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Abstract.   The effect of discontinuities at edges 
and at feed-points of antennas on numerical 
convergence rates is investigated.   In the case 
of edges, higher order representations of the 
edge-mode, expressed with the aid of Hermite 
splines, are shown to provide improved 
convergence in both global and local measures.   
When using a magnetic frill to excite an antenna, 
it is shown that when the current representation 
allows for the “charge jump” across the frill, then 
convergence is accelerated.   The use of both 
sub-domain and entire-domain functions is 
explored.

Introduction.

The treatment of edge conditions in 
electromagnetic problems is generally thought to 
be well understood, particularly after the 
publication by Meixner [1] of the relationship 
between ‘edge angle’ and the power of the 
distance from the discontinuity.   An extensive 
review by Van Bladel [2] brought together much 
of the evidence in support of the phenomenon’s 
existence.   Nevertheless, the model proposed 
by Meixner, while widely accepted, has not 
benefited from further development.   More 
recently, Shen, et al., [3][4] reported on an 
analytical solution for the current and charge 
distributions at the ends of a tubular dipole.   
Their work showed that the Meixner method 
applied only at the very ends of such a dipole.  
While extending our knowledge in this area, their 
work is, nevertheless, restricted to 
current/charge distributions on a tubular dipole. 

A different form of discontinuity arises at the 
feed-point of an antenna.   This fact is less well 
recognized.   The author knows of only one 
report that discusses it quantitatively.   In this 
report, Popovic, Dragovic and Djordjevic [5, p38] 
pointed out that “as a consequence of the 
annular magnetic-current frill excitation, the 
current derivative has a discontinuity at the frill 
location”.   They then went on to quantify the 
charge jump that occurs in this situation.   

Unfortunately, it is not clear, from the balance of 
their writing, how they consistently incorporated 
this observation into their work in a general 
manner.

Recently, the author published reports [6][7] that 
examined the use of higher order basis functions 
in modeling a tubular dipole antenna/scatterer.   
The results presented in these reports did not 
support the expectation that higher-order basis 
functions would provide faster convergence 
properties.   The models used in these 
investigations employed splines up to fifth order.   
They also incorporated the Meixner edge 
condition.   Subsequent analysis has shown that 
the application of the simple form of the edge 
condition actually inhibited the convergence 
properties of the higher order models.   The 
simple form of the Meixner edge condition has 
only one degree of freedom - it’s amplitude.   In 
order for the splines covering the rest of the 
antenna/scatterer to meet their potential, the 
number of degrees of freedom in the edge 
model were increased (in this study) to match 
those of the adjacent spline. 

As part of the analysis referred to in the 
preceding paragraph an appreciation for the 
problem associated with the charge jump across 
the magnetic frill developed.   The problem 
exhibits itself through a slow convergence 
and/or oscillation in the input admittance of the 
antenna as the model size is increased.   The 
slow convergence problem was found to occur 
for both entire-domain and sub-domain basis 
functions.    

The Basis Functions. 

The sub-domain basis functions used on the 
main portion of the antenna/scatterer are all 
splines and are shown in Table I.   They are the 
same as those used in [6][7].   They include the 
linear spline, which acts as a reference for the 
performance of the higher-order functions.   As 
the results when using the 3-term-sin/cos 
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Expansion Function Mathematical Description 
3-term sin/cos 
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Table I.   Definitions of the splines considered in this study. 

functions were almost identical to those found
when using the quadratic spline, only the latter
are reported.   The reader should be aware
however that the 3-term-sin/cos functions were 
studied.   When using splines such as those
found in Table I, one asserts as much continuity 
at the junction of contiguous cells as the 
functions allow.   For example, a quadratic
spline, which is of order 3 and degree 2p ,

provides  continuity.   Hence, in the case of a
quadratic spline both the amplitude and the first 
derivative can be matched.   By this means the
number of variables is reduced.   In the case of
the quadratic spline, for

1C

N  cells, one needs to 
determine only the free variables

.   The amplitude and first 

derivative at one extremity are related to those 
at the other extremity through the relationships 
given in equations (1a) and (1b) above. 

1 1 1 1

1

, , , ,
N

i N N

i

a b c b a

The sub-domain edge/end basis functions used
in this study are based on the form given in [2,
p120]:

2 3

0 1 2 3( ......)zE d a a d a d a d     (2) 

where zE  is the electric field normal to the 

edge/end,  is the distance from the edge/end,
 is a number greater than –1.0 and the series 

 are constants to be determined.
Expression (2) needs to be matched up, at its 
cell boundary, with each of the functions shown 
in Table I.  Thus derivatives of this function are 
required.  Straightforward differentiation of the 

function can be performed no more than once
while still maintaining a function that can be
integrated, and thus might be employed with the
quadratic spline.  However, it would fail for 
higher order splines.   An alternative, and 
numerically superior, method is to apply the 
concepts found in the development of Hermite 
splines.
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Hermite splines are different from most splines 
found in computational electromagnetic studies
which are concerned only with amplitudes.   The 
splines in Table I are examples of this latter
situation.   The constants at the open ends of
these splines are the source of much writing on 
ways to handle them. – see, for example, [8]. 
The derivatives of these splines are functions of 
these constants. In the development of Hermite 
splines the issue of derivatives is tackled
directly.  Hermite splines are typically of odd 
degree, including 1p , and are defined in

terms of their amplitude and ( 1)p 2

derivatives at each end.   The process for 
developing Hermite cubic splines is covered in
[9] and the more general case, with applications 
to CEM, is described in [10].   In the case of
equation (2) only one end is open and the
development for a two term expression will be 
described next.   Two terms will provide
amplitude, , and derivative, f ,
information that can be used directly with the 
quadratic spline described earlier. 

(1)f '(1)
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Equation (2) is restated as

,1 2( ) (1) ( ) '(1) ( )P u f H u f H u
'h z

u ,

, is the width of the cell and 

 is identified with a cell boundary.

( ) 'h z h

h 1( )H u  is a 

polynomial of order 2 selected so that 1(1) 1H

and .   Similarly, 1 '( ) 0H u 2 ( )H u  is a similar 

polynomial selected so that 2 (1) 0H  and 

.   When these conditions are applied,
the solution is given by: 

2 '(1) 1H

( ) ((1 ) ) (1)

(1 ) '(1)

P u u u f

u u f
        (3) 

This provides us with what we are looking for – a
function that separates the amplitude and the 
first derivative at the open end and one that can 
be integrated in a straightforward manner. This
concept can be extended to functions of higher
orders, and is done in this study for use with the 
cubic and quartic splines of Table I. 

When investigating the discontinuity at a 
magnetic frill, a structure that possesses no
other discontinuities is useful for investigative
purposes. A circular loop is such a structure 
and is examined here.   The ‘natural’ basis
functions to use in this situation are Fourier 
series.   Due to symmetry, only cosine terms are 
typically used.   The expansion series is then: 

0

cos( ) 0 2
N

i

i

I a i       (4a) 

This expansion has been in use for decades and
the results of its use are well documented [11].
When one examines the reported results, the 
lack of finality in the convergence of the
admittance at the feed-point is notable.   Zhou 
and Smith [12] attributed this poor convergence 
to the use of a delta-function source.   Their 
results using a magnetic frill source 
demonstrated that indeed the frill source 
performed better than the delta-function source. 
However the admittance curves still did not fully 
converge until  in (4a) was extremely large. 
This is surprising given the ‘natural’ suitability of

the functions in (4a).   The work reported here 
shows that the model in (4a) is deficient for use 
when dealing with the magnetic frill as it does 
not account for the ‘charge jump’ across the frill.
The derivatives of (4a) are all continuous, and 
what is needed is a set of functions that allows 
for this ‘charge jump’. Instead of discarding
(4a), one can modify it as in (4b) below. 

N

0

1

( cos( ) sin((2 1) / 2))
N

i i

i

I a a i b i (4b)

The derivatives of this series are such that a
‘charge jump’ can be modeled properly. As
discussed in [10], in the immediate vicinity of the
frill it is the odd derivatives of the current that 
must be in anti-phase on opposite sides of the 
frill.

Solution Tools 

The equations used in the analysis that follows 
are based on the Electric Field Integral
Equation, EFIE, formulation. In particular, in the
case of the linear dipole, the equation is Hallen’s 
derivation [13], shown in (5) below.   In (5) I  is 
the desired current,  is the Green’s function, G

2 '
( ') (2 sin( ))

2
R z z a 2 , the radius is ,

is a constant to be determined and  is the 
incident excitation.    The dipole, which is an 
open circular cylinder with an infinitesimally thin 
wall thickness, is located with its center at the 
origin of a cylindrical coordinate system with its 
length aligned with the  axis.

a C

iE

z

When investigating the loop, the derivation due 
to Mei [14], specialized for a loop is used – see
(6) below.   The center of the loop is located at 
the origin of a cylindrical coordinate system, with 

bs R .  The loop itself lies in the ,  plane 
with its feed-point at 0 .   In this case, the
expression for  in G  is R

2 22 (1 cos ') 2 (1 cos ') cos 'b bR a R aR

, where ' is a local variable around the circular 
cross-section of the loop element.   Here the 

+h

-h 0

1
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z
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j
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Extended Boundary Condition is used and the
net electric field on the axis of the loop is zero. 
The numerical solutions for I  in equations (5) 
and (6), which are expressed in the usual
ZI V system, are obtained with the aid of the 
Boundary Residual Method, BRM, [15][16]. 
This is a Least Squares Method variant that has 
two important elements. The first significant
element is that the entries in the andZ V

matrices are calculated as they would be for a 
point-matching method.   However the location 
of the matching points is not arbitrary. 
Specifically they are located at the nodes of an 
appropriate integration rule such as Gauss-
Legendre.   Furthermore, the number of sample
points exceeds the number of free variables, 
typically by a ratio of 2:1 or higher.   This means 
the Z matrix is rectangular and the matrix 
equations are solved using QR or SVD methods 
[17].   The second important element is that the
rows in the  andZ V  matrices are weighted by
the weights from the same integration rule used
to establish the nodes mentioned earlier.   This 
has the important result of minimizing the
residuals integrated over the entire surface 
being studied.   Formally, this statement is min 

22

2LS ZI V .   This is an important 

measure. It reports on the performance of the 
solution over the complete surface and hence it 
is referred to here as a global measure. For
comparative purposes, it is best to normalize 
this function.   The normalized residual is: 

2

2 2

2

2

norm

ZI V

V
        (7) 

The Dipole as a Scatterer. 

In order to calculate the currents on a straight
dipole excited by a plane wave equation (5) is
evaluated in conjunction with the basis functions
shown in Table I.   The boundary condition, 

, is satisfied in one of three ways.   In 

the first method  are set to zero. In
the second approach, the two end cells support 
the basic/conventional end function 

( ) 0I h

1  and Na a 1

0( ') ( ' )I z a h z

1

and then enforce 

.   The derivatives, 0 1 Na a a 1 1 and Nb b

and higher, are left unconstrained.   In the third 
approach, the special Hermite end splines
defined earlier are used and all applicable
constraints are enforced.   In the case of the 
linear spline, the second and third approaches 

utilize the same function.   For the quadratic 
case, a two term end spline is used, for the 
cubic case a three term end spline is used and 
the quartic spline employs a four term end 
spline. The plane wave is polarized parallel to 
the axis of the dipole and is normally incident. 

Figure 1a shows the results for the current at the
center of a half-wave dipole, with a radius of
0.007 .   As the order of the spline is increased 
the results without the inclusion of any special 
end sections show only a small benefit from the
inclusion of higher order terms.   The inclusion of
the conventional end spline provides an 
improvement, particularly for the lower order
splines.  Interestingly, the convergence curves 
for all four splines look very similar.   It is only 
when the Hermite type end splines are added 
that the real benefit of using high order splines is
observed.

Figure 1b reports the results for the Normalized 
Residual.  It is observed that the conventional 
end function improves the performance of the 
lower order basis functions.   However, the 
performance of the Hermite end functions is 
consistently better. 

The Loop Antenna.

As mentioned above, the circular loop is used to
investigate the discontinuity associated with a 
magnetic frill.   The basis functions defined in
equations (4a) and (4b) are used in conjunction
with equation (6) to evaluate the currents at the
feed-point of the antenna. When using
equation (4b) the value of  is only half that of
the corresponding value used with equation 
(4a).  The circumference of the loop is one 
wavelength and 

N

2ln(2 / ) 10.0bR a ,

where  is the radius of the loop and  is the 
radius of the loop element. 

bR a

The convergence curves for the central current
are shown in Figure 2a and the associated
normalized residuals are shown in Figure 2b.
The results show clearly the superiority of a 
series that accommodates the ‘charge jump’ at 
the feed-point, thereby confirming the presence 
of the phenomenon.   Only 32 terms are 
considered in these graphs.   If the number of
terms were increased substantially, the results
for the cosine series only would eventually
converge to those observed with the use of the 
supplemented basis functions. 
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Figure 1a.   Plots of the current on a dipole excited by a plane wave modeled with four splines
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Figure 1b.   Plots of the normalized residual on a half-wave dipole excited by a plane wave.

witout end cell
with single end cell
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Figure 2a.   Plots of the input admittance of a circular loop excited by a magnetic frill.
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Figure 2b.   Plots of the normalized residual for a circular loop excited by a magnetic frill.
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The Dipole as an Antenna. 

The dipole antenna incorporates both of the
types of discontinuity already discussed.   Here, 
it has radius, a, of 0.007 . The frill has 
dimension of  where b is the outer radius 
of the frill.   The combination of these two 
discontinuities is explored initially using sub-
domain functions.   The sub-domain functions 
are the same as those used earlier with a dipole
scatterer.   However, at the center of the dipole, 
the phase in the terms representing the first and
third derivatives is shifted  when these 
derivatives exist.   The impact on the
convergence of the current at the feed-point can 
be seen in the results reported in Figure 3a. 
The results for the associated normalized
residuals are shown in Figure 3b. It is clear,
from both sets of data, that the phase reversal of 
the odd order derivatives at the frill contributes 
significantly to an improved model for the
current.

/ 2.3b a

0180

Entire-domain functions have long been used to
model the current on a linear dipole antenna. A
study that compared ten such functions was 
published recently [18].   That study concluded 
that entire-domain functions performed poorly on
the linear dipole.   Historically, however, the 
choice for an entire-domain function on a linear
dipole has been one of various forms of a 
Fourier series.   In the absence of a better
alternative, such a series is used here. The
particular form of the Fourier series used is
shown in (8a) above.   In order to accommodate 
the “charge jump” at the magnetic frill, a 
modified form of the latter was investigated – 
this is shown in (8b) above. 

The results, for the input admittance of a half-
wavelength antenna, using these two series are
shown in Figure 4a.   The corresponding 
findings for the normalized residuals are shown
in Figure 4b. When using equation (8b) the 
value of  is only half that of the corresponding
value used with equation (8a).   Both figures
clearly demonstrate the utility of incorporating 
terms that address the issue of discontinuity 
across the frill. 

N

0

1

cos( ' ) '
N

i

i

I a a i z h h z        (8a)

0

1

cos( ' 2 ) sin((2 1) ' 2 ) '
N

i i

i

I a a i z h b i z h h z     (8b)

Discussion.

End Effects. When considering the results 
reported in Figure 1a, one must bear in mind 
that, for the linear spline, the conventional end
term and the Hermite end term are one and the 
same.   Adding a single end term to any of the
splines produces an observable improvement in 
the convergence of the current at the center of
the dipole compared with not using one at all. 
This is particularly true for the lower order 
splines.   As mentioned earlier, the convergence 
curves obtained when using a single 
conventional end term all appear to have the
same convergence characteristics.   This 
suggests that the end term is limiting the
convergence process.   When the higher order 
end terms are included, to the maximum order 
possible, the convergence process is speeded 
up significantly.  When viewed from a global 
perspective, as reported in Figure 1b, the
conventional end term is important in the case of 
the linear spline.  For the higher order splines 
the benefits become less as the order of the
spline is increased.   However, when the higher 
order end terms are included, the global results 
are distinctly better for all splines. 

Magnetic Frill. The importance of properly
incorporating “charge jump” properties into
models of current flowing on an antenna excited
by a magnetic frill is dramatically illustrated in 
Figures 2-4.  The significant oscillations seen 
when employing a Fourier series containing only 
cosine terms is an indication of its lack of
suitability – for both the loop and the linear 
dipole!   To be sure that the oscillations were the
result of the feed mechanism and nothing else,
the excitation was changed from the magnetic
frill to a plane wave. The oscillations
disappeared in the case of the loop and were 
highly attenuated on the linear dipole. This
allowed the conclusion that the oscillations are 
indeed a result of using the magnetic frill 
excitation and not something else.   The addition 
of the sine terms in the current model, while 
improving the convergence results significantly, 
does raise the condition number of the
impedance matrix from the region of  up to4~ 10
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Figure 3a.   Plots of admittance on a dipole excited by a magnetic frill for three splines.

without phase reversal of odd derivatives
with phase reversal of the odd derivatives
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Figure 3b.   Plots of the normalized residual on a dipole with magnetic frill for three different splines.

without phase reversal of odd derivatives
with phase reversal of odd derivatives
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Figure 4a.   Plots of the admittance of a half-wave dipole excited by a magnetic frill
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Figure 4b.   Plots of the normalized residual on a half-wave dipole excited by a magnetic frill

Cosine series only
Cosine + sine series
Cosine series + abs(z')

159 ACES JOURNAL, VOL. 18, NO. 3, NOVEMBER 2003



10~ 10  when more than 12 terms are used in the
series.

The linear dipole problem was also solved using 
a Method-of-Moments solution, using the
standard Pocklington equation.   This was done
as a check on the testing method and the 
integral equation formulation. The testing
functions were pulses of equal dimensions, the
basis functions were again the Fourier series of 
(8a) and (8b) and the Pocklington equation was
regularized per the procedure described in [19].
The results of using (8b) converged significantly 
faster than when using (8a) while the oscillations
noted in connection with Figure 4 were almost
completely attenuated. These findings provided
further confirmation of the need to accommodate
the discontinuity at the feed-point. 

The presence of a high condition number in the
entire domain solutions that include a series 
expansion of the absolute value of sine terms
makes them unattractive.   Consequently, the
effect of incorporating a single term only was 
investigated.   In the case of the loop this term
was sin( ' / 2) .   In the case of the dipole it was 

simply 'z . The associated results are shown 

in Figures 2 and 4 respectively.   Use of just 
these single terms contributes significantly to 
alleviating the convergence problem. The
condition numbers were comparable to those 
observed when using the cosine terms only. 
This suggests that one judiciously selected term
could significantly speed up the convergence 
rate in these situations.   However, the ones 
tested here are not those functions – otherwise 
they would exhibit normalized residual curves at 
least as steep as those shown by the addition of 
the sine series. 

The basic EFIE for a loop is shown in equation 
(9a).   After some manipulation, this assumes
the form shown in (9b). When the current is
represented by (4a) the form in (9c) results. 
The last term on the right-hand side of this latter 

equation evaluates to zero.   But this is the term
that represents the “charge jump”. Therefore
the representation of (4a) is inadequate. A
term, or terms, that permit(s) the current
derivative at the origin to be discontinuous is 
necessary.   The inadequacy of the
representations of (4a) and (8a), is believed to 
be the main source of the oscillations seen in
the relevant convergence curves. 

In 1980, Richmond [20] reported that the
incorporation of a term that represented an 
outgoing wave on an infinite dipole improved 
convergence considerably on a finite dipole. 
This was confirmed in [18], where it was also
noted that the condition numbers were high.
This outgoing term is essentially a log term at 
the feed-point and consequently presents a 
discontinuity there.   It is possible that this 
discontinuity had more to do with the
improvement realized by Richmond than the
form of the term itself.

Conclusions.

This study was motivated by the apparent failure
of high-order basis functions to improve 
convergence rates when compared with basis
functions of lower order [6][7].   As a result of
this work, it is believed that the reasons for this 
failure originate with inadequate current
modeling in the vicinity of discontinuities. 
Specifically, it has been demonstrated that to
achieve superior convergence properties one
must bear in mind three things. 
1. Current models in the vicinity of 
discontinuities must support the same level of 
continuity as that supported by the models
employed away from the discontinuities. 
2. When an isolated excitation source,
such as a magnetic frill, is part of the system, 
the current model(s) must have sufficient
flexibility to accommodate issues such as 
“charge jump” in the excitation region. 
3. The above comments apply to both sub-
domain and entire-domain models. 
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