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Abstract
1
.- In this paper, an approach to multi-

resolution in time domain (MRTD) is presented. 

Maxwell equations are discretized using finite 

differences in time and a derivative matrix in 

space that allows any desired level of spatial 

resolution. This derivative matrix acts on the 

coefficients that represent the expansion of the 

field components. These coefficients are 

calculated by means of the Discrete Wavelet 

Transforms (DWT). In this work hard (PEC 

and PMC) boundary conditions have been 

introduced into the algorithm using the method 

of images. This approach is valid for any kind of 

wavelet functions. Stability and dispersion 

properties are also investigated. Some numerical 

results, showing multi-resolution properties are 

presented.

Keywords.- Multi-resolution in time domain, 

MRTD, Daubechies wavelets, Discrete Wavelet 

Transform, DWT.

1.- Introduction 

The development of electromagnetic fields in scale 

and wavelet functions [1], has given rise to the 

techniques known as Multi Resolution in Time 

Domain (MRTD). These techniques are based on 

the possibility of increasing the resolution of a 

signal, from a coarse level to a fine one, using low-

resolution functions (scale functions), combined 

with others of intermediate resolution levels 

(wavelet functions).  Different functions have been 

used in this type of analysis: Battle-Lemarie [2], 

Haar [3] or Daubechies [4]. 

In these techniques, the electric and magnetic field 

components of Maxwell's curl equations are 

represented by a manyfold expansion in scale and 

wavelet functions with respect to space, and step 

functions with respect to time. The method of 

                                                          
1 This work was sponsored in part by the Spanish Ministry of 

Science and Technology, under its project TIC-2000-1612-C03-
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moments [5] allows to obtain a set of equations 

similar to the one used in FDTD (identical, in the 

case of Haar functions, to the Yee’s algorithm). 

Instead of the field values, the coefficients of this 

expansion are used in such scheme. 

One of the points that affect the complexity of 

these schemes is the type of functions used for the 

expansion.  For example, if Battle-Lemarié 

functions are used, an infinite number of 

coefficients must be used, because of the non-

compact support of these functions.  Actually, we 

can truncate the expansion and use a reduced 

number of them, obtaining an approximate 

solution. This problem does not appear when, for 

example, Haar functions are used, since they are 

compactly supported, so it is not necessary to 

truncate the expansion. 

A second point is the desired resolution level for 

the solution of the problem. The above mentioned 

approaches [2-4] use scale functions for a first 

approximation of the fields; in this case simple 

functions are obtained, but, if an increasing of the 

resolution is desired, adding different levels of 

wavelet functions, the solution becomes unfeasible, 

as the scheme must be modified for every new 

level we add. This problem can be solved if a 

Discrete Wavelet Transform (DWT) is used to 

derive the coefficients of the expansions, as it has 

already been used to obtain the time domain 

solution of electrical networks [6] 

In this work, compactly supported Daubechies 

wavelet functions [1] have been used to make an 

expansion of the fields. Its coefficients are 

computed through a Discrete Wavelet Transform. 

A derivative matrix, also obtained by means of a 

DWT, allows us to compute the value of the 

electric and magnetic fields at desired spatial 

positions and with the desired resolution. We have 

found the stability criterion of the algorithm for 

different wavelet functions and in some cases it is 

wider than the FDTD stability criterion for the 

1054-4887 © 2003 ACES

210ACES JOURNAL, VOL. 18, NO. 3, NOVEMBER 2003



same spatial resolution (twice in the case of Haar

wavelet functions).

2.- Formulation

The simplest case of a TEM plane wave

propagating in a homogeneous, linear, isotropic and 

non-dispersive media, with fields Ex and Hy is 

analyzed. Then, the equations to solve are: 
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In the proposed scheme, every field component is

expanded in terms of scaling and wavelet functions,

as shown in equation (2), where the coefficients of

the lower resolution level (ak
0) are given by the

scaling function ( ) and the coefficients of the

successive resolution level (bk
j) are given by the

wavelet functions ( ):

  (2) 

k

J

j

j
k

j
k

n

k

o
k

o
k

n

k

J
k

J
k

nn

)z(b

)z(a

)z(a)z(F 1

0

The spatial discretization is achieved by dividing

the domain into N cells of size , as a starting

point, then getting N sampling points in the center

of each cell. This is what we call resolution level 0
(j = 0). If each cell is now divided into 2J points,

the maximum level of desired resolution J (j = J) is 

reached and then the simulation domain has N*2J

sampling points with a distance of z between 

them. This is illustrated in figure 1.

Fig. 1.- Spatial discretization for J=2.

The coefficients ak
J are enough to represent the real

values of the field at each sampling point and they 

are the initial and the final step of the

decomposition process involved in the Discrete

Wavelet Transform. The multi-resolution analysis

performed with the wavelet transform can be

understood as a digital filtering process where a

signal is decomposed in two parts, one containing

the low frequencies, the scale functions ( ), and 

other part containing the high frequencies, the

wavelet functions ( ). The multi-resolution

representation through the Discrete Wavelet

Transform (DWT) is provided by successive filter

banks stages, each one containing a low-pass and a 

high-pass filter, described in terms of the

coefficients of their impulse responses L(m) and

H(m) (m Z) respectively [1]. The filtering process

means successive convolutions of the field and the

filter coefficients followed by a decimation process

that retains only the even indexes. The inverse 

transform (IDWT) consists in successive

interpolations followed by convolutions that gives

the field values using the coefficients of the

previous decomposition. This is sketched in figure

2.

Fig. 2.- A step of the filtering process: the low and high-pass filters outputs the coefficients aj and bj

respectively.

Then, eqs. (1) are discretized using centered finite

differences for the time derivatives and a spatial

derivative operator computed through a DWT

matrix for the spatial derivatives.  Each coefficient

is, then, obtained from its values at the same point

in a previous time step and from the derivation of 

the other field coefficients at an intermediate time

step:
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where t and  are the time and space steps

respectively, and D
J

represents the spatial

derivative operator of level J. This operator [7] acts

on the coefficients a and b of the field transform (3) 

and it is denoted by a matrix D [8] which can be 

computed previously. In this way, eqs. (3) can be

rewritten as follows for an arbitrary level of

resolution J:

JnJnJn

JnJnJn

E

Et

H

H

H

H

H

Ht

E

E

E

E

jjj

jjj

00

2

1

0

2

1

0

2

1

00

1

1
1

J

J

D

D

 (4) 

where j=0,...,J-1. This matrix D is banded with a 

limited band width, due to the compact support of 

the Daubechies wavelets, and this width increases

as the size of the filters does. Its elements are 

integrals of the scaling and wavelet functions and 

its discrete spatial translations of the first derivative

(eqs. (6.1)-(6.4)). Because of multi-resolution, this

matrix can be decomposed in a set of submatrices

of lower resolution, so if we have named the

original matrix of highest resolution D
J, it is 

constructed with the one level lower matrices A, B, 

, D, then:
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The components of every matrix can be calculated

in a recursive way, so: 

li
jj

il 2   (6) 

and similar expressions for the other coefficients, ,

 and d. The expression l is obtained by means of

the following expression:

dz)z(
dz

d
)lz(l  (7) 

Similar expressions, combining scale and wavelet

functions can be used to calculate the other

coefficients  (scale,wavelet),  (wavelet and scale) 

and d (scale and scale). The scale and wavelet

functions in every case are obtained by means of

the low-pass and the high pass filters, L(m) and

H(m) respectively: 
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being Lf the filter length. In figure 3 three different

aspects of the derivative matrix D for three levels

of resolution are depicted, where only the nonzero 

elements have been plotted.

(a)

(b)

(c)

Fig. 3.- Three different aspects of the derivative

matrix Dj for three resolution levels: (a) j=0, (b)

j=1, (c) j=2.

The use of this derivative matrix allows us to

achieve any level of resolution without

modifications of the algorithm. Moreover, we can 

choose at the beginning of the simulation what type
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of wavelet function is going to be used, and what

regions of the simulation domain we want tosolve

at higher resolution. This feature will be shown

further in the examples.

3.- Boundary conditions.

The derivative matrix D is built-up in a cyclic form

in such a way that it treats the coefficients on both 

boundaries as contiguous. It results in a cyclic

space, that is, an infinite unbounded space. As the

simulation domain is not cyclic at all, the character

of the matrix must be modified. To do so, we 

propose to add adjacent columns with the elements

related to the boundaries, and getting an extended

matrix; i.e.

011
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and similar expressions for { and {d}. The 

matrix D acting on the column vector (bJ
, a

J) at 

resolution level J implies that its extension must act 

on an extended vector too. The additional

coefficients needed to represent the boundaries can

be obtained using the method of images for PEC or

PMC walls. If aj
L and bj

L are the scale and wavelet 

coefficients respectively, belonging to a border cell

collocated at position z=L z, we obtain the 

additional coefficients a' and b' this way: 

for even symmetry:

1
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These boundary conditions allow us to implement

in a easy way infinite electric or magnetic walls.

More complex structures require more

sophisticated techniques not studied here. 

4.- Stability analysis

For the algorithm to be stable, the pair t and z

must be chosen in a correct way. We choose these

values following the derivation given in [9] where 

the stability problem is treated as an eigenvalue

problem. This means that plane wave eigenmodes

will be assumed to propagate in the numerical data

space. The spectrum of eigenvalues for these 

modes due to the numerical space differentiation 

process will be determined and compared to the

stable spectrum of eigenvalues determined by the

numerical time differentiation process. By

requiring the complete spectrum of spatial

eigenvalues to be contained within the stable range,

it is ensured that all possible numerical wave 

modes in the grid are stable. In this way, equations

(1) can then be rewritten as follow:
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and this equations can be split into two eigenvalue

problems concerning time and space: 
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where only scaling functions of resolution level

J=0 have been used. To avoid having any mode

increasing without limit during normal time-

stepping it is found from equation (11) that the

stable spectrum of eigenvalues is: 

t/)Im( 2 (13)

In order to solve equations (12) we introduce a 

typical mode of the spatial spectrum like (14) into

the equations:
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Then we get the following set of equations:
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Simplifying and using Euler's identity we get that

the spatial eigenvalues are given by:

l

l )zkl(send
z

c
)Im(  (16) 

Therefore, the maximum value of this eigenvalues 

is:

l

ld
z

c
)Im( (17)

To guarantee numerical stability, the range of

spatial modes must be contained completely within

the stable range of time-stepping eigenvalues set by

(17)  and so:

t
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Therefore, the upper bound of the time step tMRTD

is:

c

z
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2
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Defining a stability factor like (20):

z

tc
s MRTD (20)

equation (19) establishes that the stability factor

must be contained within the range :

l

ld
s

2
0 (21)

Depending on the type of wavelet function used, 

this range implies that the time step can be set to a

different value for the same spatial resolution. If

Haar wavelet functions are used, this value can be

set double than the time step set in FDTD for the

same spatial resolution.

5.- Dispersion properties

The use of numerical techniques for solving

electromagnetic problems as TLM [10], FDTD or 

MRTD require always a discretization process. 

Such a process result in a phase error of the field 

propagation, that is, the numerical phase velocity

given by the algorithm differ from the phase

velocity of the wave in the medium [11]. This

fictitious dispersive behaviour must be taken into

account specially in considering large structures of 

simulation because significant differences between 

real and numerical phase can be obtained. Some

studies about dispersion properties of MRTD

methods based on Galerkin procedures [12], [13]

have been done. Now we proceed to study the

dispersion characteristics of the MRTD algorithm

based on the DWT using Daubechies' wavelets

functions. To do that, a plane monochromatic

travelling-wave (22) is introduced into the

discretized Maxwell equations (4) and then we 

search for the relationship between the angular

frequency   and the numerical wave number k
~

:
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As starting point, we expand the field components

using only scaling functions of resolution level

J=0, so  = and the deri ative matrix D
0 will be

composed of elements
ild . The discretized

Maxwell equations can be written in this way: 
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Substituting (22) into (23), simplifying and using

Euler's identity we get this set of equations:
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and from them we obtain the dispersion

relationship where c is the speed of light in our

medium:

l
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This expression may be reduced to the ordinary

expression , that is, the non-dispersive case, 

if spatial resolution z is very small in comparison

with the wavelength. If Haar wavelet functions are

used then we also obtain a non dispersive case at

the stability factor s = 2 (i.e. the maximum stable

value). In any case, dealing with broadband signals,

different expressions will be obtained depending on

the relation between the wavelength  and the

k
~

c
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spatial resolution z, and on the type of wavelet

function we use. In figure 4 it is plotted the

normalized phase velocity versus spatial resolution

given by the expresion (25) for two different values

of the stability factor. We can appreciate the feature

mentioned before, that is, the normalized phase 

velocity tend to unity as we increse the resolution.

It can also be seen that the higher the order of the

wavelet function, the better dispersion

characteristics.

 (a) 

(b)

Fig. 4.- Normalized numerical phase velocity

versus spatial resolution in lambda units for

different wavelet functions:
(a) with a stability factor s=0.5, and

(b) with a stability factor s=1.0

In figure 5 it is depicted a gaussian pulse

propagation using different types of wavelet

functions: (a) Haar wavelet functions, and (b)

Daubechies D2 wavelet functions. The case (b) 

exhibit a better dispersive behaviour than the case 

(a) as it can be expected from previous figure 4. 

(a)

(b)

Fig. 5.- Three snapshots of a Gaussian pulse
propagation using (a) Haar wavelet functions, and

(b) Daubechies Db2 functions, showing it

dispersion properties.

6.- Results

To validate our proposed technique some aditional

examples have been performed. First of all we have 

evaluated the multi-resolution property of the

algorithm. To do that, we have simulated a 

gaussian pulse excitation into a one-dimensional

cavity of 1 m long. The simulation domain is split 

into two parts of different resolution, one of high

resolution on the left side and 400 mm long, and

other part of low resolution on the right side and 

600 mm long. Figure 6 displays this simulation

where it can be clearly seen the differences 

between the two parts. Figure 7 shows in detail the

transition between zones. 
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(a)

(b)

(c)

Fig. 6.- Gaussian pulse propagation using Haar

wavelet functions. The simulation domain is split
into two zones of different resolution.

Fig. 7.- Details of the transition between two zones
of different resolution.

We have also evaluated the resonant frequencies of

a one-dimensional rectangular cavity with a 100

mm distance between electric walls (PEC). A

spatial resolution of z = 0.625 mm and a time

discretization of t = 3.127 ps have been chosen 

(that means, that, according to the stability criterion 

we choose s = 1.5). The electric and magnetic

fields are specified at t=0 and at t=1/2 t

respectively,
2

0

w

c
k

k

kk
expE (26)

2

2
2

1

w

c
k

k

skk
expH  (27) 

where the width of the pulse is kw = 10 and its

center kc = 80 in terms of the index of the spatial

mesh. After 4096 time steps with a spectral

resolution of f = 78.1 MHz, the resonance

spectrum obtained have been plotted in figure 8

Fig. 8.- Resonant frequencies obtained in a cavity
of length 100 mm using Haar wavelet functions.
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7.- Conclusions

A new approach to Multi-Resolution in Time-

Domain has been investigated. In this study a 

derivative matrix is used to calculate the spatial

derivatives of the electromagnetic fields. This 

matrix acts on the coefficients of the wavelet 

expansions of the fields obtained from the Discrete

Wavelet Transform. The use of this matrix allows

us to solve the discretized Maxwell equations at 

any level of desired spatial resolution and wherever 

we may want. It has been shown that different

types of Daubechies wavelet functions exhibit

better dispersion properties for the same spatial

resolution and that the time step can be chosen 

bigger than in other time-domain methods with the

same mesh size. In this way, we can also choose at

the beginning of the simulation different types of 

wavelet functions in order to improve our results.
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