

ε∆s

1
1 + σ∆t

2ε

, K3 =
∆t

µ∆s
. (12)

Equations (6)–(11) are the FDTD formulas of the
Maxwell equations, and transient fields are obtained by
calculating electric and magnetic fields alternately at
time intervals ∆t/2. Although (2) is not explicitly for-
mulated, it is proven that (6)–(11) automatically satisfies
(2) [2]. The general surge analysis program VSTL uses
this FDTD formulation.

B. Time Step and Space Step

Equations (6)–(11) are considered as numerical inte-
gration, and stable integration is performed if the fol-
lowing condition is satisfied (Courant’s condition) [2],

∆t√
µε

≤ ∆s√
3
. (13)

On the other hand, the grid dispersion error is mini-
mize when the above equation is an equality. Thus, the

Ez = 0

z direction

thin wire
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Fig. 2. Thin wire and configuration of adjacent electric and mag-
netic fields.

following formula is used in all calculations in this paper
to determine time step ∆t by user defined space step ∆s:

∆t = ∆s

√
µε

3
(1 − α). (14)

α is a small positive value specified by the user in order
to prevent instability of the numerical integration due to
round-off error in (6)–(11).

III. THIN WIRE REPRESENTATION

If the space step were chosen to be small enough to rep-
resent the shape of wire’s cross section, an accurate rep-
resentation would be possible. However, it requires im-
practical computational resources at this moment. The
thin wire is defined as a conductive wire of which the
radius is smaller than the size of a cell in the FDTD sim-
ulation. In antenna simulations, the thin wire is mainly
used to represent an antenna element–the most impor-
tant part. In surge simulations, it is also important
to represent wires (phase and ground wires of a trans-
mission/distribution line) and steel frames of a building
along which surges propagate. Umashankar et al. pro-
posed a method of thin wire representation by correcting
the adjacent magnetic fields of the wire according to its
radius [12], and [13] reports that the method is valid for
the calculation of radiated fields by an antenna. How-
ever, the Umashankar method cannot give accurate surge
impedance [14].

A. Modification of Permittivity and Permeability

The FDTD method of thin wire representation cor-
rects both the adjacent electric and magnetic fields of
the wire according to its radius and gives accurate surge
impedance. The correction of the fields is carried out by
equivalently modifying the permittivity and permeabil-
ity of the adjacent cells. Fig. 2(a) shows a wire with ra-
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Fig. 3. Calculation of current by Ampere’s Law.

dius r placed in the z direction, and the permittivity and
permeability of the space are ε and µ. Fig. 2(b) shows
the cross section of the wire with the adjacent electric
fields, and Fig. 2(c) with the adjacent magnetic fields. In
the FDTD method, a wire is, in principle, represented
by forcing the electric fields along the center line of the
wire to be zero, and Ez components are forced to be
zero in this case. In order to take into account the effect
of the thin wire radius r, the VSTL uses the following
corrected permittivity to calculate the adjacent electric
fields Ex1, Ex2, Ey1, Ey2 in (6)–(8),

ε′ = mε,

and the following corrected permeability to calculate the
adjacent magnetic fields Hx1,Hx2,Hy1,Hy2 in (9)–(11),

µ′ = µ/m,

where the correction factor m is given by

m =
1.471

ln(∆s/r)
. (15)

IV. GENERAL SURGE ANALYSIS
PROGRAM

The general surge analysis program, named Virtual
Surge Test Lab. (VSTL), which is based on the FDTD
method and the proposed thin wire representation for
the vertical conductor is briefly described in this section.

A. Treatment of Boundaries

Each boundary of the space of interest can indepen-
dently be defined as a perfectly conducting plane or an
absorbing plane. The perfectly conducting plane can eas-
ily be represented by forcing the tangential components
of electric fields at the boundary to be zero. The second-
order Liao’s method is used to represent the absorbing
plane, because it is more accurate and required less mem-
ory compared with other methods [15]. An open space
can be assumed by applying the absorbing plane to all
the boundaries of the space of interest.

B. Imperfectly Conducting Earth

The goal of the surge analysis is usually to find the
solution of surge propagation in a 3-D skeleton struc-
ture above either an imperfectly or perfectly conducting
earth. In the FDTD calculation, the representation of

START

t >= Tmax

Read data case and initialize variables

Calculate E at the boundary planes

           Calculate the entire E

Force E to be zero on the surface of 
 rectangular parallelpiped objects

Calculate E at localized voltage sources 
          and localized current sources

Output E and localized V

        Calculate the entire H

Calculate H around the thin wires with 
              modified permeability µ/m

Output H and localized I

STOP

ΝΟ

YES

t = 0

t = t +∆t/2

t = t +∆t/2

Force E at the center line of thin wires to 
be  zero, and calculate E around the wires 
with modified permittivity mε

Fig. 4. Calculation procedure of VSTL.

the conducting earth with resistivity ρe can be achieved
by simply setting the value of σ in (12) to 1/ρe in the
region defined as the copper plane.

C. Rectangular-Parallelepiped Conductors

The geometrical shape of most power equipment can
be represented by a combination of several rectangular-
parallelepiped objects. The rectangular-parallelepiped
conductor is simply modeled by forcing the tangential
electric fields on its surface to be zero.

D. Localized Voltage and Current Sources

Unlike the static electric fields, the transient electric
fields do not satisfy ∇ × E = 0. Thus, in the analy-
sis of transient fields, the voltage or the voltage differ-
ence does not make sense in general. But if we take
notice of an electric field component of a cell, the volt-
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age difference across a side of the cell can reasonably
be defined as V = E∆s, because waves of which the
wavelength is shorter than λ = 2∆s do not propagate
in the FDTD calculation due to the bandwidth limita-
tion of ∆s. Therefore, we can model a localized volt-
age source by forcing an electric field component at a
specified position in a specified direction to be a speci-
fied waveform. For example, in order to place a voltage
source of which the waveform is given by V n = V (n∆t)
at x = i∆s, y = j∆s, z = (k+1/2)∆s in the z direction,
the following equation is used to force the electric field
value,

En
z (i, j, k + 1/2) = −{V n − RIn−1/2}/∆s, (16)

where R is the internal resistance of the voltage source
specified by a user (it can be set to zero), and current I
is given by the following equation as shown in Fig. 3,

In−1/2 = {Hn−1/2
x (i, j − 1

2
, k +

1
2
)

−Hn−1/2
x (i, j +

1
2
, k +

1
2
)

+Hn−1/2
y (i +

1
2
, j, k +

1
2
)

−Hn−1/2
y (i − 1

2
, j, k +

1
2
)}∆s. (17)

In the case of a current source, because current itself is
a general quantity even in the transient fields, it can
be modeled by modifying an electric field component
at a specified position in a specified direction as in the
following example. In order to place a current source
of which the waveform is given by In = I(n∆t) at
x = i∆s, y = j∆s, z = (k + 1/2)∆s in the z direction,
the following term is added to (8),

− ∆t/ε

1 + σ∆t
2ε

In−1/2

∆s2
, σ = 1/(R∆s), (18)

and R is the internal resistance of the current source
specified by a user.

E. Calculation Procedure and Output

The flow chart of the calculation procedure of VSTL
is shown in Fig. 4. The output of VSTL includes the
waveform of localized voltage differences and current in-
tensities at a specified position in a specified direction.
The waveform of the localized voltage difference is cal-
culated by V = E∆s, and that of the current intensity
by (17).

V. SIMULATION RESULTS OF VERTICAL
CONDUCTOR

A. With Ground Plane

The modeling of a vertical conductor system is quite
important as a basis of transmission tower modeling. A
tower is approximated as a vertical cylinder having a
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Fig. 5. Arrangement of the vertical conductor system (with ground
plane).
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Fig. 6. Calculated waveforms of the voltage and currents (with
ground plane).

height equal to that of the tower and a radius equal to the
mean equivalent radius of the tower [16]. Fig. 5 shows
a reduced-scale model of the vertical conductor system
with a single cylindrical conductor of radius 5 mm. The
vertical conductor is excited by a pulse generator (PG)
via a current lead wire, and the tower-top voltage is de-
fined as the voltage between the tower top and a voltage
measuring wire. In the simulation with FDTD, the di-
mensions of the analysis space were 3.5m×2.5m×1.0m
with space step ∆s = 2 cm. The time step was deter-
mined by (14) with α = 0.01, and all the six boundaries
of the cell were treated as second-order Liao’s absorbing
boundary. The thickness and the resistivity of the earth
were set to 6 cm and 1.69×10−8 Ωm. The PG was mod-

59M. O. Goni, et al.: Thin Wire Representation of the Vertical Conductor in Surge Simulation



PG

vertical curren
lead wire

voltage measuring
wire

x
y

z

h = 0.6 m;

copper plate

V
I

gap

1.94 m

1.68 m

r = 5 mm

Fig. 7. Arrangement of the vertical conductor system (without
ground plane).

ns / div

vo
lta

ge
 [V

]

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
A

 / 
di

v

ns / div

upper
middle
lower

Fig. 8. Arrangement of the vertical conductor system (without
ground plane).

eled by a current source, with internal resistance 0.5 kΩ.
Fig. 6 shows the calculated results of voltage waveforms
at the top of the vertical conductor and that of current
waveforms in the different parts of it. The influence of
the ground plane can be observed by realizing a small
current which is induced in the vertical conductor before
the actual surge current flows through it. This small
magnitude of current is due to the fact that the electric
field produced by the current injected in the horizontal
current lead wire induces this current at the vertical con-
ductor. The reflection phenomena of the current wave
from the ground can be understood with these results.

Geometry, Source
Impedance, etc. Source Waveform

NEC-2

FFT

INV-FFT

Current Waveform

Fig. 9. Flow of the solution using NEC-2.

B. Without Ground Plane

A reduced-scale model of the vertical conductor sys-
tem without ground plane is shown in Fig. 7. It is also
the case of the lightning phenomena caused by the re-
turn stroke [17]. The pulse generator, in this case, is
placed at the top of the vertical conductor and the cur-
rent lead wire is extended vertically without connecting
to the ground. The dimensions of the analysis space were
1.0m×2.5m×3.0m. All other parameters are the same
as the case with the ground plane. Fig. 8 shows the wave-
form of conductor-top voltage and currents splitting into
the vertical conductor.

C. Computation Time

It may be believed that the FDTD method is a time-
consuming method. However, the progress of computers
in terms of speed and memory is considerable, and even
a personal computer can be used for FDTD calculations.
In fact, the simulations presented in this paper were per-
formed by a personal computer with Intel Celeron 700
MHz CPU and 192 MB RAM. Although the computa-
tion time absolutely depends on the cell size and the
dimension of the analysis space, in this paper, the cell
size is considered a lower value satisfying the Courant
condition in order to obtain more accurate results of the
surge response. Therefore, the computation time for the
vertical conductor with ground plane is around 16 min-
utes and without ground plane is around 12 minutes.

VI. SURGE SIMULATION BY NEC-2

In this section, the NEC-2 (Numerical Electromag-
netic Code) is employed for the analysis of surge response
of the vertical conductor. It is a widely used three-
dimensional electromagnetic modeling code based on the
MoM (method of moments) [4] in the frequency domain,
and is particularly effective in analyzing the electromag-
netic response of antennas or other metallic structures
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Fig. 11. Computed waveforms of voltage at the top and currents
in the various parts of the vertical conductor in case with ground
surface.

composed of thin wires. A vertical conductor system
needs to be decomposed into thin wire elements, and the
position, orientation and the radius of each element con-
stitute the input data, along with the description of the
source and frequencies to be analyzed. In the analysis,
all the elements in the system are treated as perfect con-
ductors. To solve the time-varying electromagnetic re-
sponse, Fourier transform and inverse Fourier transform
are used. The MoM requires that the entire structure be
divided into wire segments that must be small compared
to the wavelength. Once the model is defined, an exci-
tation is imposed as a voltage source or a plane wave on
one of the wire segments. The MoM approach is to deter-
mine the current on every segment due to the source and
all the other currents by numerically solving the electric

field integral equation. Fig. 9 shows the flow chart of the
solution by NEC-2.

Fig. 10 shows the reduced-scale model of the vertical
conductor system for the surge analysis using NEC-2.
The arrangement of the current lead wire connected to
the top of the vertical conductor with the existence of
the ground plane is indicated in Fig. 10. The dimensions
of the vertical conductor model are maintained the same
as with the FDTD method in the previous section. A
step current pulse generator having pulse voltage of 5 V
in magnitude, rise-time of 1 ns and pulse width of 40
ns is used, which is meant to incorporate the influence
of the induction from the lightning channel hitting the
vertical conductor.

For the numerical analysis, the conductors of the sys-
tem are divided into 5 cm segments. This segmentation
must satisfy electrical consideration relative to the wave-
length as: 0.001λ < ∆L < 0.1λ, where ∆L and λ are the
segment length and wavelength respectively. The inter-
nal impedance of the pulse generator is 0.5 kΩ. The
system of structures under analysis was postulated to be
on perfectly conducting ground. Then we calculate the
surge impedance, which is defined by the ratio of the in-
stantaneous values of the voltage to the current at the
moment of voltage peak.

A. With Ground Plane

Fig. 11 shows the simulation results by NEC-2. The
influence of the reflected wave from the ground reaches
the top of the conductor is observed at t = 2h/c = 4 ns
exactly, which means that the travelling wave is propa-
gating at the velocity of light. The computed waveforms
of currents which are flowing through the vertical con-
ductor are indicated by the mark ‘CT’ in Fig. 10. As
the pulse generator is placed 300 cm from the vertical
conductor, the current through the vertical conductor
is delayed approximately 10 ns. The existence of the
ground plane can also be observed in these current wave-
forms, where the field produced by the current injected
horizontally induces currents of small magnitude before
the actual surge current flows through the vertical con-
ductor. These simulation results of currents and voltage
waveforms in Fig. 11 obtained by NEC-2 are almost iden-
tical to the simulation results with the FDTD method in
Fig. 6.

B. Without Ground Plane

A reduced-scale model of the vertical conductor sys-
tem without a ground plane is indicated in Fig. 12. Here,
the current lead wire is extended vertically to the top
of the vertical conductor. The same PG is now used
at the top without connecting to the ground. In both
cases, the voltage measuring wire is stretched horizon-
tally and connected to the ground. This termination
condition does not affect the electromagnetic phenom-
ena at the vertical conductor within 17.33 ns. All other
parameters are maintained the same as the ground plane
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case. The simulation results of voltage at the top of the
vertical conductor and currents through different parts
of it are shown in Fig. 13. However, in this analysis,
the waveforms of current through the vertical conductor
are somewhat different from the current waveforms of
Fig. 11 at the starting region because of absence of the
ground surface. Also, the current starts flowing instantly
through the vertical conductor without being delayed.

C. Computation Time

Computation is carried out in the frequency range of
7.813 MHz to 4 GHz with an increment step of 7.813
MHz. This corresponds to the time range of 0 to 128
ns with 0.25 ns increments. The computation time for
the output of NEC-2 block of the flow chart of Fig. 10,
with a Intel Celeron 700 MHz processor with 192 MB
RAM is about 56 seconds for the ground plane case and
30 seconds without ground plane case.

VII. THEORETICAL FORMULA OF SURGE
IMPEDANCES

One of the author’s theory is able to apply widely in
case of ground surface and without ground surface. Sup-
pose that a surge electric current is injected on the ver-
tical conductor whose height is h and radius is r0. Then
the surge current wave is reflected at the ground of the
perfect conductor and returns to the top of the vertical
conductor.

Introducing the electric current reflectivity β = 1 and
the magnetic field reflectivity γ(γi, γr) = 0, the theoret-
ical formula of surge impedance which is very close to
the well known experimental formula [9] is obtained as
follows;

Z = 60(ln(
h

2r0
) − 1

4
)

= 60(ln(
2
√

2h
r0

) − 1.983). (19)

Equation (19) gives the surge impedance of the vertical
conductor just after the occurrence of the reflection of
the travelling wave propagating down from the top of
the structure. However, if it is considered that β =
γi = γr = 1, it became

V (t) =
cµ0I0

2π

(
ln

(ct + 2r0)
2r0

− ct

2(ct + r0)

)
.

The above equation can be modified by substituting
ct = 2h, where c is the velocity of light and assuming
h � r0 as follows;

Z = 60(ln(
h

r0
) − 1

2
)

= 60(ln(
2
√

2h
r0

) − 1.540). (20)

On the other hand, if there is no ground, the following
formula is used [18],

V (t) =
∫ ct

0

(−Ei · dl)

=
cµ0I0

2π

(
ln

(ct + 2r0)
2r0

− ct

2(ct + r0)

)
.

Substituting ct = 2h and assuming h � r0 in the
above equation, we get

Z = 60(ln(
h

r0
) − 1

2
)
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Fig. 14. Surge impedance of the single vertical conductor at 0 <
t ≤ 2h/c.

= 60(ln(
2
√

2h
r0

) − 1.540). (21)

This formula given by (21) is the same as (20). The wave-
forms of the surge impedances calculated from the theo-
retical Equations (19) and (20) with ground and without
ground plane respectively, are plotted along with the sim-
ulation results by the FDTD method and the MoM in
Fig. 14. However, the surge impedance values at t ≈ 2h/c
are summarized in Table I.

TABLE I

Surge Impedances of the Vertical Conductor at t ≈ 2h/c

With ground Without ground
NEC-2 365 434

Theoretical 232 258
FDTD 214 304

VIII. CONCLUSIONS

In this paper, a method of thin wire representation of a
vertical conductor system with the effect of ground plane
and without ground plane is described. The analysis of
surge response has been carried out by the FDTD-based
surge simulation code VSTL and MoM-based NEC-2.
The accuracy of VSTL has been validated by comparing
with NEC-2 results and theoretical values of the vertical

conductor surge impedance. The bottom of the analysis
space in both cases is considered as a copper plate, al-
though in NEC-2, it was postulated to be on perfectly
conducting ground. The analysis results of the surge re-
sponse with the FDTD method and NEC-2 are found to
be quite similar. The computation time absolutely de-
pends on the configuration of the system structures and
modeling of the wires.
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PUBLICATION CRITERIA 
 
Each paper is required to manifest some relation to applied 
computational electromagnetics.  Papers may address 
general issues in applied computational electromagnetics, 
or they may focus on specific applications, techniques, 
codes, or computational issues.  While the following list is 
not exhaustive, each paper will generally relate to at least one 
of these areas: 
 
1. Code validation.  This is done using internal checks or 

experimental, analytical or other computational data.  
Measured data of potential utility to code validation 
efforts will also be considered for publication. 

 
2. Code performance analysis.  This usually involves 

identification of numerical accuracy or other limitations, 
solution convergence, numerical and physical modeling 
error, and parameter tradeoffs.  However, it is also 
permissible to address issues such as ease-of-use, set-up 
time, run time, special outputs, or other special features. 

 
3. Computational studies of basic physics.  This involves 

using a code, algorithm, or computational technique to 
simulate reality in such a way that better, or new 
physical insight or understanding, is achieved. 

 
4. New computational techniques, or new applications for 

existing computational techniques or codes. 
 
5. “Tricks of the trade” in selecting and applying codes 

and techniques. 
 
6. New codes, algorithms, code enhancement, and code 

fixes.  This category is self-explanatory, but includes 
significant changes to existing codes, such as 
applicability extensions, algorithm optimization, problem 
correction, limitation removal, or other performance 
improvement.  Note: Code (or algorithm) capability 
descriptions are not acceptable, unless they contain 
sufficient technical material to justify consideration. 

 
7. Code input/output issues.  This normally involves 

innovations in input (such as input geometry 
standardization, automatic mesh generation, or 
computer-aided design) or in output (whether it be 
tabular, graphical, statistical, Fourier-transformed, or 
otherwise signal-processed).  Material dealing with 
input/output database management, output interpretation, 
or other input/output issues will also be considered for 
publication. 

 
8. Computer hardware issues.  This is the category for 

analysis of hardware capabilities and limitations of 
various types of electromagnetics computational 
requirements. Vector and parallel computational 
techniques and implementation are of particular interest.  

Applications of interest include, but are not limited to, 
antennas (and their electromagnetic environments), networks, 
static fields, radar cross section, shielding, radiation hazards, 
biological effects, electromagnetic pulse (EMP), 
electromagnetic interference (EMI), electromagnetic 
compatibility (EMC), power transmission, charge transport, 
dielectric, magnetic and nonlinear materials, microwave 
components, MEMS technology, MMIC technology, remote 
sensing and geometrical and physical optics, radar and 
communications systems, fiber optics, plasmas, particle 
accelerators, generators and motors, electromagnetic wave 
propagation, non-destructive evaluation, eddy currents, and 
inverse scattering. 
 
Techniques of interest include frequency-domain and time-
domain techniques, integral equation and differential equation 
techniques, diffraction theories, physical optics, moment 
methods, finite differences and finite element techniques, 
modal expansions, perturbation methods, and hybrid methods.  
This list is not exhaustive. 
 
A unique feature of the Journal is the publication of 
unsuccessful efforts in applied computational 
electromagnetics.  Publication of such material provides a 
means to discuss problem areas in electromagnetic modeling.  
Material representing an unsuccessful application or negative 
results in computational electromgnetics will be considered 
for publication only if a reasonable expectation of success 
(and a reasonable effort) are reflected.  Moreover, such 
material must represent a problem area of potential interest to 
the ACES membership. 
 
Where possible and appropriate, authors are required to 
provide statements of quantitative accuracy for measured 
and/or computed data.  This issue is discussed in “Accuracy 
& Publication: Requiring, quantitative accuracy statements to 
accompany data,” by E. K. Miller, ACES Newsletter, Vol. 9, 
No. 3, pp. 23-29, 1994, ISBN 1056-9170. 
 
EDITORIAL REVIEW 
 
In order to ensure an appropriate level of quality control, 
papers are peer reviewed.  They are reviewed both for 
technical correctness and for adherence to the listed 
guidelines regarding information content.   
 
JOURNAL CAMERA-READY SUBMISSION DATES  
 
March issue   deadline 8 January 
July issue   deadline 20 May 
November issue  deadline 20 September 
 
Uploading an acceptable camera-ready article after the 
deadlines will result in a delay in publishing this article. 



STYLE FOR CAMERA-READY COPY 
 
The ACES Journal is flexible, within reason, in regard to 
style.  However, certain requirements are in effect: 
 
1. The paper title should NOT be placed on a separate page.  

The title, author(s), abstract, and (space permitting) 
beginning of the paper itself should all be on the first 
page.  The title, author(s), and author affiliations should 
be centered (center-justified) on the first page. 

 
2. An abstract is REQUIRED.  The abstract should  be a 

brief summary of the work described in the paper. It 
should state the computer codes, computational 
techniques, and applications discussed in the paper (as 
applicable) and should otherwise be usable by technical 
abstracting and indexing services. 

 
3. Either British English or American English spellings 

may be used, provided that each word is spelled 
consistently throughout the paper. 

 
4. Any commonly-accepted format for referencing is 

permitted, provided that internal consistency of format is 
maintained.  As a guideline for authors who have no 
other preference, we recommend that references be given 
by author(s) name and year in the body of the paper 
(with alphabetical listing of all references at the end of 
the paper).  Titles of Journals, monographs, and similar 
publications should be in italic font or should be 
underlined.  Titles of papers or articles should be in 
quotation marks. 

 
5. Internal consistency shall also be maintained for other 

elements of style, such as equation numbering.  As a 
guideline for authors who have no other preference, we 
suggest that equation numbers be placed in parentheses 
at the right column margin. 

 
6. The intent and meaning of all text must be clear.  For 

authors who are NOT masters of the English language, 
the ACES Editorial Staff will provide assistance with 
grammar (subject to clarity of intent and meaning). 

 
7. Unused space should be minimized.  Sections and 

subsections should not normally begin on a new page. 
 
PAPER FORMAT  
 
The preferred format for initial submission and camera-ready 
manuscripts is 12 point Times Roman font, single line spacing 
and double column format, similar to that used here, with top, 
bottom, left, and right 1 inch margins.  Manuscripts should be 
prepared on standard 8.5x11 inch paper. 
 
Only camera-ready electronic files are accepted for 
publication.  The term “camera-ready” means that the 
material is neat, legible, and reproducible.  Full details can 
be found on ACES site, Journal section. 
 
ACES reserves the right to edit any uploaded material, 
however, this is not generally done. It is the author(s) 

responsibility to provide acceptable camera-ready pdf files.  
Incompatible or incomplete pdf files will not be processed,  
and authors will be requested to re-upload a revised 
acceptable version.  
 
SUBMITTAL PROCEDURE 
 
All submissions should be uploaded to ACES server through 
ACES web site (http://aces.ee.olemiss.edu) by using the 
upload button, journal section. Only pdf files are accepted for 
submission. The file size should not be larger than 5MB, 
otherwise permission from the Editor-in-Chief should be 
obtained first. The Editor-in-Chief will acknowledge the 
electronic submission after the upload process is successfully 
completed.  
 
COPYRIGHTS AND RELEASES 
 
Each primary author must sign a copyright form and obtain a 
release from his/her organization vesting the copyright with 
ACES. Copyright forms are available at ACES, web site 
(http://aces.ee.olemiss.edu). To shorten the review process 
time, the executed copyright form should be forwarded to the 
Editor-in-Chief immediately after the completion of the 
upload (electronic submission) process.  Both the author and 
his/her organization are allowed to use the copyrighted 
material freely for their own private purposes. 
 
Permission is granted to quote short passages and reproduce 
figures and tables from and ACES Journal issue provided the 
source is cited.  Copies of ACES Journal articles may be 
made in accordance with usage permitted by Sections 107 or 
108 of the U.S. Copyright Law.  This consent does not extend 
to other kinds of copying, such as for general distribution, for 
advertising or promotional purposes, for creating new 
collective works, or for resale.  The reproduction of multiple 
copies and the use of articles or extracts for commercial 
purposes require the consent of the author and specific 
permission from ACES.  Institutional members are allowed to 
copy any ACES Journal issue for their internal distribution 
only.  
 
PUBLICATION CHARGES 
 
ACES members are allowed 12 printed pages per paper 
without charge; non-members are allowed 8 printed pages per 
paper without charge.  Mandatory page charges of $75 a page 
apply to all pages in excess of 12 for members or 8 for non-
members.  Voluntary page charges are requested for the free 
(12 or 8) pages, but are NOT mandatory or required for 
publication.  A priority courtesy guideline, which favors 
members, applies to paper backlogs.  Authors are entitled to 
15 free reprints of their articles and must request these from 
the Managing Editor.  Additional reprints are available to 
authors, and reprints available to non-authors, for a nominal 
fee. 
 
ACES Journal is abstracted in INSPEC, in Engineering 
Index, DTIC, Science Citation Index Expanded, the 
Research Alert, and to Current Contents/Engineering, 
Computing & Technology. 
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